351
|
McCarter GC, Levine JD. Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons. Mol Pain 2006; 2:28. [PMID: 16923187 PMCID: PMC1563451 DOI: 10.1186/1744-8069-2-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/21/2006] [Indexed: 01/30/2023] Open
Abstract
Sensory mechanical transduction - necessary for hearing, proprioception, and the senses of touch and pain - remains poorly understood. In somatosensation, even the basic properties of the mechanically sensitive excitatory ionic currents that are assumed to mediate mechanical transduction are largely undescribed. We have recorded, from the soma of rat dorsal root ganglion (DRG) neurons in vitro, whole-cell ionic currents induced by the impact of a piezo-electrically driven glass probe. This transient mechanically activated current was observed in virtually all DRG neurons tested. In ion substitution experiments the current could be carried nonselectively by most cations, including divalent and organic cations, but not by chloride or sulfate ions. In addition, the mechanically activated current carried by monovalent cations was consistently blocked by millimolar concentrations of external calcium or magnesium. Based on these results, the transient mechanical transduction current observed in somatosensory neurons in vitro is mediated by large-pore mechanically gated channels nonselective for cations but impermeable to anions.
Collapse
Affiliation(s)
- Gordon C McCarter
- Department of Oral and Maxillofacial Surgery, Division of Neurosciences, University of California at San Francisco, San Francisco, CA 94143-0440, USA
- College of Pharmacy, Touro University – California, 1310 Johnson Lane, Mare Island, Vallejo, CA 94592-1118, USA
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, Division of Neurosciences, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| |
Collapse
|
352
|
Garm A, Høeg JT. Ultrastructure and functional organization of mouthpart sensory setae of the spiny lobster Panulirus argus: new features of putative mechanoreceptors. J Morphol 2006; 267:464-76. [PMID: 16425272 DOI: 10.1002/jmor.10417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In comparison with other decapods, the Caribbean spiny lobster Panulirus argus has little diversity in the external morphology of the setae on the mouth apparatus. In mouthpart areas that frequently touch food items only two types of setae can be distinguished: simple setae and cuspidate setae. Simple setae are by far more numerous. The ultrastructural data presented here show that both types of seta are bimodal, in that they both contain mechano- and chemosensory cells as indicated by morphological features. The morphological features divide the sensory cells into three types: type 1, which has a mechanosensory appearance; type 2, which has a chemosensory appearance; and type 3, which is believed to be a mechanoreceptor due to desmosomal connections to a scolopale. All three cell types were found in all examined setae. In an earlier study the simple setae were found to contain two types of mechanosensors: bend-sensitive cells and displacement-sensitive cells. The morphological arrangement of the outer dendritic segment described in the present study cannot explain this division. Instead, it is suggested that the difference in sensitivity is caused by a differential arrangement of their stretch-sensitive ion channels. This hypothesis also provides an explanation for the earlier observation that only bend cells respond to changes in osmolarity.
Collapse
Affiliation(s)
- Anders Garm
- Institute of Biology, University of Copenhagen, Denmark.
| | | |
Collapse
|
353
|
Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 2006; 8:3692-706. [PMID: 16896432 DOI: 10.1039/b606019f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces play an essential role in cellular processes as input, output, and signals. Various protein complexes in the cell are designed to handle, transform and use such forces. For instance, proteins of muscle and the extracellular matrix can withstand considerable stretching forces, hearing-related and mechanosensory proteins can transform weak mechanical stimuli into electrical signals, and regulatory proteins are suited to forcing DNA into loops to control gene expression. Here we review the structure-function relationship of four protein complexes with well defined and representative mechanical functions. The first example is titin, a protein that confers passive elasticity on muscle. The second system is the elastic extracellular matrix protein, fibronectin, and its cellular receptor integrin. The third protein system is the transduction apparatus in hearing and other mechanical senses, likely containing cadherin and ankyrin repeats. The last system is the lac repressor protein, which regulates gene expression by looping DNA. This review focuses on atomic level descriptions of the physical mechanisms underlying the various mechanical functions of the stated proteins.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, Department of Physics, Center for Biophysics and Computational Biology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
354
|
|
355
|
Wenxuan H, Tianying R. Backward Propagation of Otoacoustic Emissions. J Otol 2006. [DOI: 10.1016/s1672-2930(06)50007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
356
|
Wildner H, Müller T, Cho SH, Bröhl D, Cepko CL, Guillemot F, Birchmeier C. dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development. Development 2006; 133:2105-13. [PMID: 16690754 DOI: 10.1242/dev.02345] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
dILA and dILB neurons comprise the major neuronal subtypes generated in the dorsal spinal cord, and arise in a salt-and-pepper pattern from a broad progenitor domain that expresses the bHLH factor Mash1. In this domain,Mash1-positive and Mash1-negative cells intermingle. Using a Mash1GFP allele in mice, we show here that Mash1+ progenitors give rise to dILA and dILB neurons. Using retroviral tracing in the chick, we demonstrate that a single progenitor can give rise to a dILA and a dILB neuron, and that dILA neurons are the product of asymmetric progenitor cell divisions. In Mash1-null mutant mice, the development of dILA, but not of dILB neurons is impaired. We provide evidence that a dual function of Mash1 in neuronal differentiation and specification accounts for the observed changes in the mutant mice. Our data allow us to assign to Mash1 a function in asymmetric cell divisions, and indicate that the factor coordinates cell cycle exit and specification in the one daughter that gives rise to a dILA neuron.
Collapse
Affiliation(s)
- Hendrik Wildner
- Max-Delbrück-Centrum for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | |
Collapse
|
357
|
Senften M, Schwander M, Kazmierczak P, Lillo C, Shin JB, Hasson T, Géléoc GSG, Gillespie PG, Williams D, Holt JR, Müller U. Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J Neurosci 2006; 26:2060-71. [PMID: 16481439 PMCID: PMC2712835 DOI: 10.1523/jneurosci.4251-05.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hair cells of the mammalian inner ear are the mechanoreceptors that convert sound-induced vibrations into electrical signals. The molecular mechanisms that regulate the development and function of the mechanically sensitive organelle of hair cells, the hair bundle, are poorly defined. We link here two gene products that have been associated with deafness and hair bundle defects, protocadherin 15 (PCDH15) and myosin VIIa (MYO7A), into a common pathway. We show that PCDH15 binds to MYO7A and that both proteins are expressed in an overlapping pattern in hair bundles. PCDH15 localization is perturbed in MYO7A-deficient mice, whereas MYO7A localization is perturbed in PCDH15-deficient mice. Like MYO7A, PCDH15 is critical for the development of hair bundles in cochlear and vestibular hair cells, controlling hair bundle morphogenesis and polarity. Cochlear and vestibular hair cells from PCDH15-deficient mice also show defects in mechanotransduction. Together, our findings suggest that PCDH15 and MYO7A cooperate to regulate the development and function of the mechanically sensitive hair bundle.
Collapse
|
358
|
Shim K. The auditory sensory epithelium: the instrument of sound perception. Int J Biochem Cell Biol 2006; 38:1827-33. [PMID: 16814589 DOI: 10.1016/j.biocel.2006.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/02/2006] [Accepted: 03/21/2006] [Indexed: 01/18/2023]
Abstract
The auditory sensory epithelium is the specialized region of the cochlear epithelium that transduces sound. It is composed of a highly ordered, repeated array of mechanosensory hair cells and nonsensory supporting cells that run along the length of the cochlea. On the apical surface of the hair cells is a specialized structure called the hair bundle that deflects in response to sound vibration, resulting in depolarization of the hair cell and neurotransmitter release. Formation of the auditory sensory epithelium during embryogenesis involves strict control of both cell proliferation and cell patterning. Misregulation of these events can lead to congenital hearing loss, and damage to the auditory sensory epithelium during adult life can lead to adult-onset deafness. This paper reviews recent data on the formation of the auditory sensory epithelium during embryogenesis, the identification of components of the sound transduction apparatus, and advances in the treatment of hearing impairment.
Collapse
Affiliation(s)
- Katherine Shim
- Department of Anatomy, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-2711, United States.
| |
Collapse
|
359
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
360
|
Hampl H, Hennig L, Rosenberger C, Gogoll L, Riedel E, Scherhag A. Optimized Heart Failure Therapy and Complete Anemia Correction on Left-Ventricular Hypertrophy in Nondiabetic and Diabetic Patients Undergoing Hemodialysis. Kidney Blood Press Res 2006; 28:353-62. [PMID: 16534231 DOI: 10.1159/000090190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND According to new guidelines, diabetes mellitus per se can be considered as stage I chronic heart failure (CHF). Available evidence suggests that patients suffering from both diabetes mellitus and renal insufficiency have disproportionately high rates of left-ventricular hypertrophy (LVH). METHODS Optimized heart failure therapy, including beta-blockers, ACE-inhibitors and AT II-type-1-receptor-blockers, was prescribed in combination with complete anemia correction using epoetin beta (target hemoglobin: 13.5 g/dl for women; 14.5 g/dl for men) to 230 patients (55% male) with ambulatory hemodialysis, including 60 patients (52% male) with diabetes. Echocardiographic follow-up examinations were performed over a mean period of 4.4 +/- 1.2 years. RESULTS Mean hemoglobin levels at the study end significantly increased to target levels in the entire study population and in patients with diabetes (both p < 0.001). Compared with baseline, significant improvements were seen in hemodialysis patients - both without and with diabetes - in left-ventricular mass index (-28.8 g/m2 [p < 0.001] and 29.0 g/m2 [p < 0.005], respectively), left-ventricular ejection fraction (+7.0% [p < 0.001] and +8.3% [p < 0.01], respectively) and in NYHA class (-0.84 [p < 0.01] and -1.12 [p < 0.01], respectively). Similar to the results in the overall population, a highly significant reduction in LVH (p < 0.005) and significant improvements in LVEF (p < 0.01) and NYHA class (p < 0.01) were seen in the high-risk subgroup of diabetic patients. CONCLUSIONS Patients undergoing hemodialysis, with or without concomitant diabetes, benefit considerably from optimized, multifactorial heart failure therapy combined with complete anemia correction.
Collapse
Affiliation(s)
- Hannelore Hampl
- Renal Centre, Consulting Institution for Home Dialysis and Kidney Transplantation, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
361
|
Sandal M, Grandi F, Samorì B. Single molecule force spectroscopy discovers mechanochemical switches in biology: The case of the disulfide bond. POLYMER 2006. [DOI: 10.1016/j.polymer.2005.12.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
362
|
Nagata K, Duggan A, Kumar G, García-Añoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 2006; 25:4052-61. [PMID: 15843607 PMCID: PMC6724946 DOI: 10.1523/jneurosci.0013-05.2005] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanosensory channels of sensory cells mediate the sensations of hearing, touch, and some forms of pain. The TRPA1 (a member of the TRP family of ion channel proteins) channel is activated by pain-producing chemicals, and its inhibition impairs hair cell mechanotransduction. As shown here and previously, TRPA1 is expressed by hair cells as well as by most nociceptors (small neurons of dorsal root, trigeminal, and nodose ganglia) and localizes to their sensory terminals (mechanosensory stereocilia and peripheral free nerves, respectively). Thus, TRPA1 channels are proposed to mediate transduction in both hair cells and nociceptors. Accordingly, we find that heterologously expressed TRPA1 display channel behaviors expected for both auditory and nociceptive transducers. First, TRPA1 and the hair cell transducer share a unique set of pore properties not described for any other channel (block by gadolinium, amiloride, gentamicin, and ruthenium red, a ranging conductance of approximately 100 pS that is reduced to 54% by calcium, permeating calcium-induced potentiation followed by closure, and reopening by depolarization), supporting a direct role of TRPA1 as a pore-forming subunit of the hair cell transducer. Second, TRPA1 channels inactivate in hyperpolarized cells but remain open in depolarized cells. This property provides a mechanism for the lack of desensitization, coincidence detection, and allodynia that characterize pain by allowing a sensory neuron to respond constantly to sustained stimulation that is suprathreshold (i.e., noxious) and yet permitting the same cell to ignore sustained stimulation that is subthreshold (i.e., innocuous). Our results support a TRPA1 role in both nociceptor and hair cell transduction.
Collapse
MESH Headings
- Actins/metabolism
- Amiloride/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Calcium/metabolism
- Cell Count/methods
- Cell Line
- Cloning, Molecular/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- Electric Stimulation/methods
- Gadolinium/pharmacology
- Ganglia/cytology
- Gentamicins/pharmacology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Hearing/physiology
- Humans
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Intermediate Filament Proteins/metabolism
- Isothiocyanates/pharmacology
- Mechanoreceptors/physiology
- Membrane Glycoproteins/metabolism
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Nerve Tissue Proteins/metabolism
- Neurofilament Proteins/metabolism
- Neurons, Afferent/classification
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Neurons, Afferent/radiation effects
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/physiopathology
- Patch-Clamp Techniques/methods
- Peripherins
- RNA, Messenger/metabolism
- Ruthenium Red/pharmacology
- TRPA1 Cation Channel
- Transfection/methods
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/physiology
- Ubiquitin Thiolesterase/metabolism
Collapse
Affiliation(s)
- Keiichi Nagata
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
363
|
Karcher H, Lee SE, Kaazempur-Mofrad MR, Kamm RD. A coarse-grained model for force-induced protein deformation and kinetics. Biophys J 2006; 90:2686-97. [PMID: 16443661 PMCID: PMC1414568 DOI: 10.1529/biophysj.104.054841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Force-induced changes in protein conformation are thought to be responsible for certain cellular responses to mechanical force. Changes in conformation subsequently initiate a biochemical response by alterations in, for example, binding affinity to another protein or enzymatic activity. Here, a model of protein extension under external forcing is created inspired by Kramers' theory for reaction rate kinetics in liquids. The protein is assumed to have two distinct conformational states: a relaxed state, C(1), preferred in the absence of external force, and an extended state, C(2), favored under force application. In the context of mechanotransduction, the extended state is a conformation from which the protein can initiate signaling. Appearance and persistence of C(2) are assumed to lead to transduction of the mechanical signal into a chemical one. The protein energy landscape is represented by two harmonic wells of stiffness kappa(1) and kappa(2), whose minima correspond to conformations C(1) and C(2). First passage time t(f) from C(1) to C(2) is determined from the Fokker-Plank equation employing several different approaches found in the literature. These various approaches exhibit significant differences in behavior as force increases. Although the level of applied force and the energy difference between states largely determine equilibrium, the dominant influence on t(f) is the height of the transition state. Distortions in the energy landscape due to force can also have a significant influence, however, exhibiting a weaker force dependence than exponential as previously reported, approaching a nearly constant value at a level of force that depends on the ratio kappa(1)/kappa(2). Two model systems are used to demonstrate the utility of this approach: a short alpha-helix undergoing a transition between two well-defined states and a simple molecular motor.
Collapse
Affiliation(s)
- Helene Karcher
- Department of Mechanical Engineering and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
364
|
Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. ACTA ACUST UNITED AC 2006; 171:209-15. [PMID: 16247023 PMCID: PMC2171187 DOI: 10.1083/jcb.200505018] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the application of either unidirectional cyclic stretch or shear stress to cells results in robust mobilization of zyxin from focal adhesions to actin filaments, whereas many other focal adhesion proteins and zyxin family members remain at focal adhesions. Mechanical stress also induces the rapid zyxin-dependent mobilization of vasodilator-stimulated phosphoprotein from focal adhesions to actin filaments. Thickening of actin stress fibers reflects a cellular adaptation to mechanical stress; this cytoskeletal reinforcement coincides with zyxin mobilization and is abrogated in zyxin-null cells. Our findings identify zyxin as a mechanosensitive protein and provide mechanistic insight into how cells respond to mechanical cues.
Collapse
Affiliation(s)
- Masaaki Yoshigi
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
365
|
Inoue R, Morita H, Ito Y. Newly emerging Ca2+ entry channel molecules that regulate the vascular tone. Expert Opin Ther Targets 2006; 8:321-34. [PMID: 15268627 DOI: 10.1517/14728222.8.4.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local blood flow is critically determined by the arterial tone in which sustained Ca(2+) influx, activated by a variety of mechanisms, plays a central regulatory role. Recent progress in molecular biological research has disclosed unexpectedly diverse and complex facets of Ca(2+) entry channel molecules involved in this Ca(2+) influx. Candidates include several transient receptor potential (TRP) superfamily members such as TRPC1, TRPC4, TRPC6, TRPV2, TRPV4 and TRPM4, none of which exhibit simple properties attributable to a single particular role. Rather, they appear to be multimodally activated or modulated by receptor stimulation, temperature, mechanical stress or lipid second messengers generated from various sources, and may be involved in both acute vasomotor control and long-term vascular remodelling. This paper provides an overview of existing knowledge of TRP proteins, and their possible relationships with principal factors regulating the arterial tone (i.e., autonomic nerves, various autocrine and paracrine factors, and intravascular pressure).
Collapse
Affiliation(s)
- Ryuji Inoue
- Kyushu University, Department of Pharmacology, Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
366
|
Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. ACTA ACUST UNITED AC 2006; 172:259-68. [PMID: 16401722 PMCID: PMC2063555 DOI: 10.1083/jcb.200506179] [Citation(s) in RCA: 535] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Expression of α-smooth muscle actin (α-SMA) renders fibroblasts highly contractile and hallmarks myofibroblast differentiation. We identify α-SMA as a mechanosensitive protein that is recruited to stress fibers under high tension. Generation of this threshold tension requires the anchoring of stress fibers at sites of 8–30-μm-long “supermature” focal adhesions (suFAs), which exert a stress approximately fourfold higher (∼12 nN/μm2) on micropatterned deformable substrates than 2–6-μm-long classical FAs. Inhibition of suFA formation by growing myofibroblasts on substrates with a compliance of ≤11 kPa and on rigid micropatterns of 6-μm-long classical FA islets confines α-SMA to the cytosol. Reincorporation of α-SMA into stress fibers is established by stretching 6-μm-long classical FAs to 8.1-μm-long suFA islets on extendable membranes; the same stretch producing 5.4-μm-long classical FAs from initially 4-μm-long islets is without effect. We propose that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs on classical islets, accounts for higher stress resistance.
Collapse
Affiliation(s)
- Jérôme M. Goffin
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Philippe Pittet
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Gabor Csucs
- Institute of Biochemistry and Institute for Biomedical Engineering, Swiss Federal Institute of Technology Zürich, CH-8093, Zürich, Switzerland
| | - Jost W. Lussi
- Institute of Biochemistry and Institute for Biomedical Engineering, Swiss Federal Institute of Technology Zürich, CH-8093, Zürich, Switzerland
| | - Jean-Jacques Meister
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Boris Hinz
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
367
|
Schwarz US, Bischofs IB. Physical determinants of cell organization in soft media. Med Eng Phys 2006; 27:763-72. [PMID: 15951217 DOI: 10.1016/j.medengphy.2005.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Cell adhesion is an integral part of many physiological processes in tissues, including development, tissue maintenance, angiogenesis, and wound healing. Recent advances in materials science (including microcontact printing, soft lithography, microfluidics, and nanotechnology) have led to strongly improved control of extracellular ligand distribution and of the properties of the micromechanical environment. As a result, the investigation of cellular response to the physical properties of adhesive surfaces has become a very active area of research. Sophisticated use of elastic substrates has revealed that cell organization in soft media is determined by active mechanosensing at cell-matrix adhesions. In order to determine the underlying mechanisms, quantification and biophysical modelling are essential. In tissue engineering, theory might help to design new environments for cells.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
368
|
John A, Wildner H, Britsch S. The homeodomain transcription factor Gbx1 identifies a subpopulation of late-born GABAergic interneurons in the developing dorsal spinal cord. Dev Dyn 2006; 234:767-71. [PMID: 16193514 DOI: 10.1002/dvdy.20568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The dorsal spinal cord processes somatosensory information and relays it to higher brain centers and to motoneurons in the ventral spinal horn. These functions reside in a large number of distinct sensory interneurons that are organized in specific laminae within the dorsal spinal horn. Homeodomain and bHLH transcription factors can control the development of neuronal cell types in the dorsal horn. Here, we demonstrate that the murine homeodomain transcription factor Gbx1 is expressed specifically in a subset of Lbx1(+) (class B) neurons in the dorsal horn. Expression of Gbx1 in the dorsal spinal cord depends on Lbx1 function. Immunohistological analyses revealed that Gbx1 identifies a distinct population of late-born, Lhx1/5(+), Pax2(+) neurons. In the perinatal period as well as in the adult spinal cord, Gbx1 marks a subpopulation of GABAergic neurons. The expression of Gbx1 suggests that it controls development of a specific subset of GABAergic neurons in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Anita John
- Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | | |
Collapse
|
369
|
Chapter 13 Finding Sensory Neuron Mechanotransduction Components. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
370
|
Lopes C, Delezoide AL, Delabar JM, Rachidi M. BARHL1 homeogene, the human ortholog of the mouse Barhl1 involved in cerebellum development, shows regional and cellular specificities in restricted domains of developing human central nervous system. Biochem Biophys Res Commun 2005; 339:296-304. [PMID: 16307728 DOI: 10.1016/j.bbrc.2005.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
The mouse homeobox gene Barhl1 plays a central role in cerebellum development and its expression is activated by the transcription factor Math1 which is involved in bone morphogenetic protein response pathways. We studied the human ortholog BARHL1 and we found that human, mouse, monkey, rat, and zebrafish orthologs were highly conserved and are members of the BarH homeogene family, containing Drosophila BarH1 and BarH2. The N-terminus of BARHL1 protein presents two FIL domains and an acidic domain rich in serine/threonine and proline, while the C-terminus contains a canonical proline-rich domain. Secondary structure analysis showed that outside the three helixes of the homeodomain, BARHL1 protein has essentially random coil structure. We isolated BARHL1 and defined its expression pattern in human embryonic and fetal central nervous system (CNS) and compared it to the mouse Barhl1 transcription. BARHL1 mRNA was found exclusively in the CNS restricted to p1-p4 prosomeres of the diencephalon, to the dorsal cells of the mesencephalon, to the dorsal dl1 sensory neurons of the spinal cord, and to the rhombic lips yielding the cerebellar anlage. Detailed analysis of BARHL1 expression in fetal cerebellar cell layers using our new optic microscopy technology showed BARHL1 expression in external and internal granular cells and also in mouse adult granular cells, in agreement to Barhl1 null mouse phenotype affecting the differentiation and migration of granular cells. These findings indicate that the regional and cellular specificities of BARHL1 transcriptional control well correspond to the mouse Barhl1 transcription and suggest a potential role of this gene in the differentiation of BARHL1-expressing neuronal progenitors involved in the pattern formation of human cerebral and cerebellar structures.
Collapse
Affiliation(s)
- Carmela Lopes
- EA 3508 Université Paris 7-Denis Diderot, Paris, France
| | | | | | | |
Collapse
|
371
|
Zagorodnyuk VP, Lynn P, Costa M, Brookes SJH. Mechanisms of mechanotransduction by specialized low-threshold mechanoreceptors in the guinea pig rectum. Am J Physiol Gastrointest Liver Physiol 2005; 289:G397-406. [PMID: 15933221 DOI: 10.1152/ajpgi.00557.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The guinea pig rectum, but not the colon, is innervated by a specialized class of distension-sensitive mechanoreceptors that have transduction sites corresponding to rectal intraganglionic laminar endings (rIGLEs). Rectal mechanoreceptors recorded in vitro had low threshold to circumferential stretch, adapted slowly, and could respond within 2 ms to mechanical stimulation by a piezo-electric probe. Antagonists to ionotropic N-methyl-D-aspartate (NMDA; CGS 19755, memantine) and non-NMDA (6,7-dinitroquinoxaline-2,3-dione) glutamate receptors did not affect mechanotransduction. In normal Krebs solution, the P2X purinoreceptor agonist alpha,beta-methylene ATP reduced mechanoreceptor firing evoked by distension but simultaneously relaxed circular smooth muscle and inhibited stretch-induced contractions. Neither ATP nor alpha,beta-methylene ATP affected mechanotransduction when transduction sites were directly compressed with von Frey hairs. The P2 purinoreceptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid did not affect stretch-induced firing but reduced the inhibitory effect of alpha,beta-methylene ATP on stretch-induced firing. Under isometric conditions, blocking synaptic transmission in Ca2+-free solution reduced stretch-evoked firing but not when basal tension was restored to control levels. Under isotonic condition, Ca2+-free solution did not significantly affect load-evoked firing. The blockers of mechanogated and/or transient receptor potential channels, benzamil, Gd3+, SKF 96365, and ruthenium red inhibited stretch-induced firing but, in parallel, significantly reduced stretch-induced contractions. Benzamil and SKF 96365 were able to inhibit mechanotransduction when transduction sites were compressed with von Frey hairs. The results show that mechanotransduction is rapid but does not depend on fast exocytotic release of mediators. It is likely that stretch-activated ion channels on rIGLEs are involved in direct, physical mechanotransduction by rectal low-threshold mechanoreceptors.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Dept. of Human Physiology, Flinders Univ., GPO Box 2100, Adelaide, South Australia 5001.
| | | | | | | |
Collapse
|
372
|
Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci U S A 2005; 102:12572-7. [PMID: 16116094 PMCID: PMC1194908 DOI: 10.1073/pnas.0502403102] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is absent from the genomes of higher vertebrates, however, and has not been localized in hair cells. Another candidate for the transduction channel, TRPA1, apparently is required for transduction in mammalian and nonmammalian vertebrates. This discrepancy raises the question of the relative contribution of TRPN1 and TRPA1 to transduction in nonmammalian vertebrates. To address this question, we cloned the TRPN1 ortholog from the amphibian Xenopus laevis, generated an antibody against the protein, and determined the protein's cellular and subcellular localization. We found that TRPN1 is prominently located in lateral-line hair cells, auditory hair cells, and ciliated epidermal cells of developing Xenopus embryos. In ciliated epidermal cells TRPN1 staining was enriched at the tips and bases of the cilia. In saccular hair cells, TRPN1 was located prominently in the kinocilial bulb, a component of the mechanosensory hair bundles. Moreover, we observed redistribution of TRPN1 upon treatment of hair cells with calcium chelators, which disrupts the transduction apparatus. This result suggests that although TRPN1 is unlikely to be the transduction channel of stereocilia, it plays an essential role, functionally related to transduction, in the kinocilium.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Oregon Hearing Research Center and Vollum Institute, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports 2005; 15:223-30. [PMID: 15998339 DOI: 10.1111/j.1600-0838.2005.00461.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.
Collapse
Affiliation(s)
- A Sarasa-Renedo
- ITI-Research Institute for Dental and Skeletal Biology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
374
|
Wang S, Davis BM, Zwick M, Waxman SG, Albers KM. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice. Neurobiol Aging 2005; 27:895-903. [PMID: 15979214 PMCID: PMC2841704 DOI: 10.1016/j.neurobiolaging.2005.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 04/13/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRalpha3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
375
|
Jones JCR, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, Correa-Meyer E, Gonzales M, Campbell K, Sznajder JI, Budinger S. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. J Cell Sci 2005; 118:2557-66. [PMID: 15928048 PMCID: PMC2820238 DOI: 10.1242/jcs.02395] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mechanical ventilation is a valuable treatment regimen for respiratory failure. However, mechanical ventilation (especially with high tidal volumes) is implicated in the initiation and/or exacerbation of lung injury. Hence, it is important to understand how the cells that line the inner surface of the lung [alveolar epithelial cells (AECs)] sense cyclic stretching. Here, we tested the hypothesis that matrix molecules, via their interaction with surface receptors, transduce mechanical signals in AECs. We first determined that rat AECs secrete an extracellular matrix (ECM) rich in anastamosing fibers composed of the alpha3 laminin subunit, complexed with beta1 and gamma1 laminin subunits (i.e. laminin-6), and perlecan by a combination of immunofluorescence microscopy and immunoblotting analyses. The fibrous network exhibits isotropic expansion when exposed to cyclic stretching (30 cycles per minute, 10% strain). Moreover, this same stretching regimen activates mitogen-activated-protein kinase (MAPK) in AECs. Stretch-induced MAPK activation is not inhibited in AECs treated with antagonists to alpha3 or beta1 integrin. However, MAPK activation is significantly reduced in cells treated with function-inhibiting antibodies against the alpha3 laminin subunit and dystroglycan, and when dystroglycan is knocked down in AECs using short hairpin RNA. In summary, our results support a novel mechanism by which laminin-6, via interaction with dystroglycan, transduces a mechanical signal initiated by stretching that subsequently activates the MAPK pathway in rat AECs. These results are the first to indicate a function for laminin-6. They also provide novel insight into the role of the pericellular environment in dictating the response of epithelial cells to mechanical stimulation and have broad implications for the pathophysiology of lung injury.
Collapse
Affiliation(s)
- Jonathan C R Jones
- Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
O'Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch 2005; 451:193-203. [PMID: 15909178 DOI: 10.1007/s00424-005-1424-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 01/26/2023]
Abstract
Transient receptor potential vanilloid (TRPV) channels are widely expressed in both sensory and nonsensory cells. Whereas the channels display a broad diversity to activation by chemical and physical stimuli, activation by mechanical stimuli is common to many members of this group in both lower and higher organisms. Genetic screening in Caenorhabditis elegans has demonstrated an essential role for two TRPV channels in sensory neurons. OSM-9 and OCR-2, for example, are essential for both osmosensory and mechanosensory (nose-touch) behaviors. Likewise, two Drosophila TRPV channels, NAN and IAV, have been shown to be critical for hearing by the mechanosensitive chordotonal organs located in the fly's antennae. The mechanosensitive nature of the channels appears to be conserved in higher organisms for some TRPV channels. Two vertebrate channels, TRPV2 and TRPV4, are sensitive to hypotonic cell swelling, shear stress/fluid flow (TRPV4), and membrane stretch (TRPV2). In the osmosensing neurons of the hypothalamus (circumventricular organs), TRPV4 appears to function as an osmoreceptor, or part of an osmoreceptor complex, in control of vasopressin release, whereas in inner ear hair cells and vascular baroreceptors a mechanosensory role is suggestive, but not demonstrated. Finally, in many nonsensory cells expressing TRPV4, such as vascular endothelial cells and renal tubular epithelial cells, the channel exhibits well-developed local mechanosensory transduction processes where both cell swelling and shear stress/fluid flow lead to channel activation. Hence, many TRPV channels, or combinations of TRPV channels, display a mechanosensitive nature that underlies multiple mechanosensitive processes from worms to mammals.
Collapse
Affiliation(s)
- Roger G O'Neil
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
377
|
|
378
|
Leikauf GD, Deshmukh HS. When wheeze leads to squeeze: growth under pressure. Am J Respir Cell Mol Biol 2005; 32:366. [PMID: 15837725 DOI: 10.1165/rcmb.f297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
379
|
Müller T, Anlag K, Wildner H, Britsch S, Treier M, Birchmeier C. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev 2005; 19:733-43. [PMID: 15769945 PMCID: PMC1065726 DOI: 10.1101/gad.326105] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons of the dorsal horn integrate and relay sensory information and arise during development in the dorsal spinal cord, the alar plate. Class A and B neurons emerge in the dorsal and ventral alar plate, differ in their dependence on roof plate signals for specification, and settle in the deep and superficial dorsal horn, respectively. We show here that the basic helix-loop-helix (bHLH) gene Olig3 is expressed in progenitor cells that generate class A (dI1-dI3) neurons and that Olig3 is an important factor in the development of these neuronal cell types. In Olig3 mutant mice, the development of class A neurons is impaired; dI1 neurons are generated in reduced numbers, whereas dI2 and dI3 neurons are misspecified and assume the identity of class B neurons. Conversely, Olig3 represses the emergence of class B neurons in the chick spinal cord. We conclude that Olig3 expression distinguishes the two major classes of progenitors in the dorsal spinal cord and determines the distinct specification program of class A neurons.
Collapse
Affiliation(s)
- Thomas Müller
- Max-Delbrück-Center for Molecular Medicine, 13122 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
380
|
Abstract
Mechanoreception is a vital constituent of several sensory modalities and a wide range of internal regulatory processes, but fundamental mechanisms for neural detection of mechanical stimuli have been difficult to characterize because of the morphological properties of most mechanoreceptors and the nature of the stimulus itself. An invertebrate preparation, the VS-3 lyriform slit sense organ of the spider, Cupiennius salei, has proved useful because it possesses large mechanosensory neurons, whose cell bodies are close to the sites of sensory transduction, and accessible to intracellular recording during mechanotransduction. This has made it possible to observe and experiment with all the major stages of mechanosensation. Here, we describe several important findings from this preparation, including the estimated number, conductance and ionic selectivity of the ion channels responsible for mechanotransduction, the major voltage-activated ion channels responsible for action potential encoding and control of the dynamic properties of the neurons, the location of action potential initiation following mechanical stimulation, and the efferent control of mechanoreception. While many details of mechanosensation remain to be discovered, the VS-3 system continues to offer important opportunities to advance our understanding of this crucial physiological process.
Collapse
Affiliation(s)
- Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | |
Collapse
|
381
|
Sotomayor M, Corey DP, Schulten K. In Search of the Hair-Cell Gating Spring. Structure 2005; 13:669-82. [PMID: 15837205 DOI: 10.1016/j.str.2005.03.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/10/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Mechanotransduction in vertebrate hair cells involves a biophysically defined elastic element (the "gating spring") that pulls on the transduction channels. The tip link, a fine filament made of cadherin 23 linking adjacent stereocilia in hair-cell bundles, has been suggested to be the gating spring. However, TRP channels that mediate mechanotransduction in Drosophila, zebrafish, and mice often have cytoplasmic domains containing a large number of ankyrin repeats that are also candidates for the gating spring. We have explored the elastic properties of cadherin and ankyrin repeats through molecular dynamics simulations using crystallographic structures of proteins with one cadherin repeat or 4 and 12 ankyrin repeats, and using models of 17 and 24 ankyrin repeats. The extension and stiffness of large ankyrin-repeat structures were found to match those predicted by the gating-spring model. Our results suggest that ankyrin repeats of TRPA1 and TRPN1 channels serve as the gating spring for mechanotransduction.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Physics, University of Illinois at Urbana-Champaign and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
382
|
Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J 2005; 18:1524-35. [PMID: 15466361 DOI: 10.1096/fj.04-2414com] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myogenesis is a multistep developmental program that generates and regenerates skeletal muscles. Several extracellular factors have been identified that participate in the regulation of myogenesis. Although skeletal muscles are always subjected to mechanical stress in vivo, the role of mechanical forces in the regulation of myogenesis remains unknown. We have investigated the molecular mechanisms by which cyclic mechanical strain modulates myogenesis. Application of cyclic mechanical strain using the computer-controlled Flexcell Strain Unit increased the proliferation of C2C12 cells and inhibited their differentiation into myotubes. Cyclic strain increased the activity of cyclin-dependent kinase 2 (cdk2) and the cellular level of cyclin A, and inhibited the expression of myosin heavy chain and formation of myotubes in C2C12 cultures. The activity of nuclear factor-kappa B (NF-kappaB) transcription factor and the expression of NF-kappaB-regulated genes, cyclin D1 and IL-6, were augmented in response to mechanical strain. Cyclic strain also increased the activity of Rho GTPases, especially Rac-1. The inhibition of Rho GTPases activity, by overexpression of Rho GDP dissociation inhibitor (Rho-GDI), inhibited the strain-induced activation of NF-kappaB in C2C12 cells. Overexpression of either NF-kappaB inhibitory protein IkappaBalphaDeltaN (a degradation resistant mutant IkappaBalpha) or Rho-GDI blocked the strain-induced proliferation of C2C12 cells. Furthermore, overexpression of FRNK, a dominant negative mutant of focal adhesion kinase (FAK), inhibited the strain-induced proliferation of C2C12 cells. Our study demonstrates that cyclic mechanical strain inhibits myogenesis through the activation of FAK, Rac-1, and NF-kappaB.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Pulmonary and Critical Care Section, Suite 520B, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
383
|
Shraiman BI. Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci U S A 2005; 102:3318-23. [PMID: 15728365 PMCID: PMC552900 DOI: 10.1073/pnas.0404782102] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 01/06/2005] [Indexed: 01/04/2023] Open
Abstract
Regulation of cell growth and proliferation has a fundamental role in animal and plant development and in the progression of cancer. In the context of development, it is important to understand the mechanisms that coordinate growth and patterning of tissues. Imaginal discs, which are larval precursors of fly limbs and organs, have provided much of what we currently know about these processes. Here, we consider the mechanism that is responsible for the observed uniformity of growth in wing imaginal discs, which persists in the presence of gradients in growth inducing morphogens in spite of the stochastic nature of cell division. The phenomenon of "cell competition," which manifests in apoptosis of slower-growing cells in the vicinity of faster growing tissue, suggests that uniform growth is not a default state but a result of active regulation. How can a patch of tissue compare its growth rate with that of its surroundings? A possible way is furnished by mechanical interactions. To demonstrate this mechanism, we formulate a mathematical model of nonuniform growth in a layer of tissue and examine its mechanical implications. We show that a clone growing faster or slower than the surrounding tissue is subject to mechanical stress, and we propose that dependence of the rate of cell division on local stress could provide an "integral-feedback" mechanism stabilizing uniform growth. The proposed mechanism of growth control is not specific to imaginal disc growth and could be of general relevance. Several experimental tests of the proposed mechanism are suggested.
Collapse
Affiliation(s)
- Boris I Shraiman
- Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
384
|
Goncalves I, Nesbitt WS, Yuan Y, Jackson SP. Importance of temporal flow gradients and integrin alphaIIbbeta3 mechanotransduction for shear activation of platelets. J Biol Chem 2005; 280:15430-7. [PMID: 15701653 DOI: 10.1074/jbc.m410235200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disturbances of blood flow play an important role in promoting platelet activation and arterial thrombus formation in stenosed, injured, atherosclerotic arteries. To date, glycoprotein Ib (GPIb) has been considered the primary platelet mechanosensory receptor, responding to increased shear with enhanced adhesive and signaling function. We demonstrate here that von Willebrand factor-GPIb interaction is inefficient at inducing platelet activation even when platelets are exposed to very high wall shear stresses (60 dyn/cm(2)). Rapid platelet activation under flow was only observed under experimental conditions in which transiently adherent platelets were exposed to sudden accelerations in blood flow. Platelet responsiveness to temporal shear gradients was integrin alpha(IIb)beta(3)-dependent and occurred only on a von Willebrand factor substrate, as platelets forming integrin alpha(IIb)beta(3) adhesive contacts with immobilized fibrinogen were unresponsive to sudden increases in shear. The calcium response induced by temporal shear gradients was distinct from previously identified integrin alpha(IIb)beta(3) calcium responses in terms of its transient nature, its requirement for platelet co-stimulation by the P2Y(1) purinergic ADP receptor, and its dependence on the influx of extracellular calcium. Our studies demonstrate a key role for temporal shear gradients in promoting platelet activation. Moreover, they define for the first time the involvement of P2Y receptors in integrin mechanotransduction.
Collapse
Affiliation(s)
- Isaac Goncalves
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Educational Precinct, Prahran, Victoria 3181, Australia
| | | | | | | |
Collapse
|
385
|
Abstract
Spike-frequency adaptation affects the response characteristics of many sensory neurons, and different biophysical processes contribute to this phenomenon. Many cellular mechanisms underlying adaptation are triggered by the spike output of the neuron in a feedback manner (e.g., specific potassium currents that are primarily activated by the spiking activity). In contrast, other components of adaptation may be caused by, in a feedforward way, the sensory or synaptic input, which the neuron receives. Examples include viscoelasticity of mechanoreceptors, transducer adaptation in hair cells, and short-term synaptic depression. For a functional characterization of spike-frequency adaptation, it is essential to understand the dependence of adaptation on the input and output of the neuron. Here, we demonstrate how an input-driven component of adaptation can be uncovered in vivo from recordings of spike trains in an insect auditory receptor neuron, even if the total adaptation is dominated by output-driven components. Our method is based on the identification of different inputs that yield the same output and sudden switches between these inputs. In particular, we determined for different sound frequencies those intensities that are required to yield a predefined steady-state firing rate of the neuron. We then found that switching between these sound frequencies causes transient deviations of the firing rate. These firing-rate deflections are evidence of input-driven adaptation and can be used to quantify how this adaptation component affects the neural activity. Based on previous knowledge of the processes in auditory transduction, we conclude that for the investigated auditory receptor neurons, this adaptation phenomenon is of mechanical origin.
Collapse
Affiliation(s)
- Tim Gollisch
- Institute for Theoretical Biology, Department of Biology, Humboldt University, 10115 Berlin, Germany.
| | | |
Collapse
|
386
|
Emtage L, Gu G, Hartwieg E, Chalfie M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 2005; 44:795-807. [PMID: 15572111 DOI: 10.1016/j.neuron.2004.11.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 08/02/2004] [Accepted: 10/16/2004] [Indexed: 10/26/2022]
Abstract
Specialized extracellular matrix (ECM) is associated with virtually every mechanosensory system studied. C. elegans touch receptor neurons have specialized ECM and attach to the surrounding epidermis. The mec-1 gene encodes an ECM protein with multiple EGF and Kunitz domains. MEC-1 is needed for the accumulation of the collagen MEC-5 and other ECM components, attachment, and, separately, for touch sensitivity. MEC-1 and MEC-5 bind to touch processes uniformly and in puncta. These puncta colocalize with and localize the mechanosensory channel complex in the touch neurons. In turn, the production of the MEC-1 and MEC-5 puncta appears to rely on interactions with the neighboring epidermal tissue. These and other observations lead us to propose that extracellular, but not cytoskeletal, tethering of the degenerin channel is needed for mechanosensory transduction. Additionally, our experiments demonstrate an important role of the ECM in organizing the placement of the channel complex.
Collapse
Affiliation(s)
- Lesley Emtage
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
387
|
Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 2005; 24:9059-66. [PMID: 15483124 PMCID: PMC6730075 DOI: 10.1523/jneurosci.1645-04.2004] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hearing in Drosophila depends on the transduction of antennal vibration into receptor potentials by ciliated sensory neurons in Johnston's organ, the antennal chordotonal organ. We previously found that a Drosophila protein in the vanilloid receptor subfamily (TRPV) channel subunit, Nanchung (NAN), is localized to the chordotonal cilia and required to generate sound-evoked potentials (Kim et al., 2003). Here, we show that the only other Drosophila TRPV protein is mutated in the behavioral mutant inactive (iav). The IAV protein forms a hypotonically activated channel when expressed in cultured cells; in flies, it is specifically expressed in the chordotonal neurons, localized to their cilia and required for hearing. IAV and NAN are each undetectable in cilia of mutants lacking the other protein, indicating that they both contribute to a heteromultimeric transduction channel in vivo. A functional green fluorescence protein-IAV fusion protein shows that the channel is restricted to the proximal cilium, constraining models for channel activation.
Collapse
Affiliation(s)
- Zhefeng Gong
- Biology Department, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Göpfert MC, Humphris ADL, Albert JT, Robert D, Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci U S A 2005; 102:325-30. [PMID: 15623551 PMCID: PMC544284 DOI: 10.1073/pnas.0405741102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 11/27/2004] [Indexed: 11/18/2022] Open
Abstract
In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB(2), btv(5P1), and nompA(2)) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear.
Collapse
Affiliation(s)
- M C Göpfert
- Volkswagen Foundation Research Group, Institute of Zoology, University of Cologne, Weyertal 119, D-50923 Cologne, Germany.
| | | | | | | | | |
Collapse
|
389
|
Gollisch T, Herz AMV. Disentangling sub-millisecond processes within an auditory transduction chain. PLoS Biol 2005; 3:e8. [PMID: 15660161 PMCID: PMC539322 DOI: 10.1371/journal.pbio.0030008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 10/21/2004] [Indexed: 11/19/2022] Open
Abstract
Every sensation begins with the conversion of a sensory stimulus into the response of a receptor neuron. Typically, this involves a sequence of multiple biophysical processes that cannot all be monitored directly. In this work, we present an approach that is based on analyzing different stimuli that cause the same final output, here defined as the probability of the receptor neuron to fire a single action potential. Comparing such iso-response stimuli within the framework of nonlinear cascade models allows us to extract the characteristics of individual signal-processing steps with a temporal resolution much finer than the trial-to-trial variability of the measured output spike times. Applied to insect auditory receptor cells, the technique reveals the sub-millisecond dynamics of the eardrum vibration and of the electrical potential and yields a quantitative four-step cascade model. The model accounts for the tuning properties of this class of neurons and explains their high temporal resolution under natural stimulation. Owing to its simplicity and generality, the presented method is readily applicable to other nonlinear cascades and a large variety of signal-processing systems. Comparing auditory stimuli that give the same neural response within the framework of a computational model, the authors extract intermediary signal-processing steps with sub- millisecond temporal resolution
Collapse
Affiliation(s)
- Tim Gollisch
- Institute for Theoretical Biology, Humboldt University, Berlin Germany.
| | | |
Collapse
|
390
|
Fabrication and surface chemistry of nanoscale bioarrays designed for the study of cytoskeletal protein binding interactions and their effect on cell motility. ACTA ACUST UNITED AC 2005. [DOI: 10.1116/1.2132332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
391
|
Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 2004; 7:709-18. [PMID: 15525532 DOI: 10.1016/j.devcel.2004.08.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 08/13/2004] [Accepted: 08/16/2004] [Indexed: 11/23/2022]
Abstract
Cells sense and respond to mechanical force. However, the mechanisms of transduction of extracellular matrix (ECM) forces to biochemical signals are not known. After removing the cell membrane and soluble proteins by Triton X-100 extraction, we found that the remaining complex (Triton cytoskeletons) activated Rap1 upon stretch. Rap1 guanine nucleotide exchange factor, C3G, was required for this activation; C3G as well as the adaptor protein, CrkII, in cell extract bound to Triton cytoskeletons in a stretch-dependent manner. CrkII binding, which was Cas dependent, correlated with stretch-dependent tyrosine phosphorylation of proteins in Triton cytoskeletons including Cas at the contacts with ECM. These in vitro findings were compatible with in vivo observations of stretch-enhanced phosphotyrosine signals, accumulation of CrkII at cell-ECM contacts, and CrkII-Cas colocalization. We suggest that mechanical force on Triton cytoskeletons activates local tyrosine phosphorylation, which provides docking sites for cytosolic proteins, and initiates signaling to activate Rap1.
Collapse
Affiliation(s)
- Masako Tamada
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
392
|
Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:103-19. [PMID: 15246682 DOI: 10.1016/j.bbamcr.2004.04.007] [Citation(s) in RCA: 707] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/22/2004] [Indexed: 12/18/2022]
Abstract
Focal adhesions lie at the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells modify focal adhesions in response to changes in the molecular composition, two-dimensional (2D) vs. three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. We consider here how cells use focal adhesions to regulate signaling complexes and integrin function. Furthermore, we examine how this regulation controls complex cellular behaviors in response to matrices of diverse physical and biochemical properties. One event regulated by the physical structure of the ECM is phosphorylation of focal adhesion kinase (FAK) at Y397, which couples FAK to several signaling pathways that regulate cell proliferation, survival, migration, and invasion.
Collapse
Affiliation(s)
- Michele A Wozniak
- Department of Pharmacology, University of Wisconsin, 3630 MSC, 1300 University Ave, Madison 53706, USA
| | | | | | | |
Collapse
|
393
|
Abstract
The sensation of pain can be dramatically altered in response to injury or disease. This sensitization can occur at the level of the primary sensory neuron, and can be mediated by multiple biochemical mechanisms, including, but not limited to, changes in gene transcription, changes in translation, stability, or subcellular localization of translated proteins, and posttranslational modifications. This review focuses on posttranslational modifications to ion channels expressed in primary sensory neurons that form the machinery driving peripheral sensitization and pain hypersensitivity. Studies published to date show strong evidence for modulation of ion channels involved in transduction and transmission of nociceptive inputs coincident with biophysical and behavioral sensitization. The roles of phosphorylation and oxidation/reduction reactions of voltage-dependent sodium, potassium, and calcium channels are discussed, as well as phosphorylation-mediated modulation of sensory transduction channels.
Collapse
Affiliation(s)
- Gautam Bhave
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
394
|
Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 2004; 117:2449-60. [PMID: 15159450 DOI: 10.1242/jcs.01232] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells respond to a wide variety of mechanical stimuli, ranging from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. The cell membrane presents a major target of the external mechanical forces that act upon a cell, and mechanosensitive (MS) ion channels play a crucial role in the physiology of mechanotransduction. These detect and transduce external mechanical forces into electrical and/or chemical intracellular signals. Recent work has increased our understanding of their gating mechanism, physiological functions and evolutionary origins. In particular, there has been major progress in research on microbial MS channels. Moreover, cloning and sequencing of MS channels from several species has provided insights into their evolution, their physiological functions in prokaryotes and eukaryotes, and their potential roles in the pathology of disease.
Collapse
Affiliation(s)
- Boris Martinac
- School of Medicine and Pharmacology, QEII Medical Centre, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
395
|
Araki I, Du S, Kamiyama M, Mikami Y, Matsushita K, Komuro M, Furuya Y, Takeda M. Overexpression of epithelial sodium channels in epithelium of human urinary bladder with outlet obstruction. Urology 2004; 64:1255-60. [PMID: 15596218 DOI: 10.1016/j.urology.2004.06.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/25/2004] [Accepted: 06/25/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To examine whether the epithelial sodium channel (ENaC) is expressed in the human urinary bladder and how its expression changes in association with outlet obstruction. Detrusor instability occurs in association with bladder outlet obstruction. The increase of afferent activity is one of the possible mechanisms for this detrusor instability. The ENaC expressed in mammals has been implicated in various mechanosensory functions. METHODS Specimens of urinary bladder mucosa were obtained from 9 controls and 9 patients with bladder outlet obstruction verified by the International Prostate Symptom Score, prostate volume, and urodynamic tests. In 7 patients with outlet obstruction, involuntary detrusor contraction was demonstrated. The expression and localization of ENaC proteins was examined using immunofluorescent staining. The quantification of ENaC gene expression was assessed by real-time reverse transcriptase-polymerase chain reaction. RESULTS The alpha-ENaC, beta-ENaC, and gamma-ENaC proteins were expressed in human urinary bladder epithelium with outlet obstruction, and the alpha-ENaC and gamma-ENaC proteins were virtually unstained in the control bladders. Alpha-ENaC, beta-ENaC, and gamma-ENaC mRNA were detected in 1, 6, and 4 of 9 control bladders, respectively. Each ENaC mRNA was clearly present in all obstructed bladders. The expression levels of each subunit in the obstructed bladders were significantly greater than those in controls. The quantified ENaC expression correlated significantly with the storage symptom score. CONCLUSIONS The ENaC expressed in the bladder epithelium might be implicated in the mechanosensory transduction in the bladder afferent pathways, thereby inducing detrusor instability by outlet obstruction.
Collapse
Affiliation(s)
- Isao Araki
- Department of Urology, University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Tamaho, Yamanashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
396
|
Abstract
In this article, we examine the mechanical role of the lipid bilayer in ion channel conformation and function with specific reference to the case of the mechanosensitive channel of large conductance (MscL). In a recent article we argued that mechanotransduction very naturally arises from lipid-protein interactions by invoking a simple analytic model of the MscL channel and the surrounding lipid bilayer. In this article, we focus on improving and expanding this analytic framework for studying lipid-protein interactions with special attention to MscL. Our goal is to generate simple scaling relations which can be used to provide qualitative understanding of the role of membrane mechanics in protein function and to quantitatively interpret experimental results. For the MscL channel, we find that the free energies induced by lipid-protein interaction are of the same order as the measured free energy differences between conductance states. We therefore conclude that the mechanics of the bilayer plays an essential role in determining the conformation and function of the channel. Finally, we compare the predictions of our model to experimental results from the recent investigations of the MscL channel by a variety of investigators and suggest a suite of new experiments.
Collapse
Affiliation(s)
- Paul Wiggins
- Department of Physics, California Institute of Technology, Pasadena, California 91106, USA.
| | | |
Collapse
|
397
|
Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M. Conversion of mechanical force into biochemical signaling. J Biol Chem 2004; 279:54793-801. [PMID: 15485829 DOI: 10.1074/jbc.m406880200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.
Collapse
Affiliation(s)
- Bing Han
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Johnston AM, Naselli G, Niwa H, Brodnicki T, Harrison LC, Góñez LJ. Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes Cells 2004; 9:967-82. [PMID: 15461667 DOI: 10.1111/j.1365-2443.2004.00776.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the triple PDZ domain-containing protein harmonin have been identified as the cause of Usher deafness syndrome type 1C. Independently, we identified harmonin in a screen for genes expressed in pancreatic beta cells. Using a yeast two-hybrid assay, we show that the first PDZ domain of harmonin interacts with a novel protein, designated harp for harmonin-interacting, ankyrin repeat-containing protein. This interaction was confirmed in an over-expression system and in mammalian cells, and shown to be mediated by the three C-terminal amino acids of harp. Harp is expressed in many of the same epithelia as harmonin and co-localization of native harp and harmonin was demonstrated by confocal microscopy in pancreatic duct epithelium and in a pancreatic beta-cell line. Harp, predicted molecular mass 48 kDa, has a domain structure which includes three ankyrin repeats and a sterile alpha motif. Human harp maps to chromosome 16, and its mouse homologue to chromosome 7. Sequences with similarity to harp include the sans gene, mutations of which are responsible for deafness in the Jackson shaker 2 (js) mutant mouse and in human Usher syndrome type 1G. The functional domain structures of harp and harmonin, their interaction under native conditions and their co-localization suggest they constitute a scaffolding complex to facilitate signal transduction in epithelia.
Collapse
Affiliation(s)
- Anne M Johnston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
399
|
Abstract
The tissue microenvironment regulates mammary gland development and tissue homeostasis through soluble, insoluble and cellular cues that operate within the three dimensional architecture of the gland. Disruption of these critical cues and loss of tissue architecture characterize breast tumors. The developing and lactating mammary gland are also subject to a plethora of tensional forces that shape the morphology of the gland and orchestrate its functionally differentiated state. Moreover, malignant transformation of the breast is associated with dramatic changes in gland tension that include elevated compression forces, high tensional resistance stresses and increased extracellular matrix stiffness. Chronically increased mammary gland tension may influence tumor growth, perturb tissue morphogenesis, facilitate tumor invasion, and alter tumor survival and treatment responsiveness. Because mammary tissue differentiation is compromised by high mechanical force and transformed cells exhibit altered mechanoresponsiveness, malignant transformation of the breast may be functionally linked to perturbed tensional-homeostasis. Accordingly, it will be important to define the role of tensional force in mammary gland development and tumorigenesis. Additionally, it will be critical to identify the key molecular elements regulating tensional-homeostasis of the mammary gland and thereafter to characterize their associated mechanotransduction pathways.
Collapse
Affiliation(s)
- Matthew J Paszek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6383, USA
| | | |
Collapse
|
400
|
Syntichaki P, Tavernarakis N. Genetic Models of Mechanotransduction: The NematodeCaenorhabditis elegans. Physiol Rev 2004; 84:1097-153. [PMID: 15383649 DOI: 10.1152/physrev.00043.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis for a plethora of fundamental biological processes such as the senses of touch, balance, and hearing and contributes critically to development and homeostasis in all organisms. Despite this profound importance in biology, we know remarkably little about how mechanical input forces delivered to a cell are interpreted to an extensive repertoire of output physiological responses. Recent, elegant genetic and electrophysiological studies have shown that specialized macromolecular complexes, encompassing mechanically gated ion channels, play a central role in the transformation of mechanical forces into a cellular signal, which takes place in mechanosensory organs of diverse organisms. These complexes are highly efficient sensors, closely entangled with their surrounding environment. Such association appears essential for proper channel gating and provides proximity of the mechanosensory apparatus to the source of triggering mechanical energy. Genetic and molecular evidence collected in model organisms such as the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse highlight two distinct classes of mechanically gated ion channels: the degenerin (DEG)/epithelial Na+channel (ENaC) family and the transient receptor potential (TRP) family of ion channels. In addition to the core channel proteins, several other potentially interacting molecules have in some cases been identified, which are likely parts of the mechanotransducing apparatus. Based on cumulative data, a model of the sensory mechanotransducer has emerged that encompasses our current understanding of the process and fulfills the structural requirements dictated by its dedicated function. It remains to be seen how general this model is and whether it will withstand the impiteous test of time.
Collapse
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|