351
|
Stoiber H, Soederholm A, Wilflingseder D, Gusenbauer S, Hildgartner A, Dierich MP. Complement and antibodies: a dangerous liaison in HIV infection? Vaccine 2009; 26 Suppl 8:I79-85. [PMID: 19388170 DOI: 10.1016/j.vaccine.2008.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to ongoing recombination and mutations, HIV permanently escapes from neutralizing antibody (nAb) responses of the host. By the masking of epitopes or shedding of gp120, HIV-1 further impedes an efficient neutralization by Abs. Therefore, nAbs responses of the host are chasing behind a rapidly evolving virus and mainly non-neutralizing antibodies (non-nAbs) are present in the host. At the same time, complement deposition on immune-complexed HIV may counteract the immune response by enhancing the infection. On the other hand, complement-mediated lysis is a putative effector mechanism to control viral replication. Here we review the complex interplay between complement, neutralizing and non-neutralizing Abs during HIV infection and discuss the contribution of Abs and complement in blocking versus enhancing the course of infection.
Collapse
Affiliation(s)
- Heribert Stoiber
- Department Hygiene and Microbiology, Innsbruck Medical University, Fritz-Preglstr. 3, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
352
|
Gaufin T, Gautam R, Kasheta M, Ribeiro R, Ribka E, Barnes M, Pattison M, Tatum C, MacFarland J, Montefiori D, Kaur A, Pandrea I, Apetrei C. Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain. Blood 2009; 113:4250-61. [PMID: 19168789 PMCID: PMC2676085 DOI: 10.1182/blood-2008-09-177741] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022] Open
Abstract
We investigated the impact of rhesus macaque (RM) B-cell depletion before inoculation with the isolate SIVsmmD215. Seven RMs were treated every 3 weeks with 50 mg/kg of an anti-CD20 antibody (rituximab) starting 7 days before inoculation for 2 (n = 4) and 5 (n = 3) months. Four control animals received no antibody. Three animals were completely depleted of CD20(+) B cells, but 4 were only partially depleted of CD20 cells in the LNs and intestine. The decrease in antibody production was consistent with the efficacy of tissue CD20 depletion. Seroconversion and neutralizing antibody production was significantly delayed in animals showing complete tissue CD20 depletion and remained at low titers in all CD20-depleted RMs. Surprisingly, there was no significant difference in acute or chronic viral loads between CD20-depleted and control animal groups. There was a tendency for lower viral set points in CD20-depleted animals. At 6 weeks after inoculation, cellular immune responses were significantly stronger in CD20-depleted animals than in controls. There was no significant difference in survival between CD20-depleted and control animals. Our data suggest that a deficiency of Ab responses did not markedly affect viral replication or disease progression and that they may be compensated by more robust cellular responses.
Collapse
Affiliation(s)
- Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Guerbois M, Moris A, Combredet C, Najburg V, Ruffié C, Février M, Cayet N, Brandler S, Schwartz O, Tangy F. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DeltaV1V2 is strongly immunogenic. Virology 2009; 388:191-203. [PMID: 19345390 DOI: 10.1016/j.virol.2009.02.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/04/2009] [Accepted: 02/24/2009] [Indexed: 10/20/2022]
Abstract
Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DeltaV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.
Collapse
Affiliation(s)
- Mathilde Guerbois
- Laboratoire de Génomique Virale et Vaccination, CNRS URA 3015, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 2009; 83:5087-100. [PMID: 19279101 DOI: 10.1128/jvi.00184-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.
Collapse
|
355
|
Jia B, Ng SK, DeGottardi MQ, Piatak M, Yuste E, Carville A, Mansfield KG, Li W, Richardson BA, Lifson JD, Evans DT. Immunization with single-cycle SIV significantly reduces viral loads after an intravenous challenge with SIV(mac)239. PLoS Pathog 2009; 5:e1000272. [PMID: 19165322 PMCID: PMC2621341 DOI: 10.1371/journal.ppat.1000272] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/15/2008] [Indexed: 12/24/2022] Open
Abstract
Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV. AIDS vaccine candidates based on recombinant DNA and/or viral vectors stimulate potent cellular immune responses. However, the extent of protection achieved by these vaccines has so far been disappointing. While live, attenuated strains of SIV afford more reliable protection in animal models, there are justifiable safety concerns with the use of live, attenuated HIV-1 in humans. As an experimental vaccine approach designed to uncouple immune activation from ongoing virus replication, we developed a genetic system for producing strains of SIV that are limited to a single cycle of infection. We compared repeated versus prime-boost vaccine regimens with single-cycle SIV for the ability to elicit protective immunity in rhesus macaques against a strain of SIV that is notoriously difficult to control by vaccination. Both vaccine regimens afforded significant containment of virus replication after challenge. Nevertheless, the extent of protection achieved by immunization with single-cycle SIV was not as good as the protection typically provided by persistent infection of animals with live, attenuated SIV. These observations have important implications for the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may ultimately be necessary for achieving the robust protection afforded by live, attenuated SIV.
Collapse
Affiliation(s)
- Bin Jia
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Sharon K. Ng
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - M. Quinn DeGottardi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eloísa Yuste
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Angela Carville
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Wenjun Li
- Biostatistics Research Group, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Barbra A. Richardson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
356
|
Ruprecht RM. Passive immunization with human neutralizing monoclonal antibodies against HIV-1 in macaque models: experimental approaches. Methods Mol Biol 2009; 525:559-66, xiv. [PMID: 19252837 DOI: 10.1007/978-1-59745-554-1_31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
After more than 20 years of intense research, a safe and effective vaccine against HIV-1/AIDS has not been developed. Passive immunization has been used as a tool to demonstrate the role of neutralizing antibodies in conferring protection against HIV-1 challenge in chimpanzees. Because these animals are endangered and studies are difficult to conduct with this species, chimeric viruses, termed simian-human immunodeficiency viruses (SHIVs), have been generated that encode the HIV-1 envelope gene in the backbone of the simian immunodeficiency virus (SIV). SHIVs replicate in several macaque species and can induce AIDS in these animals. Passive immunization with human neutralizing monoclonal antibodies (nmAbs) against HIV-1 has protected rhesus macaques from SHIV infection and provided proof-of-concept of the protective effects of neutralizing antibodies. At the same time, human nmAbs can be evaluated for safety and efficacy in the SHIV/macaque model as therapeutic modalities in their own right for prevention, post-exposure prophylaxis, or possibly therapeutic use. Experimental details are provided for testing human nmAbs in infant rhesus monkeys, which allows testing without the need to generate large amounts of nmAbs.
Collapse
Affiliation(s)
- Ruth M Ruprecht
- Harvard Medical School, Dana-Farber Cancer Institute, MA, USA
| |
Collapse
|
357
|
Abel K. The rhesus macaque pediatric SIV infection model - a valuable tool in understanding infant HIV-1 pathogenesis and for designing pediatric HIV-1 prevention strategies. Curr HIV Res 2009; 7:2-11. [PMID: 19149549 PMCID: PMC2745952 DOI: 10.2174/157016209787048528] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Worldwide, the AIDS pandemic continues almost relentlessly. Women are now representing the fastest growing group of newly infected HIV-1 infected patients. The risk of mother-to-child-transmission (MTCT) of HIV-1 increases proportionally as many of these women are of childbearing age. The screening of pregnant women, the early diagnosis of HIV-1 infection, and the administration of antiretroviral therapy (ART) have helped to reduce MTCT significantly. However, this holds true only for developed countries. In many resource-poor countries, access to ART is limited, and breastfeeding, a major route of HIV-1 transmission, is essential to protect the infant from other infectious diseases preponderant in those geographic regions. HIV-1 infected children, in contrast to adult patients, have higher levels of virus replication that decline only slowly, and a subset progresses to AIDS within the first two years. Thus, it is imperative to understand pediatric HIV-1 pathogenesis to design effective prevention strategies and/or a successful pediatric HIV-1 vaccine. The review summarizes how MTCT of HIV-1 in humans can be modeled in the infant macaque model of SIV infection. Importantly, the infant macaque model of SIV infection provides the opportunity to study early virus-host interactions in multiple anatomic compartments. Furthermore, the review underlines the importance of evaluating SIV/HIV immune responses in the context of the normal developmental changes the immune system undergoes in the newborn. Thus, the pediatric SIV infection model provides a unique resource for preclinical studies of novel intervention therapies and vaccine strategies to stop MTCT of HIV-1.
Collapse
Affiliation(s)
- Kristina Abel
- California National Primate Research Center, and Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, CA, USA.
| |
Collapse
|
358
|
Humbert M, Rasmussen RA, Ong H, Kaiser FMP, Hu SL, Ruprecht RM. Inducing cross-clade neutralizing antibodies against HIV-1 by immunofocusing. PLoS One 2008; 3:e3937. [PMID: 19081789 PMCID: PMC2597739 DOI: 10.1371/journal.pone.0003937] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/06/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although vaccines are important in preventing viral infections by inducing neutralizing antibodies (nAbs), HIV-1 has proven to be a difficult target and escapes humoral immunity through various mechanisms. We sought to test whether HIV-1 Env mimics may serve as immunogens. METHODOLOGY/PRINCIPAL FINDINGS Using random peptide phage display libraries, we identified the epitopes recognized by polyclonal antibodies of a rhesus monkey that had developed high-titer, broadly reactive nAbs after infection with a simian-human immunodeficiency virus (SHIV) encoding env of a recently transmitted HIV-1 clade C (HIV-C). Phage peptide inserts were analyzed for conformational and linear homology using computational analysis; some peptides mimicked various domains of the original HIV-C Env, such as conformational V3 loop epitopes and the conserved linear region of the gp120 C-terminus. Next, we devised a novel prime/boost strategy to test the immunogenicity of such phage-displayed peptides and primed mice only once with HIV-C gp160 DNA followed by boosting with mixtures of recombinant phages. CONCLUSIONS/SIGNIFICANCE This strategy, which was designed to focus the immune system on a few Env epitopes (immunofocusing), not only induced HIV-C gp160 binding antibodies and cross-clade nAbs, but also linked a conserved HIV Env region for the first time to the induction of nAbs: the C-terminus of gp120. The identification of conserved antigen mimics may lead to novel immunogens capable of inducing broadly reactive nAbs.
Collapse
Affiliation(s)
- Michael Humbert
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Rasmussen
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena Ong
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Fabian M. P. Kaiser
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Shiu-Lok Hu
- University of Washington, National Primate Research Center, Seattle, Washington, United States of America
| | - Ruth M. Ruprecht
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
359
|
Belyakov IM, Ahlers JD, Nabel GJ, Moss B, Berzofsky JA. Generation of functionally active HIV-1 specific CD8+ CTL in intestinal mucosa following mucosal, systemic or mixed prime-boost immunization. Virology 2008; 381:106-15. [PMID: 18793787 PMCID: PMC4782776 DOI: 10.1016/j.virol.2008.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/17/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Gastrointestinal and vaginal mucosa are major sites of entry in natural HIV infection and therefore the preferred sites to elicit high-avidity CD8+ CTL by vaccination. We directly compare systemic and mucosal immunization in mice after DNA priming and boosting with rgp160 env expressed either in MVA or Ad for their ability to induce mucosal as well as systemic HIV-specific CTL. The optimal CTL response in the gut mucosa was observed after priming with the HIV-1 gp160 env DNA vaccine and boosting with rMVA or rAd encoding the same envelope gene all administered intrarectally (IR). Maximum levels of high-avidity CD8+ T cells were seen in intestinal lamina propria following this regimen. When the prime and boost routes were distinct, the delivery site of the boost had a greater impact than the DNA priming. IM DNA prime and IR rMVA boost were more effective than IR DNA prime and IM rMVA boost for eliciting mucosal CD8+ T-cell avidity. A systemic DNA-prime-followed by systemic rMVA boost induced high levels of high-avidity CD8+ T cells systemically, but responses were undetectable in mucosal sites. A single systemic immunization with rMVA was sufficient to induce high-avidity IFN-gamma secreting CD8+ T cells in systemic organs, whereas a single mucosal immunization with rMVA was not sufficient to elicit high-avidity CD8+ T cells in mucosa. Thus, a heterologous mucosal DNA prime-viral vectored boost strategy was needed. The requirement for a heterologous DNA prime-recombinant viral boost strategy for generation of high-avidity CD8+ T cells in mucosal sites in mice may be more stringent than for the induction of high-avidity CD8+ T cells in systemic compartments.
Collapse
Affiliation(s)
- Igor M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA; Midwest Research Institute, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
360
|
Abstract
Tests for immunoglobulin reactivity with specific antigens are some of the oldest and most used assays in immunology. With efforts to understand B cell development, B cell dysregulation in autoimmunity, and to generate B cell vaccines for infectious agents, investigators have found the need to understand the ontogeny and regulation of epitope-specific B cell responses. The synchrony between surface and secreted antibodies for individual B cells has led to the development of reagents and techniques to identify antigen-specific B cells via reagent interactions with the B cell receptor complex. B cell antigen-specific reagents have been reported for model systems of haptens, for whole proteins, and for identification of double stranded (ds) DNA antibody-producing B cells using peptide mimics. Here we provide an overview of reported techniques for the detection of antigen-specific B cell responses via secreted antibody or by the surface B cell receptor and briefly discuss our recent work developing a panel of reagents to probe the B cell response to HIV-1 envelope. We also present an analysis of strengths and weaknesses of various methods for flow cytometric analysis of antigen-specific B cells.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
361
|
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, 9051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA, Tel.: +1 412 383 9605, Fax: +1 412 624 4440,
| | - Ted M Ross
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Department of Microbiology and Molecular Genetics, 9047 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA, Tel.: +1 412 648 8666, Fax: +1 412 624 4440,
| |
Collapse
|
362
|
Bråve A, Johansen K, Palma P, Benthin R, Hinkula J. Maternal immune status influences HIV-specific immune responses in pups after DNA prime protein boost using mucosal adjuvant. Vaccine 2008; 26:5957-66. [DOI: 10.1016/j.vaccine.2008.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 08/05/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
|
363
|
Belyakov IM, Ahlers JD. Functional CD8+ CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol 2008; 29:574-85. [PMID: 18838298 DOI: 10.1016/j.it.2008.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 01/22/2023]
|
364
|
Correlation of vaccine-elicited systemic and mucosal nonneutralizing antibody activities with reduced acute viremia following intrarectal simian immunodeficiency virus SIVmac251 challenge of rhesus macaques. J Virol 2008; 83:791-801. [PMID: 18971271 DOI: 10.1128/jvi.01672-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-mediated immunity and neutralizing antibodies contribute to control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but the role of nonneutralizing antibodies is not defined. Previously, we reported that sequential oral/oral or intranasal/oral (I/O) priming with replication-competent adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants, followed by intramuscular envelope protein boosting, elicited systemic and mucosal cellular immunity and exhibited equivalent, significant reductions of chronic viremia after rectal SIV(mac251) challenge. However, I/O priming gave significantly better control of acute viremia. Here, systemic and mucosal humoral immunity were investigated for potential correlates with the acute challenge outcome. Strong serum binding but nonneutralizing antibody responses against SIV(mac251) were induced in both groups. Antibody responses appeared earlier and overall were higher in the I/O group. Reduced acute viremia was significantly correlated with higher serum binding titer, stronger antibody-dependent cellular cytotoxicity activity, and peak prechallenge and 2-week-postchallenge antibody-dependent cell-mediated viral inhibition (ADCVI). The I/O group consistently displayed greater anti-envelope immunoglobulin A (IgA) antibody responses in bronchoalveolar lavage and a stronger rectal anti-envelope IgA anamnestic response 2 weeks postchallenge. Pre- and postchallenge rectal secretions inhibited SIV transcytosis across epithelial cells. The inhibition was significantly higher in the I/O group, although a significant correlation with reduced acute viremia was not reached. Overall, the replicating Ad5hr-SIV priming/envelope boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities. The pattern of elevated immune responses in the I/O group is consistent with its better control of acute viremia mediated, at least in part, by ADCVI activity and transcytosis inhibition.
Collapse
|
365
|
Abstract
The development of a safe and effective human immunodeficiency virus (HIV)-1 vaccine is a critically important global health priority. Despite recent advances in our understanding of HIV-1 pathogenesis and immunology, however, major scientific obstacles remain. Prototype HIV-1 vaccine candidates aimed at eliciting humoral and cellular immune responses have so far failed to protect against HIV-1 infection or to reduce viral loads after infection in clinical efficacy studies. A renewed and coordinated commitment to basic discovery research, preclinical studies and clinical trials will therefore be required to overcome the hurdles currently facing the field. Here I review key challenges and future prospects in the quest to develop a prophylactic HIV-1 vaccine.
Collapse
Affiliation(s)
- Dan H Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
366
|
Chen H, Xu X, Lin HH, Chen SH, Forsman A, Aasa-Chapman M, Jones IM. Mapping the immune response to the outer domain of a human immunodeficiency virus-1 clade C gp120. J Gen Virol 2008; 89:2597-2604. [PMID: 18796729 PMCID: PMC2885006 DOI: 10.1099/vir.0.2008/003491-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/16/2008] [Indexed: 12/14/2022] Open
Abstract
The outer domain (OD) of human immunodeficiency virus (HIV)-1 gp120 represents an attractive, if difficult, target for a beneficial immune response to HIV infection. Unlike the entire gp120, the OD is structurally stable and contains the surfaces that interact with both the primary and secondary cellular receptors. The primary strain-specific neutralizing target, the V3 loop, lies within the OD, as do epitopes for two cross-reactive neutralizing monoclonal antibodies (mAbs), b12 and 2G12, and the contact sites for a number of inhibitory lectins. The OD is poorly immunogenic, at least in the context of complete gp120, but purposeful OD immunization can lead to a substantial antibody response. Here, we map the antibody generated following immunization with a clade C OD. In contrast to published data for the clade B OD, the majority of the polyclonal response to the complete clade C OD is to the V3 loop; deletion of the loop substantially reduces immunogenicity. When the loop sequence was substituted for the epitope for 2F5, a well-characterized human cross-neutralizing mAb, a polyclonal response to the epitope was generated. A panel of mAbs against the clade C OD identified two mAbs that reacted with the loop and were neutralizing for clade C but not B isolates. Other mAbs recognized both linear and conformational epitopes in the OD. We conclude that, as for complete gp120, V3 immunodominance is a property of OD immunogens, that the responses can be neutralizing and that it could be exploited for the presentation of other epitopes.
Collapse
Affiliation(s)
- Hongying Chen
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
| | - Xiaodong Xu
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
| | - Hsin-Hui Lin
- Abnova (Taiwan) Corporation, 9th Floor, 108 Jou Tz Street, Neihu, Taipei 114, Taiwan ROC
| | - Ssu-Hsien Chen
- Abnova (Taiwan) Corporation, 9th Floor, 108 Jou Tz Street, Neihu, Taipei 114, Taiwan ROC
| | - Anna Forsman
- Division of Infection & Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Marlen Aasa-Chapman
- Division of Infection & Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
| |
Collapse
|
367
|
Coûtant J, Yu H, Clément M, Alfsen A, Toma F, Curmi PA, Bomsel M. Both lipid environment and pH are critical for determining physiological solution structure of 3‐D‐conserved epitopes of the HIV‐1 gp41‐MPER peptide P1. FASEB J 2008; 22:4338-51. [DOI: 10.1096/fj.08-113142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Coûtant
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Huifeng Yu
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Marie‐Jeanne Clément
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Annette Alfsen
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Flavio Toma
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Patrick A. Curmi
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Morgane Bomsel
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| |
Collapse
|
368
|
Importance of the V1/V2 loop region of simian-human immunodeficiency virus envelope glycoprotein gp120 in determining the strain specificity of the neutralizing antibody response. J Virol 2008; 82:11054-65. [PMID: 18768967 DOI: 10.1128/jvi.01341-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.
Collapse
|
369
|
Irons SL, Nuttall J, Floss DM, Frigerio L, Kotzer AM, Hawes C. Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:649-62. [PMID: 18489536 DOI: 10.1111/j.1467-7652.2008.00348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In order to further understand the production and intracellular trafficking of pharmaceutical proteins in plants, the light and heavy chains (LC and HC) of the human immunodeficiency virus neutralizing monoclonal antibody 2G12 were fused to fluorescent proteins [Venus and monomeric red fluorescent protein (mRFP)] to enable the visualization of their passage through the plant cell. Co-expression of LC and HC with various markers of the endomembrane system demonstrated that LC fusions were found in mobile punctate structures, which are likely to be pre-vacuolar compartments (PVCs) as a proportion of the LC fusions were found to be located in the vacuole. In addition, apoplast labelling was also observed with a 2G12LC-RFP fusion. The HC fusion expressed alone was found only in the endoplasmic reticulum (ER). When the LC and HC fusions were expressed together, they were found to co-locate to larger punctate structures, which were morphologically distinct from any observed on expression of LC or HC alone. These structures appeared to be in close association with the ER and their labelling partially overlapped with PVC marker fluorescence, but no increase in apoplast labelling was observed. Co-immunoprecipitation data demonstrated that the presence of the fluorescent proteins did not affect the assembly of the antibody, and also showed the association of BiP with the antibody chains. The antigen-binding activity of the Venus-fused 2G12 antibody was confirmed by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sarah L Irons
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|
370
|
Patterson LJ, Robert-Guroff M. Replicating adenovirus vector prime/protein boost strategies for HIV vaccine development. Expert Opin Biol Ther 2008; 8:1347-63. [PMID: 18694354 PMCID: PMC2538611 DOI: 10.1517/14712598.8.9.1347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In recent years the HIV vaccine field introduced a number of promising vaccine candidates into human clinical trials. OBJECTIVE To briefly discuss the advances made in vaccine development and HIV pathogenesis and give an overview of the body of work our lab has generated in multiple animal models on replication-competent Adenovirus recombinant vaccines. METHODS Emphasis is placed on comparative examination of vaccine components, routes of immunization and challenge models using replicating Adenovirus vectors. RESULTS/CONCLUSION The findings make the case that replicating Adenovirus vectors are superior in priming multiple arms of the immune system, and in conjunction with protein boosting, have resulted in dramatic protective efficacy leading to their advancement to Phase I trials. Implications of the recent halting of the Merck Ad5-HIV Phase IIb clinical trial of our vaccine approach and other vectored vaccines are discussed.
Collapse
Affiliation(s)
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, 41 Medlars Dr. Building 41, Rm D804, Bethesda, Maryland 20892-5065
| |
Collapse
|
371
|
Abstract
PURPOSE OF REVIEW This review summarizes recent literature in the field of mucosal immunology as it applies to HIV transmission and pathogenesis. RECENT FINDINGS Pertinent recent findings include elucidation of the role of mucosal antigen-presenting cells and retinoic acid in imprinting a gut-homing phenotype on antigen-specific T and B cells, and the identification of Th17 and T regulatory cells as key modulators of the balance between tolerance and inflammation in mucosal tissues. SUMMARY Mucosal surfaces of the body serve as the major portal of entry for HIV. These tissues also house a majority of the body's lymphocytes, including the CD4 T-cells that are the major cellular target for HIV infection. Elucidating mucosal immune responses is critical to our understanding of the host-pathogen relationship for two reasons: first, mucosal barriers are defended by a range of innate and adaptive defenses that might be exploited to develop effective vaccines or microbicides; second, adaptive immune responses in mucosal lymphoid tissues might serve to limit viral replication, decreasing the host's viral burden as well as reducing the likelihood of sexual transmission to a naïve host.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA.
| |
Collapse
|
372
|
Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge. J Virol 2008; 82:10911-21. [PMID: 18753198 DOI: 10.1128/jvi.01129-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.
Collapse
|
373
|
Combining human antisera to human leukocyte antigens, HIVgp120 and 70 kDa heat shock protein results in broadly neutralizing activity to HIV-1. AIDS 2008; 22:1267-76. [PMID: 18580605 DOI: 10.1097/qad.0b013e328304b3a6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To elicit broadly neutralizing antibody activity by combining polyclonal human serum IgG antibodies with HIVgp120, human leukocyte antigen (HLA) class I or class II and 70 kDa heat shock protein. DESIGN : In addition to HIV antigens, HIV-1 virions express HLA class I, HLA class II and 70 kDa heat shock protein molecules, which have quantitative and functional significance. The complementary effect of combining human polyclonal IgG antibodies with these antigens may result in effective broad spectrum neutralizing activity. METHODS Polyclonal human sera with IgG antibodies and monoclonal antibody to HLA class I or class II, HIVgp120 and 70 kDa heat shock protein were selected and used in single, double or triple combinations. Dose-dependent inhibition studies of HIV-1 clades A, B, C and D were carried out using human CD4 T cells treated with the combinations of human sera and with monoclonal antibodies for clade B. The results are presented as half maximal (IC50) inhibitory concentration and maximum inhibition by these sera. RESULTS The half maximal (IC50) inhibitory concentration of clade B HIV-1 infection with single or a combination of two antisera was higher than those with three antisera, which also showed maximum inhibition of HIV-1. Further investigations of human sera with HIV-1 clades C and D also showed lower half maximal (IC50) inhibitory concentrations and higher maximum inhibition with combinations of the three antisera, but this was not seen with clade A. CONCLUSION A novel vaccination strategy eliciting broadly neutralizing antibody activity to the CCR5-using HIV-1 clades B, C and D has been demonstrated by the trimolecular complex of human antisera with HLA class II or class I, HIVgp120 and 70 kDa heat shock protein.
Collapse
|
374
|
Moir S, Fauci AS. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. J Allergy Clin Immunol 2008; 122:12-9; quiz 20-1. [PMID: 18547629 PMCID: PMC2708937 DOI: 10.1016/j.jaci.2008.04.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 01/19/2023]
Abstract
HIV disease is associated with abnormalities in all major lymphocyte populations, including B cells. Aberrancies in the B-cell compartment can be divided into 3 broad categories: changes that arise as a result of HIV-induced immune activation, changes that arise as a result of HIV-induced lymphopenia, and changes that arise independently of these 2 parameters. We review recent developments in all 3 categories of abnormalities and highlight how observations made in the early years of the HIV epidemic are better understood today in large part because of the advent of effective antiretroviral therapy. Insight into the mechanisms of B-cell dysfunction in HIV disease has also been achieved as a result of increased knowledge of the B-cell subpopulations as they exist in healthy individuals, compared with their abnormalities in HIV-infected individuals. A better understanding of the pathogenic mechanisms of B-cell abnormalities in HIV disease can potentially lead to new strategies for improving antibody responses against opportunistic pathogens that afflict HIV-infected individuals and against HIV itself, in the context of both HIV infection and an antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
375
|
|
376
|
Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4+ T lymphocytes in trans. J Virol 2008; 82:7886-96. [PMID: 18524826 DOI: 10.1128/jvi.00245-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4(+) T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.
Collapse
|
377
|
Targeted deletion in the beta20-beta21 loop of HIV envelope glycoprotein gp120 exposes the CD4 binding site for antibody binding. Virology 2008; 377:330-8. [PMID: 18519142 DOI: 10.1016/j.virol.2008.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/03/2008] [Accepted: 03/28/2008] [Indexed: 11/20/2022]
Abstract
Different isolates of HIV-1 are known to vary in antibody binding and sensitivity to neutralization. In response to selective pressure, the virus may conceal important neutralizing determinants, such as the CD4 binding site on gp120, through steric hindrance or conformational masking. The 3D structure of gp120 shows five loop structures that surround the CD4 binding site (CD4BS) and may restrict antibody access to the site. We have generated gp120 mutants lacking each of these loops and characterized them with a panel of monoclonal antibodies, including b12 and F105. A targeted deletion in the beta20-beta21 loop resulted in gp120 with enhanced binding of both monoclonals. Enhancement of b12 binding suggests reduced steric hindrance, since the antibody is relatively insensitive to conformation. Enhanced binding of F105, which depends strongly on the protein conformation, suggests that the mutation may allow gp120 to move more freely into the liganded form. The same viral strategies that limit antibody binding may also inhibit antibody induction. Modified forms of gp120, in which the CD4 binding site is more exposed and accessible to antibodies, could provide novel immunogens for eliciting antibodies to this broadly shared neutralizing determinant.
Collapse
|
378
|
Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 2008; 14:617-21. [PMID: 18535579 PMCID: PMC3697853 DOI: 10.1038/nm.f.1759] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector-based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.
Collapse
Affiliation(s)
- David I Watkins
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, Wisconsin 53715, USA.
| | | | | | | | | |
Collapse
|
379
|
Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U. Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:379-91. [PMID: 18312505 DOI: 10.1111/j.1467-7652.2008.00326.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The stability and recovery of recombinant proteins expressed in plants are improved by fusion to elastin-like peptides (ELPs). In order to test the suitability of ELP for the production of pharmaceutical proteins, transgenic plants were created that individually expressed the light and heavy chains of the broadly neutralizing anti-human immunodeficiency virus type 1 (anti-HIV-1) monoclonal antibody 2F5, which is being evaluated as a microbicide component. The antibody chains were expressed both with and without a C-terminal ELP fusion. Crossing these plants in all combinations resulted in transgenic lines producing the full antibody in four formats, with ELP on either the light or heavy chains, on both or on neither. Characterization of the affinity-purified antibodies by surface plasmon resonance spectroscopy showed that the kinetic binding parameters were identical to those of a Chinese hamster ovary (CHO) cell counterpart lacking ELP. N-Glycan analysis showed that all four derivatives contained predominantly oligo-mannose-type N-glycans and that the ELP fusions had no significant effect on N-glycan structure. It was concluded that ELP fusion to the light chain, heavy chain or both chains of a plant-derived antibody had no adverse affects on protein quality, but had a positive impact on the yield. ELP fusions do not interfere with folding, assembly, trafficking in the secretory pathway or post-translational modification, but enhance stability whilst at the same time simplifying recovery.
Collapse
Affiliation(s)
- Doreen M Floss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Safety and immunogenicity, after nasal application of HIV-1 DNA gagp37 plasmid vaccine in young mice. Vaccine 2008; 26:5101-6. [PMID: 18482783 DOI: 10.1016/j.vaccine.2008.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a need for safe and potent adjuvants capable of delivering vaccine candidates over the mucosal barrier, with good capacity to stimulate both mucosal and systemic cell-mediated and humoral immunity. An adjuvant aimed for intranasal delivery should preferably deliver the antigen and minimize the transfer into the close proximity of the central nervous system, thus avoiding damage on the olfactory tissues. Advantages with a mucosal delivery route would be to provide mucosal and systemic immunity, requiring lower vaccine doses then when given parentally. The aim of this study was to study if the N3 adjuvant intranasally administered with HIV DNA plasmids would be transferred into the olfactory tissues and cause local inflammation and tissue damage. RESULTS The N3 adjuvant alone and when combined with HIV-1 DNA gag plasmid and delivered intranasally did not cause detectable damage to the nasal epithelium or the olfactory epithelium or bulb over a period of 3 days after delivery. The intranasal administration of HIV-1 gagp37 DNA induced both a humoral and a cell-mediated immunity against the gag antigen. Significantly higher HIV-1-specific humoral, but not cell-mediated immune responses were seen in DNA/N3-immunized mice in comparison with HIV-1 DNA/saline-immunized animals. CONCLUSIONS A safe and convenient intranasal mode of HIV-1 DNA plasmid and adjuvant delivery was shown not to interfere with the tissues in close proximity to the central nervous system. The N3 adjuvant combined with HIV-1 plasmids enhances the HIV-1-specific immunogenicity and merits to be clinically tested.
Collapse
|
381
|
Characteristics of the env genes of HIV type 1 quasispecies in long-term nonprogressors with broadly neutralizing antibodies. J Acquir Immune Defic Syndr 2008; 47:274-84. [PMID: 18197126 DOI: 10.1097/qai.0b013e318162cac2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary isolates of different subtypes of HIV-1 can be neutralized in vitro by the broadly neutralizing antibodies (NAbs) found in the sera of a small number of HIV-1-infected patients. This broad response is most frequent in long-term nonprogressors (LTNPs). We investigated whether the presence of NAbs in the sera of some LTNPs was associated with particular properties of the envelope glycoproteins of the variants found in these patients. Toward that aim, 147 env gene fragments (encoding almost the entire gp120) amplified from the proviral DNA of 5 LTNPs who developed broadly NAbs (NAb+) and of 4 LTNPs who did not develop such broadly NAbs (NAb-) were cloned, sequenced, and compared. We found that the development of broadly NAbs was associated with high viral loads, greater diversity in the gp120 of the viruses infecting these patients, and longer V1 sequences and additional N-gly sites in V1. In addition, a higher proportion of defective clones was found among the env genes of NAb- patients (25% to 93%)-particularly those with lower viral loads and low levels of env diversity-than among those of NAb+ patients (7% to 19%).
Collapse
|
382
|
A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol 2008; 82:6359-68. [PMID: 18434393 DOI: 10.1128/jvi.00293-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycan shield of human immunodeficiency virus type 1 (HIV-1) gp120 contributes to viral evasion from humoral immune responses. However, the shield is recognized by the HIV-1 broadly neutralizing antibody (Ab), 2G12, at a relatively conserved cluster of oligomannose glycans. The discovery of 2G12 raises the possibility that a carbohydrate immunogen may be developed that could elicit 2G12-like neutralizing Abs and contribute to an AIDS vaccine. We have previously dissected the fine specificity of 2G12 and reported that the synthetic tetramannoside (Man(4)) that corresponds to the D1 arm of Man(9)GlcNAc(2) inhibits 2G12 binding to gp120 as efficiently as Man(9)GlcNAc(2) itself, indicating the potential use of Man(4) as a building block for creating immunogens. Here, we describe the development of neoglycoconjugates displaying variable copy numbers of Man(4) on bovine serum albumin (BSA) molecules by conjugation to Lys residues. The increased valency enhances the apparent affinity of 2G12 for Man(4) up to a limit which is achieved at approximately 10 copies per BSA molecule, beyond which no further enhancement is observed. Immunization of rabbits with BSA-(Man(4))(14) elicits significant serum Ab titers to Man(4). However, these Abs are unable to bind gp120. Further analysis reveals that the elicited Abs bind a variety of unbranched and, to a lesser extent, branched Man(9) derivatives but not natural N-linked oligomannose containing the chitobiose core. These results suggest that Abs can be readily elicited against the D1 arm; however, potential differences in the presentation of Man(4) on neoglycoconjugates, compared to glycoproteins, poses challenges for eliciting anti-mannose Abs capable of cross-reacting with gp120 and HIV-1.
Collapse
|
383
|
Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. Virology 2008; 375:529-38. [PMID: 18433824 DOI: 10.1016/j.virol.2008.02.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 12/28/2007] [Accepted: 02/11/2008] [Indexed: 11/23/2022]
Abstract
A panel of paired primary virus isolates and envelope pseudoviruses from sixty strains representing six HIV-1 clades was tested for neutralization using pooled, clade-specific plasma in two prominently utilized neutralization platforms: a primary isolate assay using peripheral blood mononuclear cells (PBMC) and a pseudovirus assay using a reporter epithelial cell line. Using the PMBC assay, pairing of the antibody pool against homologous clade viruses generated the highest geometric mean neutralizing antibody titer in 4 out of 6 clades tested, and neutralization patterns showed numerous examples of reciprocal cross-recognition between antibody and viruses of specific clade pairs. In the pseudovirus assay, cross-clade neutralization was more limited, with fewer distinct cross-clade relationships evident. The clade C antibody pool was broadly cross-reactive, neutralizing the greatest number of viruses in both assays. These data highlight the importance of the neutralization assay format employed and suggest that clade C envelopes merit further evaluation for the elicitation of broadly neutralizing antibodies.
Collapse
|
384
|
McNeilly T, McClure S, Huntley J. Mucosal immunity in sheep and implications for mucosal vaccine development. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2007.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
385
|
HIV-neutralizing immunoglobulin A and HIV-specific proliferation are independently associated with reduced HIV acquisition in Kenyan sex workers. AIDS 2008; 22:727-35. [PMID: 18356602 DOI: 10.1097/qad.0b013e3282f56b64] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES HIV-neutralizing immunoglobulin A (IgA) and HIV-specific cellular immunity have been described in highly exposed, persistently seronegative (HEPS) individuals, but well controlled studies have not been performed. We performed a prospective, nested case-control study to examine the association of genital IgA and systemic cellular immune responses with subsequent HIV acquisition in high-risk Kenyan female sex workers (FSWs). DESIGN AND METHODS A randomized trial of monthly antibiotic prophylaxis to prevent sexually transmitted disease/HIV infection was performed from 1998 to 2002 in HIV-uninfected Kenyan FSWs. After the completion of trial, FSWs who had acquired HIV (cases) were matched 1: 4 with persistently uninfected controls based on study arm, duration of HIV-seronegative follow-up, and time of cohort enrolment. Blinded investigators assayed the ability at enrolment of genital IgA to neutralize primary HIV isolates as well as systemic HIV-specific cellular IFNgamma-modified enzyme-linked immunospot and proliferative responses. RESULTS The study cohort comprised 113 FSWs: 24 cases who acquired HIV and 89 matched controls. Genital HIV-neutralizing IgA was associated with reduced HIV acquisition (P = 0.003), as was HIV-specific proliferation (P = 0.002), and these associations were additive. HIV-specific IFNgamma production did not differ between case and control groups. In multivariable analysis, HIV-neutralizing IgA and HIV-specific proliferation each remained independently associated with lack of HIV acquisition. Genital herpes (HSV2) was associated with increased HIV risk and with reduced detection of HIV-neutralizing IgA. CONCLUSION Genital HIV-neutralizing IgA and systemic HIV-specific proliferative responses, assayed by blinded investigators, were prospectively associated with HIV nonacquisition. The induction of these immune responses may be an important goal for HIV vaccines.
Collapse
|
386
|
Raska M, Moldoveanu Z, Novak J, Hel Z, Novak L, Bozja J, Compans RW, Yang C, Mestecky J. Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine 2008; 26:1541-51. [PMID: 18304708 PMCID: PMC2323585 DOI: 10.1016/j.vaccine.2008.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 11/26/2007] [Accepted: 01/11/2008] [Indexed: 01/31/2023]
Abstract
The quality of immune responses induced by DNA vaccination depends on the site of DNA administration, the expression, and the properties of the encoded antigen. In the present study, we demonstrate that intravenous hydrodynamic HIV-1 envelope DNA injection resulted in high levels of expression of HIV-1 envelope antigen in the liver. When compared to the administration of DNA by i.n., i.d., i.m., and i.splenic routes, hydrodynamic vaccination induced, upon DNA boosting, levels of HIV-1 envelope-specific antibodies 40-fold higher than those elicited by the other routes tested. Hydrodynamic vaccination with 1 microg DNA induced higher humoral responses than 100 microg DNA given intramuscularly in the prime-boost regimen. High levels of envelope-specific IgG and IgA antibodies were induced in genital tract secretions after two doses of DNA followed by intranasal boosting with recombinant HIV-1 gp120 protein. Furthermore, two doses of 100 microg DNA generated interferon-gamma production in approximately 4.3+/-1.7% of CD8(+) splenocytes after in vitro stimulation with HIV-1 envelope peptides. These results demonstrate that DNA vaccines targeted to tissues with high proteosynthetic activity, such as the liver, results in enhanced immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antibody Formation/immunology
- Blotting, Western
- CD8-Positive T-Lymphocytes/immunology
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Female
- HIV Envelope Protein gp120/immunology
- HIV-1/genetics
- HIV-1/immunology
- Immunity, Mucosal/immunology
- Immunization, Secondary
- Injections, Intravenous
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Plasmids/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic
- Vagina/immunology
Collapse
Affiliation(s)
- Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Penn-Nicholson A, Han DP, Kim SJ, Park H, Ansari R, Montefiori DC, Cho MW. Assessment of antibody responses against gp41 in HIV-1-infected patients using soluble gp41 fusion proteins and peptides derived from M group consensus envelope. Virology 2008; 372:442-56. [PMID: 18068750 PMCID: PMC2293309 DOI: 10.1016/j.virol.2007.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/29/2007] [Accepted: 11/08/2007] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 is targeted by broadly-reactive neutralizing antibodies 2F5 and 4E10, making it an attractive target for vaccine development. To better assess immunogenic properties of gp41, we generated five soluble glutathione S-transferase fusion proteins encompassing C-terminal 30, 64, 100, 142, or 172 (full-length) amino acids of gp41 ectodomain from M group consensus envelope sequence. Antibody responses in HIV-1-infected patients were evaluated using these proteins and overlapping peptides. We found (i) antibody responses against different regions of gp41 varied tremendously among individual patients, (ii) patients with stronger antibody responses against membrane-proximal external region exhibit broader and more potent neutralizing activity, and (iii) several patients mounted antibodies against epitopes that are near, or overlap with, those targeted by 2F5 or 4E10. These soluble gp41 fusion proteins could be an important source of antigens for future vaccine development efforts.
Collapse
Affiliation(s)
- Adam Penn-Nicholson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
388
|
A bispecific antibody composed of a nonneutralizing antibody to the gp41 immunodominant region and an anti-CD89 antibody directs broad human immunodeficiency virus destruction by neutrophils. J Virol 2008; 82:4671-4. [PMID: 18272577 DOI: 10.1128/jvi.02499-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the direct neutralization of virus, there is a broader potential for antibody-mediated inhibition of human immunodeficiency virus (HIV) by targeting HIV to effector cells. We demonstrate here that a bispecific antibody incorporating a broadly reactive anti-gp41 antibody, F240, and an anti-IgA receptor (CD89) antibody is effective at directing neutrophils to destroy HIV. Not only are neutrophils the predominant type of white blood cells and very efficient at mediating cell cytotoxicity, they are relatively resistant to infection with HIV. Therefore, they represent a significant weapon against infection if they can be directed and armed to destroy HIV and infected cells.
Collapse
|
389
|
Isaka M, Zhao Y, Nobusawa E, Nakajima S, Nakajima K, Yasuda Y, Matsui H, Hasegawa T, Maeyama JI, Morokuma K, Ohkuma K, Tochikubo K. Protective effect of nasal immunization of influenza virus hemagglutinin with recombinant cholera toxin B subunit as a mucosal adjuvant in mice. Microbiol Immunol 2008; 52:55-63. [DOI: 10.1111/j.1348-0421.2008.00010.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
390
|
Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2008; 24:271-81. [PMID: 18260780 DOI: 10.1089/aid.2007.0148] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice. The serum of these animals demonstrated antibodies that cross-reacted with heterologous serotypes of gp120 and had significant neutralizing activity against two clade-B laboratory strains of HIV (HIVBaL and HIVSF162) and five primary HIV-1 isolates. The analysis of gp120-specific CTL proliferation, INF-gamma induction, and prevalence of anti-gp120 IgG2 subclass antibodies indicated that nasal vaccination in NE also induced systemic, Th1-polarized cellular immune responses. This study suggests that NE should be evaluated as a mucosal adjuvant for multivalent HIV vaccines.
Collapse
Affiliation(s)
- Anna U. Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Katarzyna W. Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Jeffrey J. Landers
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - David M. Markovitz
- Internal Medicine, Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina 27706
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
391
|
Potent human immunodeficiency virus-neutralizing and complement lysis activities of antibodies are not obligatorily linked. J Virol 2008; 82:3834-42. [PMID: 18234794 DOI: 10.1128/jvi.02569-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the contribution of complement-mediated lysis to the in vivo activities of neutralizing antibodies, we analyzed the influence of complement activation on treatment success in a recent passive immunization trial with the neutralizing monoclonal antibodies 2G12, 2F5, and 4E10. Administration of monoclonal antibodies led to an immediate, high activation of the complement system even in the absence of viremia in the 14 participating human immunodeficiency virus-infected individuals. Lysis activity measured in patient plasma increased during passive immunization; however, the increases were modest and only partially attributable to the administration of antibodies. We found that unlike neutralization activity, lysis activity was not associated with treatment success in this trial. Compared to complement lysis mounted by the polyclonal antibody response in vivo, monoclonal antibodies were weak inducers of this activity, suggesting that polyclonal responses are more effective in reaching the required threshold of complement activation. Importantly, strong neutralization activity of the monoclonal antibodies did not predict complement lysis activity against patient and reference viruses, suggesting that these activities are not linked. In summary, our data support the notion that the in vivo activities of 2G12, 2F5, and 4E10 are likely due to direct neutralization or Fc receptor-mediated mechanisms such as phagocytosis and antibody-dependent cellular cytotoxicity.
Collapse
|
392
|
Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS 2008; 22:339-48. [PMID: 18195560 DOI: 10.1097/qad.0b013e3282f3ca57] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Worldwide, the majority of human immunodeficiency virus (HIV) infections occur by heterosexual transmission. Thus, the development of a vaccine that can prevent intravaginal HIV infection is an important goal of AIDS vaccine research. OBJECTIVES To determine which single or combination of systemic and mucosal routes of immunizations of female rhesus macaques with an HIV-1 SF162 envelope protein vaccine induced protection against intravaginal challenge with SHIV. DESIGN Female rhesus macaques were immunized with an HIV-1 SF162 envelope protein vaccine administered systemically (intramuscularly), or mucosally (intranasally), or as a sequential combination of both routes. The macaques were then challenged intravaginally with SHIV SF162P4, expressing an envelope that is closely matched (homologous) to the vaccine. RESULTS Macaques receiving intramuscular immunizations, alone or in combination with intranasal immunizations, were protected from infection, with no detectable plasma viral RNA, provirus, or seroconversion to nonvaccine viral proteins, and better preservation of intestinal CD4+ T cells. Serum neutralizing antibodies against the challenge virus appeared to correlate with protection. CONCLUSIONS The results of this study demonstrate that, in the nonhuman primate model, it is possible for vaccine-elicited immune responses to prevent infection after intravaginal administration of virus.
Collapse
|
393
|
Dong XN, Wu Y, Chen YH. The neutralizing epitope ELDKWA on HIV-1 gp41: genetic variability and antigenicity. Immunol Lett 2008; 101:81-6. [PMID: 15951025 DOI: 10.1016/j.imlet.2005.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 11/23/2022]
Abstract
Viral evasion through mutations of neutralizing epitopes is a major challenge to AIDS vaccine development and clinical therapy. In this study, we analyzed the genetic variability of principal neutralizing epitope ELDKWA among 5393 HIV isolates in the HIV sequence database (). It has been found that six out of seven frequent variants were able to cause the invalidation of famous neutralizing MAb 2F5. Moreover, escape mutations K665S and K665E, often observed in C-subtype and O-group strains, respectively, were reported more frequently in recent years. Furthermore, we studied the antigenicity of these variants. Polyclonal antibodies induced by a candidate multi-epitope-vaccine were able to react with the recombinant gp41, respectively, carrying these variants, indicating that "epitope cocktail" strategy is necessary and helpful in vaccine design.
Collapse
Affiliation(s)
- Xiao-Nan Dong
- Laboratory of Immunology, Department of Biology, Tsinghua University, School of Life Science Engineering, Protein Science Laboratory of MOE, Beijing 100084, PR China.
| | | | | |
Collapse
|
394
|
Adalid-Peralta L, Godot V, Colin C, Krzysiek R, Tran T, Poignard P, Venet A, Hosmalin A, Lebon P, Rouzioux C, Chene G, Emilie D. Stimulation of the primary anti-HIV antibody response by IFN-alpha in patients with acute HIV-1 infection. J Leukoc Biol 2008; 83:1060-7. [PMID: 18182457 DOI: 10.1189/jlb.1007675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type I IFNs are needed for the production of antiviral antibodies in mice; whether they also stimulate primary antibody responses in vivo during human viral infections is unknown. This was assessed in patients acutely infected with HIV-1 and treated with IFN-alpha2b. Patients with acute HIV-1 infection were randomized to receive antiretroviral therapy alone (Group A, n=60) or combined for 14 weeks with pegylated-IFN-alpha2b (Group B, n=30). Emergence of anti-HIV antibodies was monitored during 32 weeks by Western blot (WB) analyses of serum samples. IFN-alpha2b treatment stimulated the production of anti-HIV antibodies. On Week 32, 19 weeks after the last IFN-alpha2b administration, there were 8.5 (6.5-10.0) HIV WB bands (median, interquartile range) in Group B and 7.0 (5.0-10.0) bands in Group A (P=0.054), and band intensities were stronger in Group B (P<0.05 for p18, p24, p34, p40, and p55 HIV antigens). IFN-alpha2b treatment also increased circulating concentrations of the B cell-activating factor of the TNF family (P<0.001) and ex vivo production of IL-12 (P<0.05), reflecting its effect on innate immune cells. Withdrawal of antiretroviral treatment on Week 36 resulted in a lower rebound of HIV replication in Group B than in Group A (P<0.05). Therefore, type I IFNs stimulate the emerging anti-HIV immune response in patients with acute HIV-1 infection, resulting in an improved control of HIV replication. Type I IFNs are thus critical in the development of efficient antiviral immune responses in humans, including the production of antiviral antibodies.
Collapse
|
395
|
Nehete PN, Nehete BP, Hill L, Manuri PR, Baladandayuthapani V, Feng L, Simmons J, Sastry KJ. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV(KU2) infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail. Virology 2008; 370:130-41. [PMID: 17920095 PMCID: PMC2196441 DOI: 10.1016/j.virol.2007.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/25/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-gamma-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV(KU2). Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-gamma production, higher levels of vaccine-specific IFN-gamma producing CD4(+) cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.
Collapse
Affiliation(s)
- Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
| | | | | | | | | | | | | | | |
Collapse
|
396
|
|
397
|
B cell immunopathology during HIV-1 infection: lessons to learn for HIV-1 vaccine design. Vaccine 2007; 26:3016-25. [PMID: 18164520 DOI: 10.1016/j.vaccine.2007.11.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 12/21/2022]
Abstract
Induction of broad HIV-1 neutralizing antibodies should be a major goal of an effective HIV-1 vaccine. However, B cells are severely damaged during HIV-1 infection with loss of memory B cells and decline of serological memory. The molecular events leading to B cell damage must be further characterized with the aim of selecting vaccine components allowing preservation of B cell functions. This review focuses on B cell damage and antibody responses in HIV-1-infected patients during vaccination studies with viral and bacterial antigens. In addition novel data indicate that B cell activation may be at the basis of impaired immune responses.
Collapse
|
398
|
Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 2007; 18:523-8. [PMID: 18063358 PMCID: PMC7127177 DOI: 10.1016/j.copbio.2007.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 10/22/2007] [Indexed: 12/11/2022]
Abstract
The administration of hyper immune sera to prevent or treat life-threatening infections is a remarkable milestone in medicine and biotechnology that has been achieved more than a century ago. Yet, the therapeutic use of monoclonal antibodies in this field has developed slowly over the last decades. Here we compare and contrast current methods to generate human monoclonal antibodies and highlight the advantages of exploiting the human antibody repertoire using a novel method that allows efficient immortalization and cloning of human memory B cells. This method, which has been successfully applied to isolate broadly neutralizing antibodies against SARS and H5N1 influenza viruses, is expected to accelerate the development of therapeutics in the field of infectious diseases not only by providing neutralizing antibodies for passive serotherapy, but also by generating relevant information for vaccine design.
Collapse
Affiliation(s)
- Antonio Lanzavecchia
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland.
| | | | | |
Collapse
|
399
|
Zolla-Pazner S, Cohen SS, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 2007; 372:233-46. [PMID: 18061228 DOI: 10.1016/j.virol.2007.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 09/20/2007] [Indexed: 11/28/2022]
Abstract
Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.
Collapse
|
400
|
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Curr Top Microbiol Immunol 2007; 317:39-66. [PMID: 17990789 DOI: 10.1007/978-3-540-72146-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies are routinely used as therapeutics in a number of disease settings and have thus also been explored as potential treatment for human immunodeficiency virus (HIV)-1 infection. Antibodies targeting viral antigens, and those directed to the cellular receptors, have been considered for use in prevention and therapy. For virus-targeted antibodies, attention has focused primarily on their neutralizing activity, but such antibodies also have the potential to exert antiviral effects via effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), opsonization, or complement activation. Anti-cell antibodies act through occlusion or down-modulation of the viral receptors with notable impact in vivo, as recent trials have shown. This review summarizes the diverse specificities and modes of action of therapeutic antibodies against HIV-1 infection. Successes, challenges, and future opportunities of harnessing antibodies for therapy of HIV-1 infection are discussed.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|