351
|
Strong C, Kabbaj M. On the safety of repeated ketamine infusions for the treatment of depression: Effects of sex and developmental periods. Neurobiol Stress 2018; 9:166-175. [PMID: 30450382 PMCID: PMC6236511 DOI: 10.1016/j.ynstr.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In this review, we will discuss the safety of repeated treatments with ketamine for patients with treatment-resistant depression (TRD), a condition in which patients with major depression do not show any clinical improvements following treatments with at least two antidepressant drugs. We will discuss the effects of these treatments in both sexes at different developmental periods. Numerous small clinical studies have shown that a single, low-dose ketamine infusion can rapidly alleviate depressive symptoms and thoughts of suicidality in patients with TRD, and these effects can last for about one week. Interestingly, the antidepressant effects of ketamine can be prolonged with intermittent, repeated infusion regimens and produce more robust therapeutic effects when compared to a single infusion. The safety of such repeated treatments with ketamine has not been thoroughly investigated. Although more studies are needed, some clinical and preclinical reports indicated that repeated infusions of low doses of ketamine may have addictive properties, and suggested that adolescent and adult female subjects may be more sensitive to ketamine's addictive effects. Additionally, during ketamine infusions, many TRD patients report hallucinations and feelings of dissociation and depersonalization, and therefore the effects of repeated treatments of ketamine on cognition must be further examined. Some clinical reports indicated that, compared to women, men are more sensitive to the psychomimetic effects of ketamine. Preclinical studies extended these findings to both adolescent and adult male rodents and showed that male rodents at both developmental periods are more sensitive to ketamine's cognitive-altering effects. Accordingly, in this review we shall focus our discussion on the potential addictive and cognitive-impairing effects of repeated ketamine infusions in both sexes at two important developmental periods: adolescence and adulthood. Although more work about the safety of ketamine is warranted, we hope this review will bring some answers about the safety of treating TRD with repeated ketamine infusions.
Collapse
Affiliation(s)
| | - Mohamed Kabbaj
- Corresponding author. Florida State University, 3300-H, 1115 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
352
|
Felger JC. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr Neuropharmacol 2018; 16:533-558. [PMID: 29173175 PMCID: PMC5997866 DOI: 10.2174/1570159x15666171123201142] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have reported evidence that inflammation and release of inflammatory cytokines affect circuitry relevant to both reward and threat sensitivity to contribute to behavioral change. Of relevance to mood and anxiety-related disorders, biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of patients with major depressive disorder (MDD), bipolar disorder, anxiety disorders and post-traumatic stress disorder (PTSD). Methods This review summarized clinical and translational work demonstrating the impact of peripheral inflammation on brain regions and neurotransmitter systems relevant to both reward and threat sensitivity, with a focus on neuroimaging studies involving administration of inflammatory stimuli. Recent translation of these findings to further understand the role of inflammation in mood and anxiety-related disorders is also discussed. Results Inflammation was consistently found to affect basal ganglia and cortical reward and motor circuits to drive reduced motivation and motor activity, as well as anxiety-related brain regions including amygdala, insula and anterior cingulate cortex, which may result from cytokine effects on monoamines and glutamate. Similar relationships between inflammation and altered neurocircuitry have been observed in MDD patients with increased peripheral inflammatory markers, and such work is on the horizon for anxiety disorders and PTSD. Conclusion Neuroimaging effects of inflammation on reward and threat circuitry may be used as biomarkers of inflammation for future development of novel therapeutic strategies to better treat mood and anxiety-related disorders in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
353
|
Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry 2018; 8:189. [PMID: 30202011 PMCID: PMC6131242 DOI: 10.1038/s41398-018-0241-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Combined increases in peripheral inflammation and brain glutamate may identify a subtype of depression with distinct neuroimaging signatures. Two contrasting subgroups of depressed subjects-with and without combined elevations in plasma C-reactive protein (CRP) and basal ganglia glutamate (high and low CRP-Glu, respectively) were identified by hierarchical clustering using plasma CRP (indexing peripheral inflammation) and magnetic resonance spectroscopy (MRS)-based measurement of left basal ganglia glutamate. High CRP-Glu group status was associated with greater severity of anhedonia and cognitive and motor slowing. Local- and network-level measures of functional integrity were determined using brain oxygen level-dependent (BOLD)-oscillatory activity and graph theory. Greater decreases in concordance of oscillatory activity between neighboring voxels (Regional Homogeneity 'ReHo', p < 0.01) within the MRS volume-of-interest was associated with the High CRP-Glu subgroup. Using brain-wide, CRP-Glu ReHo contrast maps, a covariance network of 41 regions-of-interest (ROIs) with similar ReHo decreases was identified in the High CRP-Glu group and was located to brain structures previously implicated in depression. The 41-ROI network was further decomposed into four subnetworks. ReHo decreases within Subnetwork4-comprised of reward processing regions -was associated with anhedonia. Subnetwork4 ReHo also predicted decreased network integrity, which mediated the link between local ReHo and anhedonia in the Low but not High CRP-Glu group. These findings suggest that decreased ReHo and related disruptions in network integrity may reflect toxic effects of inflammation-induced increases in extrasynaptic glutamate signaling. Moreover, local BOLD oscillatory activity as reflected in ReHo might be a useful measure of target-engagement in the brain for treatment of inflammation-induced behaviors.
Collapse
|
354
|
Goldsmith DR, Haroon E, Miller AH, Strauss GP, Buckley PF, Miller BJ. TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr Res 2018; 199:281-284. [PMID: 29499967 PMCID: PMC6111000 DOI: 10.1016/j.schres.2018.02.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Increased inflammatory markers have been found in patients with chronic schizophrenia, and have been associated with negative symptoms. The deficit syndrome is a distinct subtype of schizophrenia, characterized by primary and enduring negative symptoms. METHOD We measured inflammatory markers in patients with and without deficit schizophrenia and controls. RESULTS Using multivariate analyses, tumor necrosis factor (TNF)-α and interleukin-6 were associated with the deficit syndrome, and TNF-α predicted blunted affect, alogia, and total negative symptoms. CONCLUSIONS Findings suggest that deficit schizophrenia subtype is associated with increased inflammation and immunotherapies may be a novel target for negative symptoms.
Collapse
Affiliation(s)
- David R Goldsmith
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States.
| | - Ebrahim Haroon
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Andrew H Miller
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Gregory P Strauss
- University of Georgia, Department of Psychology, Athens, GA, United States
| | - Peter F Buckley
- Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Brian J Miller
- Augusta University, Department of Psychiatry and Health Behavior, Augusta, GA, United States
| |
Collapse
|
355
|
Jha MK, Miller AH, Minhajuddin A, Trivedi MH. Association of T and non-T cell cytokines with anhedonia: Role of gender differences. Psychoneuroendocrinology 2018; 95:1-7. [PMID: 29783087 PMCID: PMC6312182 DOI: 10.1016/j.psyneuen.2018.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Among individual depressive symptoms, anhedonia has been reliably associated with activation of the innate immune response. However, it is unclear whether this association extends to T cell cytokines and if gender differentially affects this association. METHOD Concentrations of T (IL-17, T-helper (Th) 1- and Th2-) and non-T cell cytokines were measured in plasma using the Bioplex Pro™ human cytokine multiplex kit in Combining Medications to Enhance Depression Outcomes (CO-MED) trial participants who provided plasma at baseline (n = 166). Anhedonia was measured with three items of the clinician-rated Inventory of Depressive Symptomatology and depression severity (minus anhedonia item) was measured with Quick Inventory of Depression Severity Self-Report version (modified-QIDS-SR). Separate generalized linear models for anhedonia and modified-QIDS-SR as dependent variables were conducted with IL-17, Th1-, Th2-, and non-T cell- cytokines as primary independent variables and gender, body mass index (BMI), and age as covariates. Exploratory analyses included gender-by-biomarker interactions. RESULTS Higher levels of IL-17 (p = 0.032), Th1- (p = 0.002), Th2-(p = 0.001) and non-T-(p = 0.009) cell markers were associated with greater severity of anhedonia controlling for BMI, age, and gender. Gender also had a significant main effect on anhedonia, however, there was a significant gender by immune marker interaction only for IL-17 (p = 0.050). Anhedonia severity increased with higher IL-17 in males (r = 0.42, p = 0.003) but not in females (r = 0.09, p = 0.336). Only non-T cell markers were associated with the modified-QIDS-SR, and there were no significant gender-specific associations with this variable. CONCLUSIONS T and non-T cell-related inflammatory markers were associated with greater severity of anhedonia, while gender moderated the association of IL-17 with anhedonia in patients with major depressive disorder.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Abu Minhajuddin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
356
|
Haroon E, Daguanno AW, Woolwine BJ, Goldsmith DR, Baer WM, Wommack EC, Felger JC, Miller AH. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 2018; 95:43-49. [PMID: 29800779 PMCID: PMC6427066 DOI: 10.1016/j.psyneuen.2018.05.026] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND One third of patients with major depressive disorder (MDD) fail to respond to currently available antidepressant medications. Inflammation may contribute to treatment non-response through effects on neurotransmitter systems relevant to antidepressant efficacy. In post-hoc analyses, increased concentrations of inflammatory markers prior to treatment predict poor antidepressant response. However, limited data exists on whether depressed patients with multiple failed treatment trials in their current episode of depression exhibit increased inflammation. METHODS Plasma concentrations of inflammatory markers were measured in unmedicated, medically stable patients with MDD (n = 98) and varying numbers of adequate antidepressant treatment trials in the current depressive episode as measured by the Massachusetts General Hospital Antidepressant Treatment Response Questionnaire. Covariates including age, sex, race, education, body mass index (BMI) and severity of depression were included in statistical models where indicated. RESULTS A significant relationship was found between number of failed treatment trials and tumor necrosis factor (TNF), soluble TNF receptor 2 (sTNF-R2) and interleukin (IL)-6 (all p < 0.05 in multivariate analyses). Post hoc pairwise comparisons with correction for multiple testing revealed that patients with 3 or more failed trials in the current episode had significantly higher plasma TNF, sTNF-R2 and IL-6 compared to individuals with 0 or 1 trial (all p < 0.05). High sensitivity c-reactive protein was also associated with a greater number of treatment failures, but only in models with BMI excluded. CONCLUSIONS Measuring inflammatory markers and targeting inflammation or its downstream mediators may be relevant for depressed patients with multiple failed antidepressant treatment trials in their current depressive episode.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew H. Miller
- Corresponding author at: Emory Clinic Building B, Suite B5100, 1365-B Clifton Rd., Atlanta, GA, 30322 United States. (A.H. Miller)
| |
Collapse
|
357
|
Freed RD, Mehra LM, Laor D, Patel M, Alonso CM, Kim-Schulze S, Gabbay V. Anhedonia as a clinical correlate of inflammation in adolescents across psychiatric conditions. World J Biol Psychiatry 2018; 20:712-722. [PMID: 29843560 PMCID: PMC6377856 DOI: 10.1080/15622975.2018.1482000] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objectives: Peripheral inflammation has been associated with multiple psychiatric disorders, particularly with depression. However, findings remain inconsistent and unreproducible, most likely due to the disorder's heterogeneity in phenotypic presentation. Therefore, in the present study, in an effort to account for inter-individual differences in symptom severity, we utilised a dimensional approach to assess the relationships between a broad panel of inflammatory cytokines and key psychiatric symptoms (i.e. depression, anhedonia, anxiety, fatigue and suicidality) in adolescents across psychiatric disorders. We hypothesised that only anhedonia (reflecting deficits of reward function) will be associated with inflammation.Methods: Participants were 54 psychotropic medication-free adolescents with diverse psychiatric conditions and 22 healthy control (HC) adolescents, aged 12-20. We measured 41 cytokines after in vitro lipopolysaccharide stimulation. Mann-Whitney U and Spearman correlation tests examined group comparison and associations, respectively, while accounting for multiple comparisons and confounds, including depression severity adolescent.Results: There were no group differences in cytokine levels. However, as hypothesised, within the psychiatric group, only anhedonia was associated with 19 cytokines, including haematopoietic growth factors, chemokines, pro-inflammatory cytokines, and anti-inflammatory cytokines.Conclusions: Our findings suggest that general inflammation may induce reward dysfunction, which plays a salient role across psychiatric conditions, rather than be specific to one categorical psychiatric disorder.
Collapse
Affiliation(s)
- Rachel D. Freed
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Lushna M. Mehra
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Daniel Laor
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Manishkumar Patel
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Carmen M. Alonso
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | | | - Vilma Gabbay
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY
| |
Collapse
|
358
|
Zhong M, Yang W, Huang B, Jiang W, Zhang X, Liu X, Wang L, Wang J, Zhao L, Zhang Y, Liu Y, Lin J, Huang R. Effects of levodopa therapy on voxel-based degree centrality in Parkinson’s disease. Brain Imaging Behav 2018; 13:1202-1219. [DOI: 10.1007/s11682-018-9936-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
359
|
Xiao C, Beitler JJ, Higgins KA, Glazer T, Huynh LK, Paul S, Felger JC, Wommack EC, Saba NF, Shin DM, Bruner DW, Miller AH. Associations among human papillomavirus, inflammation, and fatigue in patients with head and neck cancer. Cancer 2018; 124:3163-3170. [PMID: 29742284 PMCID: PMC6097898 DOI: 10.1002/cncr.31537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) infection has contributed to an increased incidence of squamous cell carcinoma of the head and neck (SCCHN). Fatigue is a major side effect of SCCHN and its treatment. However, to the authors' knowledge, the association between HPV and fatigue has not been examined to date, nor is it known whether HPV influences biological mechanisms of fatigue, including inflammation. METHODS Patients with SCCHN who were without distant metastasis were assessed at baseline (pre-radiotherapy) and 1 month and 3 months postradiotherapy. Fatigue was measured using the Multidimensional Fatigue Inventory. Peripheral inflammation was assessed by plasma C-reactive protein (CRP), interleukin 1 receptor antagonist (IL-1ra), soluble tumor necrosis factor receptor 2 (sTNFR2), and IL-6. Mixed effect models were used to examine associations. RESULTS A total of 94 patients who were newly diagnosed were enrolled; 53% had HPV-related tumors. Patients with HPV-unrelated tumors had higher fatigue and higher plasma CRP, sTNFR2, and IL-6 over time, especially at baseline and 3 months after intensity-modulated radiotherapy compared with those with HPV-related tumors (all P < .05). However, fatigue and plasma sTNFR2 increased more significantly from baseline to 1 month after radiotherapy in the HPV-related group compared with the HPV-unrelated group (both P < .01). Controlling for significant covariates, HPV status and inflammation were found to be independent predictors of fatigue over time. CONCLUSIONS HPV status is an important marker of vulnerability to the behavioral and immune consequences of SCCHN and its treatment, providing support for different symptom management strategies. Special emphasis should be placed on addressing marked persistent fatigue in patients with HPV-unrelated tumors, whereas attention should be paid to the large increases in fatigue during treatment among patients with HPV-related tumors. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Canhua Xiao
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | | | - Kristin A. Higgins
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Toby Glazer
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322
| | - Linh Kha Huynh
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Sudeshna Paul
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Jennifer C. Felger
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322
| | - Nabil F. Saba
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Dong M. Shin
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Deborah W. Bruner
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322
| | - Andrew H. Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322
| |
Collapse
|
360
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
361
|
Kraynak TE, Marsland AL, Wager TD, Gianaros PJ. Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. Neurosci Biobehav Rev 2018; 94:76-92. [PMID: 30067939 DOI: 10.1016/j.neubiorev.2018.07.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 01/18/2023]
Abstract
Communication between the brain and peripheral mediators of systemic inflammation is implicated in numerous psychological, behavioral, and physiological processes. Functional neuroimaging studies have identified brain regions that associate with peripheral inflammation in humans, yet there are open questions about the consistency, specificity, and network characteristics of these findings. The present systematic review provides a meta-analysis to address these questions. Multilevel kernel density analysis of 24 studies (37 statistical maps; 264 coordinates; 457 participants) revealed consistent effects in the amygdala, hippocampus, hypothalamus, striatum, insula, midbrain, and brainstem, as well as prefrontal and temporal cortices. Effects in some regions were specific to particular study designs and tasks. Spatial pattern analysis revealed significant overlap of reported effects with limbic, default mode, ventral attention, and corticostriatal networks, and co-activation analyses revealed functional ensembles encompassing the prefrontal cortex, insula, and midbrain/brainstem. Together, these results characterize brain regions and networks associated with peripheral inflammation in humans, and they provide a functional neuroanatomical reference point for future neuroimaging studies on brain-body interactions.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA
| |
Collapse
|
362
|
Phillips C, Fahimi A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front Neurosci 2018; 12:498. [PMID: 30093853 PMCID: PMC6070639 DOI: 10.3389/fnins.2018.00498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Physical activity-a lifestyle factor that is associated with immune function, neuroprotection, and energy metabolism-modulates the cellular and molecular processes in the brain that are vital for emotional and cognitive health, collective mechanisms that can go awry in depression. Physical activity optimizes the stress response, neurotransmitter level and function (e.g., serotonergic, noradrenergic, dopaminergic, and glutamatergic), myokine production (e.g., interleukin-6), transcription factor levels and correlates [e.g., peroxisome proliferator-activated receptor C coactivator-1α [PGC-1α], mitochondrial density, nitric oxide pathway activity, Ca2+ signaling, reactive oxygen specie production, and AMP-activated protein kinase [AMPK] activity], kynurenine metabolites, glucose regulation, astrocytic health, and growth factors (e.g., brain-derived neurotrophic factor). Dysregulation of these interrelated processes can effectuate depression, a chronic mental illness that affects millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility in understanding chronic depression, a need remains to better understand the interrelated mechanisms that contribute to immune dysfunction and the means by which various therapeutics mitigate them. Fortunately, convergent evidence suggests that physical activity improves emotional and cognitive function in persons with depression, particularly in those with comorbid inflammation. Accordingly, the aims of this review are to (1) underscore the link between inflammatory correlates and depression, (2) explicate immuno-neuroendocrine foundations, (3) elucidate evidence of neurotransmitter and cytokine crosstalk in depressive pathobiology, (4) determine the immunomodulatory effects of physical activity in depression, (5) examine protocols used to effectuate the positive effects of physical activity in depression, and (6) highlight implications for clinicians and scientists. It is our contention that a deeper understanding of the mechanisms by which inflammation contributes to the pathobiology of depression will translate to novel and more effective treatments, particularly by identifying relevant patient populations that can benefit from immune-based therapies within the context of personalized medicine.
Collapse
Affiliation(s)
- Cristy Phillips
- Physical Therapy, Arkansas State University, Jonesboro, AR, United States
- Physical Therapy, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
363
|
Lasselin J, Lekander M, Axelsson J, Karshikoff B. Sex differences in how inflammation affects behavior: What we can learn from experimental inflammatory models in humans. Front Neuroendocrinol 2018; 50:91-106. [PMID: 29935190 DOI: 10.1016/j.yfrne.2018.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Human models demonstrate that experimental activation of the innate immune system has profound effects on brain activation and behavior, inducing fatigue, worsened mood and pain sensitivity. It has been proposed that inflammation is a mechanism involved in the etiology and maintenance of depression, chronic pain and long-term fatigue. These diseases show a strong female overrepresentation, suggesting that a better understanding of sex differences in how inflammation drives behavior could help the development of individualized treatment interventions. For this purpose, we here review sex differences in studies using experimental inflammatory models to investigate changes in brain activity and behavior. We suggest a model in which inflammation accentuates sex differences in brain networks and pre-existing vulnerability factors. This effect could render women more vulnerable to the detrimental effects of immune-to-brain communication over time. We call for systematic and large scale investigations of vulnerability factors for women in the behavioral response to inflammation.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
364
|
Wang Z, Fang J, Liu J, Rong P, Jorgenson K, Park J, Lang C, Hong Y, Zhu B, Kong J. Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder. J Psychiatr Res 2018; 102:123-131. [PMID: 29674268 PMCID: PMC6005725 DOI: 10.1016/j.jpsychires.2017.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/20/2017] [Accepted: 12/25/2017] [Indexed: 01/19/2023]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) may be a promising treatment for major depressive disorder (MDD). In this exploratory study, fMRI scans were acquired during continuous real or sham tVNS from 41 MDD patients. Then, all patients received real or sham tVNS treatment for four weeks. We investigated the functional connectivity (FC) of the nucleus accumbens (NAc) at different frequency bands during real and sham tVNS and explored their associations with depressive symptom changes after one month of treatment. The results revealed: 1) significant positive FCs between the NAc and surrounding areas including the putamen, caudate, and distinct areas of the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC) during continuous real and sham tVNS; 2) compared with sham tVNS, real tVNS increased the FC between the left NAc and bilateral MPFC/rACC in the slow-5 band (0.008-0.027) and between the right NAc and left insula, occipital gyrus, and right lingual/fusiform gyrum in the typical low band (0.008-0.09); and 3) the FC of the NAc-MPFC/rACC during real tVNS showed a negative association with Hamilton Depression Rating Scale (HAMD) score changes in the real tVNS group after one month of treatment, but not in the sham group. Our findings demonstrate that tVNS can modulate low frequency intrinsic FC among key brain regions involved in reward and motivation processing and provide insights into the brain mechanism underlying tVNS treatment of MDD.
Collapse
Affiliation(s)
- Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129,Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Peijing Rong
- Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | | | - Yang Hong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bing Zhu
- Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
365
|
Li BJ, Friston K, Mody M, Wang HN, Lu HB, Hu DW. A brain network model for depression: From symptom understanding to disease intervention. CNS Neurosci Ther 2018; 24:1004-1019. [PMID: 29931740 DOI: 10.1111/cns.12998] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the neural substrates of depression is crucial for diagnosis and treatment. Here, we review recent studies of functional and effective connectivity in depression, in terms of functional integration in the brain. Findings from these studies, including our own, point to the involvement of at least four networks in patients with depression. Elevated connectivity of a ventral limbic affective network appears to be associated with excessive negative mood (dysphoria) in the patients; decreased connectivity of a frontal-striatal reward network has been suggested to account for loss of interest, motivation, and pleasure (anhedonia); enhanced default mode network connectivity seems to be associated with depressive rumination; and diminished connectivity of a dorsal cognitive control network is thought to underlie cognitive deficits especially ineffective top-down control of negative thoughts and emotions in depressed patients. Moreover, the restoration of connectivity of these networks-and corresponding symptom improvement-following antidepressant treatment (including medication, psychotherapy, and brain stimulation techniques) serves as evidence for the crucial role of these networks in the pathophysiology of depression.
Collapse
Affiliation(s)
- Bao-Juan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Radiology, Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Maria Mody
- Department of Radiology, Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hua-Ning Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong-Bing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - De-Wen Hu
- Department of Automatic Control, College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
366
|
Savitz J, Harrison NA. Interoception and Inflammation in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:514-524. [PMID: 29884282 PMCID: PMC5995132 DOI: 10.1016/j.bpsc.2017.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Despite a historical focus on neurally mediated interoceptive signaling mechanisms, humoral (and even cellular) signals also play an important role in communicating bodily physiological state to the brain. These signaling pathways can perturb neuronal structure, chemistry, and function, leading to discrete changes in behavior. They are also increasingly implicated in the pathophysiology of psychiatric disorders. The importance of these humoral signaling pathways is perhaps most powerfully illustrated in the context of infection and inflammation. Here we provide an overview of how interaction of immune activation of neural and humoral interoceptive mechanisms mediates discrete changes in brain and behavior and highlight how activation of these pathways at specific points in neural development may predispose to psychiatric disorder. As our mechanistic understanding of these interoceptive pathways continues to emerge, it is revealing novel therapeutic targets, potentially heralding an exciting new era of immunotherapies in psychiatry.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, the University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, the University of Tulsa, Tulsa, Oklahoma
| | - Neil A Harrison
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom.
| |
Collapse
|
367
|
The relationship between interleukin-6 and functional connectivity in methamphetamine users. Neurosci Lett 2018; 677:49-54. [PMID: 29689344 DOI: 10.1016/j.neulet.2018.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/09/2023]
Abstract
Methamphetamine (MA) causes an increase in pro-inflammatory cytokines in animal models and in humans. Resulting activation of microglia and neuro-inflammation could, via effects on reward networks, mediate behavioral characteristics of addiction. We examined the relationship between interleukin-6 (IL-6) and corticolimbic and striatolimbic resting-state functional connectivity (RSFC). Thirty adults diagnosed with MA dependence and 20 control subjects underwent a resting-state functional magnetic resonance imaging (fMRI) scan and gave a blood sample for determination of plasma IL-6 levels. Seed-based RSFC analyses were performed to examine the interactive effect of group and IL-6 on ventral striatal and prefrontal connectivity. Within the MA group, IL-6 levels were positively related to striatolimbic RSFC but negatively related to corticostriatal RSFC. Our findings with IL-6 support the idea that inflammation may at least partly mediate the link among MA use disorder, RSFC, and behavior, possibly via effects on mesolimbic and mesocortical dopaminergic systems.
Collapse
|
368
|
Abstract
BACKGROUND Increased inflammation is linked to suicide risk. However, it is unclear whether increased inflammation drives suicidal crises or is a trait associated with lifetime suicidal behavior. Limited data exist on the sources of increased inflammation observed in suicidal patients and on its downstream effects. AIMS To examine factors associated with inflammation and with suicidal ideation severity in acutely suicidal depressed patients. METHODS Fifty-two adult depressed patients of both sexes hospitalized for severe suicidal ideation were characterized for suicidality, depression, anxiety, medical comorbidity, psychological and physical pain, impulsivity, verbal fluency, C-reactive protein (CRP) and interleukin (IL) 6. Two generalized linear models were performed with either CRP or suicidal ideation severity as dependent variables. RESULTS CRP levels were positively associated with age, body mass index (BMI), IL6, current physical pain and number of lifetime suicide attempts. Suicidal ideation severity was not significantly correlated with either CRP or IL6. Suicidal ideation severity was positively associated with female sex, presence of an anxiety disorder, current physical pain, number of lifetime suicide attempts and with delay discounting for medium and large losses. CONCLUSIONS Increased inflammation is not associated with acute suicidal risk, but seems to represent a trait associated with lifetime suicidal behavior.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry, Stony Brook University, New York, USA
| | - W Sue T Griffin
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Geriatric Research, Education and Clinical Center, VAMC/CAVHS, Little Rock, USA
| | - Pedro L Delgado
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
369
|
Different effects of immune stimulation on chronic unpredictable mild stress-induced anxiety- and depression-like behaviors depending on timing of stimulation. Int Immunopharmacol 2018; 58:48-56. [PMID: 29549719 DOI: 10.1016/j.intimp.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Stressful life events are thought to be triggering factors of numerous neuropsychiatric disorders, including anxiety and depression. However, the interactions between chronic unpredictable mild stress (CUMS) and immune stimulation have not been thoroughly investigated. In the present study, we evaluated the effects of lipopolysaccharide (LPS) challenge at different time points on CUMS-induced anxiety- and depression-like behaviors. At 1 day before, 18 or 35 days following the initial of CUMS, mice were intraperitoneally given a single LPS (0.1 mg/kg). Neurobehavioral and biochemical studies were performed at the indicated time points. LPS challenge had different effects on CUMS-induced anxiety- and depression-like behaviors depending on the timing of stimulation. When given 1 day before CUMS, LPS restored brain-derived neurotrophic factor level and reversed anxiety- and depression-like behaviors. When given at 18 days after the initial of CUMS, LPS seemed to promote the immune response and even induce a slight exacerbation of neurobehavioral performance, although the difference did not reach statistical significance. Intriguingly, when given at the end of CUMS, LPS reversed some of the anxiety- and depression-like behavior. Taken together, our study highlights the complex interaction between stress and immune challenge, suggesting therapies that modulate immune responses should be tailored to the immune status of the individual.
Collapse
|
370
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
371
|
The Role of Mesolimbic Circuitry in Buffering Election-Related Distress. J Neurosci 2018; 38:2887-2898. [PMID: 29431648 DOI: 10.1523/jneurosci.2470-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
The 2016 U.S. presidential election yielded distress among many individuals who identify with historically marginalized groups. We used functional magnetic resonance imaging and psychological measures to test the hypotheses that neural response to reward, probing the nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), and social support would ameliorate the effects of election distress among those who felt negatively affected by the result. Within 4 months of the 2016 U.S. presidential election, we tested human participants who felt affected by the election result (n = 40, Mage = 21.9 years, 28 female) and control participants (n = 20, Mage = 20.25 years, 12 female) who did not feel affected by the election result. Election-related distress significantly differed between the groups, and distress accounted for over half of the relationship between discrimination experiences and depression symptoms among affected individuals. NAcc activation, connectivity between the NAcc and mPFC, and family support moderated the associations between election distress and depression symptoms. Prior work has primarily investigated mesolimbic circuitry in reward and motivation contexts, but our findings extend the relevance of functioning in this circuitry to ameliorating psychological manifestations of acute distress after shifts in political climate. These findings highlight the psychological effects of this important historic event and identify neurobiological and social mechanisms associated with individual differences in response to election distress.SIGNIFICANCE STATEMENT The 2016 U.S. presidential election was psychologically distressing for many individuals. In this study, election-related distress was linked to depression symptomology for affected individuals but not control individuals. However, among individuals distressed by the election, those with greater neural response to reward and higher family support were protected against these depressive symptoms. Previous research has examined how neural response to reward after a discrete event ameliorates clinical symptoms. The current study extends this knowledge by demonstrating that both the brain and social support may play influential roles in dampening affective responses to ongoing and anticipated distress related to political climate. Leveraging this finding to enact interventions that dampen continuous distress, political or otherwise, is a promising endeavor for future research.
Collapse
|
372
|
Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress 2018; 8:42-56. [PMID: 29888303 PMCID: PMC5991330 DOI: 10.1016/j.ynstr.2018.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets. Mouse chronic social stress (CSS) leads to spleen and liver immune activation. Mouse CSS leads to mesolimbic immune activation and blunted dopamine function. Mouse CSS leads to reduced reward-directed behaviour in operant tests. This constitutes an important model for the study of pathophysiological mechanisms.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Jonas Mechtersheimer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Damiano Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Afroditi Kouraki
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Boris Ferger
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG., Biberach, Germany
| | - Tobias Suter
- Neuroimmunology and MS Research, Neurology, and Clinical Research Priority Program Multiple Sclerosis, University Hospital Zurich, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
373
|
Misiak B, Beszłej JA, Kotowicz K, Szewczuk-Bogusławska M, Samochowiec J, Kucharska-Mazur J, Frydecka D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:177-188. [PMID: 28433456 DOI: 10.1016/j.pnpbp.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022]
Abstract
Overwhelming evidence indicates the involvement of immune-inflammatory processes in the pathophysiology of major depressive disorder (MDD). Peripheral cytokine alterations serve as one of most consistently reported indices of subthreshold inflammatory state observed in MDD. Although cytokines cannot pass directly through the blood-brain barrier, a number of transport mechanisms have been reported. In addition, peripheral cytokines may impact central nervous system via downstream effectors of their biological activity. Animal model studies have provided evidence that cytokines might impact cognitive performance through direct and indirect effects on long-term potentiation, neurogenesis and synaptic plasticity. Therefore, it has been hypothesized that cytokine alterations might contribute to cognitive impairment that is widely observed in MDD and persists beyond episodes of acute relapse in the majority of patients. Although several studies have provided that peripheral cytokine alterations might be related to cognitive deficits in patients with MDD, the quality of evidence still leaves much to be desired due to methodological heterogeneity and limitations. In this article, we provide an overview of studies investigating the association between peripheral cytokine alterations and cognitive performance in MDD, discuss underlying mechanisms and neural substrates. Finally, we propose possible treatment targets related to cytokine alterations taking into account existing evidence for antidepressant efficacy of anti-inflammatory pharmacological treatment modalities.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
374
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
375
|
Smith R, Alkozei A, Killgore WDS, Lane RD. Nested positive feedback loops in the maintenance of major depression: An integration and extension of previous models. Brain Behav Immun 2018; 67:374-397. [PMID: 28943294 DOI: 10.1016/j.bbi.2017.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Several theories of Major Depressive Disorder (MDD) have previously been proposed, focusing largely on either a psychological (i.e., cognitive/affective), biological, or neural/computational level of description. These theories appeal to somewhat distinct bodies of work that have each highlighted separate factors as being of considerable potential importance to the maintenance of MDD. Such factors include a range of cognitive/attentional information-processing biases, a range of structural and functional brain abnormalities, and also dysregulation within the autonomic, endocrine, and immune systems. However, to date there have been limited efforts to integrate these complimentary perspectives into a single multi-level framework. Here we review previous work in each of these MDD research domains and illustrate how they can be synthesized into a more comprehensive model of how a depressive episode is maintained. In particular, we emphasize how plausible (but insufficiently studied) interactions between the various MDD-related factors listed above can lead to a series of nested positive feedback loops, which are each capable of maintaining an individual in a depressive episode. We also describe how these different feedback loops could be active to different degrees in different individual cases, potentially accounting for heterogeneity in both depressive symptoms and treatment response. We conclude by discussing how this integrative model might extend understanding of current treatment mechanisms, and also potentially guide the search for markers to inform treatment selection in individual cases.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA.
| | - Anna Alkozei
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | | | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
376
|
Yrondi A, Aouizerate B, El-Hage W, Moliere F, Thalamas C, Delcourt N, Sporer M, Taib S, Schmitt L, Arlicot N, Meligne D, Sommet A, Salabert AS, Guillaume S, Courtet P, Galtier F, Mariano-Goulart D, Champfleur NMD, Bars EL, Desmidt T, Lemaire M, Camus V, Santiago-Ribeiro MJ, Cottier JP, Fernandez P, Meyer M, Dousset V, Doumy O, Delhaye D, Capuron L, Leboyer M, Haffen E, Péran P, Payoux P, Arbus C. Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study). Front Psychiatry 2018; 9:326. [PMID: 30087626 PMCID: PMC6066663 DOI: 10.3389/fpsyt.2018.00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Major depressive disorder (MDD) is a serious public health problem with high lifetime prevalence (4.4-20%) in the general population. The monoamine hypothesis is the most widespread etiological theory of MDD. Also, recent scientific data has emphasized the importance of immuno-inflammatory pathways in the pathophysiology of MDD. The lack of data on the magnitude of brain neuroinflammation in MDD is the main limitation of this inflammatory hypothesis. Our team has previously demonstrated the relevance of [18F] DPA-714 as a neuroinflammation biomarker in humans. We formulated the following hypotheses for the current study: (i) Neuroinflammation in MDD can be measured by [18F] DPA-714; (ii) its levels are associated with clinical severity; (iii) it is accompanied by anatomical and functional alterations within the frontal-subcortical circuits; (iv) it is a marker of treatment resistance. Methods: Depressed patients will be recruited throughout 4 centers (Bordeaux, Montpellier, Tours, and Toulouse) of the French network from 13 expert centers for resistant depression. The patient population will be divided into 3 groups: (i) experimental group-patients with current MDD (n = 20), (ii) remitted depressed group-patients in remission but still being treated (n = 20); and, (iii) control group without any history of MDD (n = 20). The primary objective will be to compare PET data (i.e., distribution pattern of neuroinflammation) between the currently depressed group and the control group. Secondary objectives will be to: (i) compare neuroinflammation across groups (currently depressed group vs. remitted depressed group vs. control group); (ii) correlate neuroinflammation with clinical severity across groups; (iii) correlate neuroinflammation with MRI parameters for structural and functional integrity across groups; (iv) correlate neuroinflammation and peripheral markers of inflammation across groups. Discussion: This study will assess the effects of antidepressants on neuroinflammation as well as its role in the treatment response. It will contribute to clarify the putative relationships between neuroinflammation quantified by brain neuroimaging techniques and peripheral markers of inflammation. Lastly, it is expected to open innovative and promising therapeutic perspectives based on anti-inflammatory strategies for the management of treatment-resistant forms of MDD commonly seen in clinical practice. Clinical trial registration (reference: NCT03314155): https://www.clinicaltrials.gov/ct2/show/NCT03314155?term=neuroinflammation&cond=depression&cntry=FR&rank=1.
Collapse
Affiliation(s)
- Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Bruno Aouizerate
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, UMR INRA 1286, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Wissam El-Hage
- CHRU de Tours, Centre Expert Dépression Résistante FondaMental, Inserm U1253 iBrain, Inserm CIC 1415, Tours, France
| | - Fanny Moliere
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France
| | - Claire Thalamas
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Delcourt
- Centre Anti Poison CHU Toulouse Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Marie Sporer
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Simon Taib
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent Schmitt
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Nicolas Arlicot
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,INSERM CIC 1415, University Hospital, Tours, France
| | - Deborah Meligne
- Institut des handicaps des Handicaps Neurologiques, Psychiatriques et Sensoriels, FHU HoPeS, CHU Toulouse, France
| | - Agnes Sommet
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France.,Unité de Soutien Méthodologique à la Recherche Clinique (USMR), CHU de Toulouse, Toulouse, France
| | - Anne S Salabert
- Departement de Médecine Nucléaire, CHU Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Sebastien Guillaume
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France.,INSERM U1061, Université de Montpellier, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France.,INSERM U1061, Université de Montpellier, Montpellier, France
| | - Florence Galtier
- Centre Hospitalier Régional Universitaire Montpellier, Montpellier, France
| | - Denis Mariano-Goulart
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France.,Département de Médecine Nucléaire, CHU de Montpellier, Montpellier, France
| | - Nicolas Menjot De Champfleur
- Département de Neuroradiologie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, Montpellier, France.,Département d'Imagerie Médicale, Centre Hospitalier Universitaire Caremeau, Nîmes, France
| | - Emmanuelle Le Bars
- Département de Neuroradiologie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Thomas Desmidt
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Mathieu Lemaire
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Vincent Camus
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Maria J Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,INSERM CIC 1415, University Hospital, Tours, France.,Service de Médecine Nucléaire, CHRU Tours, Tours, France
| | - Jean P Cottier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neuro radiologie, CHRU Tours, Tours, France
| | - Philippe Fernandez
- Departement de Médecine Nucléaire, Hopital Pellegrin, Bordeaux, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR-5287), Université de Bordeaux, Bordeaux, France
| | - Marie Meyer
- Departement de Médecine Nucléaire, Hopital Pellegrin, Bordeaux, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR-5287), Université de Bordeaux, Bordeaux, France
| | - Vincent Dousset
- CHU Bordeaux Neurocentre Magendie, INSERM U1215, Université de Bordeaux, Bordeaux, France
| | - Olivier Doumy
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, UMR INRA 1286, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Didier Delhaye
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, Bordeaux, France
| | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, Bordeaux, France
| | - Marion Leboyer
- Pôle de Psychiatrie des Hôpitaux Universitaires, Centre Expert Dépression Résistante FondaMental, Hôpital Henri Mondor-Albert Chenevier, AP-HP, Créteil, France.,INSERM U955, Translational Psychiatry, Paris-Est University, Créteil, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, Clinical Investigation Center 1431-INSERM, EA 481 Neurosciences, University of Bourgogne Franche-Comté, University Hospital of Besancon and FondaMental Foundation, Créteil, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Pierre Payoux
- Departement de Médecine Nucléaire, CHU Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Arbus
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
377
|
Santiago JA, Bottero V, Potashkin JA. Biological and Clinical Implications of Comorbidities in Parkinson's Disease. Front Aging Neurosci 2017; 9:394. [PMID: 29255414 PMCID: PMC5722846 DOI: 10.3389/fnagi.2017.00394] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
A wide spectrum of comorbidities has been associated with Parkinson's disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Virginie Bottero
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
378
|
Zerwas S, Larsen JT, Petersen L, Thornton LM, Quaranta M, Koch SV, Pisetsky D, Mortensen PB, Bulik CM. Eating Disorders, Autoimmune, and Autoinflammatory Disease. Pediatrics 2017; 140:peds.2016-2089. [PMID: 29122972 PMCID: PMC5703777 DOI: 10.1542/peds.2016-2089] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Identifying factors associated with risk for eating disorders is important for clarifying etiology and for enhancing early detection of eating disorders in primary care. We hypothesized that autoimmune and autoinflammatory diseases would be associated with eating disorders in children and adolescents and that family history of these illnesses would be associated with eating disorders in probands. METHODS In this large, nationwide, population-based cohort study of all children and adolescents born in Denmark between 1989 and 2006 and managed until 2012, Danish medical registers captured all inpatient and outpatient diagnoses of eating disorders and autoimmune and autoinflammatory diseases. The study population included 930 977 individuals (48.7% girls). Cox proportional hazards regression models and logistic regression were applied to evaluate associations. RESULTS We found significantly higher hazards of eating disorders for children and adolescents with autoimmune or autoinflammatory diseases: 36% higher hazard for anorexia nervosa, 73% for bulimia nervosa, and 72% for an eating disorder not otherwise specified. The association was particularly strong in boys. Parental autoimmune or autoinflammatory disease history was associated with significantly increased odds for anorexia nervosa (odds ratio [OR] = 1.13, confidence interval [CI] = 1.01-1.25), bulimia nervosa (OR = 1.29; CI = 1.08-1.55) and for an eating disorder not otherwise specified (OR = 1.27; CI = 1.13-1.44). CONCLUSIONS Autoimmune and autoinflammatory diseases are associated with increased risk for eating disorders. Ultimately, understanding the role of immune system disturbance for the etiology and pathogenesis of eating disorders could point toward novel treatment targets.
Collapse
Affiliation(s)
| | - Janne Tidselbak Larsen
- National Centre for Register-Based Research,,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, and
| | - Liselotte Petersen
- National Centre for Register-Based Research,,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, and
| | | | - Michela Quaranta
- Department of Neuroscience, Azienda Ospedaliero-Universitaria San Giovanni Battista and University of Turin, Turin, Italy
| | - Susanne Vinkel Koch
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark;,Mental Health Centre for Child and Adolescent Psychiatry, Copenhagen, Denmark
| | - David Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center and Division of Rheumatology and Immunology, Duke University, Durham, North Carolina; and
| | - Preben Bo Mortensen
- National Centre for Register-Based Research,,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, and,Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Cynthia M. Bulik
- Departments of Psychiatry and,Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
379
|
Hanssen MM, Peters ML, Boselie JJ, Meulders A. Can positive affect attenuate (persistent) pain? State of the art and clinical implications. Curr Rheumatol Rep 2017; 19:80. [PMID: 29119260 PMCID: PMC5683052 DOI: 10.1007/s11926-017-0703-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Purpose of Review Pain is an intense experience that can place a heavy burden on peoples’ lives. The identification of psychosocial risk factors led to the development of effective pain treatments. However, effect sizes are modest. Accumulating evidence suggests that enhancing protective factors might also impact on (well-being despite) pain. Recent findings on positive affect (interventions) towards pain-related outcomes will be reviewed, and new avenues for treatment of persistent pain will be discussed. Recent Findings Positive affect significantly attenuates the experience of pain in healthy and clinical populations. Positive affect interventions effectively reduce pain sensitivity and bolster well-being despite pain. Through both psychological and (neuro-)biological pathways, but also through its effect on central treatment processes such as inhibitory learning, positive affect can optimize the efficacy of existing treatments. Summary Comprehensive understanding of the unique roles and dynamic interplay of positive and negative affect in moderating pain may optimize the treatment of (persistent) pain.
Collapse
Affiliation(s)
- Marjolein M Hanssen
- Clinical Psychological Science, Research Group Behavioral Medicine, Maastricht University, P.O. 616, 6200 MD, Maastricht, The Netherlands
| | - Madelon L Peters
- Clinical Psychological Science, Research Group Behavioral Medicine, Maastricht University, P.O. 616, 6200 MD, Maastricht, The Netherlands
| | - Jantine J Boselie
- Clinical Psychological Science, Research Group Behavioral Medicine, Maastricht University, P.O. 616, 6200 MD, Maastricht, The Netherlands
| | - Ann Meulders
- Clinical Psychological Science, Research Group Behavioral Medicine, Maastricht University, P.O. 616, 6200 MD, Maastricht, The Netherlands. .,Research Group Health Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
380
|
Jha MK, Minhajuddin A, Gadad BS, Greer TL, Mayes TL, Trivedi MH. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: Novel T cell biomarker for antidepressant medication selection. Brain Behav Immun 2017; 66:103-110. [PMID: 28698115 PMCID: PMC5699207 DOI: 10.1016/j.bbi.2017.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin 17 (IL-17) is produced by highly inflammatory Th17 cells and has been implicated in pathophysiology of depression. IL-17 putatively disrupts the blood brain barrier and affects dopamine synthesis whereas dopamine has been shown to decrease Th17 cell-mediated immune response. Nevertheless, whether IL-17 can predict differential treatment outcome with antidepressants modulating dopaminergic transmission is unknown. METHODS IL-17 and other T cell and non-T cell markers (Th1, Th2 and non-T cell markers) were measured with the Bioplex Pro™ human cytokine 27-plex kit in the Combining Medications to Enhance Depression Outcomes (CO-MED) trial participants who provided baseline plasma and were treated with either bupropion plus escitalopram (bupropion-SSRI), escitalopram plus placebo (SSRI monotherapy), or venlafaxine plus mirtazapine (n=166). Differential changes in symptom severity and side-effects based on levels of IL-17 and other T and non-T cell markers were tested using a treatment-arm-by-biomarker interaction in separate repeated measures mixed model analyses. Subsequent analyses stratified by treatment arm were conducted for those markers with a significant interaction. RESULTS There was a significant treatment-arm-by-IL-17 interaction for depression severity (p=0.037) but not for side-effects (p=0.28). Higher baseline IL-17 level was associated with greater reduction in depression severity (effect size=0.78, p=0.008) in the bupropion-SSRI but not the other two treatment arms. Other T and non-T cell markers were not associated with differential treatment outcomes. CONCLUSION Higher baseline levels of IL-17 are selectively associated with greater symptomatic reduction in depressed patients treated with bupropion-SSRI combination.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Abu Minhajuddin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bharathi S Gadad
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Tracy L Greer
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Taryn L Mayes
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
381
|
Stoyanov D, Kandilarova S, Borgwardt S. Translational Functional Neuroimaging in the Explanation of Depression. Balkan Med J 2017; 34:493-503. [PMID: 29019461 PMCID: PMC5785653 DOI: 10.4274/balkanmedj.2017.1160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translation as a notion and procedure is deeply embodied in medical science and education. Translation includes the possibility to translate data across disciplines to improve diagnosis and treatment procedures. The evidence accumulated using translation serves as a vehicle for reification of medical diagnoses. There are promising, established post hoc correlations between the different types of clinical tools (interviews and inventories) and neuroscience. The various measures represent statistical correlations that must now be integrated into diagnostic standards and procedures but this, as a whole, is a step forward towards a better understanding of the mechanisms underlying psychopathology in general and depression in particular. Here, we focus on functional magnetic resonance imaging studies using a trans-disciplinary approach and attempt to establish bridges between the different fields. We will selectively highlight research areas such as imaging genetics, imaging immunology and multimodal imaging, as related to the diagnosis and management of depression.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
382
|
Pfau ML, Ménard C, Russo SJ. Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2017; 58:411-428. [PMID: 28992428 DOI: 10.1146/annurev-pharmtox-010617-052823] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mood disorders such as depression are among the most prevalent psychiatric disorders in the United States, but they are inadequately treated in a substantial proportion of patients. Accordingly, neuropsychiatric research has pivoted from investigation of monoaminergic mechanisms to exploration of novel mediators, including the role of inflammatory processes. Subsets of mood disorder patients exhibit immune-related abnormalities, including elevated levels of proinflammatory cytokines, monocytes, and neutrophils in the peripheral circulation; dysregulation of neuroglia and blood-brain barrier function; and disruption of gut microbiota. The field of psychoneuroimmunology is one of great therapeutic opportunity, yielding experimental therapeutics for mood disorders, such as peripheral cytokine targeting antibodies, microglia and astrocyte targeting therapies, and probiotic treatments for gut dysbiosis, and producing findings that identify therapeutic targets for future development.
Collapse
Affiliation(s)
- Madeline L Pfau
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| | - Caroline Ménard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| | - Scott J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| |
Collapse
|
383
|
Miller AH, Trivedi MH, Jha MK. Is C-reactive protein ready for prime time in the selection of antidepressant medications? Psychoneuroendocrinology 2017; 84:206. [PMID: 28449941 DOI: 10.1016/j.psyneuen.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Manish K Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
384
|
Abstract
In psychiatric diseases such as mood disorders or schizophrenia, the inflammatory response system is activated. Microglia has gradually emerged as a key interface between stress-related signals and neuroimnune consequences of stress, with stressors leading to elevated microglial activity.
Collapse
Affiliation(s)
- Florence Thibaut
- University Hospital Cochin (Site Tarnier), Faculty of Medicine Paris Descartes, INSERM U 894, CNP, Paris, France
| |
Collapse
|
385
|
Deak T, Kudinova A, Lovelock DF, Gibb BE, Hennessy MB. A multispecies approach for understanding neuroimmune mechanisms of stress. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566946 PMCID: PMC5442363 DOI: 10.31887/dcns.2017.19.1/tdeak] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.
Collapse
Affiliation(s)
- Terrence Deak
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Anastacia Kudinova
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Dennis F Lovelock
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Brandon E Gibb
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | | |
Collapse
|
386
|
Lu S, Pan F, Gao W, Wei Z, Wang D, Hu S, Huang M, Xu Y, Li L. Neural correlates of childhood trauma with executive function in young healthy adults. Oncotarget 2017; 8:79843-79853. [PMID: 29108366 PMCID: PMC5668099 DOI: 10.18632/oncotarget.20051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to investigate the relationship among childhood trauma, executive impairments, and altered resting-state brain function in young healthy adults. Twenty four subjects with childhood trauma and 24 age- and gender-matched subjects without childhood trauma were recruited. Executive function was assessed by a series of validated test procedures. Localized brain activity was evaluated by fractional amplitude of low frequency fluctuation (fALFF) method and compared between two groups. Areas with altered fALFF were further selected as seeds in subsequent functional connectivity analysis. Correlations of fALFF and connectivity values with severity of childhood trauma and executive dysfunction were analyzed as well. Subjects with childhood trauma exhibited impaired executive function as assessed by Wisconsin Card Sorting Test and Stroop Color Word Test. Traumatic individuals also showed increased fALFF in the right precuneus and decreased fALFF in the right superior temporal gyrus. Significant correlations of specific childhood trauma severity with executive dysfunction and fALFF value in the right precuneus were found in the whole sample. In addition, individuals with childhood trauma also exhibited diminished precuneus-based connectivity in default mode network with left ventromedial prefrontal cortex, left orbitofrontal cortex, and right cerebellum. Decreased default mode network connectivity was also associated with childhood trauma severity and executive dysfunction. The present findings suggest that childhood trauma is associated with executive deficits and aberrant default mode network functions even in healthy adults. Moreover, this study demonstrates that executive dysfunction is related to disrupted default mode network connectivity.
Collapse
Affiliation(s)
- Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fen Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoguo Wei
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China.,Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Dandan Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingjiang Li
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
387
|
Jha MK, Minhajuddin A, Gadad BS, Trivedi MH. Platelet-Derived Growth Factor as an Antidepressant Treatment Selection Biomarker: Higher Levels Selectively Predict Better Outcomes with Bupropion-SSRI Combination. Int J Neuropsychopharmacol 2017; 20:919-927. [PMID: 29016822 PMCID: PMC5737519 DOI: 10.1093/ijnp/pyx060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet derived growth factor is integral to maintenance of blood brain barrier, increases in response to blood brain barrier disruption, and may reflect neuroinflammation. Based on previous reports of better outcomes with dopaminergic antidepressants in depressed patients with elevated inflammatory biomarkers, we hypothesize that elevated peripheral platelet derived growth factor levels can serve as a powerful biomarker for selecting dopaminergic antidepressants. METHODS Platelet derived growth factor, basic fibroblast growth factor, and granulocyte colony stimulating factor were measured as part of Bioplex Pro human cytokine 27-plex kit in participants of the Combining Medications to Enhance Depression Outcomes trial who provided baseline plasma (n=166) and were treated with either bupropion-plus-escitalopram, escitalopram-plus-placebo, or venlafaxine-plus-mirtazapine. Differential changes in overall symptom severity and anhedonia as well as side effects were tested with a treatment-arm-by-biomarker interaction in mixed model analyses. Effect of biomarkers with significant interaction was calculated in subsequent analyses stratified by treatment arm. RESULTS There was a significant treatment-arm-by-platelet derived growth factor interaction for depression severity (P=.03) and anhedonia (P=.008) but not for side effects (P=.44). Higher baseline platelet derived growth factor level was associated with greater reduction in depression severity (effect size=0.71, P=.015) and anhedonia (effect size=0.66, P=.02) in the bupropion- selective serotonin reuptake inhibitor but not the other two treatment arms. There was no significant treatment-arm-by-biomarker interaction for both depression severity and side effects with the other two biomarkers. CONCLUSION As compared with selective serotonin reuptake inhibitor monotherapy or venlafaxine-plus-mirtazapine, bupropion-plus-escitalopram selectively improves anhedonia, which in turn results in improved overall depression severity in depressed patients with elevated platelet derived growth factor levels.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Bharathi S Gadad
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas.,Correspondence: Madhukar H. Trivedi, MD, Professor of Psychiatry, Betty Jo
Hay Distinguished Chair in Mental Health, Director, Center for Depression Research and
Clinical Care, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd.,
Dallas, TX 75390–9119 ()
| |
Collapse
|
388
|
Huang H, Wang J, Seger C, Lu M, Deng F, Wu X, He Y, Niu C, Wang J, Huang R. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis. Brain Struct Funct 2017; 223:131-144. [DOI: 10.1007/s00429-017-1479-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
389
|
Abstract
The etiology of Major Depressive Disorder (MDD) is still unclear. We reviewed the literature for the relationship between inflammatory signaling and cytokines in the pathogenesis of MDD. In addition, we provid evidence for adjunctive treatment using anti-inflammatory drugs to improve the therapeutic effect and prognosis. Finally, we explore the possible relationship between the pathogenesis of MDD and immune disturbances.
Collapse
|
390
|
Liu CS, Adibfar A, Herrmann N, Gallagher D, Lanctôt KL. Evidence for Inflammation-Associated Depression. Curr Top Behav Neurosci 2017; 31:3-30. [PMID: 27221622 DOI: 10.1007/7854_2016_2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter explores the evidence supporting inflammation-associated depression. Data to date suggest a bidirectional relationship between inflammation and depression wherein one process can drive the other. A wealth of animal and clinical studies have demonstrated an association between concentrations of pro-inflammatory cytokines - specifically interleukin (IL)-1β, IL-6, and tumor necrosis factor-α - and depressive symptoms. There is also evidence that this pro-inflammatory state is accompanied by aberrant inflammation-related processes including platelet activation factor hyperactivity, oxidative and nitrosative stress, and damage to mitochondria. These complex and interrelated mechanisms can collectively contribute to negative neurobiological outcomes that may, in part, underlie the etiopathology of depression. Mounting evidence has shown a concomitant reduction in both depressive symptoms and pro-inflammatory cytokine concentrations following treatment with pharmacological anti-inflammatory interventions. Taken together, the reviewed preclinical and clinical findings may suggest the existence of a distinct inflammatory subtype of depression in which these patients exhibit unique biochemical and clinical features and may potentially experience improved clinical outcomes with inflammation-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Celina S Liu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alexander Adibfar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada. .,Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room FG 08, Toronto, ON, Canada, M4N 3M5.
| |
Collapse
|
391
|
Kim YK, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 2017; 329:6-11. [DOI: 10.1016/j.bbr.2017.04.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
|
392
|
A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause? Mol Neurobiol 2017; 55:3592-3609. [PMID: 28516431 PMCID: PMC5842501 DOI: 10.1007/s12035-017-0598-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023]
Abstract
There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.
Collapse
|
393
|
Marsland AL, Kuan DCH, Sheu LK, Krajina K, Kraynak TE, Manuck SB, Gianaros PJ. Systemic inflammation and resting state connectivity of the default mode network. Brain Behav Immun 2017; 62:162-170. [PMID: 28126500 PMCID: PMC5402695 DOI: 10.1016/j.bbi.2017.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/28/2022] Open
Abstract
The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease.
Collapse
Affiliation(s)
- Anna L. Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Dora C-H. Kuan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Lei K. Sheu
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Katarina Krajina
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Thomas E. Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Stephen B. Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
394
|
Serum kynurenic acid is reduced in affective psychosis. Transl Psychiatry 2017; 7:e1115. [PMID: 28463241 PMCID: PMC5534956 DOI: 10.1038/tp.2017.88] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/26/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
A subgroup of individuals with mood and psychotic disorders shows evidence of inflammation that leads to activation of the kynurenine pathway and the increased production of neuroactive kynurenine metabolites. Depression is hypothesized to be causally associated with an imbalance in the kynurenine pathway, with an increased metabolism down the 3-hydroxykynurenine (3HK) branch of the pathway leading to increased levels of the neurotoxic metabolite, quinolinic acid (QA), which is a putative N-methyl-d-aspartate (NMDA) receptor agonist. In contrast, schizophrenia and psychosis are hypothesized to arise from increased metabolism of the NMDA receptor antagonist, kynurenic acid (KynA), leading to hypofunction of GABAergic interneurons, the disinhibition of pyramidal neurons and striatal hyperdopaminergia. Here we present results that challenge the model of excess KynA production in affective psychosis. After rigorous control of potential confounders and multiple testing we find significant reductions in serum KynA and/or KynA/QA in acutely ill inpatients with major depressive disorder (N=35), bipolar disorder (N=53) and schizoaffective disorder (N=40) versus healthy controls (N=92). No significant difference was found between acutely ill inpatients with schizophrenia (n=21) and healthy controls. Further, a post hoc comparison of patients divided into the categories of non-psychotic affective disorder, affective psychosis and psychotic disorder (non-affective) showed that the greatest decrease in KynA was in the affective psychosis group relative to the other diagnostic groups. Our results are consistent with reports of elevations in proinflammatory cytokines in psychosis, and preclinical work showing that inflammation upregulates the enzyme, kynurenine mono-oxygenase (KMO), which converts kynurenine into 3-hydroxykynurenine and quinolinic acid.
Collapse
|
395
|
Cui F, Zhou L, Wang Z, Lang C, Park J, Tan Z, Yu Y, Sun C, Gao Y, Kong J. Altered Functional Connectivity of Striatal Subregions in Patients with Multiple Sclerosis. Front Neurol 2017; 8:129. [PMID: 28484419 PMCID: PMC5401875 DOI: 10.3389/fneur.2017.00129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Abnormal corticostriatal resting-state functional connectivity (rsFC) has been implicated in the neuropathology of multiple sclerosis. The striatum, a component of the basal ganglia, is involved in diverse functions including movement, cognition, emotion, and limbic information processing. However, the brain circuits of the striatal subregions contributing to the changes in rsFC in relapsing–remitting multiple sclerosis (RRMS) patients remain unknown. We used six subdivisions of the striatum in each hemisphere as seeds to investigate the rsFC of striatal subregions between RRMS patients and matched healthy controls (HCs). In addition, we also scanned a subcohort of RRMS patients after an average of 7 months to test the reliability of our findings. Compared to HCs, we found significantly increased dorsal caudal putamen (DCP) connectivity with the premotor area, dorsal lateral prefrontal cortex (DLPFC), insula, precuneus, and superior parietal lobule, and significantly increased connectivity between the superior ventral striatum and posterior cingulate cortex (PCC) in RRMS patients following both scans. Furthermore, we found significant associations between the Expanded Disability Status Scale and the rsFC of the left DCP with the DLPFC and parietal areas in RRMS patients. Our results suggest that the DCP may be a critical striatal subregion in the pathophysiology of RRMS.
Collapse
Affiliation(s)
- Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Yu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Sun
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
396
|
Rutherford BR, Taylor WD, Brown PJ, Sneed JR, Roose SP. Biological Aging and the Future of Geriatric Psychiatry. J Gerontol A Biol Sci Med Sci 2017; 72:343-352. [PMID: 27994004 PMCID: PMC6433424 DOI: 10.1093/gerona/glw241] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023] Open
Abstract
Advances in understanding the biological bases of aging have intellectually revitalized the field of geriatric psychiatry and broadened its scope to include promoting successful aging and studying resilience factors in older adults. To describe the process by which this paradigm shift has occurred and illustrate its implications for treatment and research of late-life brain disorders, late-life depression is discussed as a prototype case. Prior phases of geriatric psychiatry research were focused on achieving depressive symptom relief, outlining pharmacokinetic and pharmacodynamic differences between older and younger adults, and identifying moderators of treatment response. Building on this work, current geriatric psychiatry researchers have begun to disentangle the etiologic complexity in late-life depression by focusing on the causative aging-related processes involved, identifying both neurobiological and behavioral intermediates, and finally delineating depression subtypes that are distinguishable by their underlying biology and the treatment approach required. In this review, we discuss several age-related processes that are critical to the development of late-life mood disorders, outline implications of these processes for the clinical evaluation and management of later-life psychiatric disorders, and finally put forth suggestions for better integrating aging and developmental processes into the National Institute of Mental Health's Research Domain Criteria.
Collapse
Affiliation(s)
- Bret R Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| | - Warren D Taylor
- Vanderbilt University Medical Center, Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, Tennessee Valley Health Care Center
| | - Patrick J Brown
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| | - Joel R Sneed
- Queens College of the City University of New York
| | - Steven P Roose
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
| |
Collapse
|
397
|
Systemic inflammation enhances stimulant-induced striatal dopamine elevation. Transl Psychiatry 2017; 7:e1076. [PMID: 28350401 PMCID: PMC5404612 DOI: 10.1038/tp.2017.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Changes in the mesolimbic dopamine (DA) system are implicated in a range of neuropsychiatric conditions including addiction, depression and schizophrenia. Dysfunction of the neuroimmune system is often comorbid with such conditions and affects similar areas of the brain. The goal of this study was to use positron emission tomography with the dopamine D2 antagonist tracer, 11C-raclopride, to explore the effect of acute immune activation on striatal DA levels. DA transmission was modulated by an oral methylphenidate (MP) challenge in order to reliably elicit DA elevation. Elevation in DA concentration due to MP was estimated via change in 11C-raclopride binding potential from the baseline scan. Prior to the post-MP scan, subjects were pre-treated with either the immune activator lipopolysaccharide (LPS) or placebo (PBO) in a cross-over design. Immune activation was confirmed by measuring tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and IL-8 concentration in plasma. Eight healthy subjects were scanned four times each to determine the MP-induced DA elevation under both LPS and PBO pre-treatment conditions. MP-induced DA elevation in the striatum was significantly greater (P<0.01) after LPS pre-treatment compared to PBO pre-treatment. Seven of eight subjects responded similarly. This effect was observed in the caudate and putamen (P<0.02), but was not present in ventral striatum. DA elevation induced by MP was significantly greater when subjects were pre-treated with LPS compared to PBO. The amplification of stimulant-induced DA signaling in the presence of systemic inflammation may have important implications for our understanding of addiction and other diseases of DA dysfunction.
Collapse
|
398
|
Thibaut F. Neuroinflammation: new vistas for neuropsychiatric research. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:3-4. [PMID: 28566942 PMCID: PMC5442362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
In psychiatric diseases such as mood disorders or schizophrenia, the inflammatory response system is activated. Microglia has gradually emerged as a key interface between stress-related signals and neuroimnune consequences of stress, with stressors leading to elevated microglial activity.
Collapse
Affiliation(s)
- Florence Thibaut
- University Hospital Cochin (Site Tarnier), Faculty of Medicine Paris Descartes, INSERM U 894, CNP, Paris, France
| |
Collapse
|
399
|
Deak T. A multispecies approach for understanding neuroimmune mechanisms of stress. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:37-53. [PMID: 28566946 PMCID: PMC5442363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.
Collapse
Affiliation(s)
- Terrence Deak
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| |
Collapse
|
400
|
Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, Patel M, Hodes GE, Russo SJ, Merad M, Iosifescu DV, Charney DS, Murrough JW. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 2017; 7:e1065. [PMID: 28323284 PMCID: PMC5416674 DOI: 10.1038/tp.2017.31] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
A subset of patients with depression have elevated levels of inflammatory cytokines, and some studies demonstrate interaction between inflammatory factors and treatment outcome. However, most studies focus on only a narrow subset of factors in a patient sample. In the current study, we analyzed broad immune profiles in blood from patients with treatment-resistant depression (TRD) at baseline and following treatment with the glutamate modulator ketamine. Serum was analyzed from 26 healthy control and 33 actively depressed TRD patients free of antidepressant medication, and matched for age, sex and body mass index. All subjects provided baseline blood samples, and TRD subjects had additional blood draw at 4 and 24 h following intravenous infusion of ketamine (0.5 mg kg-1). Samples underwent multiplex analysis of 41 cytokines, chemokines and growth factors using quantitative immunoassay technology. Our a priori hypothesis was that TRD patients would show elevations in canonical pro-inflammatory cytokines; analyses demonstrated significant elevation of the pro-inflammatory cytokine interleukin-6. Further exploratory analyses revealed significant regulation of four additional soluble factors in patients with TRD. Several cytokines showed transient changes in level after ketamine, but none correlated with treatment response. Low pretreatment levels of fibroblast growth factor 2 were associated with ketamine treatment response. In sum, we found that patients with TRD demonstrate a unique pattern of increased inflammatory mediators, chemokines and colony-stimulating factors, providing support for the immune hypothesis of TRD. These patterns suggest novel treatment targets for the subset of patients with TRD who evidence dysregulated immune functioning.
Collapse
Affiliation(s)
- D D Kiraly
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S R Horn
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Schwartz
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kim-Schulze
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Patel
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G E Hodes
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S J Russo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Merad
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D V Iosifescu
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D S Charney
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA. E-mail:
| |
Collapse
|