351
|
Paranjape SA, Chan O, Zhu W, Horblitt AM, McNay EC, Cresswell JA, Bogan JS, McCrimmon RJ, Sherwin RS. Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 2010; 59:1521-7. [PMID: 20299468 PMCID: PMC2874714 DOI: 10.2337/db10-0014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/02/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Insulin released by the beta-cell is thought to act locally to regulate glucagon secretion. The possibility that insulin might also act centrally to modulate islet glucagon secretion has received little attention. RESEARCH DESIGN AND METHODS Initially the counterregulatory response to identical hypoglycemia was compared during intravenous insulin and phloridzin infusion in awake chronically catheterized nondiabetic rats. To explore whether the disparate glucagon responses seen were in part due to changes in ventromedial hypothalamus (VMH) exposure to insulin, bilateral guide cannulas were inserted to the level of the VMH and 8 days later rats received a VMH microinjection of either 1) anti-insulin affibody, 2) control affibody, 3) artificial extracellular fluid, 4) insulin (50 microU), 5) insulin receptor antagonist (S961), or 6) anti-insulin affibody plus a gamma-aminobutyric acid A (GABA(A)) receptor agonist muscimol, prior to a hypoglycemic clamp or under baseline conditions. RESULTS As expected, insulin-induced hypoglycemia produced a threefold increase in plasma glucagon. However, the glucagon response was fourfold to fivefold greater when circulating insulin did not increase, despite equivalent hypoglycemia and C-peptide suppression. In contrast, epinephrine responses were not altered. The phloridzin-hypoglycemia induced glucagon increase was attenuated (40%) by VMH insulin microinjection. Conversely, local VMH blockade of insulin amplified glucagon twofold to threefold during insulin-induced hypoglycemia. Furthermore, local blockade of basal insulin levels or insulin receptors within the VMH caused an immediate twofold increase in fasting glucagon levels that was prevented by coinjection to the VMH of a GABA(A) receptor agonist. CONCLUSIONS Together, these data suggest that insulin's inhibitory effect on alpha-cell glucagon release is in part mediated at the level of the VMH under both normoglycemic and hypoglycemic conditions.
Collapse
Affiliation(s)
- Sachin A Paranjape
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Lam CKL, Chari M, Su BB, Cheung GWC, Kokorovic A, Yang CS, Wang PYT, Lai TYY, Lam TKT. Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J Biol Chem 2010; 285:21913-21. [PMID: 20448042 DOI: 10.1074/jbc.m109.087338] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diabetes is characterized by hyperglycemia due partly to increased hepatic glucose production. The hypothalamus regulates hepatic glucose production in rodents. However, it is currently unknown whether other regions of the brain are sufficient in glucose production regulation. The N-methyl-D-aspartate (NMDA) receptor is composed of NR1 and NR2 subunits, which are activated by co-agonist glycine and glutamate or aspartate, respectively. Here we report that direct administration of either co-agonist glycine or NMDA into the dorsal vagal complex (DVC), targeting the nucleus of the solitary tract, lowered glucose production in vivo. Direct infusion of the NMDA receptor blocker MK-801 into the DVC negated the metabolic effect of glycine. To evaluate whether NR1 subunit of the NMDA receptor mediates the effect of glycine, NR1 in the DVC was inhibited by DVC NR1 antagonist 7-chlorokynurenic acid or DVC shRNA-NR1. Pharmacological and molecular inhibition of DVC NR1 negated the metabolic effect of glycine. To evaluate whether the NMDA receptors mediate the effects of NR2 agonist NMDA, DVC NMDA receptors were inhibited by antagonist D-2-amino-5-phosphonovaleric acid (D-APV). DVC D-APV fully negated the ability of DVC NMDA to lower glucose production. Finally, hepatic vagotomy negated the DVC glycine ability to lower glucose production. These findings demonstrate that activation of NR1 and NR2 subunits of the NMDA receptors in the DVC is sufficient to trigger a brain-liver axis to lower glucose production, and suggest that DVC NMDA receptors serve as a therapeutic target for diabetes and obesity.
Collapse
Affiliation(s)
- Carol K L Lam
- Toronto General Research Institute, University Health Network, Toronto M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 2010; 93:546-53. [PMID: 20176121 PMCID: PMC2878207 DOI: 10.1016/j.nlm.2010.02.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 01/09/2023]
Abstract
Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes.
Collapse
Affiliation(s)
- Ewan C McNay
- Dept. of Psychology, University at Albany, Albany, NY 12222, USA.
| | | | | | | | | | | |
Collapse
|
354
|
Abstract
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
Collapse
|
355
|
Fliers E, Klieverik LP, Kalsbeek A. Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol Metab 2010; 21:230-6. [PMID: 20005733 DOI: 10.1016/j.tem.2009.11.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism.
Collapse
Affiliation(s)
- Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
356
|
Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11:1365-402. [PMID: 20480025 PMCID: PMC2871121 DOI: 10.3390/ijms11041365] [Citation(s) in RCA: 698] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.
Collapse
|
357
|
Yang MJ, Wang F, Wang JH, Wu WN, Hu ZL, Cheng J, Yu DF, Long LH, Fu H, Xie N, Chen JG. PI3K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am J Physiol Endocrinol Metab 2010; 298:E193-201. [PMID: 19671839 DOI: 10.1152/ajpendo.00155.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adipocyte-derived hormone leptin and the pancreatic beta-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca(2+)-activated potassium (BK) currents on them. We found that both of the hormones increase the peak amplitude of BK currents, shifting the steady-state activation curve to the left. The effect of both insulin and leptin can be prevented by pretreatment with inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) but not MAPK. These data indicate that PI3K-mediated signals are the common regulators of BK channels by insulin and leptin and mediated the two hormones' identical activatory effects on ARC NPY neurons. The effect of insulin and leptin together was similar to that of insulin or leptin alone, and leptin or insulin pretreatment did not lead to insulin- or leptin-sensitizing effects, respectively. These intracellular signaling mechanisms may play key roles in regulating ARC NPY neuron activity and physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin.
Collapse
Affiliation(s)
- Meng-Jie Yang
- Dept. of Pharmacology, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, Hubei 430030 China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Lin HV, Plum L, Ono H, Gutiérrez-Juárez R, Shanabrough M, Borok E, Horvath TL, Rossetti L, Accili D. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes 2010; 59:337-46. [PMID: 19933998 PMCID: PMC2809966 DOI: 10.2337/db09-1303] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS To distinguish neurons that mediate insulin's effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K(+) channel (K(ATP) channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program.
Collapse
Affiliation(s)
- Hua V Lin
- Department of Medicine, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta Mol Basis Dis 2010; 1802:416-31. [PMID: 20060897 DOI: 10.1016/j.bbadis.2010.01.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 01/05/2010] [Indexed: 01/13/2023]
Abstract
Despite a longstanding research interest ever since the early work by Claude Bernard, the functional significance of autonomic liver innervation, either sympathetic or parasympathetic, is still ill defined. This scarcity of information not only holds for the brain control of hepatic metabolism, but also for the metabolic sensing function of the liver and the way in which this metabolic information from the liver affects the brain. Clinical information from the bedside suggests that successful human liver transplantation (implying a complete autonomic liver denervation) causes no life threatening metabolic derangements, at least in the absence of severe metabolic challenges such as hypoglycemia. However, from the benchside, data are accumulating that interference with the neuronal brain-liver connection does cause pronounced changes in liver metabolism. This review provides an extensive overview on how metabolic information is sensed by the liver, and how this information is processed via neuronal pathways to the brain. With this information the brain controls liver metabolism and that of other organs and tissues. We will pay special attention to the hypothalamic pathways involved in these liver-brain-liver circuits. At this stage, we still do not know the final destination and processing of the metabolic information that is transferred from the liver to the brain. On the other hand, in recent years, there has been a considerable increase in the understanding which brain areas are involved in the control of liver metabolism via its autonomic innervation. However, in view of the ever rising prevalence of type 2 diabetes, this potentially highly relevant knowledge is still by far too limited. Thus the autonomic innervation of the liver and its role in the control of metabolism needs our continued and devoted attention.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
360
|
The Brain-insulin Connection, Metabolic Diseases and Related Pathologies. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
361
|
Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, Friedman JM. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 2010; 11:11-22. [PMID: 20074524 DOI: 10.1016/j.cmet.2009.11.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/02/2009] [Accepted: 11/30/2009] [Indexed: 12/16/2022]
Abstract
We tested whether leptin can ameliorate diabetes independent of weight loss by defining the lowest dose at which leptin treatment of ob/ob mice reduces plasma glucose and insulin concentration. We found that a leptin dose of 12.5 ng/hr significantly lowers blood glucose and that 25 ng/hr of leptin normalizes plasma glucose and insulin without significantly reducing body weight, establishing that leptin exerts its most potent effects on glucose metabolism. To find possible mediators of this effect, we profiled liver mRNA using microarrays and identified IGF Binding Protein 2 (IGFBP2) as being regulated by leptin with a similarly high potency. Overexpression of IGFBP2 by an adenovirus reversed diabetes in insulin-resistant ob/ob, Ay/a, and diet-induced obese mice, as well as insulin-deficient streptozotocin-treated mice. Hyperinsulinemic clamp studies showed a 3-fold improvement in hepatic insulin sensitivity following IGFBP2 treatment of ob/ob mice. These results show that IGFBP2 can regulate glucose metabolism, a finding with potential implications for the pathogenesis and treatment of diabetes.
Collapse
|
362
|
Sánchez-Lasheras C, Könner AC, Brüning JC. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrinol 2010; 31:4-15. [PMID: 19729032 DOI: 10.1016/j.yfrne.2009.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/26/2022]
Abstract
Body weight is tightly controlled in a species-specific range from insects to vertebrates and organisms have developed a complex regulatory network in order to avoid either excessive weight gain or chronic weight loss. Energy homeostasis, a term comprising all processes that aim to maintain stability of the metabolic state, requires a constant communication of the different organs involved; i.e. adipose tissue, skeletal muscle, liver, pancreas and the central nervous system (CNS). A tight hormonal network ensures rapid communication to control initiation and cessation of eating, nutrient processing and partitioning of the available energy within different organs and metabolic pathways. Moreover, recent experiments indicate that many of these homeostatic signals modulate the neural circuitry of food reward and motivation. Disturbances in each individual system can affect the maintenance and regulation of the others, making the analysis of energy homeostasis and its dysregulation highly complex. Though this cross-talk has been intensively studied for many years now, we are far from a complete understanding of how energy balance is maintained and multiple key questions remain unanswered. This review summarizes some of the latest developments in the field and focuses on the effects of leptin, insulin, and nutrient-related signals in the central regulation of feeding behavior. The integrated view, how these signals interact and the definition of functional neurocircuits in control of energy homeostasis, will ultimately help to develop new therapeutic interventions within the current obesity epidemic.
Collapse
Affiliation(s)
- Carmen Sánchez-Lasheras
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | | | | |
Collapse
|
363
|
|
364
|
Abstract
Mammalian life span can be extended by both calorie restriction (CR) and mutations that diminish somatotropic signaling. Sirt1 is a mediator of many effects of CR in mammals, but any role in controlling somatotropic signaling has not been shown. Since the somatotropic axis is controlled by the brain, we created mice lacking Sirt1 specifically in the brain and examined the impacts of this manipulation on somatotropic signaling and the CR response. These mutant mice displayed defects in somatotropic signaling when fed ad libitum, and defects in the endocrine and behavioral responses to CR. We conclude that Sirt1 in the brain is a link between somatotropic signaling and CR in mammals.
Collapse
|
365
|
Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2009; 209:1-12. [PMID: 20035790 DOI: 10.1016/j.bbr.2009.12.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a center of convergence and integration of multiple nutrient-related signals. It can sense changes in circulating adiposity hormones, gastric hormones and nutrients, and receives neuroanatomical projections from other nutrient sensors, mainly within the brainstem. The hypothalamus also integrates these signals with various cognitive forebrain-descending information and reward/motivation-related signals coming from the midbrain-dopamine system, to coordinate neuroendocrine, behavioral and metabolic effectors of energy balance. Some of the key nutrient-sensing hypothalamic neurons have been identified in the arcuate, the ventro-medial and the lateral nuclei of the hypothalamus, and the molecular mechanisms underlying intracellular integration of nutrient-related signals in these neurons are currently under intensive investigation. However, little is known about the neural pathways downstream from hypothalamic nutrient sensors, and how they drive effectors of energy homeostasis under physiological conditions. This manuscript will review recent progress from molecular, genetic and neurophysiological studies that identify and characterize the critical intracellular signalling pathways and neurocircuits involved in determining hypothalamic nutrient detection, and link these circuits to behavioral and metabolic effectors of energy balance. We will provide a critical analysis of current data to identify ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Clémence Blouet
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
366
|
Li JH, Gautam D, Han SJ, Guettier JM, Cui Y, Lu H, Deng C, O'Hare J, Jou W, Gavrilova O, Buettner C, Wess J. Hepatic muscarinic acetylcholine receptors are not critically involved in maintaining glucose homeostasis in mice. Diabetes 2009; 58:2776-87. [PMID: 19752163 PMCID: PMC2780871 DOI: 10.2337/db09-0522] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE An increase in the rate of hepatic glucose production is the major determinant of fasting hyperglycemia in type 2 diabetes. A better understanding of the signaling pathways and molecules that regulate hepatic glucose metabolism is therefore of great clinical importance. Recent studies suggest that an increase in vagal outflow to the liver leads to decreased hepatic glucose production and reduced blood glucose levels. Since acetylcholine (ACh) is the major neurotransmitter of the vagus nerve and exerts its parasympathetic actions via activation of muscarinic ACh receptors (mAChRs), we examined the potential metabolic relevance of hepatocyte mAChRs. RESEARCH DESIGN AND METHODS We initially demonstrated that the M(3) mAChR is the only mAChR subtype expressed by mouse liver/hepatocytes. To assess the physiological role of this receptor subtype in regulating hepatic glucose fluxes and glucose homeostasis in vivo, we used gene targeting and transgenic techniques to generate mutant mice lacking or overexpressing M(3) receptors in hepatocytes only. RESULTS Strikingly, detailed in vivo phenotyping studies failed to reveal any significant metabolic differences between the M(3) receptor mutant mice and their control littermates, independent of whether the mice were fed regular or a high-fat diet. Moreover, the expression levels of genes for various key transcription factors, signaling molecules, and enzymes regulating hepatic glucose fluxes were not significantly altered in the M(3) receptor mutant mice. CONCLUSIONS This rather surprising finding suggests that the pronounced metabolic effects mediated by activation of hepatic vagal nerves are mediated by noncholinergic signaling pathways.
Collapse
Affiliation(s)
- Jian H. Li
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Dinesh Gautam
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sung-Jun Han
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jean-Marc Guettier
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Chuxia Deng
- Mammalian Genetics Section, Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - James O'Hare
- Departments of Medicine and Neuroscience, Mount Sinai School of Medicine, New York, New York
| | - William Jou
- Mouse Metabolic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Oksana Gavrilova
- Mouse Metabolic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, Mount Sinai School of Medicine, New York, New York
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Corresponding author: Jürgen Wess,
| |
Collapse
|
367
|
Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology 2009; 150:5326-33. [PMID: 19819963 PMCID: PMC2795706 DOI: 10.1210/en.2009-0528] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resveratrol is a natural polyphenolic compound that activates nicotinamide adenosine dinucleotide-dependent deacetylase SIRT1. Resveratrol has recently been shown to exert potent antidiabetic actions when orally delivered to animal models of type 2 diabetes. However, the tissue(s) mediating these beneficial effects is unknown. Because SIRT1 is expressed in central nervous system (CNS) neurons known to control glucose and insulin homeostasis, we hypothesized that resveratrol antidiabetic effects are mediated by the brain. Here, we report that long-term intracerebroventricular infusion of resveratrol normalizes hyperglycemia and greatly improves hyperinsulinemia in diet-induced obese and diabetic mice. It is noteworthy that these effects are independent of changes in body weight, food intake, and circulating leptin levels. In addition, CNS resveratrol delivery improves hypothalamic nuclear factor-kappaB inflammatory signaling by reducing acetylated-RelA/p65 and total RelA/p65 protein contents, and inhibitor of nuclear factor-kappaB alpha and IkappaB kinase beta mRNA levels. Furthermore, this treatment leads to reduced hepatic phosphoenolpyruvate carboxykinase 1 mRNA and protein levels and ameliorates pyruvate-induced hyperglycemia in this mouse model of type 2 diabetes. Collectively, our results unveiled a previously unrecognized key role for the CNS in mediating the antidiabetic actions of resveratrol.
Collapse
Affiliation(s)
- Giorgio Ramadori
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | | | | | | | | | | |
Collapse
|
368
|
Edgerton DS, Ramnanan CJ, Grueter CA, Johnson KMS, Lautz M, Neal DW, Williams PE, Cherrington AD. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 2009; 58:2766-75. [PMID: 19755527 PMCID: PMC2780867 DOI: 10.2337/db09-0328] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Insulin represses the expression of gluconeogenic genes at the mRNA level, but the hormone appears to have only weak inhibitory effects in vivo. The aims of this study were 1) to determine the maximal physiologic effect of insulin, 2) to determine the relative importance of its effects on gluconeogenic regulatory sites, and 3) to correlate those changes with alterations at the cellular level. RESEARCH DESIGN AND METHODS Conscious 60-h fasted canines were studied at three insulin levels (near basal, 4x, or 16x) during a 5-h euglycemic clamp. Pancreatic hormones were controlled using somatostatin with portal insulin and glucagon infusions. Glucose metabolism was assessed using the arteriovenous difference technique, and molecular signals were assessed. RESULTS Insulin reduced gluconeogenic flux to glucose-6-phosphate (G6P) but only at the near-maximal physiological level (16x basal). The effect was modest compared with its inhibitory effect on net hepatic glycogenolysis, occurred within 30 min, and was associated with a marked decrease in hepatic fat oxidation, increased liver fructose 2,6-bisphosphate level, and reductions in lactate, glycerol, and amino acid extraction. No further diminution in gluconeogenic flux to G6P occurred over the remaining 4.5 h of the study, despite a marked decrease in PEPCK content, suggesting poor control strength for this enzyme in gluconeogenic regulation in canines. CONCLUSIONS Gluconeogenic flux can be rapidly inhibited by high insulin levels in canines. Initially decreased hepatic lactate extraction is important, and later reduced gluconeogenic precursor availability plays a role. Changes in PEPCK appear to have little or no acute effect on gluconeogenic flux.
Collapse
Affiliation(s)
- Dale S Edgerton
- Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Teff KL. Cephalic phase pancreatic polypeptide responses to liquid and solid stimuli in humans. Physiol Behav 2009; 99:317-23. [PMID: 19944113 DOI: 10.1016/j.physbeh.2009.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022]
Abstract
The hormone, pancreatic polypeptide (PP) is postulated to be involved in body weight regulation. PP release is dependent on vagal activation and is a marker of vagal efferent activity. Because vagal activity plays a role in glucose homeostasis, elucidating the conditions of activation has important implications for nutrient metabolism. In humans, modified sham-feeding is known to elicit vagally-mediated hormonal responses. We present results of 3 studies in which healthy human subjects tasted various stimuli including sweet and salty liquids, unflavored and flavored gum and mixed nutrient foods flavored with either sweet or salt and rendered palatable or unpalatable. We examined the effects of these stimuli on PP levels relative to fasting. We found that liquids flavored with either glucose or salt, did not elicit an increase in PP levels greater than fasting. Similarly, chewing gum, whether unflavored or flavored with a non-nutritive sweetener or the sweetener paired with a mint flavor, did not significantly increase PP levels. In contrast, when subjects tasted mixed nutrient foods, these reliably elicited increases in PP levels at 4 min post-stimulus (sweet palatable, p<0.002; sweet unpalatable, p<0.001; salty, palatable, p<0.05, salty unpalatable, p<0.05). The magnitude of release was influenced by the flavor, i.e. a sweet palatable stimulus (320.1+/-93.7 pg/ml/30 min) elicited the greatest increase in PP compared with a salty palatable stimulus (142.4+/-88.7 pg/ml/30 min; p<0.05). These data suggest that liquids and chewing gum do not provide adequate stimulation for vagal efferent activation in humans and that mixed nutrient foods are the optimal stimuli.
Collapse
Affiliation(s)
- Karen L Teff
- Monell Chemical Senses Center, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, PA 19104, United States.
| |
Collapse
|
370
|
Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, Balthasar N, Coppari R, Cantley LC, Kahn BB, Zhao JJ, Elmquist JK. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 2009; 150:4874-82. [PMID: 19819947 PMCID: PMC2775989 DOI: 10.1210/en.2009-0454] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.
Collapse
Affiliation(s)
- Jennifer W Hill
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9077, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Affiliation(s)
- Uberto Pagotto
- Department of Clinical Medicine, S. Orsola-Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| |
Collapse
|
372
|
Sutton GM, Begriche K, Kumar KG, Gimble JM, Perez-Tilve D, Nogueiras R, McMillan RP, Hulver MW, Tschöp MH, Butler AA. Central nervous system melanocortin-3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB J 2009; 24:862-72. [PMID: 19837866 DOI: 10.1096/fj.09-142000] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melanocortin-3 receptors (Mc3rs) in the central nervous system are involved in expression of anticipatory rhythms and synchronizing clocks maintaining circadian rhythms during restricted feeding (RF) [mice housed under a 12-h light-dark cycle with lights on between zeitgeber time (ZT) 0 to ZT12 fed 60% of normal calories between ZT7 and ZT11]. Because the systems governing circadian rhythms are important for adaptation to RF, we investigated whether Mc3rs are required for metabolic adaption to RF. Mc3r(-/-) mice subjected to RF exhibited normal weight loss; however, they developed hyperinsulinemia, glucose intolerance, increased expression of lipogenic genes, and increased ketogenesis relative to controls. Rhythmic expression of transcription factors regulating liver clock activity and energy metabolism (Bmal1, Rev-erbalpha, Pgc1, Foxo1, Hnf4alpha, and Pck1) was severely compromised in Mc3r(-/-) mice during RF. Inhibition of neural melanocortin receptors by agouti-related peptide also attenuated rhythmicity in the hepatic expression of these genes during RF. Collectively, these data suggest that neural Mc3rs are important for adapting metabolism and maintaining rhythms of liver metabolism during periods when feeding is restricted to the light cycle.-Sutton, G. M., Begriche, K., Kumar, K. G., Gimble, J. M., Perez-Tilve, D., Nogueiras, R., McMillan, R. P., Hulver, M. W., Tschöp, M. H., Butler, A. A. Central nervous system melanocortin-3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle.
Collapse
Affiliation(s)
- Gregory M Sutton
- Department of Metabolism and Aging, The Scripps Research Institute, Scripps-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
German J, Kim F, Schwartz GJ, Havel PJ, Rhodes CJ, Schwartz MW, Morton GJ. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 2009; 150:4502-11. [PMID: 19574396 PMCID: PMC2754686 DOI: 10.1210/en.2009-0445] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that hormones such as insulin and leptin act in the hypothalamus to regulate energy balance and glucose metabolism. Here we show that in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats, adenovirally induced expression of leptin receptors in the area of the hypothalamic arcuate nucleus improved peripheral insulin sensitivity via enhanced suppression of hepatic glucose production, with no change of insulin-stimulated glucose uptake or disposal. This effect was associated with increased insulin signal transduction via phosphatidylinositol-3-OH kinase (as measured by pY-insulin receptor substrate-1 and pS-PKB/Akt) in liver, but not skeletal muscle, and with reduced hepatic expression of the gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate kinase. Moreover, the beneficial effects of hypothalamic leptin signaling on hepatic insulin sensitivity were blocked by selective hepatic vagotomy. We conclude that hypothalamic leptin action increases peripheral insulin sensitivity primarily via effects on the liver and that the mechanism underlying this effect is dependent on the hepatic branch of the vagus nerve.
Collapse
Affiliation(s)
- Jonathan German
- Department of Medicine, University of Washington at South Lake Union, 815 Mercer Street, Box 358055, Seattle, Washington 98195.
| | | | | | | | | | | | | |
Collapse
|
374
|
Martínez de Morentin PB, Varela L, Fernø J, Nogueiras R, Diéguez C, López M. Hypothalamic lipotoxicity and the metabolic syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:350-61. [PMID: 19796707 DOI: 10.1016/j.bbalip.2009.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 02/08/2023]
Abstract
Ectopic accumulation of lipids in peripheral tissues, such as pancreatic beta cells, liver, heart and skeletal muscle, leads to lipotoxicity, a process that contributes substantially to the pathophysiology of insulin resistance, type 2 diabetes, steatotic liver disease and heart failure. Current evidence has demonstrated that hypothalamic sensing of circulating lipids and modulation of hypothalamic endogenous fatty acid and lipid metabolism are two bona fide mechanisms modulating energy homeostasis at the whole body level. Key enzymes, such as AMP-activated protein kinase (AMPK) and fatty acid synthase (FAS), as well as intermediate metabolites, such as malonyl-CoA and long-chain fatty acids-CoA (LCFAs-CoA), play a major role in this neuronal network, integrating peripheral signals with classical neuropeptide-based mechanisms. However, one key question to be addressed is whether impairment of lipid metabolism and accumulation of specific lipid species in the hypothalamus, leading to lipotoxicity, have deleterious effects on hypothalamic neurons. In this review, we summarize what is known about hypothalamic lipid metabolism with focus on the events associated to lipotoxicity, such as endoplasmic reticulum (ER) stress in the hypothalamus. A better understanding of these molecular mechanisms will help to identify new drug targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Pablo B Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela, A Coruña, 15782, Spain
| | | | | | | | | | | |
Collapse
|
375
|
Chari M, Lam C, Lam T. Hypothalamic Fatty Acid Sensing in the Normal and Disease States. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
376
|
Cheung GWC, Kokorovic A, Lam TKT. Upper intestinal lipids regulate energy and glucose homeostasis. Cell Mol Life Sci 2009; 66:3023-7. [PMID: 19513587 PMCID: PMC11115480 DOI: 10.1007/s00018-009-0062-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.
Collapse
Affiliation(s)
- Grace W. C. Cheung
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
| | - Andrea Kokorovic
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
| | - Tony K. T. Lam
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Department of Medicine, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-706, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
377
|
Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, Sauerwein HP, Fliers E, Kalsbeek A. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 2009; 58:1998-2005. [PMID: 19592616 PMCID: PMC2731521 DOI: 10.2337/db09-0385] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous hypothalamic orexin release in glucose homeostasis in rats. RESEARCH DESIGN AND METHODS We investigated the effects of the hypothalamic orexin system on basal endogenous glucose production (EGP) as well as on hepatic and peripheral insulin sensitivity by changing orexinergic activity in the hypothalamus combined with hepatic sympathetic or parasympathetic denervation, two-step hyperinsulinemic-euglycemic clamps, immunohistochemistry, and RT-PCR studies. RESULTS Hypothalamic disinhibition of neuronal activity by the gamma-aminobutyric acid receptor antagonist bicuculline (BIC) increased basal EGP, especially when BIC was administered in the perifornical area where orexin-containing neurons but not melanocortin-concentrating hormone-containing neurons were activated. The increased BIC-induced EGP was largely prevented by intracerebroventricular pretreatment with the orexin-1 receptor antagonist. Intracerebroventricular administration of orexin-A itself caused an increase in plasma glucose and prevented the daytime decrease of EGP. The stimulatory effect of intracerebroventricular orexin-A on EGP was prevented by hepatic sympathetic denervation. Plasma insulin clamped at two or six times the basal levels did not counteract the stimulatory effect of perifornical BIC on EGP, indicating hepatic insulin resistance. RT-PCR showed that stimulation of orexin neurons increased the expression of hepatic glucoregulatory enzymes. CONCLUSIONS Hypothalamic orexin plays an important role in EGP, most likely by changing the hypothalamic output to the autonomic nervous system. Disturbance of this pathway may result in unbalanced glucose homeostasis.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
378
|
Abstract
The past decade has hosted a remarkable surge in research dedicated to the central control of homeostatic mechanisms. Evidence indicates that the brain, in particular the hypothalamus, directly senses hormones and nutrients to initiate behavioral and metabolic responses to control energy and nutrient homeostasis. Diabetes is chiefly characterized by hyperglycemia due to impaired glucose homeostatic regulation, and a primary therapeutic goal is to lower plasma glucose levels. As such, in this review, we highlight the role of the hypothalamus in the regulation of glucose homeostasis in particular and discuss the cellular and molecular mechanisms by which this neural pathway is orchestrated.
Collapse
Affiliation(s)
- Carol K L Lam
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | |
Collapse
|
379
|
Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K, Bell GI, Patterson BW, Nichols CG, Polonsky KS. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 2009; 58:1869-78. [PMID: 19491206 PMCID: PMC2712777 DOI: 10.2337/db09-0025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/27/2009] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K(+) channel (K(ATP) channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope-labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by approximately 40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is approximately 40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the K(ATP) channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes.
Collapse
Affiliation(s)
- Dennis T. Villareal
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph C. Koster
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Heather Robertson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alejandro Akrouh
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kazuaki Miyake
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Graeme I. Bell
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth S. Polonsky
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
380
|
Yavropoulou MP, Kotsa K, Anastasiou O, O’Dorisio TM, Pappas TN, Yovos JG. Effect of intracerebroventricular infusion of insulin on glucose-dependent insulinotropic peptide in dogs. Neurosci Lett 2009; 460:148-51. [DOI: 10.1016/j.neulet.2009.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/23/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
381
|
Hou BH, Takanaga H, Griesbeck O, Frommer WB. Osmotic induction of calcium accumulation in human embryonic kidney cells detected with a high sensitivity FRET calcium sensor. Cell Calcium 2009; 46:130-5. [PMID: 19628278 PMCID: PMC3664251 DOI: 10.1016/j.ceca.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
Calcium serves as a second messenger in glucose-triggered insulin secretion of pancreatic cells. Less is known about sugar signaling in non-excitable cells. Here, the high sensitivity FRET calcium sensor TN-XXL was used to characterize glucose-induced calcium responses in non-excitable human embryonic kidney HEK293T cells. HEK293T cells responded to perfusion with glucose with a sustained and concentration-dependent increase in cytosolic calcium levels. Sucrose and mannitol triggered comparable calcium responses, suggesting that the increase of the calcium concentration was caused by osmotic effects. HEK293T cells are characterized by low endogenous glucose uptake capacity as shown with a high sensitivity glucose sensor. Consistently, when glucose influx was artificially increased by co-expression of GLUT glucose transporters, the glucose-induced calcium increase was significantly reduced. Neither calcium depletion, nor gadolinium or thapsigargin were able to inhibit the calcium accumulation. Taken together, membrane impermeable osmolytes such as sucrose and mannitol lead to an increase in calcium levels, while the effect of glucose depends on the cell's glucose uptake capacity and will thus vary between cell types in the body that differ in their glucose uptake capacity.
Collapse
Affiliation(s)
- Bi-Huei Hou
- Carnegie Institution for Science, Dep. Plant Biology, 260 Panama St., Stanford CA 94305, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Dep. Plant Biology, 260 Panama St., Stanford CA 94305, USA
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolf B. Frommer
- Carnegie Institution for Science, Dep. Plant Biology, 260 Panama St., Stanford CA 94305, USA
| |
Collapse
|
382
|
Humanin: a novel central regulator of peripheral insulin action. PLoS One 2009; 4:e6334. [PMID: 19623253 PMCID: PMC2709436 DOI: 10.1371/journal.pone.0006334] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/10/2009] [Indexed: 11/25/2022] Open
Abstract
Background Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity. Methods and Findings Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice. Conclusions We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.
Collapse
|
383
|
The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol Cell Biol 2009; 29:5070-83. [PMID: 19596788 DOI: 10.1128/mcb.00138-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a Cre-loxP approach to generate mice with varied expression of hepatic Irs1 and Irs2 to establish the contribution of each protein to hepatic nutrient homeostasis. While nutrient-sensitive transcripts were expressed nearly normally in liver lacking Irs2 (LKO2 mice), these transcripts were significantly dysregulated in liver lacking Irs1 (LKO1 mice) or Irs1 and Irs2 together (DKO mice). Similarly, a set of key gluconeogenic and lipogenic genes was regulated nearly normally by feeding in liver retaining a single Irs1 allele without Irs2 (DKO/1 mice) but was poorly regulated in liver retaining one Irs2 allele without Irs1 (DKO/2 mice). DKO/2 mice, but not DKO/1 mice, also showed impaired glucose tolerance and insulin sensitivity-though both Irs1 and Irs2 were required to suppress hepatic glucose production during hyperinsulinemic-euglycemic clamp. In contrast, either hepatic Irs1 or Irs2 mediated suppression of HGP by intracerebroventricular insulin infusion. After 12 weeks on a high-fat diet, postprandial tyrosine phosphorylation of Irs1 increased in livers of control and LKO2 mice, whereas tyrosine phosphorylation of Irs2 decreased in control and LKO1 mice. Moreover, LKO1 mice -- but not LKO2 mice -- that were fed a high-fat diet developed postprandial hyperglycemia. We conclude that Irs1 is the principal mediator of hepatic insulin action that maintains glucose homeostasis.
Collapse
|
384
|
Bohdjalian A, Prager G, Rosak C, Weiner R, Jung R, Schramm M, Aviv R, Schindler K, Haddad W, Rosenthal N, Ludvik B. Improvement in glycemic control in morbidly obese type 2 diabetic subjects by gastric stimulation. Obes Surg 2009; 19:1221-7. [PMID: 19575272 DOI: 10.1007/s11695-009-9901-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/02/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND Gastric electrical stimulation synchronized to the refractory period of gastric electrical activity and applied during meals was evaluated for safety and for improvement of body weight and glycemic control in obese type 2 diabetes. METHODS The study involved obese diabetic type 2 (ODM) patients in a multicenter open-label European feasibility trial. A total of 24 ODM (nine males, 15 females) treated with insulin and/or oral hyperglycemic agents and body mass index between 33.3 to 49.7 kg/m(2) were implanted laparoscopically with a TANTALUS system. RESULTS There were 18 adverse events related to the implant procedure or the device reported in 12 subjects. All were short lived and resolved with no sequelae. In the 21 subjects that reached the 1-year visit weight was reduced by 4.5 +/- 2.7 kg (p < 0.05) and HbA1c by 0.5 +/- 0.3% (p < 0.05). In a subgroup (n = 11) on stable or reduced oral medication, weight was reduced by 6.3 +/- 3.4 kg (p < 0.05) and HbA1c by 0.9 +/- 0.4% (p < 0.05). The group on insulin (n = 6) had no significant changes in weight and HbA1c. CONCLUSIONS The TANTALUS system is well tolerated in obese type 2 diabetic subjects. Gastric electrical stimulation can potentially improve glucose metabolism and induce weight loss in obese diabetic patients, who are not well controlled on oral antidiabetic therapy. Further evaluation is required to determine whether this effect is due to induced weight loss and/or to direct signal dependent mechanisms.
Collapse
Affiliation(s)
- Arthur Bohdjalian
- Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Ishihara KK, Haywood SC, Daphna-Iken D, Puente EC, Fisher SJ. Brain insulin infusion does not augment the counterregulatory response to hypoglycemia or glucoprivation. Metabolism 2009; 58:812-20. [PMID: 19375131 PMCID: PMC2733848 DOI: 10.1016/j.metabol.2009.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/26/2009] [Indexed: 10/20/2022]
Abstract
Although high dosages of insulin can cause hypoglycemia, several studies suggest that increased insulin action in the head may paradoxically protect against severe hypoglycemia by augmenting the sympathoadrenal response to hypoglycemia. We hypothesized that a direct infusion of insulin into the third ventricle and/or the mediobasal hypothalamus (MBH) would amplify the sympathoadrenal response to hypoglycemia. Nine-week-old male rats had insulin (15 mU) or artificial cerebrospinal fluid (aCSF, control) infused bilaterally into the MBH or directly into the third ventricle. During the final 2 hours of the brain insulin or aCSF infusions, the counterregulatory response to either a hyperinsulinemic hypoglycemic (approximately 50 mg/dL) clamp or a 600-mg/kg intravenous bolus of 2-deoxyglucose (2DG) was measured. 2-Deoxyglucose was used to induce a glucoprivic response without peripheral insulin infusion. In response to insulin-induced hypoglycemia, epinephrine rose more than 60-fold, norepinephrine rose more than 4-fold, glucagon rose 8-fold, and corticosterone rose almost 2-fold; but these increments were not different in aCSF vs insulin treatment groups with either intracerebroventricular or bilateral MBH insulin protocols. Intracerebroventricular insulin infusion stimulated insulin signaling as noted by a 5-fold increase in AKT phosphorylation. In the absence of systemic insulin infusion, 2DG-induced glucopenia resulted in an equal counterregulatory response with brain aCSF and insulin infusions. Under the conditions studied, although insulin infusion acted to stimulate hypothalamic insulin signaling, neither intrahypothalamic nor intracerebroventricular insulin infusion augmented the counterregulatory response to hypoglycemia or to 2DG-induced glucoprivation. Therefore, it is proposed that the previously noted acute actions of insulin to augment the sympathoadrenal response to hypoglycemia are likely mediated via mechanisms exterior to the central nervous system.
Collapse
Affiliation(s)
- Kent K Ishihara
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
386
|
Vujovic M, Nordström K, Gauthier K, Flamant F, Visser TJ, Vennström B, Mittag J. Interference of a mutant thyroid hormone receptor alpha1 with hepatic glucose metabolism. Endocrinology 2009; 150:2940-7. [PMID: 19282388 DOI: 10.1210/en.2008-1085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice expressing the mutant thyroid hormone receptor TRalpha1R384C, which has a 10-fold reduced affinity to the ligand T(3), exhibit hypermetabolism due to an overactivation of the sympathetic nervous system. To define the consequences in the liver, we analyzed hepatic metabolism and the regulation of liver genes in the mutant mice. Our results showed that hepatic phosphoenolpyruvate-carboxykinase was up-regulated and pyruvate kinase mRNA down-regulated, contrary to what observed after T(3) treatment. In contrast, mice expressing a mutant TRalpha1L400R specifically in the liver did not show a dysregulation of these genes; however, when the TRalpha1L400R was expressed ubiquitously, the hepatic phenotype differed from TRalpha1R384C animals, suggesting that the localization of the mutation plays an important role for its consequences on glucose metabolism. Furthermore, we observed that glycogen stores were completely depleted in TRalpha1R384C animals, despite increased gluconeogenesis and decreased glycolysis. Exposure of the mutant mice to high maternal levels of thyroid hormone during fetal development leads to a normal liver phenotype in the adult. Our results show how genetic and maternal factors interact to determine the metabolic setpoint of the offspring and indicate an important role for maternal thyroid hormone in the susceptibility to metabolic disorders in adulthood.
Collapse
Affiliation(s)
- Milica Vujovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
387
|
Cailotto C, Lei J, van der Vliet J, van Heijningen C, van Eden CG, Kalsbeek A, Pévet P, Buijs RM. Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS One 2009; 4:e5650. [PMID: 19478857 PMCID: PMC2682563 DOI: 10.1371/journal.pone.0005650] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/20/2009] [Indexed: 12/20/2022] Open
Abstract
Background The biological clock, located in the hypothalamic suprachiasmatic nucleus (SCN), controls the daily rhythms in physiology and behavior. Early studies demonstrated that light exposure not only affects the phase of the SCN but also the functional activity of peripheral organs. More recently it was shown that the same light stimulus induces immediate changes in clock gene expression in the pineal and adrenal, suggesting a role of peripheral clocks in the organ-specific output. In the present study, we further investigated the immediate effect of nocturnal light exposure on clock genes and metabolism-related genes in different organs of the rat. In addition, we investigated the role of the autonomic nervous system as a possible output pathway of the SCN to modify the activity of the liver after light exposure. Methodology and Principal Findings First, we demonstrated that light, applied at different circadian times, affects clock gene expression in a different manner, depending on the time of day and the organ. However, the changes in clock gene expression did not correlate in a consistent manner with those of the output genes (i.e., genes involved in the functional output of an organ). Then, by selectively removing the autonomic innervation to the liver, we demonstrated that light affects liver gene expression not only via the hormonal pathway but also via the autonomic input. Conclusion Nocturnal light immediately affects peripheral clock gene expression but without a clear correlation with organ-specific output genes, raising the question whether the peripheral clock plays a “decisive” role in the immediate (functional) response of an organ to nocturnal light exposure. Interestingly, the autonomic innervation of the liver is essential to transmit the light information from the SCN, indicating that the autonomic nervous system is an important gateway for the SCN to cause an immediate resetting of peripheral physiology after phase-shift inducing light exposures.
Collapse
Affiliation(s)
- Cathy Cailotto
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Sandoval DA, Obici S, Seeley RJ. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 2009; 8:386-98. [PMID: 19404312 DOI: 10.1038/nrd2874] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on the role of peripheral organs in the regulation of glucose homeostasis has led to the development of various monotherapies that aim to improve glucose uptake and insulin action in these organs for the treatment of type 2 diabetes. It is now clear that the central nervous system (CNS) also plays an important part in orchestrating appropriate glucose metabolism, with accumulating evidence linking dysregulated CNS circuits to the failure of normal glucoregulatory mechanisms. There is evidence that there is substantial overlap between the CNS circuits that regulate energy balance and those that regulate glucose levels, suggesting that their dysregulation could link obesity and diabetes. These findings present new targets for therapies that may be capable of both inducing weight loss and improving glucose regulation.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Psychiatry, Genome Research Institute, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
389
|
Bouglé A, Annane D. Les effets de l’insuline : de la cellule à l’organisme entier. ACTA ACUST UNITED AC 2009; 28:e193-9. [DOI: 10.1016/j.annfar.2009.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
390
|
Zsombok A, Smith BN. Plasticity of central autonomic neural circuits in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:423-31. [PMID: 19110053 PMCID: PMC2670349 DOI: 10.1016/j.bbadis.2008.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, University of Kentucky College of Medicine, MS-508 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
391
|
Gao XF, Chen W, Kong XP, Xu AM, Wang ZG, Sweeney G, Wu D. Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 2009; 52:912-20. [PMID: 19224198 DOI: 10.1007/s00125-009-1284-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Carnitine palmitoyltransferase-1 (CPT1)c is a novel isoform in the CPT1 family and is found specifically in the brain. Cpt1c knockout (KO) mice are more susceptible to high-fat diet (HFD)-induced obesity. However, the underlying mechanism of this phenotype and the question of whether CPT1c is involved in the pathogenesis of diet-induced insulin resistance are unclear. METHODS To assess the potential role of CPT1c in the regulation of whole-body glucose homeostasis, we generated Cpt1c KO mice and challenged them with HFD or standard chow. Glucose homeostasis of each group was assessed weekly. RESULTS After 8 weeks of HFD feeding, Cpt1c KO mice developed a phenotype of more severe insulin resistance than that in wild-type controls. The increased susceptibility of Cpt1c KO mice to HFD-induced insulin resistance was independent of obesity. Impaired glucose tolerance in Cpt1c KO mice was attributable to elevated hepatic gluconeogenesis and decreased glucose uptake in skeletal muscle. These effects correlated with decreased hepatic and intramuscular fatty acid oxidation and expression of oxidative genes as well as with elevated triacylglycerol content in these tissues. Interestingly, Cpt1c deletion caused a specific elevation of hypothalamic CPT1a and CPT1b isoform expression and activity. We demonstrated that elevated plasma NEFA concentration is one mechanism via which this compensatory effect is induced. CONCLUSIONS/INTERPRETATION These results further establish the role of CPT1c in controlling whole-body glucose homeostasis and in the regulation of hypothalamic Cpt1 isoform expression. We identify changes in hepatic and skeletal muscle glucose metabolism as important mechanisms determining the phenotype of Cpt1c KO mice.
Collapse
Affiliation(s)
- X F Gao
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
392
|
Mohlapo TD, Ng’ambi JW, Norris D, Malatje MM. Effect of Hoodia gordonii meal supplementation at finisher stage on productivity and carcass characteristics of Ross 308 broiler chickens. Trop Anim Health Prod 2009; 41:1591-6. [DOI: 10.1007/s11250-009-9351-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 04/07/2009] [Indexed: 11/28/2022]
|
393
|
Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20:78-87. [PMID: 19084428 DOI: 10.1016/j.tem.2008.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a major part in regulating energy homeostasis by integrating hormonal and nutritional signals. Increasing evidence shows that specific neurons in the hypothalamus respond to changing glucose, lipid and amino acid levels. However, the intracellular substrate for such 'fuel sensing' and its integration into the neuronal doctrine as it relates to energy homeostasis remains elusive. Evidence points to differential fuel utilization in response to nutrient availability and free radical formation as crucial components in regulating neuronal functions. This review places these components in the context of neurobiological aspects of circuit-specific hypothalamic output, focusing on the melanocortin system. The effects of glucose and fatty acids are discussed with emphasis on free radical production in orexigenic and anorexigenic neurons of the arcuate nucleus.
Collapse
Affiliation(s)
- Tamas L Horvath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
394
|
Genetic determinants and molecular pathways in the pathogenesis of Type 2 diabetes. Clin Sci (Lond) 2009; 116:99-111. [PMID: 19076063 DOI: 10.1042/cs20080090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T2DM (Type 2 diabetes mellitus) has reached epidemic proportions worldwide, exerting major health consequences at an individual and public health level alike. Unfortunately, the molecular pathophysiology of diabetes remains incompletely understood, impairing progress towards more effective prevention and treatment strategies. Although the rapid increase in the prevalence of insulin resistance and T2DM over the past several decades highlights a major environmental contribution related to overnutrition, obesity and inactivity, susceptibility is likely to reflect individual differences in complex gene-environment interactions. In the present review, we focus on mediators of genetic and environmental risk for T2DM at a molecular level.
Collapse
|
395
|
Abstract
The autonomic nervous system is the primary neural mediator of physiological responses to internal and external stimuli. It is composed of 2 branches: the sympathetic nervous system, which mediates catabolic responses, and the parasympathetic nervous system, composed of the vagus nerve, which regulates anabolic responses. As the vagus nerve innervates most tissues involved in nutrient metabolism, including the stomach, pancreas, and liver, activation of vagal efferent activity has the potential to influence how nutrients are absorbed and metabolized. Vagal efferent activity is initially activated at the onset of food intake by receptors in the oropharyngeal cavity and then during food intake postprandially. Vagal efferent innervation of the pancreas contributes to early-phase insulin release as well as to optimizing postprandial insulin release. In the absence of vagal activation, which occurs when glucose is administered intragastrically, postprandial glucose levels are higher and insulin levels blunted compared with when there is activation of oropharyngeal receptors by food. An induction of vagal efferent activity also occurs during chronic pancreatic B-cell challenge with 48-hour glucose infusions. Under these conditions, the compensatory increase in insulin secretion is partially mediated by an increase in vagal efferent activity. In conclusion, the vagus nerve, part of the parasympathetic nervous system, plays a critical role in the regulation of blood glucose levels and is an often overlooked factor contributing to glucose homeostasis.
Collapse
Affiliation(s)
- Karen L Teff
- Monell Chemical Senses Center and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, 3500 Market Street, Philadelphia, PA, USA.
| |
Collapse
|
396
|
Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, Ziara KB, Jing L, Boysen G, Bronson R, Klebanov S, Chen X, Swenberg JA, Stridsberg M, Parker CE, Harrison DE, Combs TP. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol 2009; 44:26-33. [PMID: 18582556 PMCID: PMC2872123 DOI: 10.1016/j.exger.2008.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
Pit1 null (Snell dwarf) and Proph1 null (Ames dwarf) mutant mice lack GH, PRL and TSH. Snell and Ames dwarf mice also exhibit reduced IGF-I, resistance to cancer and a longer lifespan than control mice. Endogenous glucose production during fasting is reduced in Snell dwarf mice compared to fasting control mice. In view of cancer cell dependence on glucose for energy, low endogenous glucose production may provide Snell dwarf mice with resistance to cancer. We investigated whether endogenous glucose production is lower in Snell dwarf mice during feeding. Inhibition of endogenous glucose production by glucose injection was enhanced in 12 to 14 month-old female Snell dwarf mice. Thus, we hypothesize that lower endogenous glucose production during feeding and fasting reduces cancer cell glucose utilization providing Snell dwarf mice with resistance to cancer. The elevation of circulating adiponectin, a hormone produced by adipose tissue, may contribute to the suppression of endogenous glucose production in 12 to 14 month-old Snell dwarf mice. We compared the incidence of cancer at time of death between old Snell dwarf and control mice. Only 18% of old Snell dwarf mice had malignant lesions at the time of death compared to 82% of control mice. The median ages at death for old Snell dwarf and control mice were 33 and 26 months, respectively. By contrast, previous studies showed a high incidence of cancer in old Ames dwarf mice at the time of death. Hence, resistance to cancer in old Snell dwarf mice may be mediated by neuroendocrine factors that reduce glucose utilization besides elevated adiponectin, reduced IGF-I and a lack of GH, PRL and TSH, seen in both Snell and Ames dwarf mice. Proteomics analysis of pituitary secretions from Snell dwarf mice confirmed the absence of GH and PRL, the secretion of ACTH and elevated secretion of Chromogranin B and Secretogranin II. Radioimmune assays confirmed that circulating Chromogranin B and Secretogranin II were elevated in 12 to 14 month-old Snell dwarf mice. In summary, our results in Snell dwarf mice suggest that the pituitary gland and adipose tissue are part of a neuroendocrine loop that lowers the risk of cancer during aging by reducing the availability of glucose.
Collapse
Affiliation(s)
| | | | | | - Sneha B. Naik
- University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | - Linhong Jing
- University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gunnar Boysen
- University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rod Bronson
- Jackson Laboratories, Bar Harbor, ME 04609, USA
| | | | - Xian Chen
- University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | - Terry P. Combs
- University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
397
|
Brunner Y, Schvartz D, Priego-Capote F, Couté Y, Sanchez JC. Glucotoxicity and pancreatic proteomics. J Proteomics 2009; 71:576-91. [DOI: 10.1016/j.jprot.2008.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/29/2008] [Accepted: 10/18/2008] [Indexed: 02/02/2023]
|
398
|
Improvement in glycemic control by gastric electrical stimulation (TANTALUS) in overweight subjects with type 2 diabetes. Surg Endosc 2008; 23:1955-60. [PMID: 19067068 DOI: 10.1007/s00464-008-0222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/13/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND The TANTALUS system (MetaCure Ltd.) is a minimally invasive implantable gastric stimulation modality that does not exhibit malabsorptive or restrictive characteristics. The device applies gastric contractility modulation (GCM) signals to the stomach antrum. The signals are delivered in synchronization to the native electrical activity of the stomach during meals. Retrospective analysis of previous studies indicated that type 2 diabetes mellitus (T2DM) subjects on oral medication with hemoglobin A1c (HbA1c) between 7.5% and 9.5% are the population with most potential benefit from the treatment. The current study includes subjects enrolled prospectively within that range of HbA1c. AIM To prospectively investigate the potential effect of the TANTALUS system on glycemic control and weight in overweight subjects with T2DM. METHODS In this European multicenter, open-label study, 13 T2DM obese (6 male, 7 female, BMI 37.2 +/- 1.0 kg/m(2), range 30.4-44.0 kg/m(2)) subjects treated with oral antidiabetic medications but with poor glycemic control (HbA1c > or = 7%, range 7.3-9.5%) were implanted laparoscopically with the TANTALUS system. RESULTS Thirteen subjects that had completed 3 months of treatment showed a significant reduction in HbA1c from 8.0 +/- 0.2% to 6.9 +/- 0.1% (p < 0.05), whereas fasting blood glucose decreased from 175 +/- 6 mg/dL to 127 +/- 8 mg/dL (p < 0.05). The glycemic improvement was accompanied by reduction in weight from 104.4 +/- 4.4 kg to 99.7 +/- 4.8 kg, and in waist circumference from 122.3 +/- 3.2 cm to 117.0 +/- 3.0 cm. CONCLUSIONS Interim results with the TANTALUS system suggest that this stimulation regime can potentially improve glucose levels and induce moderate weight loss in obese T2DM subjects on oral antidiabetic therapy with poor glycemic control. Further evaluation is required to determine whether this effect is due to induced weight loss and/or due to direct signal-dependent mechanisms.
Collapse
|
399
|
Blouet C, Ono H, Schwartz GJ. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 2008; 8:459-67. [PMID: 19041762 PMCID: PMC2637401 DOI: 10.1016/j.cmet.2008.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023]
Abstract
p70 S6 kinase 1 (S6K) is a major downstream effector of the mammalian target of rapamycin (mTOR), primarily implicated in the control of protein synthesis, cell growth, and proliferation. Here we demonstrate that specific bidirectional molecular targeting of mediobasal hypothalamic (MBH) S6K activity in rats is sufficient to significantly alter food intake, body weight, hypothalamic orexigenic neuropeptide expression, hypothalamic leptin sensitivity, and the metabolic and feeding responses to a fast. In addition, adenoviral-mediated constitutive activation of MBH S6K improved cold tolerance and protected against high-fat diet-induced overeating, fat deposition, and insulin resistance. Our results provide direct evidence that MBH S6K activity bidirectionally drives behavioral and metabolic determinants of energy balance and promote the assessment of MBH S6K activity as a therapeutic target in metabolic diseases.
Collapse
Affiliation(s)
- Clémence Blouet
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
400
|
Buettner C, Camacho RC. Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol Metab Clin North Am 2008; 37:825-40. [PMID: 19026934 DOI: 10.1016/j.ecl.2008.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver plays a pivotal role in the regulation of glucose metabolism because it is the key organ that maintains glucose levels during fasting. An emerging body of literature has demonstrated the important role of the hypothalamus in controlling hepatic glucose production (HGP). The hypothalamus senses circulating nutrients and hormones, conveying the energy status to the central nervous system, which, in turn, controls HGP in part by way of the autonomic nervous system. Overfeeding results in the failure of the hypothalamus to sense circulating nutrients and hormones, and in a loss of the central control of HGP.
Collapse
Affiliation(s)
- Christoph Buettner
- Department of Medicine and Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|