351
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
352
|
[Partially French Canadians are susceptible to increased cardiovascular risk factors: A population-based retrospective cohort study]. Ann Cardiol Angeiol (Paris) 2020; 69:167-172. [PMID: 32576364 DOI: 10.1016/j.ancard.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Through various research lead in the past, it has been made evident that Quebec is home to higher rates of acute myocardial infarction (AMI) and higher prevalence of cardiovascular risk factors than other Canadian provinces. This proposed study will perform a retrospective analysis on Caucasian populations in order to analyze the cardiovascular risk factors in partially francophone populations in comparison to French and Non-French Canadians. Furthermore, we will closely analyze both genders of aforementioned populations. METHODS This population-based retrospective cohort study was achieved using the University of Ottawa Heart Institute CCTA registry. Included are Caucasian patients of all ages who came to UOHI for a CCTA between 2006 and 2018 and provided written informed consent. SPSS was used to compare the different populations (French Canadian, partially French Canadian and non-French Canadian) and sex. RESULTS The PFC population more closely resembles FC, having higher incidence of cardiovascular risk factors such as smoking, dyslipidemia and type 2 diabetes. INTERPRETATION Our results suggest that PFC, like FC, may benefit from more intensive education and lifestyle modification techniques.
Collapse
|
353
|
Bu D, Yang Q, Meng Z, Zhang S, Li Q. Truncated tests for combining evidence of summary statistics. Genet Epidemiol 2020; 44:687-701. [DOI: 10.1002/gepi.22330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Deliang Bu
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
| | - Qinglong Yang
- School of Statistics and Mathematics Zhongnan University of Economics and Law Wuhan China
| | - Zhen Meng
- LSC, NCMIS, Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
| | - Sanguo Zhang
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
| | - Qizhai Li
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- LSC, NCMIS, Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
| |
Collapse
|
354
|
Assessing Stakeholder Perceptions of the Utility of Genetic Information for the Clinical Care of Mental Health Disorders: We Have a Will but Need to See the Way. ADMINISTRATION AND POLICY IN MENTAL HEALTH AND MENTAL HEALTH SERVICES RESEARCH 2020; 48:363-376. [PMID: 32564165 DOI: 10.1007/s10488-020-01058-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Academic stakeholders' (primarily mental health researchers and clinicians) practices and attitudes related to the translation of genetic information into mental health care were assessed. A three-part survey was administered at two large, urban universities. Response frequencies were calculated. Participants (N = 64) reported moderate levels of translational practice, adequate levels of genetic knowledge, and variable levels of genetic competence. They held positive attitudes toward translating genetic information about mental health broadly but negative attitudes about the impact that such information would have on specific aspects of care. The current study lays the groundwork for further inquiry into translating genetic information to mental health care.
Collapse
|
355
|
Transgenic overexpression of glutathione S-transferase μ-type 1 reduces hypertension and oxidative stress in the stroke-prone spontaneously hypertensive rat. J Hypertens 2020; 37:985-996. [PMID: 30308595 DOI: 10.1097/hjh.0000000000001960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Combined congenic breeding and microarray gene expression profiling previously identified glutathione S-transferase μ-type 1 (Gstm1) as a positional and functional candidate gene for blood pressure (BP) regulation in the stroke-prone spontaneously hypertensive (SHRSP) rat. Renal Gstm1 expression in SHRSP rats is significantly reduced when compared with normotensive Wistar Kyoto (WKY) rats. As Gstm1 plays an important role in the secondary defence against oxidative stress, significantly lower expression levels may be functionally relevant in the development of hypertension. The aim of this study was to investigate the role of Gstm1 in BP regulation and oxidative stress by transgenic overexpression of the Gstm1 gene. METHOD Two independent Gstm1 transgenic SHRSP lines were generated by microinjecting SHRSP embryos with a linear construct controlled by the EF-1α promoter encoding WKY Gstm1 cDNA [SHRSP-Tg(Gstm1)1 and SHRSP-Tg(Gstm1)2]. RESULTS Transgenic rats exhibit significantly reduced BP and pulse pressure when compared with SHRSP [systolic: SHRSP 205.2 ± 3.7 mmHg vs. SHRSP-Tg(Gstm1)1 175.5 ± 1.6 mmHg and SHRSP-Tg(Gstm1)2 172 ± 3.2 mmHg, P < 0.001; pulse pressure: SHRSP 58.4 ± 0.73 mmHg vs. SHRSP-Tg(Gstm1)1 52.7 ± 0.19 mmHg and SHRSP-Tg(Gstm1)2 40.7 ± 0.53 mmHg, P < 0.001]. Total renal and aortic Gstm1 expression in transgenic animals was significantly increased compared with SHRSP [renal relative quantification (RQ): SHRSP-Tg(Gstm1)1 1.95 vs. SHRSP 1.0, P < 0.01; aorta RQ: SHRSP-Tg(Gstm1)1 2.8 vs. SHRSP 1.0, P < 0.05]. Renal lipid peroxidation (malondialdehyde: protein) and oxidized : reduced glutathione ratio levels were significantly reduced in both transgenic lines when compared with SHRSP [malondialdehyde: SHRSP 0.04 ± 0.009 μmol/l vs. SHRSP-Tg(Gstm1)1 0.024 ± 0.002 μmol/l and SHRSP-Tg(Gstm1)2 0.021 ± 0.002 μmol/l; (oxidized : reduced glutathione ratio): SHRSP 5.19 ± 2.26 μmol/l vs. SHRSP-Tg(Gstm1)1 0.17 ± 0.11 μmol/l and SHRSP-Tg(Gstm1)2 0.47 ± 0.22 μmol/l]. Transgenic SHRSP rats containing the WKY Gstm1 gene demonstrate significantly lower BP, reduced oxidative stress and improved levels of renal Gstm1 expression. CONCLUSION These data support the hypothesis that reduced renal Gstm1 plays a role in the development of hypertension.
Collapse
|
356
|
Soltész B, Pikó P, Sándor J, Kósa Z, Ádány R, Fiatal S. The genetic risk for hypertension is lower among the Hungarian Roma population compared to the general population. PLoS One 2020; 15:e0234547. [PMID: 32555714 PMCID: PMC7299387 DOI: 10.1371/journal.pone.0234547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/28/2020] [Indexed: 01/11/2023] Open
Abstract
Estimating the prevalence of cardiovascular diseases (CVDs) and risk factors among the Roma population, the largest minority in Europe, and investigating the role of genetic or environmental/behavioral risk factors in CVD development are important issues in countries where they are significant minority. This study was designed to estimate the genetic susceptibility of the Hungarian Roma (HR) population to essential hypertension (EH) and compare it to that of the general (HG) population. Twenty EH associated SNPs (in AGT, FMO3, MTHFR-NPPB, NPPA, NPPA-AS1, AGTR1, ADD1, NPR3-C5orf23, NOS3, CACNB2, PLCE1, ATP2B1, GNB3, CYP1A1-ULK3, UMOD and GNAS-EDN3) were genotyped using DNA samples obtained from HR (N = 1176) and HG population (N = 1178) subjects assembled by cross-sectional studies. Allele frequencies and genetic risk scores (unweighted and weighted genetic risk scores (GRS and wGRS, respectively) were calculated for the study groups and compared to examine the joint effects of the SNPs. The susceptibility alleles were more frequent in the HG population, and both GRS and wGRS were found to be higher in the HG population than in the HR population (GRS: 18.98 ± 3.05 vs. 18.25 ± 2.97, p<0.001; wGRS: 1.52 [IQR: 0.99–2.00] vs. 1.4 [IQR: 0.93–1.89], p<0.01). Twenty-seven percent of subjects in the HR population were in the bottom fifth (GRS ≤ 16) of the risk allele count compared with 21% of those in the HG population. Thirteen percent of people in the HR group were in the top fifth (GRS ≥ 22) of the GRS compared with 21% of those in the HG population (p<0.001), i.e., the distribution of GRS was found to be left-shifted in the HR population compared to the HG population. The Roma population seems to be genetically less susceptible to EH than the general one. These results support preventive efforts to lower the risk of developing hypertension by encouraging a healthy lifestyle.
Collapse
Affiliation(s)
- Beáta Soltész
- Doctoral School of Health Sciences, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Péter Pikó
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - János Sándor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
- WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Zsigmond Kósa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, Nyíregyháza, Hungary
| | - Róza Ádány
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
- WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
- WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
357
|
Atherosclerotic diseases and lung cancer - a ten-year cross-sectional study in Cyprus. ACTA ACUST UNITED AC 2020; 5:e72-e78. [PMID: 32529109 PMCID: PMC7277524 DOI: 10.5114/amsad.2020.95570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 11/24/2022]
Abstract
Introduction The main purpose of this work is to study atherosclerotic diseases and lung cancer in Cyprus during the period 2007–2017 with the aim of finding not only the atherosclerotic diseases with the highest risk but also a possible association between these diseases and lung cancer. Material and methods The statistical methods used to extract the results of this work are Student’s t-test and one-way analysis of variance (ANOVA), in order to check the statistical significance of atherosclerotic diseases with regard to the characteristics of the patients. Additionally, a multiple logistic regression analysis was used with the aim of finding the disease with the highest risk. Pearson’s r was used to find a possible association between atherosclerotic diseases and lung cancer. Results As specified by multiple logistic regression analysis, the atherosclerotic diseases with the highest risk of death are intracranial haemorrhage (OR = 17.3), heart failure (OR = 3.29), and stroke (OR = 3.02), with females having higher risk compared to men. Moreover, a statistically significant relation was found between heart failure and cerebral infarction with lung cancer. Conclusions The results of this work highlight the statistically significant characteristics of patients with atherosclerotic diseases and identify the risk of death according to the type of the disease. A link between these diseases and cancer was also identified.
Collapse
|
358
|
Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, Suzuki K, Tam CHT, Tabara Y, Kwak SH, Takeuchi F, Long J, Lim VJY, Chai JF, Chen CH, Nakatochi M, Yao J, Choi HS, Iyengar AK, Perrin HJ, Brotman SM, van de Bunt M, Gloyn AL, Below JE, Boehnke M, Bowden DW, Chambers JC, Mahajan A, McCarthy MI, Ng MCY, Petty LE, Zhang W, Morris AP, Adair LS, Akiyama M, Bian Z, Chan JCN, Chang LC, Chee ML, Chen YDI, Chen YT, Chen Z, Chuang LM, Du S, Gordon-Larsen P, Gross M, Guo X, Guo Y, Han S, Howard AG, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Isono M, Jang HM, Jiang G, Jonas JB, Kamatani Y, Katsuya T, Kawaguchi T, Khor CC, Kohara K, Lee MS, Lee NR, Li L, Liu J, Luk AO, Lv J, Okada Y, Pereira MA, Sabanayagam C, Shi J, Shin DM, So WY, Takahashi A, Tomlinson B, Tsai FJ, van Dam RM, Xiang YB, Yamamoto K, Yamauchi T, Yoon K, Yu C, Yuan JM, Zhang L, Zheng W, Igase M, Cho YS, Rotter JI, Wang YX, Sheu WHH, Yokota M, Wu JY, Cheng CY, Wong TY, Shu XO, Kato N, Park KS, et alSpracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, Suzuki K, Tam CHT, Tabara Y, Kwak SH, Takeuchi F, Long J, Lim VJY, Chai JF, Chen CH, Nakatochi M, Yao J, Choi HS, Iyengar AK, Perrin HJ, Brotman SM, van de Bunt M, Gloyn AL, Below JE, Boehnke M, Bowden DW, Chambers JC, Mahajan A, McCarthy MI, Ng MCY, Petty LE, Zhang W, Morris AP, Adair LS, Akiyama M, Bian Z, Chan JCN, Chang LC, Chee ML, Chen YDI, Chen YT, Chen Z, Chuang LM, Du S, Gordon-Larsen P, Gross M, Guo X, Guo Y, Han S, Howard AG, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Isono M, Jang HM, Jiang G, Jonas JB, Kamatani Y, Katsuya T, Kawaguchi T, Khor CC, Kohara K, Lee MS, Lee NR, Li L, Liu J, Luk AO, Lv J, Okada Y, Pereira MA, Sabanayagam C, Shi J, Shin DM, So WY, Takahashi A, Tomlinson B, Tsai FJ, van Dam RM, Xiang YB, Yamamoto K, Yamauchi T, Yoon K, Yu C, Yuan JM, Zhang L, Zheng W, Igase M, Cho YS, Rotter JI, Wang YX, Sheu WHH, Yokota M, Wu JY, Cheng CY, Wong TY, Shu XO, Kato N, Park KS, Tai ES, Matsuda F, Koh WP, Ma RCW, Maeda S, Millwood IY, Lee J, Kadowaki T, Walters RG, Kim BJ, Mohlke KL, Sim X. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582:240-245. [PMID: 32499647 PMCID: PMC7292783 DOI: 10.1038/s41586-020-2263-3] [Show More Authors] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Ken Suzuki
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victor J Y Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Masahiro Nakatochi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hyeok Sun Choi
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J Perrin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Stanford University, Stanford, CA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical Analysis, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Annie-Green Howard
- Department of Biostatistics, Carolina Population Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Katsuhiko Kohara
- Department of Regional Resource Management, Ehime University Faculty of Collaborative Regional Innovation, Ehime, Japan
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R Lee
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Andrea O Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jinxiu Shi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dong Mun Shin
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Atsushi Takahashi
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyungheon Yoon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoon Shin Cho
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wayne H H Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Juyoung Lee
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
359
|
de las Fuentes L, Sung YJ, Sitlani CM, Avery CL, Bartz TM, Keyser CD, Evans DS, Li X, Musani SK, Ruiter R, Smith AV, Sun F, Trompet S, Xu H, Arnett DK, Bis JC, Broeckel U, Busch EL, Chen YDI, Correa A, Cummings SR, Floyd JS, Ford I, Guo X, Harris TB, Ikram MA, Lange L, Launer LJ, Reiner AP, Schwander K, Smith NL, Sotoodehnia N, Stewart JD, Stott DJ, Stürmer T, Taylor KD, Uitterlinden A, Vasan RS, Wiggins KL, Cupples LA, Gudnason V, Heckbert SR, Jukema JW, Liu Y, Psaty BM, Rao DC, Rotter JI, Stricker B, Wilson JG, Whitsel EA. Genome-wide meta-analysis of variant-by-diuretic interactions as modulators of lipid traits in persons of European and African ancestry. THE PHARMACOGENOMICS JOURNAL 2020; 20:482-493. [PMID: 31806883 PMCID: PMC7260079 DOI: 10.1038/s41397-019-0132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Abstract
Hypertension (HTN) is a significant risk factor for cardiovascular morbidity and mortality. Metabolic abnormalities, including adverse cholesterol and triglycerides (TG) profiles, are frequent comorbid findings with HTN and contribute to cardiovascular disease. Diuretics, which are used to treat HTN and heart failure, have been associated with worsening of fasting lipid concentrations. Genome-wide meta-analyses with 39,710 European-ancestry (EA) individuals and 9925 African-ancestry (AA) individuals were performed to identify genetic variants that modify the effect of loop or thiazide diuretic use on blood lipid concentrations. Both longitudinal and cross sectional data were used to compute cohort-specific interaction results, which were then combined through meta-analysis in each ancestry. These ancestry-specific results were further combined through trans-ancestry meta-analysis. Analysis of EA data identified two genome-wide significant (p < 5 × 10-8) loci with single nucleotide variant (SNV)-loop diuretic interaction on TG concentrations (including COL11A1). Analysis of AA data identified one genome-wide significant locus adjacent to BMP2 with SNV-loop diuretic interaction on TG concentrations. Trans-ancestry analysis strengthened evidence of association for SNV-loop diuretic interaction at two loci (KIAA1217 and BAALC). There were few significant SNV-thiazide diuretic interaction associations on TG concentrations and for either diuretic on cholesterol concentrations. Several promising loci were identified that may implicate biologic pathways that contribute to adverse metabolic side effects from diuretic therapy.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Y J Sung
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C L Avery
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C de Keyser
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D S Evans
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - X Li
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - S K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Ruiter
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - F Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - D K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - U Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - E L Busch
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Y-D I Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - S R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - J S Floyd
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - I Ford
- Robertson Center for biostatistics, University of Glasgow, Glasgow, UK
| | - X Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - T B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - M A Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Lange
- Department of Genetics, University of Colorado, Denver, Denver, CO, USA
| | - L J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - A P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - K Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - N L Smith
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center (ERIC), VA Cooperative Studies Program, VA Puget Sound Health Care System, Seattle, WA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
- Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - J D Stewart
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - D J Stott
- Institute of cardiovascular and medical sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - T Stürmer
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Center for Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - K D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S Vasan
- The Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - K L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - L A Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - V Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - S R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Y Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University, Winston-, Salem, NC, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - D C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - J I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - B Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J G Wilson
- Biophysics and Physiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - E A Whitsel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- School of Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
360
|
Forte M, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Vascular ageing in hypertension: Focus on mitochondria. Mech Ageing Dev 2020; 189:111267. [PMID: 32473170 DOI: 10.1016/j.mad.2020.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Hypertension is a common age-related disease, along with vascular and neurodegenerative diseases. Vascular ageing increases during hypertension, but hypertension itself accelerates vascular ageing, thus creating a vicious circle. Vascular stiffening, endothelial dysfunction, impaired contractility and vasorelaxation are the main alterations related to vascular ageing, as a consequence of vascular smooth muscle and endothelial cells senescence. Several molecular mechanisms have been involved into the functional and morphological changes of the aged vessels. Among them, oxidative stress, inflammation, extracellular matrix deregulation and mitochondrial dysfunction are the best characterized. In the present review, we discuss relevant literature about the biology of vascular and cerebrovascular ageing with a particular focus on mitochondria signalling. We underline the therapeutic strategies, able to improve mitochondrial health, which may represent a promising tool to decrease vascular dysfunction associated with ageing and hypertension-related complications.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Maria Cotugno
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | - Franca Bianchi
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Speranza Rubattu
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
| |
Collapse
|
361
|
Fu J, Shen S, Cheng J, Lv H, Fu J. A case of Usher syndrome type IIA caused by a rare USH2A homozygous frameshift variant with maternal uniparental disomy (UPD) in a Chinese family. J Cell Mol Med 2020; 24:7743-7750. [PMID: 32449591 PMCID: PMC7348175 DOI: 10.1111/jcmm.15405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/29/2022] Open
Abstract
Usher syndrome encompasses a group of genetically and clinically heterogeneous autosomal recessive disorders with hearing deficiencies and retinitis pigmentosa. The mechanisms underlying the Usher syndrome are highly variable. In the present study, a Chinese family with Usher syndrome was recruited. Whole exome sequencing (WES), Sanger sequencing, homozygosity mapping, short tandem repeat (STR) analysis and segregation analysis were performed. Functional domains of the pathogenic variant for USH2A were analysed. We identified a homozygous frameshift variant c.99_100insT (p.Arg34Serfs*41) in the USH2A gene in the proband that showed discordant segregation in the father. Further homozygosity mapping and STR analysis identified an unusual homozygous variant of proband that originated from maternal uniparental disomy (UPD). The p.Arg34Serfs*41 variant produced a predicted truncated protein that removes all functional domains of USH2A. The variant was not included in the 1000 Human Genomes Project database, ExAC database, HGMD or gnomAD database, but was included in the ClinVar databases as pathogenic. Although USH2A is an autosomal recessive disease, the effects of UPD should be informed in genetic counselling since the recurrence risk of an affected child is greatly reduced when the disease is due to the UPD mechanism. To test potential patients, WES, combined with STR analysis and homozygosity mapping, provides an accurate and useful strategy for genetic diagnosis. In summary, our discoveries can help further the understanding of the molecular pathogenesis of Usher syndrome type IIA to advance the prevention, diagnosis and therapy for this disorder.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
362
|
Korshunov VA, Smolock EM, Wines-Samuelson ME, Faiyaz A, Mickelsen DM, Quinn B, Pan C, Dugbartey GJ, Yan C, Doyley MM, Lusis AJ, Berk BC. Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. J Am Heart Assoc 2020; 9:e014257. [PMID: 32394795 PMCID: PMC7660849 DOI: 10.1161/jaha.119.014257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.
Collapse
Affiliation(s)
| | - Elaine M Smolock
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | | | - Abrar Faiyaz
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Deanne M Mickelsen
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Breandan Quinn
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Calvin Pan
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - George J Dugbartey
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Chen Yan
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Aldons J Lusis
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - Bradford C Berk
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY.,University of Rochester Neurorestoration Institute University of Rochester School of Medicine and Dentistry Rochester NY
| |
Collapse
|
363
|
Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev 2020; 24:343-357. [PMID: 30645721 PMCID: PMC6476827 DOI: 10.1007/s10741-018-09765-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Sihle Mabhida
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Faghri February
- Department of Haematology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| |
Collapse
|
364
|
Pechlivanis S, Moebus S, Lehmann N, Erbel R, Mahabadi AA, Hoffmann P, Jöckel KH, Nöthen MM, Bachmann HS, on behalf of the Heinz Nixdorf Recall Study Investigative Group. Genetic risk scores for coronary artery disease and its traditional risk factors: Their role in the progression of coronary artery calcification-Results of the Heinz Nixdorf Recall study. PLoS One 2020; 15:e0232735. [PMID: 32379805 PMCID: PMC7205301 DOI: 10.1371/journal.pone.0232735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/06/2020] [Indexed: 01/26/2023] Open
Abstract
Background Atherosclerosis is the primary cause of coronary artery disease (CAD). Several observational studies have examined the association of traditional CAD risk factors with the progression of coronary artery calcification (CAC). In our study we investigated the effect of 11 different genetic risk scores associated with CAD and CAD risk factors on the progression of CAC. Methods and results We included 3097 participants from the Heinz Nixdorf Recall study who had available CAC measurements at baseline (CACb) and at the 5-year follow-up (CAC5y). A weighted genetic risk score for CAD and each of the CAD-associated risk factors was constructed. Multiple regression analyses were applied to i) the difference between the observed log(CAC5y+1) (log(obs)) and expected log(CAC5y+1) (log(exp)) at the 5-year follow-up following the individual’s log(CACb+1) percentile for the time between scans (log(obs)–log(exp)) and ii) the 5-year CAC progression, defined as 5*(log(CAC5y+1)–log(CACb+1))/time between the scans, adjusted for age, sex, and log(CACb+1) as well as for risk factors. The median percent deviation from the expected (CAC5y+1) and the 5-year progression of (CAC+1) in our study were 0 (first quartile: Q1; third quartile: Q3: -0.32; 0.48) and 45.4% (0%; 171.0%) respectively. In the age-, sex- and log(CACb+1)-adjusted model, the per-standard deviation (SD) increase in CAD genetic risk score was associated with the percent deviation from the expected (CAC5y+1) (9.7% (95% confidence interval: 5.2%; 14.5%), p = 1.6x10-5) and the 5-year progression of CAC (7.1% (3.0%; 11.4%), p = 0.0005). The CAD genetic risk score explains an additional 0.6% of the observed phenotypic variance for “log(obs)–log(exp)” and 0.4% for 5-year progression of CAC. Additionally, the per-SD increase in the CAC genetic risk score was associated with the percent deviation from the expected (CAC5y+1) (6.2% (1.9%; 10.8%, p = 0.005)) explaining an additional 0.2% of the observed phenotypic variance. However, the per-SD increase in the CAC genetic risk score was not associated with the 5-year progression of CAC (4.4% (0.4%; 8.5%), p = 0.03) after multiple testing. Adjusting for risk factors did not change the results. None of the other genetic risk scores showed an association with the percent deviation from the expected (CAC5y+1) or with the 5-year progression of CAC. Conclusions The association of the CAC genetic risk score and the CAD genetic risk score provides evidence that genetic determinants for CAC and CAD influence the progression of CAC.
Collapse
Affiliation(s)
- Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
- Centre for Urban Epidemiology, University Hospital Essen, Essen, Germany
| | - Nils Lehmann
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Amir A. Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Essen, Germany
| | - Per Hoffmann
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Hagen S. Bachmann
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | | |
Collapse
|
365
|
Zheng Y, Huang T, Wang T, Mei Z, Sun Z, Zhang T, Ellervik C, Chai JF, Sim X, van Dam RM, Tai ES, Koh WP, Dorajoo R, Saw SM, Sabanayagam C, Wong TY, Gupta P, Rossing P, Ahluwalia TS, Vinding RK, Bisgaard H, Bønnelykke K, Wang Y, Graff M, Voortman T, van Rooij FJA, Hofman A, van Heemst D, Noordam R, Estampador AC, Varga TV, Enzenbach C, Scholz M, Thiery J, Burkhardt R, Orho-Melander M, Schulz CA, Ericson U, Sonestedt E, Kubo M, Akiyama M, Zhou A, Kilpeläinen TO, Hansen T, Kleber ME, Delgado G, McCarthy M, Lemaitre RN, Felix JF, Jaddoe VWV, Wu Y, Mohlke KL, Lehtimäki T, Wang CA, Pennell CE, Schunkert H, Kessler T, Zeng L, Willenborg C, Peters A, Lieb W, Grote V, Rzehak P, Koletzko B, Erdmann J, Munz M, Wu T, He M, Yu C, Lecoeur C, Froguel P, Corella D, Moreno LA, Lai CQ, Pitkänen N, Boreham CA, Ridker PM, Rosendaal FR, de Mutsert R, Power C, Paternoster L, Sørensen TIA, Tjønneland A, Overvad K, Djousse L, Rivadeneira F, Lee NR, Raitakari OT, Kähönen M, Viikari J, Langhendries JP, Escribano J, Verduci E, Dedoussis G, König I, Balkau B, Coltell O, Dallongeville J, Meirhaeghe A, Amouyel P, et alZheng Y, Huang T, Wang T, Mei Z, Sun Z, Zhang T, Ellervik C, Chai JF, Sim X, van Dam RM, Tai ES, Koh WP, Dorajoo R, Saw SM, Sabanayagam C, Wong TY, Gupta P, Rossing P, Ahluwalia TS, Vinding RK, Bisgaard H, Bønnelykke K, Wang Y, Graff M, Voortman T, van Rooij FJA, Hofman A, van Heemst D, Noordam R, Estampador AC, Varga TV, Enzenbach C, Scholz M, Thiery J, Burkhardt R, Orho-Melander M, Schulz CA, Ericson U, Sonestedt E, Kubo M, Akiyama M, Zhou A, Kilpeläinen TO, Hansen T, Kleber ME, Delgado G, McCarthy M, Lemaitre RN, Felix JF, Jaddoe VWV, Wu Y, Mohlke KL, Lehtimäki T, Wang CA, Pennell CE, Schunkert H, Kessler T, Zeng L, Willenborg C, Peters A, Lieb W, Grote V, Rzehak P, Koletzko B, Erdmann J, Munz M, Wu T, He M, Yu C, Lecoeur C, Froguel P, Corella D, Moreno LA, Lai CQ, Pitkänen N, Boreham CA, Ridker PM, Rosendaal FR, de Mutsert R, Power C, Paternoster L, Sørensen TIA, Tjønneland A, Overvad K, Djousse L, Rivadeneira F, Lee NR, Raitakari OT, Kähönen M, Viikari J, Langhendries JP, Escribano J, Verduci E, Dedoussis G, König I, Balkau B, Coltell O, Dallongeville J, Meirhaeghe A, Amouyel P, Gottrand F, Pahkala K, Niinikoski H, Hyppönen E, März W, Mackey DA, Gruszfeld D, Tucker KL, Fumeron F, Estruch R, Ordovas JM, Arnett DK, Mook-Kanamori DO, Mozaffarian D, Psaty BM, North KE, Chasman DI, Qi L. Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. Eur J Epidemiol 2020; 35:685-697. [PMID: 32383070 DOI: 10.1007/s10654-020-00638-z] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (β = - 0.76, 95% CI - 2.45 to 1.08 mmHg), 0.06 mmHg lower diastolic blood pressure (β = - 0.06, 95% CI - 0.93 to 0.87 mmHg), or pulse pressure (β = - 0.65, 95% CI - 1.38 to 0.69 mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Cardiology Zhongshan Hospital, State Key Laboratory of Genetic Engineering School of Life Sciences, Human Phenome Institue, Fudan University, 2005 Songhu Road, Shanghai, 200438, China. .,Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tiange Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, Suite 1724, New Orleans, LA, 70112, USA
| | - Zhendong Mei
- Department of Cardiology Zhongshan Hospital, State Key Laboratory of Genetic Engineering School of Life Sciences, Human Phenome Institue, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhonghan Sun
- Department of Cardiology Zhongshan Hospital, State Key Laboratory of Genetic Engineering School of Life Sciences, Human Phenome Institue, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.,Department of Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Christina Ellervik
- University of Copenhagen, Copenhagen, Denmark.,Harvard Medical School, Boston, USA.,Department of Production, Research and Innovation, Region Zealand, Denmark.,Boston Children's Hospital, Boston, USA
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore.,Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore.,Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Charumathi Sabanayagam
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Tien Yin Wong
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Preeti Gupta
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | | | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen (SDCC), Niels Steensens Vej 2, 2820, Gentofte, Denmark.,COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca K Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela C Estampador
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Lund University, 21741, Malmö, Sweden
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Lund University, 21741, Malmö, Sweden
| | - Cornelia Enzenbach
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilisation Diseases, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilisation Diseases, University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilisation Diseases, University of Leipzig, Leipzig, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Ulrika Ericson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Michiaki Kubo
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Ang Zhou
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute Adelaide, Adelaide, Australia
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Marcus E Kleber
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Copenhagen, Germany
| | - Graciela Delgado
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Mark McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland.,Department of Clinical Chemistry, University of Tampere School of Medicine, 33014, Tampere, Finland
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Christina Willenborg
- Department of Clinical Chemistry, University of Tampere School of Medicine, 33014, Tampere, Finland
| | - Annette Peters
- Institute of Epidemiology and PopGen Biobank, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and PopGen Biobank, Kiel University, Kiel, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Klinikum Der Universitaet Muenchen, Munich, Germany
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Klinikum Der Universitaet Muenchen, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Klinikum Der Universitaet Muenchen, Munich, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany.,Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Department of Periodontology and Synoptic Dentistry, 14197 Berlin, Germany
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Meian He
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Caizheng Yu
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Cécile Lecoeur
- University of Lille Nord de France, CNRS UMR8199, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Philippe Froguel
- University of Lille Nord de France, CNRS UMR8199, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, University of Valencia, 46022, Valencia, Spain.,CIBER Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Luis A Moreno
- CIBER Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Growth Exercise, Nutrition and Development (GENUD) Research Group, Facultad de Ciencias de La Salud, Universidad de Zaragoza, Zaragoza, Spain
| | - Chao-Qiang Lai
- USDA ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland
| | - Colin A Boreham
- UCD Institute for Sport & Health, University College Dublin, Dublin, Ireland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham & Women's Hospital, Boston, MA, 02215, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Power
- Population, Policy and Practice, UCL Institute of Child Health, London, UK
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS82BN, UK
| | - Thorkild I A Sørensen
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS82BN, UK.,Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1353K, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark.,Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Luc Djousse
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, 6000, Cebu City, Philippines.,Department of Anthropology, Sociology, and History, University of San Carlos, 6000, Cebu City, Philippines
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, 33521, Tampere, Finland.,Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine, Turku University Hospital, 20521, Turku, Finland.,Department of Medicine, University of Turku, 20520, Turku, Finland
| | | | - Joaquin Escribano
- Paediatrics Research Unit, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Milan, Italy
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Inke König
- Institut für Medizinische Biometrie Und Statistik, Universität Zu Lübeck, Lübeck, Germany
| | - Beverley Balkau
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, 94807, Villejuif, France.,University Versailles Saint-Quentin-en-Yvelines, UMRS 1018, 78035, Versailles, France.,University Paris Sud 11, UMRS 1018, 94807, Villejuif, France
| | - Oscar Coltell
- CIBER Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Computer Languages and Systems, University Jaume I, 12071, Castellon, Spain
| | | | - Aline Meirhaeghe
- INSERM U1167, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Philippe Amouyel
- INSERM U1167, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Frédéric Gottrand
- INSERM U1286, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille, France
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Physical Activity and Health, Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Turku, Finland
| | - Harri Niinikoski
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Department of Physiology, University of Turku, Turku, Finland
| | - Elina Hyppönen
- Population, Policy and Practice, UCL Institute of Child Health, London, UK.,Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute Adelaide, Adelaide, Australia
| | - Winfried März
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical, University of Graz, Graz, Austria
| | - David A Mackey
- Centre For Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Crawley, Australia
| | - Dariusz Gruszfeld
- Department of Neonatology and Neonatal Intensive Care, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Katherine L Tucker
- Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche Des Cordeliers, 75006, Paris, France.,Université de Paris, Centre de Recherche Des Cordeliers UMR-S 1138, 75006, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche Des Cordeliers, 75006, Paris, France
| | - Ramon Estruch
- CIBER Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Internal Medicine, Hospital Clinic, IDIBAPS, 08036, Barcelona, Spain
| | - Jose M Ordovas
- USDA ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, 02111, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA.,Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA.,Department of Health Sciences, University of Washington, Seattle, WA, 98101, USA.,Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27514, USA.,Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham & Women's Hospital, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, Suite 1724, New Orleans, LA, 70112, USA.
| |
Collapse
|
366
|
Wang JL, Wang XY, Wang DK, Parker MD, Musa-Aziz R, Popple J, Guo YM, Min TX, Xia T, Tan M, Liu Y, Boron WF, Chen LM. Multiple acid-base and electrolyte disturbances upregulate NBCn1, NBCn2, IRBIT and L-IRBIT in the mTAL. J Physiol 2020; 598:3395-3415. [PMID: 32359081 DOI: 10.1113/jp279009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The roles of the Na+ /HCO3 - cotransporters NBCn1 and NBCn2 as well as their activators IRBIT and L-IRBIT in the regulation of the mTAL transport of NH4 + , HCO3 - , and NaCl are investigated. Dietary challenges of NH4 Cl, NaHCO3 or NaCl all increase the abundance of NBCn1 and NBCn2 in the outer medulla. The three challenges generally produce parallel increases in the abundance of IRBIT and L-IRBIT in the outer medulla. Both IRBIT and L-IRBIT powerfully stimulate the activities of the mTAL isoforms of NBCn1 and NBCn2 as expressed in Xenopus oocytes. Our findings support the hypothesis that NBCn1, NBCn2, IRBIT and L-IRBIT appropriately promote NH4 + shunting but oppose HCO3 - and NaCl reabsorption in the mTAL, and thus are at the nexus of the regulation pathways for multiple renal transport processes. ABSTRACT The medullary thick ascending limb (mTAL) plays a key role in urinary acid and NaCl excretion. NBCn1 and NBCn2 are present in the basolateral mTAL, where NBCn1 promotes NH4 + shunting. IRBIT and L-IRBIT (the IRBITs) are two powerful activators of certain acid-base transporters. Here we use western blotting and immunofluorescence to examine the effects of multiple acid-base and electrolyte disturbances on expression of NBCn1, NBCn2 and the IRBITs in rat kidney. We also use electrophysiology to examine the functional effects of IRBITs on NBCn1 and NBCn2 in Xenopus oocytes. NH4 Cl-induced metabolic acidosis (MAc) substantially increases protein expression of NBCn1 and NBCn2 in the outer medulla (OM) of rat kidney. Surprisingly, NaHCO3 -induced metabolic alkalosis (MAlk) and high-salt diet (HSD) also increase expression of NBCn1 and NBCn2 (effect of NaHCO3 > HSD). Moreover, all three challenges generally increase OM expression of the IRBITs. In Xenopus oocytes, the IRBITs substantially increase the activities of NBCn1 and NBCn2. We propose that upregulation of basolateral NBCn1 and NBCn2 plus the IRBITs in the mTAL: (1) promotes NH4 + shunting by increasing basolateral HCO3 - uptake to neutralize apical NH4 + uptake during MAc; (2) inhibits HCO3 - reabsorption during MAlk by opposing HCO3 - efflux via the basolateral anion exchanger AE2; and (3) inhibits NaCl reabsorption by mediating (with AE2) net NaCl backflux into the mTAL cell during HSD. Thus, NBCn1, NBCn2 and the IRBITs are at the nexus of the regulatory pathways for multiple renal transport processes.
Collapse
Affiliation(s)
- Jin-Lin Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Xiao-Yu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Deng-Ke Wang
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, University at Buffalo: The State University of New York, Buffalo, NY, 14214, USA
| | - Raif Musa-Aziz
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, Brazil
| | - Jacob Popple
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yi-Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Tian-Xin Min
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Tian Xia
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Min Tan
- School of Optical & Electronic Information, Huazhong University of Science & Technology, Wuhan, 430074, China.,Wuhan National Laboratory of Optoelectronics, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
367
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
368
|
Viinikainen J, Bryson A, Böckerman P, Elovainio M, Hutri-Kähönen N, Juonala M, Lehtimäki T, Pahkala K, Rovio S, Pulkki-Råback L, Raitakari O, Pehkonen J. Do childhood infections affect labour market outcomes in adulthood and, if so, how? ECONOMICS AND HUMAN BIOLOGY 2020; 37:100857. [PMID: 32078928 DOI: 10.1016/j.ehb.2020.100857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
A burgeoning body of literature suggests that poor childhood health leads to adverse health outcomes, lower educational attainment and weaker labour market outcomes in adulthood. We focus on an important but under-researched topic, which is the role played by infection-related hospitalization (IRH) in childhood and its links to labour market outcomes later in life. The participants aged 24-30 years in 2001 N = 1706 were drawn from the Young Finns Study, which includes comprehensive registry data on IRHs in childhood at ages 0-18 years. These data are linked to longitudinal registry information on labour market outcomes (2001-2012) and parental background (1980). The estimations were performed using ordinary least squares (OLS). The results showed that having an additional IRH is associated with lower log earnings (b = -0.110, 95 % confidence interval (CI): -0.193; -0.026), fewer years of being employed (b = -0.018, 95 % CI: -0.031; -0.005), a higher probability of receiving any social income transfers (b = 0.012, 95 % CI: -0.002; 0.026) and larger social income transfers, conditional on receiving any (b = 0.085, 95 % CI: 0.025; 0.145). IRHs are negatively linked to human capital accumulation, which explains a considerable part of the observed associations between IRHs and labour market outcomes. We did not find support for the hypothesis that adult health mediates the link.
Collapse
Affiliation(s)
- Jutta Viinikainen
- Jyväskylä University School of Business and Economics, P.O.Box 35, FI-40014, Jyväskylä, Finland.
| | - Alex Bryson
- University College London, NIESR, London, United Kingdom and IZA, Bonn, Germany.
| | - Petri Böckerman
- Jyväskylä University School of Business and Economics, University of Jyväskylä, Jyväskylä, Finland; Labour Institute for Economic Research, Helsinki, Finland and IZA, Bonn, Germany.
| | - Marko Elovainio
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland and National Institute for Health and Welfare, Helsinki, Finland.
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland, Division of Medicine, Turku University Hospital, Turku, Finland, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center, Tampere University, Tampere, Finland.
| | - Katja Pahkala
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, Paavo Nurmi Centre, Turku, Finland.
| | - Suvi Rovio
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
| | - Laura Pulkki-Råback
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki,Finland.
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.
| | - Jaakko Pehkonen
- Jyväskylä University School of Business and Economics, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
369
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|
370
|
Chang H, Yao S, Tritchler D, Hullar MA, Lampe JW, Thompson LU, McCann SE. Genetic Variation in Steroid and Xenobiotic Metabolizing Pathways and Enterolactone Excretion Before and After Flaxseed Intervention in African American and European American Women. Cancer Epidemiol Biomarkers Prev 2020; 28:265-274. [PMID: 30709839 DOI: 10.1158/1055-9965.epi-18-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Metabolism and excretion of the phytoestrogen enterolactone (ENL), which has been associated with breast cancer risk, may be affected by variation in steroid hormone and xenobiotic-metabolizing genes. METHODS We conducted a randomized, crossover flaxseed intervention study in 252 healthy, postmenopausal women [137 European ancestry (EA) and 115 African ancestry (AA)] from western New York. Participants were randomly assigned to maintain usual diet or consume 10 g/day ground flaxseed for 6 weeks. After a 2-month washout period, participants crossed over to the other diet condition for an additional 6 weeks. Urinary ENL excretion was measured by gas chromatography-mass spectrometry and 70 polymorphisms in 29 genes related to steroid hormone and xenobiotic metabolism were genotyped. Mixed additive genetic models were constructed to examine association of genetic variation with urinary ENL excretion at baseline and after the flaxseed intervention. RESULTS SNPs in several genes were nominally (P < 0.05) associated with ENL excretion at baseline and/or after intervention: ESR1, CYP1B1, COMT, CYP3A5, ARPC1A, BCL2L11, SHBG, SLCO1B1, and ZKSCAN5. A greater number of SNPs were associated among AA women than among EA women, and no SNPs were associated in both races. No SNP-ENL associations were statistically significant after correction for multiple comparisons. CONCLUSIONS Variation in several genes related to steroid hormone metabolism was associated with lignan excretion at baseline and/or after flaxseed intervention among postmenopausal women. IMPACT These findings may contribute to our understanding of the differences observed in urinary ENL excretion among AA and EA women and thus hormone-related breast cancer risk.
Collapse
Affiliation(s)
- Huiru Chang
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David Tritchler
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | | | | | - Lilian U Thompson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Susan E McCann
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
371
|
Psara E, Pentieva K, Ward M, McNulty H. Critical review of nutrition, blood pressure and risk of hypertension through the lifecycle: do B vitamins play a role? Biochimie 2020; 173:76-90. [PMID: 32289470 DOI: 10.1016/j.biochi.2020.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
Hypertension is the leading cause of preventable mortality worldwide, contributing to over 9 million deaths per annum, predominantly owing to cardiovascular disease. The association of obesity, physical inactivity and alcohol with elevated blood pressure (BP) is firmly established. Weight loss or other dietary strategies, such as the Dietary Approaches to Stop Hypertension (DASH) diet, have been shown to be effective in lowering BP. Additionally, specific nutrients are recognised to contribute to BP, with higher sodium intake linked with an increased risk of hypertension, while potassium is associated with a reduced risk of hypertension. Of note, emerging evidence has identified a novel role for one-carbon metabolism and the related B vitamins, particularly riboflavin, in BP. Specifically in adults genetically at risk of developing hypertension, owing to the common C677T polymorphism in MTHFR, supplemental riboflavin (co-factor for MTHFR) was shown in randomised trials to lower systolic BP by up to 13 mmHg. A BP response to intervention of this magnitude could have important clinical impacts, given that a reduction in systolic BP of 10 mmHg is estimated to decrease stroke risk by 40%. This review aims to explore the factors contributing to hypertension across the lifecycle and to critically evaluate the evidence supporting a role for nutrition, particularly folate-related B vitamins, in BP and risk of hypertension. In addition, gaps in our current knowledge that warrant future research in this area, will be identified.
Collapse
Affiliation(s)
- Elina Psara
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, United Kingdom
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, United Kingdom
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, United Kingdom.
| |
Collapse
|
372
|
Association between Single Nucleotide Polymorphisms in Cardiovascular Developmental Critical Genes and Hypertension: A Propensity Score Matching Analysis. Int J Hypertens 2020; 2020:9185697. [PMID: 32257424 PMCID: PMC7106934 DOI: 10.1155/2020/9185697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular development critical genes are key determinants in cardiovascular diseases. We hypothesize that SNPs in these genes may play critical roles in the development of hypertension. Therefore, we enrolled 516 paired hypertension patients and controls in a total of 2,742 subjects in a cross-sectional population study by the propensity score matching (PSM) method. Twenty-one SNPs from 5 cardiovascular developmental related genes were detected by the improved multiplex ligase detection reaction (iMLDR) method. Conditioned logistic regression under three different genetic models, namely, additive model, dominant model, and recessive model, was performed. The odds ratio (ORs) and 95% confidence intervals (95% CIs) were used to estimate the associations of SNPs with hypertension. We found that the distribution of genotypes at rs833061, rs3025010, and rs699947 within the VEGFA gene and the distribution of alleles at rs3025010 in hypertension subjects were different from those in controls. Both rs833061 and rs3025010 were associated with hypertension in crude models, but only rs3025010 remains associated with hypertension after adjusting with confounding factors in the additive model and the dominant model. We also found that hypertension subjects with C/T and C/C genotypes at rs3025010 had lower SBP and DBP levels. In addition, rs3025010 could interact with rs6784267 within the CCM3 gene in the association. In conclusion, our findings suggest that rs3025010 may play a role in the pathogenesis of hypertension, which may be a potential target for individualized prevention and treatment of hypertension.
Collapse
|
373
|
Westerman K, Liu Q, Liu S, Parnell LD, Sebastiani P, Jacques P, DeMeo DL, Ordovás JM. A gene-diet interaction-based score predicts response to dietary fat in the Women's Health Initiative. Am J Clin Nutr 2020; 111:893-902. [PMID: 32135010 PMCID: PMC7138684 DOI: 10.1093/ajcn/nqaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although diet response prediction for cardiometabolic risk factors (CRFs) has been demonstrated using single genetic variants and main-effect genetic risk scores, little investigation has gone into the development of genome-wide diet response scores. OBJECTIVE We sought to leverage the multistudy setup of the Women's Health Initiative cohort to generate and test genetic scores for the response of 6 CRFs (BMI, systolic blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, and fasting glucose) to dietary fat. METHODS A genome-wide interaction study was undertaken for each CRF in women (n ∼ 9000) not participating in the dietary modification (DM) trial, which focused on the reduction of dietary fat. Genetic scores based on these analyses were developed using a pruning-and-thresholding approach and tested for the prediction of 1-y CRF changes as well as long-term chronic disease development in DM trial participants (n ∼ 5000). RESULTS Only 1 of these genetic scores, for LDL cholesterol, predicted changes in the associated CRF. This 1760-variant score explained 3.7% (95% CI: 0.09, 11.9) of the variance in 1-y LDL cholesterol changes in the intervention arm but was unassociated with changes in the control arm. In contrast, a main-effect genetic risk score for LDL cholesterol was not useful for predicting dietary fat response. Further investigation of this score with respect to downstream disease outcomes revealed suggestive differential associations across DM trial arms, especially with respect to coronary heart disease and stroke subtypes. CONCLUSIONS These results lay the foundation for the combination of many genome-wide gene-diet interactions for diet response prediction while highlighting the need for further research and larger samples in order to achieve robust biomarkers for use in personalized nutrition.
Collapse
Affiliation(s)
- Kenneth Westerman
- Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Qing Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Laurence D Parnell
- Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Paul Jacques
- Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - José M Ordovás
- Jean Mayer-United States Department of Agriculture Human Nutrition Research Center on Aging, Boston, MA, USA
- Research Institute on Food & Health Sciences, Madrid Institute for Advanced Studies, Madrid, Spain
- National Cardiovascular Research Center, Madrid, Spain
| |
Collapse
|
374
|
Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, Colacino JA. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999-2014. ENVIRONMENT INTERNATIONAL 2020; 137:105496. [PMID: 32113086 PMCID: PMC7137529 DOI: 10.1016/j.envint.2020.105496] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Stark racial disparities in disease incidence among American women remain a persistent public health challenge. These disparities likely result from complex interactions between genetic, social, lifestyle, and environmental risk factors. The influence of environmental risk factors, such as chemical exposure, however, may be substantial and is poorly understood. OBJECTIVES We quantitatively evaluated chemical-exposure disparities by race/ethnicity, life stage, and time in United States (US) women (n = 38,080) by using biomarker data for 143 chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. METHODS We applied a series of survey-weighted, generalized linear models using data from the entire NHANES women population along with cycle and age-group stratified subpopulations. The outcome was chemical biomarker concentration, and the main predictor was race/ethnicity with adjustment for age, socioeconomic status, smoking habits, and NHANES cycle. RESULTS Compared to non-Hispanic White women, the highest disparities were observed for non-Hispanic Black, Mexican American, Other Hispanic, and Other Race/Multi-Racial women with higher levels of pesticides and their metabolites, including 2,5-dichlorophenol, o,p'-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with personal care and consumer product compounds, including parabens and monoethyl phthalate, as well as several metals, such as mercury and arsenic. Moreover, for Mexican American, Other Hispanic, and non-Hispanic black women, there were several exposure disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol concentrations. Exposure levels for methyl and propyl parabens, however, were the highest in non-Hispanic black compared to non-Hispanic white children with average differences exceeding 4-fold. Exposure disparities for methyl and propyl parabens are increasing over time in Other Race/Multi-Racial women while fluctuating for non-Hispanic Black, Mexican American, and Other Hispanic. Cotinine levels are among the highest in Non-Hispanic White women compared to Mexican American and Other Hispanic women with disparities plateauing and increasing, respectively. DISCUSSION We systematically evaluated differences in chemical exposures across women of various race/ethnic groups and across age groups and time. Our findings could help inform chemical prioritization in designing epidemiological and toxicological studies. In addition, they could help guide public health interventions to reduce environmental and health disparities across populations.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Kvasnicka
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
375
|
Blood pressure targets in chronic kidney disease: an update on the evidence. Curr Opin Nephrol Hypertens 2020; 29:327-332. [PMID: 32167996 DOI: 10.1097/mnh.0000000000000601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Hypertension is the leading modifiable cause of cardiovascular events and of mortality and is generally considered as a direct cause of chronic kidney disease. Defining optimal blood pressure targets in patients with chronic kidney disease is therefore of critical importance. RECENT FINDINGS Over the recent years, results and post-hoc analyses of several important trials comparing blood pressure targets which included patients with chronic kidney disease have been published. Although these results provide important means to understand the consequences of high blood pressure and to improve the management of hypertension in chronic kidney disease, they led to remarkably different interpretations and recommendations in the current guidelines. SUMMARY The present review summarizes the current evidence and areas of controversy for the definition of blood pressure targets in patients with chronic kidney disease.
Collapse
|
376
|
Silveira-Nunes G, Durso DF, Jr. LRADO, Cunha EHM, Maioli TU, Vieira AT, Speziali E, Corrêa-Oliveira R, Martins-Filho OA, Teixeira-Carvalho A, Franceschi C, Rampelli S, Turroni S, Brigidi P, Faria AMC. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front Pharmacol 2020; 11:258. [PMID: 32226382 PMCID: PMC7080704 DOI: 10.3389/fphar.2020.00258] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a major global health challenge, as it represents the main risk factor for stroke and cardiovascular disease. It is a multifactorial clinical condition characterized by high and sustained levels of blood pressure, likely resulting from a complex interplay of endogenous and environmental factors. The gut microbiota has been strongly supposed to be involved but its role in hypertension is still poorly understood. In an attempt to fill this gap, here we characterized the microbial composition of fecal samples from 48 hypertensive and 32 normotensive Brazilian individuals by next-generation sequencing of the 16S rRNA gene. In addition, the cytokine production of peripheral blood samples was investigated to build an immunological profile of these individuals. We identified a dysbiosis of the intestinal microbiota in hypertensive subjects, featured by reduced biodiversity and distinct bacterial signatures compared with the normotensive counterpart. Along with a reduction in Bacteroidetes members, hypertensive individuals were indeed mainly characterized by increased proportions of Lactobacillus and Akkermansia while decreased relative abundances of well-known butyrate-producing commensals, including Roseburia and Faecalibacterium within the Lachnospiraceae and Ruminococcaceae families. We also observed an inflamed immune profile in hypertensive individuals with an increase in TNF/IFN-γ ratio, and in TNF and IL-6 production when compared to normotensive ones. Our work provides the first evidence of association of hypertension with altered gut microbiota and inflammation in a Brazilian population. While lending support to the existence of potential microbial signatures of hypertension, likely to be robust to age and geography, our findings point to largely neglected bacteria as potential contributors to intestinal homeostasis loss and emphasize the high vulnerability of hypertensive individuals to inflammation-related disorders.
Collapse
Affiliation(s)
- Gabriela Silveira-Nunes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Medicina, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora – Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Danielle Fernandes Durso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Andrea Teixeira-Carvalho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
377
|
Siedlinski M, Jozefczuk E, Xu X, Teumer A, Evangelou E, Schnabel RB, Welsh P, Maffia P, Erdmann J, Tomaszewski M, Caulfield MJ, Sattar N, Holmes MV, Guzik TJ. White Blood Cells and Blood Pressure: A Mendelian Randomization Study. Circulation 2020; 141:1307-1317. [PMID: 32148083 PMCID: PMC7176352 DOI: 10.1161/circulationaha.119.045102] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND High blood pressure (BP) is a risk factor for cardiovascular morbidity and mortality. While BP is regulated by the function of kidney, vasculature, and sympathetic nervous system, recent experimental data suggest that immune cells may play a role in hypertension. METHODS We studied the relationship between major white blood cell types and blood pressure in the UK Biobank population and used Mendelian randomization (MR) analyses using the ≈750 000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies to examine which leukocyte populations may be causally linked to BP. RESULTS A positive association between quintiles of lymphocyte, monocyte, and neutrophil counts, and increased systolic BP, diastolic BP, and pulse pressure was observed (eg, adjusted systolic BP mean±SE for 1st versus 5th quintile respectively: 140.13±0.08 versus 141.62±0.07 mm Hg for lymphocyte, 139.51±0.08 versus 141.84±0.07 mm Hg for monocyte, and 137.96±0.08 versus 142.71±0.07 mm Hg for neutrophil counts; all P<10-50). Using 121 single nucleotide polymorphisms in MR, implemented through the inverse-variance weighted approach, we identified a potential causal relationship of lymphocyte count with systolic BP and diastolic BP (causal estimates: 0.69 [95% CI, 0.19-1.20] and 0.56 [95% CI, 0.23-0.90] of mm Hg per 1 SD genetically elevated lymphocyte count, respectively), which was directionally concordant to the observational findings. These inverse-variance weighted estimates were consistent with other robust MR methods. The exclusion of rs3184504 SNP in the SH2B3 locus attenuated the magnitude of the signal in some of the MR analyses. MR in the reverse direction found evidence of positive effects of BP indices on counts of monocytes, neutrophils, and eosinophils but not lymphocytes or basophils. Subsequent MR testing of lymphocyte count in the context of genetic correlation with renal function or resting and postexercise heart rate demonstrated a positive association of lymphocyte count with urine albumin-to-creatinine ratio. CONCLUSIONS Observational and genetic analyses demonstrate a concordant, positive and potentially causal relationship of lymphocyte count with systolic BP and diastolic BP.
Collapse
Affiliation(s)
- Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.).,Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.)
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (X.X., M.T.)
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Germany (A.T.).,German Centre for Cardiovascular Research partner site Greifswald, Germany (A.T.)
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (E.E.)
| | - Renate B Schnabel
- University Heart Center Hamburg Eppendorf, German Center for Cardiovascular Research partner site Hamburg/Kiel/Lübeck, Germany (R.B.S.)
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity, and Inflammation (P.M.), University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Italy (P.M.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Germany (J.E.)
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (X.X., M.T.)
| | - Mark J Caulfield
- William Harvey Research Institute, National Institute for Health Research Biomedical Research Centre at Barts, Queen Mary University of London, United Kingdom (M.J.C.)
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (M.V.H.)
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.).,Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| |
Collapse
|
378
|
Lip S, Padmanabhan S. Genomics of Blood Pressure and Hypertension: Extending the Mosaic Theory Toward Stratification. Can J Cardiol 2020; 36:694-705. [PMID: 32389342 PMCID: PMC7237883 DOI: 10.1016/j.cjca.2020.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
The genetic architecture of blood pressure (BP) now includes more than 30 genes, with rare mutations resulting in inherited forms of hypertension or hypotension, and 1477 common single-nucleotide polymorphisms (SNPs). These signify the heterogeneity of the BP phenotype and support the mosaic theory of hypertension. The majority of monogenic syndromes involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, and a smaller fraction are due to rare neuroendocrine tumours of the adrenal glands and the sympathetic and parasympathetic paraganglia. Somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D) and adenosine triphosphatases (ATP1A1 and ATP2B3) highlight the central role of calcium signalling in autonomous aldosterone production by the adrenal gland. The per-SNP BP effect is small for SNPs according to genome-wide association studies (GWAS), and all of the GWAS-identified BP SNPs explain ∼ 27% of the 30%-50% estimated heritability of BP. Uromodulin is a novel pathway identified by GWAS, and it has now progressed to a genotype-directed clinical trial. The majority of the GWAS-identified BP SNPs show pleiotropic associations, and unravelling those signals and underpinning biological pathways offers potential opportunities for drug repurposing. The GWAS signals are predominantly from Europe-centric studies with other ancestries underrepresented, however, limiting the generalisability of the findings. In this review, we leverage the burgeoning list of polygenic and monogenic variants associated with BP regulation along with phenome-wide studies in the context of the mosaic theory of hypertension, and we explore potential translational aspects that underlie different hypertension subtypes.
Collapse
Affiliation(s)
- Stefanie Lip
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
379
|
Deng AY. Modularity/non-cumulativity of quantitative trait loci on blood pressure. J Hum Hypertens 2020; 34:432-439. [PMID: 32123286 DOI: 10.1038/s41371-020-0319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/09/2022]
Abstract
Large numbers of quantitative trait loci (QTLs) for blood pressure (BP) exist and have long been thought to function by accumulating their individual miniscule effects. Recent experimental evidence in the functional biology of BP control has tested this intuitive assumption. A new paradigm has emerged that BP is biologically determined in modularity by multiple QTLs. Functionally, when a master regulator is taken out, distinct epistatic modules organize biological 'blocks' into a genetic architecture, and serve as basic functional cores from which numerous QTLs act together to physiologically formulate BP. An epistatic module refers to the grouping of QTLs that perform their functions epistatically to one another and influence BP as a group. The modularity mechanism framework indicates that BP as a quantitatively-measured trait is not cumulatively determined and implies that the QTLs in the same epistatic module may participate in the same pathway leading to the BP control, and the QTLs from separate epistatic modules may act in divergent but parallel pathways. This mechanistic conceptualization and subsequent validations synergize with anticipated demands from current human epidemiological studies, since the outcome from them primarily implicates single nucleotide polymorphisms with unknown functions. Eventually, functional understandings of the human results have to be realized by their pathogenic directionality and mechanisms biologically controlling BP.
Collapse
Affiliation(s)
- Alan Y Deng
- Research Centre-Centre hospitalier de l'Université de Montréal (CRCHUM), Department de medicine, Faculty of medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
380
|
Mens MMJ, Maas SCE, Klap J, Weverling GJ, Klatser P, Brakenhoff JPJ, van Meurs JBJ, Uitterlinden AG, Ikram MA, Kavousi M, Ghanbari M. Multi-Omics Analysis Reveals MicroRNAs Associated With Cardiometabolic Traits. Front Genet 2020; 11:110. [PMID: 32174972 PMCID: PMC7056871 DOI: 10.3389/fgene.2020.00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression. Extensive research has explored the role of miRNAs in the risk for type 2 diabetes (T2D) and coronary heart disease (CHD) using single-omics data, but much less by leveraging population-based omics data. Here we aimed to conduct a multi-omics analysis to identify miRNAs associated with cardiometabolic risk factors and diseases. First, we used publicly available summary statistics from large-scale genome-wide association studies to find genetic variants in miRNA-related sequences associated with various cardiometabolic traits, including lipid and obesity-related traits, glycemic indices, blood pressure, and disease prevalence of T2D and CHD. Then, we used DNA methylation and miRNA expression data from participants of the Rotterdam Study to further investigate the link between associated miRNAs and cardiometabolic traits. After correcting for multiple testing, 180 genetic variants annotated to 67 independent miRNAs were associated with the studied traits. Alterations in DNA methylation levels of CpG sites annotated to 38 of these miRNAs were associated with the same trait(s). Moreover, we found that plasma expression levels of 8 of the 67 identified miRNAs were also associated with the same trait. Integrating the results of different omics data showed miR-10b-5p, miR-148a-3p, miR-125b-5p, and miR-100-5p to be strongly linked to lipid traits. Collectively, our multi-omics analysis revealed multiple miRNAs that could be considered as potential biomarkers for early diagnosis and progression of cardiometabolic diseases.
Collapse
Affiliation(s)
- Michelle M J Mens
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jaco Klap
- World Without Disease Accelerator, Data Sciences & Prevention Biomarkers, Johnson & Johnson, Leiden, Netherlands
| | - Gerrit Jan Weverling
- World Without Disease Accelerator, Data Sciences & Prevention Biomarkers, Johnson & Johnson, Leiden, Netherlands
| | - Paul Klatser
- World Without Disease Accelerator, Data Sciences & Prevention Biomarkers, Johnson & Johnson, Leiden, Netherlands
| | - Just P J Brakenhoff
- World Without Disease Accelerator, Data Sciences & Prevention Biomarkers, Johnson & Johnson, Leiden, Netherlands
| | - Joyce B J van Meurs
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
381
|
Association of Serum Uric Acid with Metabolic Syndrome and Its Components: A Mendelian Randomization Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6238693. [PMID: 32258131 PMCID: PMC7063870 DOI: 10.1155/2020/6238693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Background The role of uric acid on metabolic syndrome (MetS) has always been controversial. This study aims to explore associations between uric acid with MetS and its components in Chinese female health check-up population. Methods 1381 subjects constituted the longitudinal health check-up cohort. Health examination and genotyping were performed. Unadjusted and adjusted observational analyses were implemented to evaluate observational associations between uric acid with MetS and its components. Mendelian randomization analysis was performed to estimate the causal effect using variation at rs11722228 (SLC2A9) as an instrument for uric acid. Results An increase of 65% in risk of MetS per standard deviation increase in uric acid was found using unadjusted observational analyses. This association attenuated on adjustment for potential confounders. Similar patterns were found in the association analyses of uric acid with hyperglycemia, hypertension, and dyslipidemia. Neither by performing unadjusted nor adjusted analysis did we see evidence for association of uric acid on overweight and obesity. Mendelian randomization analyses showed no evidence of causal association between uric acid and MetS and MetS components. Conclusions We found no causal evidence to support that increased serum uric acid is a causal risk factor for MetS or its components. Hence, there remains no strong evidence for the effeteness of undergoing urate-lowering therapy to prevent the onset of MetS or cardiovascular disease in health management.
Collapse
|
382
|
Schiffrin EL. How Structure, Mechanics, and Function of the Vasculature Contribute to Blood Pressure Elevation in Hypertension. Can J Cardiol 2020; 36:648-658. [PMID: 32389338 DOI: 10.1016/j.cjca.2020.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Large conduit arteries and the microcirculation participate in the mechanisms of elevation of blood pressure (BP). Large vessels play roles predominantly in older subjects, with stiffening progressing after middle age leading to increases in systolic BP found in most humans with aging. Systolic BP elevation and increased pulsatility penetrate deeper into the distal vasculature, leading to microcirculatory injury, remodelling, and associated endothelial dysfunction. The result is target organ damage in the heart, brain, and kidney. In younger individuals genetically predisposed to high BP, increased salt intake or other exogenous or endogenous risk factors for hypertension, including overweight and excess alcohol intake, lead to enhanced sympathetic activity and vasoconstriction. Enhanced vasoconstrictor responses and myogenic tone become persistent when embedded in an increased extracellular matrix, resulting in remodelling of resistance arteries with a narrowed lumen and increased media-lumen ratio. Stimulation of the renin-angiotensin-aldosterone and endothelin systems and inflammatory and immune activation, to which gut microbiome dysbiosis may contribute as a result of salt intake, also participate in the injury and remodelling of the microcirculation and endothelial dysfunction. Inflammation of perivascular fat and loss of anticontractile factors play roles as well in microvessel remodelling. Exaggerated myogenic tone leads to closure of terminal arterioles, collapse of capillaries and venules, functional rarefaction, and eventually to anatomic rarefaction, compromising tissue perfusion. The remodelling of the microcirculation raises resistance to flow, and accordingly raises BP in a feedback process that over years results in stiffening of conduit arteries and systo-diastolic or predominantly systolic hypertension and, more rarely, predominantly diastolic hypertension. Thus, at different stages of life and the evolution of hypertension, large vessels and the microcirculation interact to contribute to BP elevation.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
383
|
Mangum KD, Freeman EJ, Magin JC, Taylor JM, Mack CP. Transcriptional and posttranscriptional regulation of the SMC-selective blood pressure-associated gene, ARHGAP42. Am J Physiol Heart Circ Physiol 2020; 318:H413-H424. [PMID: 31886719 PMCID: PMC7052622 DOI: 10.1152/ajpheart.00143.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Abstract
We previously showed that ARHGAP42 is a smooth muscle cell (SMC)-selective, RhoA-specific GTPase activating protein that regulates blood pressure and that a minor allele single nucleotide variation within a DNAse hypersensitive regulatory element in intron1 (Int1DHS) increased ARHGAP42 expression by promoting serum response factor binding. The goal of the current study was to identify additional transcriptional and posttranscriptional mechanisms that control ARHGAP42 expression. Using deletion/mutation, gel shift, and chromatin immunoprecipitation experiments, we showed that recombination signal binding protein for immunoglobulin κ-J region (RBPJ) and TEA domain family member 1 (TEAD1) binding to a conserved core region was required for full IntDHS transcriptional activity. Importantly, overexpression of the notch intracellular domain (NICD) or plating SMCs on recombinant jagged-1 increased IntDHS activity and endogenous ARHGAP42 expression while siRNA-mediated knockdown of TEAD1 inhibited ARHGAP42 mRNA levels. Re-chromatin immunoprecipitation experiments indicated that RBPJ and TEAD1 were bound to the Int1DHS enhancer at the same time, and coimmunoprecipitation assays indicated that these factors interacted physically. Our results also suggest TEAD1 and RBPJ bound cooperatively to the Int1DHS and that the presence of TEAD1 promoted the recruitment of NICD by RBPJ. Finally, we showed that ARHGAP42 expression was inhibited by micro-RNA 505 (miR505) which interacted with the ARHGAP42 3'-untranslated region (UTR) to facilitate its degradation and by AK124326, a long noncoding RNA that overlaps with the ARHGAP42 transcription start site on the opposite DNA strand. Since siRNA-mediated depletion of AK124326 was associated with increased H3K9 acetylation and RNA Pol-II binding at the ARHGAP42 gene, it is likely that AK124326 inhibits ARHGAP42 transcription.NEW & NOTEWORTHY First, RBPJ and TEAD1 converge at an intronic enhancer to regulate ARHGAP42 expression in SMCs. Second, TEAD1 and RBPJ interact physically and bind cooperatively to the ARHGAP42 enhancer. Third, miR505 interacts with the ARHGAP42 3'-UTR to facilitate its degradation. Finally, LncRNA, AK124326, inhibits ARHGAP42 transcription.
Collapse
Affiliation(s)
- Kevin D Mangum
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Emily J Freeman
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Justin C Magin
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Joan M Taylor
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Christopher P Mack
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| |
Collapse
|
384
|
Van Tassell JC, Shimbo D, Hess R, Kittles R, Wilson JG, Jorde LB, Li M, Lange LA, Lange EM, Muntner P, Bress AP. Association of West African ancestry and blood pressure control among African Americans taking antihypertensive medication in the Jackson Heart Study. J Clin Hypertens (Greenwich) 2020; 22:157-166. [PMID: 32049421 PMCID: PMC7219977 DOI: 10.1111/jch.13824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023]
Abstract
African Americans have a wide range of continental genetic ancestry. It is unclear whether racial differences in blood pressure (BP) control are related to ancestral background. The authors analyzed data from the Jackson Heart Study, a cohort exclusively comprised of self-identified African Americans, to assess the association between estimated West African ancestry (WAA) and BP control (systolic and diastolic BP < 140/90 mm Hg). Three nested modified Poisson regression models were used to calculate prevalence ratios for BP control associated with the three upper quartiles, separately, vs the lowest quartile of West African ancestry. The authors analyzed data from 1658 participants with hypertension who reported taking all of their antihypertensive medications in the previous 24 hours. WAA was estimated using 389 ancestry informative markers and categorized into quartiles (Q1: <73.7%, Q2: >73.7%-81.0%, Q3: >81.0%-86.3%, and Q4: >86.3%). The proportion of participants with controlled BP in the lowest-to-highest WAA quartile was 75.2%, 76.1%, 76.6%, and 74.4%. The prevalence ratios (95% CI) for controlled BP comparing Q2, Q3, and Q4 to Q1 of WAA were 1.00 (0.93-1.08), 1.02 (0.94-1.10), and 0.99 (0.91-1.07), respectively. Among African Americans in the Jackson Heart Study taking antihypertensive medication, BP control rates did not differ across quartiles of WAA.
Collapse
Affiliation(s)
| | - Daichi Shimbo
- Department of MedicineColumbia UniversityNew YorkNew York
| | - Rachel Hess
- Division of Health System Innovation and ResearchDepartment of Population Health SciencesUniversity of UtahSalt Lake CityUtah
| | - Rick Kittles
- Division of Health EquitiesDepartment of Population SciencesCity of HopeDuarteCalifornia
| | - James G. Wilson
- Department of Physiology and BiophysicsUniversity of MississippiJacksonMississippi
| | - Lynn B. Jorde
- Department of Human GeneticsUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Man Li
- Division of Nephrology & HypertensionDepartment of Internal MedicineUniversity of UtahSalt Lake CityUtah
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized MedicineDepartment of MedicineUniversity of Colorado, Anschutz Medical CampusAuroraColorado
| | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized MedicineDepartment of MedicineUniversity of Colorado, Anschutz Medical CampusAuroraColorado
| | - Paul Muntner
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Adam P. Bress
- Division of Health System Innovation and ResearchDepartment of Population Health SciencesUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
385
|
Cui Z, Meng X, Zhuang S, Liu Z, Zhou F, Tian Y. Schizophrenia, Bipolar Disorder, and Alzheimer's Disease are not Causal Factors of Bone Mineral Density: A Mendelian Randomization Analysis. Calcif Tissue Int 2020; 106:131-146. [PMID: 31679055 DOI: 10.1007/s00223-019-00625-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Until recently, it remains unclear whether schizophrenia, bipolar disorder (BD), and Alzheimer's disease (AD) is associated with bone mineral density (BMD). We aimed to investigate the causal effects of schizophrenia, BD and AD on BMD with Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) strongly associated with these three neuropsychiatric diseases as instrumental variables were selected from genome-wide association studies in the MR Base database. We analyzed the effects of these SNPs on the femoral neck BMD (FN-BMD), lumbar spine BMD (LS-BMD) and forearm BMD (FA-BMD), and evaluated the heterogeneities and pleiotropy of these genetic variants. We also evaluated the potential confounding factors in the association between these three neuropsychiatric diseases and the BMD level. It was found that none of these genetic variants were significantly associated with BMD or confounding factors. Using these genetic variants, we did not find statistically significant causal effects of per unit increase in the log-odds of having schizophrenia, BD or AD with FN-BMD, LS-BMD and FA-BMD changes (e.g. schizophrenia and FN-BMD, MR-Egger OR 0.9673, 95% CI 0.8382 to 1.1163, p = 0.6519). The MR results also revealed that directional pleiotropy was unlikely to bias the causality (e.g., schizophrenia and FN-BMD, intercept = 0.0023, p = 0.6887), and no evidence of heterogeneity was found between the genetic variants (e.g., schizophrenia and FN-BMD, MR-Egger Q = 46.1502, I2 = 0.0899, p = 0.3047). Our MR study did not support causal effects of increased risk of schizophrenia, BD and AD status with BMD level.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiangyu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siying Zhuang
- Wuhan University School of Medicine, Wuhan, Hubei, China
| | - Zhaorui Liu
- Peking University Sixth Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
| | - Yun Tian
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China.
| |
Collapse
|
386
|
Thériault S, Sjaarda J, Chong M, Hess S, Gerstein H, Paré G. Identification of Circulating Proteins Associated With Blood Pressure Using Mendelian Randomization. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002605. [PMID: 31928076 DOI: 10.1161/circgen.119.002605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertension is a common modifiable risk factor for cardiovascular disease and mortality. Pathophysiological mechanisms leading to hypertension remain incompletely understood. Mendelian randomization (MR) allows the evaluation of the causal role of markers by minimizing the risk of biases such as reverse causation and confounding. We aimed to identify novel circulating proteins associated with blood pressure through a comprehensive screen of 227 blood biomarkers using MR. METHODS Genetic determinants of 227 biomarkers were identified in ORIGIN (Outcome Reduction With Initial Glargine Intervention; URL: http://www.clinicaltrials.gov. Unique identifier: NCT00069784) participants (N=4147) and combined with genetic effects on systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure from the International Consortium for Blood Pressure (74 064 individuals) using MR. Results were replicated in the UK Biobank (up to 319 103 individuals) and using another biomarker dataset (N=3301). MR analyses with cardiovascular risk factors and outcomes as well as other biomarkers were performed to further evaluate the mechanisms involved. RESULTS Six biomarkers were associated with blood pressure using MR after adjustment for multiple hypothesis testing. Relationships between NT-proBNP (N-terminal Pro-B-type natriuretic peptide), systolic blood pressure, and diastolic blood pressure confirmed previous reports. Novel circulating proteins associated with blood pressure were also identified. uPA (urokinase-type plasminogen activator) was related to systolic blood pressure; ADM (adrenomedullin) was related to systolic blood pressure and pulse pressure; IL (interleukin) 16 was related to diastolic blood pressure; cFn (cellular fibronectin) and IGFBP3 (insulin-like growth factor-binding protein 3) were related to pulse pressure. With the exception of IL16 and diastolic blood pressure (P=0.58), these relationships were validated in the UK Biobank (P<0.0001). Further MR analyses with cardiovascular risk factors and outcomes showed relationships between NT-proBNP and large-artery atherosclerotic stroke, IGFBP3 and diabetes mellitus as well as cFn and body mass index. CONCLUSIONS We identified novel biomarkers associated with blood pressure using MR. These markers could prove useful for risk assessment and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Thériault
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute (S.T., J.S., M.C., H.G., G.P.), McMaster University, Hamilton, ON, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada (S.T.)
| | - Jennifer Sjaarda
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute (S.T., J.S., M.C., H.G., G.P.), McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine (J.S., M.C., G.P), McMaster University, Hamilton, ON, Canada
| | - Michael Chong
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute (S.T., J.S., M.C., H.G., G.P.), McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine (J.S., M.C., G.P), McMaster University, Hamilton, ON, Canada
| | - Sibylle Hess
- R&D, Translational Medicine and Early Development, Biomarkers and Clinical Bioanalyses, Sanofi Aventis Deutschland GmbH Frankfurt, Germany (S.H.)
| | - Hertzel Gerstein
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute (S.T., J.S., M.C., H.G., G.P.), McMaster University, Hamilton, ON, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute (S.T., J.S., M.C., H.G., G.P.), McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine (J.S., M.C., G.P), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
387
|
Zorkoltseva IV, Belonogova NM, Svishcheva GR, Kirichenko AV, Axenovich TI. <i>In silico</i> mapping of coronary artery disease genes. Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To date, more than 100 loci associated with coronary artery disease (CAD) have been detected in large-scale genome-wide studies. For some of the several hundreds of genes located in these loci, roles in the pathogenesis of the disease have been shown. However, the genetic mechanisms and specific genes controlling this disease are still not fully understood. This study is aimed at in silico search for new CAD genes. We performed a gene-based association analysis, where all polymorphic variants within a gene are analyzed simultaneously. The analysis was based on the results of the genome-wide association studies (GWAS) available from the open databases MICAD (120,575 people, 85,112 markers) and UK Biobank (337,199 people, 10,894,597 markers). We used the sumFREGAT package implementing a wide range of new methods for gene-based association analysis using summary statistics. We found 88 genes demonstrating significant gene-based associations. Forty-four of the identified genes were already known as CAD genes. Furthermore, we identified 28 additional genes in the known CAD loci. They can be considered as new candidate genes. Finally, we identified sixteen new genes (AGPAT4, ARHGEF12, BDP1, DHX58, EHBP1, FBF1, HSPB9, NPBWR2, PDLIM5, PLCB3, PLEKHM2, POU2F3, PRKD2, TMEM136, TTC29 and UTP20) outside the known loci. Information about the functional role of these genes allows us to consider many of them as candidates for CAD. The 41 identified genes did not have significant GWAS signals and they were identified only due to simultaneous consideration of all variants within the gene in the framework of gene-based analysis. These results demonstrate that gene-based association analysis is a powerful tool for gene mapping. The method can utilize huge amounts of GWAS results accumulated in the world to map different traits and diseases. This type of studies is widely available, as it does not require additional material costs.
Collapse
Affiliation(s)
| | | | - G. R. Svishcheva
- Institute of Cytology and Genetics, SB RAS; Vavilov Institute of General Genetics, RAS
| | | | - T. I. Axenovich
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| |
Collapse
|
388
|
Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population. Sci Rep 2020; 10:144. [PMID: 31924810 PMCID: PMC6954113 DOI: 10.1038/s41598-019-56695-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.
Collapse
|
389
|
Joyner MJ. Limits to the Evidence that DNA Sequence Differences Contribute to Variability in Fitness and Trainability. Med Sci Sports Exerc 2020; 51:1786-1789. [PMID: 31305369 DOI: 10.1249/mss.0000000000001977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, MN
| |
Collapse
|
390
|
Zafarmand MH, Spanjer M, Nicolaou M, Wijnhoven HAH, van Schaik BD, Uitterlinden AG, Snieder H, Vrijkotte TG. Influence of Dietary Approaches to Stop Hypertension-Type Diet, Known Genetic Variants and Their Interplay on Blood Pressure in Early Childhood. Hypertension 2020; 75:59-70. [DOI: 10.1161/hypertensionaha.118.12292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is limited evidence on association between adherence to the Dietary Approaches to Stop Hypertension (DASH diet) and a lower blood pressure (BP) in children. In a population-based cohort study, among 1068 Dutch children aged 5 to 7, we evaluated the association between a DASH-type diet, 29 known genetic variants incorporated in a genetic risk score, and their interaction on BP. We calculated DASH score based on the food intake data measured through a validated 71-item food frequency questionnaire. In our sample, DASH score ranged from 9 (low adherence to the DASH diet) to 33 (median=21), and genetic score ranged from 18 (low genetic risk on high BP) to 41 (median=29). After adjustment for covariates, each 10 unit increase in DASH score was associated with a lower systolic BP of 0.7 mm Hg (
P
=0.033). DASH score was negatively associated with hypertension (odds ratio=0.96 [0.92–0.99],
P
=0.044). Similarly, each SD increment in genetic score was associated with 0.5 mm Hg higher diastolic BP (
P
=0.002). We found a positive interaction between low DASH score and high genetic score on diastolic BP adjusted for BP risk factors (β=1.52,
P
interaction
=0.019 in additive scale and β=0.03,
P
interaction
=0.021 in multiplicative scale). Our findings show that adherence to the DASH-type diet, as well as a low (adult-derived) genetic risk profile for BP, is associated with lower BP in children and that the genetic basis of BP phenotypes at least partly overlaps between adults and children. In addition, we found evidence of a gene-diet interaction on BP in children.
Collapse
Affiliation(s)
- Mohammad Hadi Zafarmand
- From the Department of Public Health (M.H.Z., M.S., M.N., T.G.M.V.), Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (M.H.Z.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marit Spanjer
- From the Department of Public Health (M.H.Z., M.S., M.N., T.G.M.V.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Mary Nicolaou
- From the Department of Public Health (M.H.Z., M.S., M.N., T.G.M.V.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Hanneke A. H. Wijnhoven
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health research institute, the Netherlands (H.A.H.W.)
| | - Barbera D.C. van Schaik
- Amsterdam Public Health Research Institute and Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics (B.D.C.v.S.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, the Netherlands (A.G.U.)
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (A.G.U.)
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (H.S.)
| | - Tanja G.M. Vrijkotte
- From the Department of Public Health (M.H.Z., M.S., M.N., T.G.M.V.), Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
391
|
Ilienko IM, Bazyka DA, Golyarnyk NA, Zvarych LM, Shvayko LI, Bazyka KD. CHANGES IN GENE EXPRESSION ASSOCIATED WITH NON-CANCER EFFECTS OF THE CHORNOBYL CLEAN-UP WORKERS IN THE REMOTE PERIOD AFTER EXPOSURE. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:456-477. [PMID: 33361854 DOI: 10.33145/2304-8336-2020-25-456-477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE to establish the connection of radiation-induced changes in gene expression with the realized pathology of the broncho-pulmonary and cardiovascular systems in Chornobyl clean-up workers. MATERIALS AND METHODS We examined 314 male Chornobyl clean-up workers (main group; age (58.94 ± 6.82) years(M ± SD); min 33, max 79 years; radiation dose (411.82 ± 625.41) mSv (M ± SD); min 1.74, max 3600 mSv) with various nosological forms of cardiovascular and broncho-pulmonary pathology (BPP) and 50 subjects of the controlgroup: age (50.50 ± 5.73) years (M ± SD); min 41, max 67 years. The relative level of BCL2, CDKN2A, CLSTN2, GSTM1,IFNG, IL1B, MCF2L, SERPINB9, STAT3, TERF1, TERF2, TERT, TNF, TP53, CCND1, CSF2, VEGFA genes expression was determined inperipheral blood leukocytes by real-time PCR (7900 HT Fast Real-Time PCR System (Applied Biosystems, USA)). The«gene-disease» association was determined on statistical models stratified separately for each disease and gene.Logistic regression was used to calculate the odds ratio. RESULTS Increased GSTM1 gene expression and no changes in angiogenesis-related VEGFA gene expression werefound in the main group of patients with coronary heart disease (CHD). It was established overexpression of TP53,VEGF and IFNG genes in the group of patients with arterial hypertension (AH). At combination of these diseases anincrease of expression of СSF2, TERF1, TERF2 genes was established. The detected changes demonstrate an activationof the antioxidative defense system in patients with CHD, while AH is associated with the expression of genes ofangiogenesis and immune inflammation. It was shown an increase in the expression of genes associated with apoptosis and kinase activity (BCL2, CLSTN2, CDKN2), immune inflammation (CSF2, IL1B, TNF) in Chornobyl clean-upworkers with BPP. Expression of TP53 and GSTM1 (gene, associated with the glutathione system) was significantlyupregulated in the group of individuals with chronic bronchitis, whereas in patients with chronic obstructive pulmonary disease, no increase was detected; the expression of SERPINB9 and MCF2L genes was downregulated. CONCLUSIONS Changes in the expression of genes, associated with the development of somatic pathology in theremote period after irradiation, in particular the genes of the immune response and inflammatory reactions CSF2,IFNG, IL1B, TNF; expression of genes that regulate cell proliferation, aging and apoptosis TP53, BCL2, MCF2L, CDKN2A,SERPINB9, TERF1, TERF2, TERT; genes that regulate cell adhesion and angiogenesis CLSTN2, VEGF.
Collapse
Affiliation(s)
- I M Ilienko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - D A Bazyka
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - N A Golyarnyk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - L M Zvarych
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - L I Shvayko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - K D Bazyka
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
392
|
Kessler T, Schunkert H. Genomic Strategies Toward Identification of Novel Therapeutic Targets. Handb Exp Pharmacol 2020; 270:429-462. [PMID: 32399778 DOI: 10.1007/164_2020_360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, myocardial infarction, and secondary damages of the myocardium in the form of ischemic heart disease remain major causes of death in Western countries. Beyond traditional risk factors such as smoking, hypertension, dyslipidemia, or diabetes, a positive family history is known to increase risk. The genetic factors underlying this observation remained unknown for decades until genetic studies were able to identify multiple genomic loci contributing to the heritability of the trait. Knowledge of the affected genes and the resulting molecular and cellular mechanisms leads to improved understanding of the pathophysiology leading to coronary atherosclerosis. Major goals are also to improve prevention and therapy of coronary artery disease and its sequelae via improved risk prediction tools and pharmacological targets. In this chapter, we recapitulate recent major findings. We focus on established novel targets and discuss possible further targets which are currently explored in translational studies.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany. .,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany.
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
393
|
McNulty H, Strain JJ, Hughes CF, Pentieva K, Ward M. Evidence of a Role for One-Carbon Metabolism in Blood Pressure: Can B Vitamin Intervention Address the Genetic Risk of Hypertension Owing to a Common Folate Polymorphism? Curr Dev Nutr 2020; 4:nzz102. [PMID: 31956853 PMCID: PMC6955829 DOI: 10.1093/cdn/nzz102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/23/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hypertension in adulthood is recognized as the leading risk factor contributing to mortality worldwide, primarily from cardiovascular disease, whereas hypertension in pregnancy leads to serious adverse fetal and maternal outcomes. This article explores the under-recognized role of one-carbon metabolism in blood pressure (BP) and the potential for folate-related B vitamins to protect against hypertension. Genome-wide association studies and clinical studies provide evidence linking the 677C→T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) with BP and increased risk of hypertension and hypertension in pregnancy. A novel role for riboflavin (the MTHFR cofactor) has recently emerged, however, with evidence from randomized trials that supplemental riboflavin can lower BP specifically in adults with the variant MTHFR 677TT genotype. Further studies are required to elucidate the biological mechanisms linking one-carbon metabolism with BP and explore the effect of riboflavin in modulating the genetic risk of hypertension in early and later life.
Collapse
Affiliation(s)
- Helene McNulty
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
394
|
Abstract
RATIONALE In observational studies, type 2 diabetes mellitus (T2D) has been associated with an increased risk of hypertension, and vice versa; however, the causality between these conditions remains to be determined. OBJECTIVES This population-based prospective cohort study sought to investigate the bidirectional causal relations of T2D with hypertension, systolic and diastolic blood pressure (BP) using Mendelian randomization (MR) analysis. METHODS AND RESULTS After exclusion of participants free of a history of heart failure, cardiovascular disease, cardiac procedures, and non-T2D diabetes mellitus, a total of 318 664 unrelated individuals with qualified genotyping data of European descent aged 37 to 73 from UK Biobank were included. The genetically instrumented T2D and hypertension were constructed using 134 and 233 single nucleotide polymorphisms, respectively. Seven complementary MR methods were applied, including inverse-variance weighted method, 2 median-based methods (simple and weighted), MR-Egger, MR-robust adjusted profile scores, MR-Pleiotropy Residual Sum and Outlier, and multivariate MR. The genetically instrumented T2D was associated with risk of hypertension (odds ratio, 1.07 [95% CI, 1.04-1.10], P=3.4×10-7), whereas the genetically determined hypertension showed no relationship with T2D (odds ratio, 0.96 [0.88-1.04], P=0.34). Our MR estimates from T2D to BP showed that the genetically instrumented T2D was associated with a 0.67 mm Hg higher systolic BP (95% CI, 0.41-0.93, P=5.75×10-7) but not with a higher diastolic BP. There was no clear evidence showing a causal effect of elevated systolic BP or diastolic BP on T2D risk. Positive pleiotropic bias was indicated in the hypertension→T2D relation (odds ratio, of MR-Egger intercept 1.010 [1.004-1.016], P=0.001) but not from T2D to hypertension (1.001 [0.998-1.004], P=0.556). CONCLUSIONS T2D may causally affect hypertension, whereas the relationship from hypertension to T2D is unlikely to be causal. These findings suggest the importance of keeping an optimal glycemic profile in general populations, and BP screening and monitoring, especially systolic BP, in patients with T2D.
Collapse
Affiliation(s)
- Dianjianyi Sun
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., Y.H., X.L., L.Q.)
| | - Tao Zhou
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., Y.H., X.L., L.Q.).,Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China (T.Z.)
| | - Yoriko Heianza
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., Y.H., X.L., L.Q.)
| | - Xiang Li
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., Y.H., X.L., L.Q.)
| | - Mengyu Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (M.F.)
| | - Vivian A Fonseca
- Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA (V.A.F.)
| | - Lu Qi
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., Y.H., X.L., L.Q.).,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (L.Q.).,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (L.Q.)
| |
Collapse
|
395
|
Fujishiro H, Himeno S. New Insights into the Roles of ZIP8, a Cadmium and Manganese Transporter, and Its Relation to Human Diseases. Biol Pharm Bull 2019; 42:1076-1082. [PMID: 31257283 DOI: 10.1248/bpb.b18-00637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ZIP8, a Zrt-/Irt-related protein encoded by Slc39A8, was originally discovered as a zinc transporter, but since then its roles as a transporter for cadmium (Cd) and manganese (Mn) have also been well characterized. ZIP8 is highly expressed in the S3 segment of the proximal tubules of the mouse kidney and may play a significant role in reabsorption of both toxic Cd and essential Mn from the lumen to the epithelial cells of the proximal tubule. In recent years, associations between various human diseases and genetic variations of ZIP8 have been reported. Missense mutations in the human SLC39A8 gene are associated with serious disorders of Mn metabolism, showing symptoms similar to congenital glycosylation deficiency. Enhanced excretion of Mn via bile or urine might be the cause of extremely low blood Mn levels in ZIP8-mutated patients, leading to the defects in Mn-dependent glycosylation. Several genome-wide association studies have demonstrated the associations of multiple diseases and ZIP8 SNPs constituting missense mutations. These findings suggest that ZIP8 plays more important roles than previously expected as a modulator of Mn homeostasis in the body. Elucidation of biochemical mechanisms regarding the metal-transporting ability of ZIP8 and its alteration by mutation is required for better understanding of the role of ZIP8 in human diseases.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
396
|
Wang L, Xu F, Brickell A, Sun N, Mao X, Zhang Q, Wang G, Zhou Q, Yang B, Li F, Yue L, Zhang W, Hao Y, Sun C. Additional common loci associated with stroke and obesity identified using pleiotropic analytical approach. Mol Genet Genomics 2019; 295:439-451. [PMID: 31813042 DOI: 10.1007/s00438-019-01630-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Stroke is a complex disease with multiple etiologies. Numerous studies suggest an established association between obesity and stroke, which may partly arise from the shared genetic components between the two phenotypes. Despite genome-wide association studies (GWASs) have identified some loci associated with stroke and obesity individually, the estimated genetic variability explained by these loci is limited (especially for stroke) and the pleiotropic loci between them are largely unknown. In this study, we jointly applied the pleiotropy-informed conditional false discovery rate (cFDR) method and the genetic analysis incorporating pleiotropy and annotation (GPA) method on summary statistics of two large GWASs to detect the genetic overlap between stroke (n = 446,696) and obesity (n = 681,275). Stratified Q-Q and fold-enrichment plots showed strong pleiotropic enrichment between the two phenotypes. With cFDR < 0.05 and fdr.GPA < 0.2, we identified 24 (16 novel) stroke-associated SNPs and 12 (10 novel) of them to be potentially pleiotropic SNPs for both phenotypes. The corresponding genes were enriched in trait-associated gene ontology (GO) terms "brain development" and "negative regulation of transport". In conclusion, our study demonstrated the feasibility and effectivity of the two pleiotropic methods which successfully improved the genetic discovery by incorporating related GWAS datasets and validated the genetic intercommunity between stroke and obesity. The identification of pleiotropic loci may provide us any new insights into potential genetic and etiology mechanism between them for the further studies.
Collapse
Affiliation(s)
- Lianke Wang
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fei Xu
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Anna Brickell
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Nan Sun
- Department of Management Information Systems, Terry College of Business, University of Georgia, Athens, GA, 30602, USA
| | - Xiangjie Mao
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Qiang Zhang
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ganyi Wang
- Center for Food and Drug Reevaluation of Henan, No. 79 Xiongerhe Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China
| | - Qianyu Zhou
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Bin Yang
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fangwei Li
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Limin Yue
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Weidong Zhang
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yibin Hao
- People's Hospital of Zhengzhou, No. 33 Huanghe Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China
| | - Changqing Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
397
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
398
|
Funck‐Brentano T, Ohlsson C. Reply. Arthritis Rheumatol 2019; 71:2132. [DOI: 10.1002/art.41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
399
|
Sun D, Zhou T, Li X, Heianza Y, Liang Z, Bray GA, Sacks FM, Qi L. Genetic Susceptibility, Dietary Protein Intake, and Changes of Blood Pressure: The POUNDS Lost Trial. Hypertension 2019; 74:1460-1467. [PMID: 31656094 PMCID: PMC6854315 DOI: 10.1161/hypertensionaha.119.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
High blood pressure (BP) is closely related to obesity, and weight loss lowers BP. Evidence has shown considerable interpersonal variation of changes in BP among people experiencing weight loss, and such variation might be partly determined by genetic factors. We assessed the changes in systolic and diastolic BP (SBP/DBP) among 692 participants randomly assigned to 1 of 4 diets varying in macronutrient content for 2 years. Two separate polygenic scores (SBP/DBP-PGS derived from 52/50 single nucleotide polymorphisms) were built for each participant based on 66 BP-associated single nucleotide polymorphisms. During a 2-year intervention, participants in the bottom versus upper tertile of SBP/DBP-PGS had a greater decrease in SBP (△SBP at 6, 12, and 24 months: -3.84 versus -1.61, -4.76 versus -2.75, -2.49 versus -1.63; P=0.001) or in DBP (△DBP at 6, 12, and 24 months: -3.09 versus -1.34, -2.69 versus -1.44, -1.82 versus -0.53; P<0.001). We also found gene-diet interaction on changes in SBP from baseline to 24 months (Pinteraction=0.009). Among participants assigned to a high-protein diet, those with a lower SBP-polygenic scores had greater decreases in SBP at months 6 (P=0.018), months 12 (P=0.007), and months 24 (P=0.089); while no significant difference was observed across the SBP-polygenic scores tertile groups among those assigned to an average-protein diet (all P values >0.05). Our data indicate that genetic susceptibility may affect BP changes in response to weight-loss diet interventions, and protein intake may modify the genetic associations with changes in BP. This trial was registered at URL: http://www.clinicaltrials.gov. Unique identifier: NCT00072995.
Collapse
Affiliation(s)
- Dianjianyi Sun
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (D.S.)
| | - Tao Zhou
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
| | - Xiang Li
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
| | - Yoriko Heianza
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
| | - Zhaoxia Liang
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
- Key Laboratory of Reproductive Genetics, Ministry of Education, China (Z.L.)
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA (G.A.B.)
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (F.M.S., L.Q.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (F.M.S., L.Q.)
| | - Lu Qi
- From the Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA (D.S., T.Z., X.L., Y.H., Z.L., L.Q.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (F.M.S., L.Q.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (F.M.S., L.Q.)
| |
Collapse
|
400
|
Langdon RJ, Richmond RC, Hemani G, Zheng J, Wade KH, Carreras-Torres R, Johansson M, Brennan P, Wootton RE, Munafo MR, Smith GD, Relton CL, Vincent EE, Martin RM, Haycock P. A Phenome-Wide Mendelian Randomization Study of Pancreatic Cancer Using Summary Genetic Data. Cancer Epidemiol Biomarkers Prev 2019; 28:2070-2078. [PMID: 31315910 DOI: 10.1158/1055-9965.epi-19-0036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The 5-year mortality rate for pancreatic cancer is among the highest of all cancers. Greater understanding of underlying causes could inform population-wide intervention strategies for prevention. Summary genetic data from genome-wide association studies (GWAS) have become available for thousands of phenotypes. These data can be exploited in Mendelian randomization (MR) phenome-wide association studies (PheWAS) to efficiently screen the phenome for potential determinants of disease risk. METHODS We conducted an MR-PheWAS of pancreatic cancer using 486 phenotypes, proxied by 9,124 genetic variants, and summary genetic data from a GWAS of pancreatic cancer (7,110 cancer cases, 7,264 controls). ORs and 95% confidence intervals per 1 SD increase in each phenotype were generated. RESULTS We found evidence that previously reported risk factors of body mass index (BMI; 1.46; 1.20-1.78) and hip circumference (1.42; 1.21-1.67) were associated with pancreatic cancer. We also found evidence of novel associations with metabolites that have not previously been implicated in pancreatic cancer: ADpSGEGDFXAEGGGVR*, a fibrinogen-cleavage peptide (1.60; 1.31-1.95), and O-sulfo-l-tyrosine (0.58; 0.46-0.74). An inverse association was also observed with lung adenocarcinoma (0.63; 0.54-0.74). CONCLUSIONS Markers of adiposity (BMI and hip circumference) are potential intervention targets for pancreatic cancer prevention. Further clarification of the causal relevance of the fibrinogen-cleavage peptides and O-sulfo-l-tyrosine in pancreatic cancer etiology is required, as is the basis of our observed association with lung adenocarcinoma. IMPACT For pancreatic cancer, MR-PheWAS can augment existing risk factor knowledge and generate novel hypotheses to investigate.
Collapse
Affiliation(s)
- Ryan J Langdon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert Carreras-Torres
- Biomarkers and Susceptibility Unit, IDIBELL-Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France
| | - Robyn E Wootton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
- UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, United Kingdom
| | - Marcus R Munafo
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
- UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Philip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.
- Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|