351
|
Sharma V, Freedman KJ. Constricted Apertures for Dynamic Trapping and Micro-/Nanoscale Discrimination Based on Recapture Kinetics. NANO LETTERS 2021; 21:3364-3371. [PMID: 33861619 DOI: 10.1021/acs.nanolett.0c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensing via analyte passage through a constricted aperture is a powerful and robust technology which is being utilized broadly, from DNA sequencing to single virus and cell characterization. Micro- and nanoscale structures typically translocate a constricted aperture, or pore, using electrophoretic force. In the present work, we explore the advances in metrology which can be achieved through rapid directional switching of hydrodynamic forces. Interestingly, multipass measurements of microscale and nanoscale structures achieve cell discrimination. We explore this cell-discrimination phenomenon as well as other features of hydrodynamic focusing such as dynamic trapping and discrete interval sensing.
Collapse
Affiliation(s)
- Vinay Sharma
- University of California-Riverside, Department of Bioengineering, 900 University Avenue, Riverside, California 92521, United States
| | - Kevin J Freedman
- University of California-Riverside, Department of Bioengineering, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
352
|
Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Rep 2021; 35:109108. [PMID: 33961822 PMCID: PMC8062406 DOI: 10.1016/j.celrep.2021.109108] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses subgenomic RNA (sgRNA) to produce viral proteins for replication and immune evasion. We apply long-read RNA and cDNA sequencing to in vitro human and primate infection models to study transcriptional dynamics. Transcription-regulating sequence (TRS)-dependent sgRNA upregulates earlier in infection than TRS-independent sgRNA. An abundant class of TRS-independent sgRNA consisting of a portion of open reading frame 1ab (ORF1ab) containing nsp1 joins to ORF10, and the 3' untranslated region (UTR) upregulates at 48 h post-infection in human cell lines. We identify double-junction sgRNA containing both TRS-dependent and -independent junctions. We find multiple sites at which the SARS-CoV-2 genome is consistently more modified than sgRNA and that sgRNA modifications are stable across transcript clusters, host cells, and time since infection. Our work highlights the dynamic nature of the SARS-CoV-2 transcriptome during its replication cycle.
Collapse
|
353
|
Yang Z, Wu XS, Wei Y, Polyanskaya SA, Iyer SV, Jung M, Lach FP, Adelman ER, Klingbeil O, Milazzo JP, Kramer M, Demerdash OE, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Smogorzewska A, Vakoc CR. Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discov 2021; 11:2300-2315. [PMID: 33893150 DOI: 10.1158/2159-8290.cd-20-1542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | | |
Collapse
|
354
|
Kerkhof LJ. Is Oxford Nanopore sequencing ready for analyzing complex microbiomes? FEMS Microbiol Ecol 2021; 97:6098400. [PMID: 33444433 PMCID: PMC8068755 DOI: 10.1093/femsec/fiab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
This minireview will discuss the improvements in Oxford Nanopore (Oxford; sequencing technology that make the MinION a viable platform for microbial ecology studies. Specific issues being addressed are the increase in sequence accuracy from 65 to 96.5% during the last 5 years, the ability to obtain a quantifiable/predictive signal from the MinION with respect to target molecule abundance, simple-to-use GUI-based pathways for data analysis and the modest additional equipment needs for sequencing in the field. Coupling these recent improvements with the low capital costs for equipment and the reasonable per sample cost makes MinION sequencing an attractive option for virtually any laboratory.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
355
|
Graw S, Chappell K, Washam CL, Gies A, Bird J, Robeson MS, Byrum SD. Multi-omics data integration considerations and study design for biological systems and disease. Mol Omics 2021; 17:170-185. [PMID: 33347526 PMCID: PMC8058243 DOI: 10.1039/d0mo00041h] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
Collapse
Affiliation(s)
- Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Kevin Chappell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Jordan Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
356
|
Goldsmith C, Rodríguez-Aguilera JR, El-Rifai I, Jarretier-Yuste A, Hervieu V, Raineteau O, Saintigny P, Chagoya de Sánchez V, Dante R, Ichim G, Hernandez-Vargas H. Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level. Sci Rep 2021; 11:8032. [PMID: 33850190 PMCID: PMC8044111 DOI: 10.1038/s41598-021-87457-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC.
Collapse
Affiliation(s)
- Chloe Goldsmith
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France.
| | - Jesús Rafael Rodríguez-Aguilera
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ines El-Rifai
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Adrien Jarretier-Yuste
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Valérie Hervieu
- Department of Surgical Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Victoria Chagoya de Sánchez
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Robert Dante
- Dependence Receptors Cancer and Development Laboratory, Department of Signaling of Tumoral Escape. Cancer Research. Center of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Gabriel Ichim
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
- Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Hector Hernandez-Vargas
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France.
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
357
|
Davenport CF, Scheithauer T, Dunst A, Bahr FS, Dorda M, Wiehlmann L, Tran DDH. Genome-Wide Methylation Mapping Using Nanopore Sequencing Technology Identifies Novel Tumor Suppressor Genes in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22083937. [PMID: 33920410 PMCID: PMC8069345 DOI: 10.3390/ijms22083937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Downregulation of multiple tumor suppressor genes (TSGs) plays an important role in cancer formation. Recent evidence has accumulated that cancer progression involves genome-wide alteration of epigenetic modifications, which may cause downregulation of the tumor suppressor gene. Using hepatocellular carcinoma (HCC) as a system, we mapped 5-methylcytosine signal at a genome-wide scale using nanopore sequencing technology to identify novel TSGs. Integration of methylation data with gene transcription profile of regenerated liver and primary HCCs allowed us to identify 10 potential tumor suppressor gene candidates. Subsequent validation led us to focus on functionally characterizing one candidate—glucokinase (GCK). We show here that overexpression of GCK inhibits the proliferation of HCC cells via induction of intracellular lactate accumulation and subsequently causes energy crisis due to NAD+ depletion. This suggests GCK functions as a tumor suppressor gene and may be involved in HCC development. In conclusion, these data provide valuable clues for further investigations of the process of tumorigenesis in human cancer.
Collapse
Affiliation(s)
- Colin F. Davenport
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Tobias Scheithauer
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Alessia Dunst
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Frauke Sophie Bahr
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Marie Dorda
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Lutz Wiehlmann
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
- Correspondence: ; Tel.: +49-511-532-2857; Fax: +49-511-532-2847
| |
Collapse
|
358
|
Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat Methods 2021; 18:491-498. [PMID: 33820988 PMCID: PMC8107137 DOI: 10.1038/s41592-021-01109-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco ( https://github.com/fanglab/nanodisco ), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.
Collapse
|
359
|
Zhang Z, Wang H, Wang Y, Xi F, Wang H, Kohnen MV, Gao P, Wei W, Chen K, Liu X, Gao Y, Han X, Hu K, Zhang H, Zhu Q, Zheng Y, Liu B, Ahmad A, Hsu YH, Jacobsen SE, Gu L. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:435-453. [PMID: 33506534 DOI: 10.1111/tpj.15174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.
Collapse
Affiliation(s)
- Zeyu Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Ximei Han
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaiqiang Hu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Steven E Jacobsen
- Department of Molecular, Cell & Developmental Biology, Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
360
|
Kovaka S, Fan Y, Ni B, Timp W, Schatz MC. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat Biotechnol 2021; 39:431-441. [PMID: 33257863 PMCID: PMC8567335 DOI: 10.1038/s41587-020-0731-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Conventional targeted sequencing methods eliminate many of the benefits of nanopore sequencing, such as the ability to accurately detect structural variants or epigenetic modifications. The ReadUntil method allows nanopore devices to selectively eject reads from pores in real time, which could enable purely computational targeted sequencing. However, this requires rapid identification of on-target reads while most mapping methods require computationally intensive basecalling. We present UNCALLED ( https://github.com/skovaka/UNCALLED ), an open source mapper that rapidly matches streaming of nanopore current signals to a reference sequence. UNCALLED probabilistically considers k-mers that could be represented by the signal and then prunes the candidates based on the reference encoded within a Ferragina-Manzini index. We used UNCALLED to deplete sequencing of known bacterial genomes within a metagenomics community, enriching the remaining species 4.46-fold. UNCALLED also enriched 148 human genes associated with hereditary cancers to 29.6× coverage using one MinION flowcell, enabling accurate detection of single-nucleotide polymorphisms, insertions and deletions, structural variants and methylation in these genes.
Collapse
Affiliation(s)
- Sam Kovaka
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
361
|
He M, Chi X, Ren J. Applications of Oxford Nanopore Sequencing in Schizosaccharomyces pombe. Methods Mol Biol 2021; 2196:97-116. [PMID: 32889716 DOI: 10.1007/978-1-0716-0868-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent years have seen great progresses in third-generation sequencing. New commercial platforms from Oxford Nanopore Technologies (ONT) can generate ultra-long reads from single-molecule nucleic acid fragments of kilobases up to megabases, exceeding the limitation of short reads and dependency on template amplification suffered by the previous generation of sequencing technologies. Moreover, it can detect epigenetic modifications directly, as well as providing all-around field usage, being pocket-sized and low cost. It has already been applied to yeast research in many aspects, such as complete de novo genome assemblies, the phylogeny of large-brewing yeasts, gene isoform identification, and base modification detection. These applications have delivered novel insights into yeast genomic and transcriptomic analysis.
Collapse
Affiliation(s)
- Ming He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Chi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
362
|
Murphy TR, Xiao R, Hamilton-Brehm SD. Hybrid genome de novo assembly with methylome analysis of the anaerobic thermophilic subsurface bacterium Thermanaerosceptrum fracticalcis strain DRI-13 T. BMC Genomics 2021; 22:209. [PMID: 33757423 PMCID: PMC7988955 DOI: 10.1186/s12864-021-07535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a dearth of sequenced and closed microbial genomes from environments that exceed > 500 m below level terrestrial surface. Coupled with even fewer cultured isolates, study and understanding of how life endures in the extreme oligotrophic subsurface environments is greatly hindered. Using a de novo hybrid assembly of Illumina and Oxford Nanopore sequences we produced a circular genome with corresponding methylome profile of the recently characterized thermophilic, anaerobic, and fumarate-respiring subsurface bacterium, Thermanaerosceptrum fracticalcis, strain DRI-13T to understand how this microorganism survives the deep subsurface. RESULTS The hybrid assembly produced a single circular genome of 3.8 Mb in length with an overall GC content of 45%. Out of the total 4022 annotated genes, 3884 are protein coding, 87 are RNA encoding genes, and the remaining 51 genes were associated with regulatory features of the genome including riboswitches and T-box leader sequences. Approximately 24% of the protein coding genes were hypothetical. Analysis of strain DRI-13T genome revealed: 1) energy conservation by bifurcation hydrogenase when growing on fumarate, 2) four novel bacterial prophages, 3) methylation profile including 76.4% N6-methyladenine and 3.81% 5-methylcytosine corresponding to novel DNA methyltransferase motifs. As well a cluster of 45 genes of unknown protein families that have enriched DNA mCpG proximal to the transcription start sites, and 4) discovery of a putative core of bacteriophage exclusion (BREX) genes surrounded by hypothetical proteins, with predicted functions as helicases, nucleases, and exonucleases. CONCLUSIONS The de novo hybrid assembly of strain DRI-13T genome has provided a more contiguous and accurate view of the subsurface bacterium T. fracticalcis, strain DRI-13T. This genome analysis reveals a physiological focus supporting syntrophy, non-homologous double stranded DNA repair, mobility/adherence/chemotaxis, unique methylome profile/recognized motifs, and a BREX defense system. The key to microbial subsurface survival may not rest on genetic diversity, but rather through specific syntrophy niches and novel methylation strategies.
Collapse
Affiliation(s)
- Trevor R Murphy
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Rui Xiao
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Scott D Hamilton-Brehm
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
363
|
Clark HR, McKenney C, Livingston NM, Gershman A, Sajjan S, Chan IS, Ewald AJ, Timp W, Wu B, Singh A, Regot S. Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level. Nat Commun 2021; 12:1836. [PMID: 33758175 PMCID: PMC7988009 DOI: 10.1038/s41467-021-22070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.
Collapse
Affiliation(s)
- Helen R Clark
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan M Livingston
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Seema Sajjan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaac S Chan
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Ewald
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bin Wu
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
364
|
Direct Nanopore Sequencing of mRNA Reveals Landscape of Transcript Isoforms in Apicomplexan Parasites. mSystems 2021; 6:6/2/e01081-20. [PMID: 33688018 PMCID: PMC8561664 DOI: 10.1128/msystems.01081-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is a widespread phenomenon in metazoans by which single genes are able to produce multiple isoforms of the gene product. However, this has been poorly characterized in apicomplexans, a major phylum of some of the most important global parasites. Efforts have been hampered by atypical transcriptomic features, such as the high AU content of Plasmodium RNA, but also the limitations of short-read sequencing in deciphering complex splicing events. In this study, we utilized the long read direct RNA sequencing platform developed by Oxford Nanopore Technologies to survey the alternative splicing landscape of Toxoplasma gondii and Plasmodium falciparum. We find that while native RNA sequencing has a reduced throughput, it allows us to obtain full-length or nearly full-length transcripts with comparable quantification to Illumina sequencing. By comparing these data with available gene models, we find widespread alternative splicing, particularly intron retention, in these parasites. Most of these transcripts contain premature stop codons, suggesting that in these parasites, alternative splicing represents a pathway to transcriptomic diversity, rather than expanding proteomic diversity. Moreover, alternative splicing rates are comparable between parasites, suggesting a shared splicing machinery, despite notable transcriptomic differences between the parasites. This study highlights a strategy in using long-read sequencing to understand splicing events at the whole-transcript level and has implications in the future interpretation of transcriptome sequencing studies. IMPORTANCE We have used a novel nanopore sequencing technology to directly analyze parasite transcriptomes. The very long reads of this technology reveal the full-length genes of the parasites that cause malaria and toxoplasmosis. Gene transcripts must be processed in a process called splicing before they can be translated to protein. Our analysis reveals that these parasites very frequently only partially process their gene products, in a manner that departs dramatically from their human hosts.
Collapse
|
365
|
Yu J, Deng J, Guo X, Shan J, Luan X, Cao L, Zhao J, Yu M, Zhang W, Lv H, Xie Z, Meng L, Zheng Y, Zhao Y, Gang Q, Wang Q, Liu J, Zhu M, Zhou B, Li P, Liu Y, Wang Y, Yan C, Hong D, Yuan Y, Wang Z. The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain 2021; 144:1819-1832. [PMID: 33693509 PMCID: PMC8320266 DOI: 10.1093/brain/awab077] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized
by progressive ocular, facial, pharyngeal and distal limb muscle involvement.
Trinucleotide repeat expansions in LRP12 or GIPC1 were
recently reported to be associated with OPDM. However, a significant portion of OPDM
patients have unknown genetic causes. In this study, long-read whole-genome sequencing and
repeat-primed PCR were performed and we identified GGC repeat expansions in the
NOTCH2NLC gene in 16.7% (4/24) of a cohort of Chinese OPDM patients,
designated as OPDM type 3 (OPDM3). Methylation analysis indicated that methylation levels
of the NOTCH2NLC gene were unaltered in OPDM3 patients, but increased
significantly in asymptomatic carriers. Quantitative real-time PCR analysis indicated that
NOTCH2NLC mRNA levels were increased in muscle but not in blood of
OPDM3 patients. Immunofluorescence on OPDM muscle samples and expressing mutant NOTCH2NLC
with (GGC)69 repeat expansions in HEK293 cells indicated that mutant
NOTCH2NLC-polyglycine protein might be a major component of intranuclear inclusions, and
contribute to toxicity in cultured cells. In addition, two RNA-binding proteins, hnRNP A/B
and MBNL1, were both co-localized with p62 in intranuclear inclusions in OPDM muscle
samples. These results indicated that a toxic protein gain-of-function mechanism and RNA
gain-of-function mechanism may both play a vital role in the pathogenic processes of
OPDM3. This study extended the spectrum of NOTCH2NLC repeat expansion-related diseases to
a predominant myopathy phenotype presenting as OPDM, and provided evidence for possible
pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xueyu Guo
- Grandomics Biosciences, Beijing 100176, China
| | - Jingli Shan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan 250000, Shandong, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, Shandong, China.,Brain Science Research Institute, Shandong University, Jinan 250000, Shandong, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Juan Zhao
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - LingChao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yawen Zhao
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Binbin Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Pidong Li
- Grandomics Biosciences, Beijing 100176, China
| | - Yinzhe Liu
- Grandomics Biosciences, Beijing 100176, China
| | - Yang Wang
- Grandomics Biosciences, Beijing 100176, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan 250000, Shandong, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, Shandong, China.,Brain Science Research Institute, Shandong University, Jinan 250000, Shandong, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China
| |
Collapse
|
366
|
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021; 19:1497-1511. [PMID: 33815688 PMCID: PMC7985215 DOI: 10.1016/j.csbj.2021.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction, nanopore sequencing has enhanced our ability to study complex microbial samples through the possibility to sequence long reads in real time using inexpensive and portable technologies. The use of long reads has allowed to address several previously unsolved issues in the field, such as the resolution of complex genomic structures, and facilitated the access to metagenome assembled genomes (MAGs). Furthermore, the low cost and portability of platforms together with the development of rapid protocols and analysis pipelines have featured nanopore technology as an attractive and ever-growing tool for real-time in-field sequencing for environmental microbial analysis. This review provides an up-to-date summary of the experimental protocols and bioinformatic tools for the study of microbial communities using nanopore sequencing, highlighting the most important and recent research in the field with a major focus on infectious diseases. An overview of the main approaches including targeted and shotgun approaches, metatranscriptomics, epigenomics, and epitranscriptomics is provided, together with an outlook to the major challenges and perspectives over the use of this technology for microbial studies.
Collapse
Affiliation(s)
- Laura Ciuffreda
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
367
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
368
|
Ding H, Bailey AD, Jain M, Olsen H, Paten B. Gaussian mixture model-based unsupervised nucleotide modification number detection using nanopore-sequencing readouts. Bioinformatics 2021; 36:4928-4934. [PMID: 32597959 DOI: 10.1093/bioinformatics/btaa601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION Nucleotide modification status can be decoded from the Oxford Nanopore Technologies nanopore-sequencing ionic current signals. Although various algorithms have been developed for nanopore-sequencing-based modification analysis, more detailed characterizations, such as modification numbers, corresponding signal levels and proportions are still lacking. RESULTS We present a framework for the unsupervised determination of the number of nucleotide modifications from nanopore-sequencing readouts. We demonstrate the approach can effectively recapitulate the number of modifications, the corresponding ionic current signal levels, as well as mixing proportions under both DNA and RNA contexts. We further show, by integrating information from multiple detected modification regions, that the modification status of DNA and RNA molecules can be inferred. This method forms a key step of de novo characterization of nucleotide modifications, shedding light on the interpretation of various biological questions. AVAILABILITY AND IMPLEMENTATION Modified nanopolish: https://github.com/adbailey4/nanopolish/tree/cigar_output. All other codes used to reproduce the results: https://github.com/hd2326/ModificationNumber. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongxu Ding
- Department of Biomolecular Engineering and Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D Bailey
- Department of Biomolecular Engineering and Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Miten Jain
- Department of Biomolecular Engineering and Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hugh Olsen
- Department of Biomolecular Engineering and Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Benedict Paten
- Department of Biomolecular Engineering and Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
369
|
Ansere VA, Ali-Mondal S, Sathiaseelan R, Garcia DN, Isola JVV, Henseb JD, Saccon TD, Ocañas SR, Tooley KB, Stout MB, Schneider A, Freeman WM. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech Ageing Dev 2021; 194:111425. [PMID: 33383072 PMCID: PMC8279026 DOI: 10.1016/j.mad.2020.111425] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023]
Abstract
Decline in ovarian reserve with advancing age is associated with reduced fertility and the emergence of metabolic disturbances, osteoporosis, and neurodegeneration. Recent studies have provided insight into connections between ovarian insufficiency and systemic aging, although the basic mechanisms that promote ovarian reserve depletion remain unknown. Here, we sought to determine if chronological age is linked to changes in ovarian cellular senescence, transcriptomic, and epigenetic mechanisms in a mouse model. Histological assessments and transcriptional analyses revealed the accumulation of lipofuscin aggresomes and senescence-related transcripts (Cdkn1a, Cdkn2a, Pai-1 and Hmgb1) significantly increased with advancing age. Transcriptomic profiling and pathway analyses following RNA sequencing, revealed an upregulation of genes related to pro-inflammatory stress and cell-cycle inhibition, whereas genes involved in cell-cycle progression were downregulated; which could be indicative of senescent cell accumulation. The emergence of these senescence-related markers preceded the dramatic decline in primordial follicle reserve observed. Whole Genome Oxidative Bisulfite Sequencing (WGoxBS) found no genome-wide or genomic context-specific DNA methylation and hydroxymethylation changes with advancing age. These findings suggest that cellular senescence may contribute to ovarian aging, and thus, declines in ovarian follicular reserve. Cell-type-specific analyses across the reproductive lifespan are needed to fully elucidate the mechanisms that promote ovarian insufficiency.
Collapse
Affiliation(s)
- Victor A Ansere
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Samim Ali-Mondal
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roshini Sathiaseelan
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Driele N Garcia
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - José V V Isola
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jéssica D Henseb
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tatiana D Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Willard M Freeman
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
370
|
Abstract
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
Collapse
Affiliation(s)
- Wouter Engelen
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| | - Hendrik Dietz
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| |
Collapse
|
371
|
van Haasteren J, Munis AM, Gill DR, Hyde SC. Genome-wide integration site detection using Cas9 enriched amplification-free long-range sequencing. Nucleic Acids Res 2021; 49:e16. [PMID: 33290561 PMCID: PMC7897500 DOI: 10.1093/nar/gkaa1152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
The gene and cell therapy fields are advancing rapidly, with a potential to treat and cure a wide range of diseases, and lentivirus-based gene transfer agents are the vector of choice for many investigators. Early cases of insertional mutagenesis caused by gammaretroviral vectors highlighted that integration site (IS) analysis was a major safety and quality control checkpoint for lentiviral applications. The methods established to detect lentiviral integrations using next-generation sequencing (NGS) are limited by short read length, inadvertent PCR bias, low yield, or lengthy protocols. Here, we describe a new method to sequence IS using Amplification-free Integration Site sequencing (AFIS-Seq). AFIS-Seq is based on amplification-free, Cas9-mediated enrichment of high-molecular-weight chromosomal DNA suitable for long-range Nanopore MinION sequencing. This accessible and low-cost approach generates long reads enabling IS mapping with high certainty within a single day. We demonstrate proof-of-concept by mapping IS of lentiviral vectors in a variety of cell models and report up to 1600-fold enrichment of the signal. This method can be further extended to sequencing of Cas9-mediated integration of genes and to in vivo analysis of IS. AFIS-Seq uses long-read sequencing to facilitate safety evaluation of preclinical lentiviral vector gene therapies by providing IS analysis with improved confidence.
Collapse
Affiliation(s)
- Joost van Haasteren
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Altar M Munis
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
372
|
Akbari V, Garant JM, O'Neill K, Pandoh P, Moore R, Marra MA, Hirst M, Jones SJM. Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase. Genome Biol 2021; 22:68. [PMID: 33618748 PMCID: PMC7898412 DOI: 10.1186/s13059-021-02283-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing. We also present SNVoter, which can post-process nanopore SNV calls to improve accuracy in low coverage regions. Together, these tools can accurately detect allele-specific methylation genome-wide using nanopore sequence data with low coverage of about ten-fold redundancy.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
373
|
Baloğlu B, Chen Z, Elbrecht V, Braukmann T, MacDonald S, Steinke D. A workflow for accurate metabarcoding using nanopore MinION sequencing. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bilgenur Baloğlu
- Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
| | - Zhewei Chen
- California Institute of Technology Pasadena CA USA
| | - Vasco Elbrecht
- Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
- Centre for Biodiversity MonitoringZoological Research Museum Alexander Koenig Bonn Germany
| | - Thomas Braukmann
- Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
| | - Shanna MacDonald
- Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
| | - Dirk Steinke
- Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
- Integrative Biology University of Guelph Guelph ON Canada
| |
Collapse
|
374
|
A meta-analysis uncovers the first sequence variant conferring risk of Bell's palsy. Sci Rep 2021; 11:4188. [PMID: 33602968 PMCID: PMC7893061 DOI: 10.1038/s41598-021-82736-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Bell's palsy is the most common cause of unilateral facial paralysis and is defined as an idiopathic and acute inability to control movements of the facial muscles on the affected side. While the pathogenesis remains unknown, previous studies have implicated post-viral inflammation and resulting compression of the facial nerve. Reported heritability estimates of 4-14% suggest a genetic component in the etiology and an autosomal dominant inheritance has been proposed. Here, we report findings from a meta-analysis of genome-wide association studies uncovering the first unequivocal association with Bell's palsy (rs9357446-A; P = 6.79 × 10-23, OR = 1.23; Ncases = 4714, Ncontrols = 1,011,520). The variant also confers risk of intervertebral disc disorders (P = 2.99 × 10-11, OR = 1.04) suggesting a common pathogenesis in part or a true pleiotropy.
Collapse
|
375
|
Jenjaroenpun P, Wongsurawat T, Wadley TD, Wassenaar TM, Liu J, Dai Q, Wanchai V, Akel NS, Jamshidi-Parsian A, Franco AT, Boysen G, Jennings ML, Ussery DW, He C, Nookaew I. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res 2021; 49:e7. [PMID: 32710622 PMCID: PMC7826254 DOI: 10.1093/nar/gkaa620] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 11/14/2022] Open
Abstract
Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Taylor D Wadley
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | - Jun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nisreen S Akel
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aime T Franco
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael L Jennings
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
376
|
Caspar SM, Schneider T, Stoll P, Meienberg J, Matyas G. Potential of whole-genome sequencing-based pharmacogenetic profiling. Pharmacogenomics 2021; 22:177-190. [PMID: 33517770 DOI: 10.2217/pgs-2020-0155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenetics represents a major driver of precision medicine, promising individualized drug selection and dosing. Traditionally, pharmacogenetic profiling has been performed using targeted genotyping that focuses on common/known variants. Recently, whole-genome sequencing (WGS) is emerging as a more comprehensive short-read next-generation sequencing approach, enabling both gene diagnostics and pharmacogenetic profiling, including rare/novel variants, in a single assay. Using the example of the pharmacogene CYP2D6, we demonstrate the potential of WGS-based pharmacogenetic profiling as well as emphasize the limitations of short-read next-generation sequencing. In the near future, we envision a shift toward long-read sequencing as the predominant method for gene diagnostics and pharmacogenetic profiling, providing unprecedented data quality and improving patient care.
Collapse
Affiliation(s)
- Sylvan Manuel Caspar
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Department of Health Sciences & Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Timo Schneider
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Patricia Stoll
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
377
|
Sun Z, Vaisvila R, Hussong LM, Yan B, Baum C, Saleh L, Samaranayake M, Guan S, Dai N, Corrêa IR, Pradhan S, Davis TB, Evans TC, Ettwiller LM. Nondestructive enzymatic deamination enables single-molecule long-read amplicon sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Genome Res 2021; 31:291-300. [PMID: 33468551 PMCID: PMC7849414 DOI: 10.1101/gr.265306.120] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.
Collapse
Affiliation(s)
- Zhiyi Sun
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | | | - Bo Yan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Chloé Baum
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91000 Évry, France
| | - Lana Saleh
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Mala Samaranayake
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Sriharsa Pradhan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Theodore B Davis
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Thomas C Evans
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
378
|
|
379
|
Jenjaroenpun P, Wongsurawat T, Wadley TD, Wassenaar TM, Liu J, Dai Q, Wanchai V, Akel NS, Jamshidi-Parsian A, Franco AT, Boysen G, Jennings ML, Ussery DW, He C, Nookaew I. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res 2021; 49:e7. [PMID: 32710622 DOI: 10.1101/487819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 05/25/2023] Open
Abstract
Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Taylor D Wadley
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | - Jun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nisreen S Akel
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aime T Franco
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael L Jennings
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Physiology and Biophysics, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
380
|
Xu R, Adam L, Chapados J, Soliman A, Daayf F, Tambong JT. MinION Nanopore-based detection of Clavibacter nebraskensis, the corn Goss's wilt pathogen, and bacteriomic profiling of necrotic lesions of naturally-infected leaf samples. PLoS One 2021; 16:e0245333. [PMID: 33481876 PMCID: PMC7822522 DOI: 10.1371/journal.pone.0245333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
The Goss’s bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss’s bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.
Collapse
Affiliation(s)
- Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Lorne Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James T. Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
381
|
Jain M, Olsen HE, Akeson M, Abu-Shumays R. Adaptation of Human Ribosomal RNA for Nanopore Sequencing of Canonical and Modified Nucleotides. Methods Mol Biol 2021; 2298:53-74. [PMID: 34085238 DOI: 10.1007/978-1-0716-1374-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Historically, RNA has been sequenced as cDNA copies derived from reverse transcription of cellular RNA followed by PCR amplification. Recently, RNA sequencing using nanopores has emerged as an alternative. Using this technology, individual cellular RNA strands are read directly as they are driven through nanoscale pores by an applied voltage. The speed of translocation is regulated by a helicase that is loaded onto each RNA strand by an adapter that also facilitates capture by the nanopore electric field. Here we describe a technique for adapting human ribosomal RNA subunits for nanopore sequencing. Using this strategy, a single Oxford Nanopore MinION run delivered 470,907 sequence reads of which 396,048 aligned to ribosomal RNA, with 28S, 18S, 5.8S, and 5S coverage of 6053, 369,472, 16,058, and 4465 reads, respectively. Example alignments that reveal putative nucleotide modifications are provided.
Collapse
Affiliation(s)
- Miten Jain
- Biomolecular Engineering Department and Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Hugh E Olsen
- Biomolecular Engineering Department and Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Mark Akeson
- Biomolecular Engineering Department and Genomics Institute, University of California, Santa Cruz, CA, USA.
| | - Robin Abu-Shumays
- Biomolecular Engineering Department and Genomics Institute, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
382
|
Hayrabedyan S, Kostova P, Zlatkov V, Todorova K. Single-cell transcriptomics in the context of long-read nanopore sequencing. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1988868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petya Kostova
- Gynecology Clinic, National Oncology Hospital, Sofia, Bulgaria
| | - Viktor Zlatkov
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
383
|
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely used technique in the global analysis of epigenetic DNA modifications. The high-resolution chromatographic separation along with sensitive MS detection permits the identification and quantification of deoxyribonucleosides with precision and reliability. Although there have been tremendous advances in LC and MS instrumentation in recent years, sample preparation has not experienced a similar rate of development and is often a bottleneck to chemical analysis. Here we present a protocol for identification and quantification of cytosine modifications that combines a robust and efficient method to generate single nucleosides from genomic DNA samples followed by direct LC-MS/MS analysis.
Collapse
|
384
|
Abstract
A complete understanding of the dynamics and function of cytosine modifications in mammalian biology is lacking. Central to achieving this understanding is the availability of techniques that permit sensitive and specific genome-wide mapping of DNA modifications in mammalian DNA. The last decade has seen the development of a vast arsenal of novel profiling approaches enabling epigeneticists to tackle research questions that were previously out of reach. Here, we review the techniques currently available for profiling DNA modifications in mammals, discuss their strengths and weaknesses, and speculate on the future direction of DNA modification profiling technologies.
Collapse
Affiliation(s)
- Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Colm E Nestor
- Department of Biomedical and Clinical Sciences (BKV), Crown Princess Victoria Children's Hospital, Linköping University, Linköping, Sweden.
| |
Collapse
|
385
|
Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:681356. [PMID: 34046015 PMCID: PMC8147868 DOI: 10.3389/fendo.2021.681356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance (IR) is largely recognized as a unifying feature that underlies metabolic dysfunction. Both lifestyle and genetic factors contribute to IR. Work from recent years has demonstrated that the epigenome may constitute an interface where different signals may converge to promote IR gene expression programs. Here, we review the current knowledge of the role of epigenetics in hepatic IR, focusing on the roles of DNA methylation and histone post-translational modifications. We discuss the broad epigenetic changes observed in the insulin resistant liver and its associated pathophysiological states and leverage on the wealth of 'omics' studies performed to discuss efforts in pinpointing specific loci that are disrupted by these changes. We envision that future studies, with increased genomic resolution and larger cohorts, will further the identification of biomarkers of early onset hepatic IR and assist the development of targeted interventions. Furthermore, there is growing evidence to suggest that persistent epigenetic marks may be acquired over prolonged exposure to disease or deleterious exposures, highlighting the need for preventative medicine and long-term lifestyle adjustments to avoid irreversible or long-term alterations in gene expression.
Collapse
Affiliation(s)
| | | | - Inês Cebola
- *Correspondence: Hannah Maude, ; Inês Cebola,
| |
Collapse
|
386
|
The structure, function and evolution of a complete human chromosome 8. Nature 2021; 593:101-107. [PMID: 33828295 PMCID: PMC8099727 DOI: 10.1038/s41586-021-03420-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
The complete assembly of each human chromosome is essential for understanding human biology and evolution1,2. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α-satellite array, a 644-kb copy number polymorphism in the β-defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-order α-satellites enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. In addition, we confirm the overall organization and methylation pattern of the centromere in a diploid human genome. Using a dual long-read sequencing approach, we complete high-quality draft assemblies of the orthologous centromere from chromosome 8 in chimpanzee, orangutan and macaque to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved in the great ape ancestor with a layered symmetry, in which more ancient higher-order repeats locate peripherally to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated by more than 2.2-fold compared to the unique portions of the genome, and this acceleration extends into the flanking sequence.
Collapse
|
387
|
Anreiter I, Mir Q, Simpson JT, Janga SC, Soller M. New Twists in Detecting mRNA Modification Dynamics. Trends Biotechnol 2021; 39:72-89. [PMID: 32620324 PMCID: PMC7326690 DOI: 10.1016/j.tibtech.2020.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
Modified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology.
Collapse
Affiliation(s)
- Ina Anreiter
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Sarath C Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, 5021 Health Information and Translational Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
388
|
Djirackor L, Halldorsson S, Niehusmann P, Leske H, Capper D, Kuschel LP, Pahnke J, Due-Tønnessen BJ, Langmoen IA, Sandberg CJ, Euskirchen P, Vik-Mo EO. Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy. Neurooncol Adv 2021; 3:vdab149. [PMID: 34729487 PMCID: PMC8557693 DOI: 10.1093/noajnl/vdab149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms. METHODS We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor. RESULTS Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively. CONCLUSION Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.
Collapse
Affiliation(s)
- Luna Djirackor
- Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway
| | - Skarphedinn Halldorsson
- Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine (KlinMED), University of Oslo, Oslo, Norway
| | - Henning Leske
- Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine (KlinMED), University of Oslo, Oslo, Norway
| | - David Capper
- Department of Neuropathology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luis P Kuschel
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin,Germany
| | - Jens Pahnke
- Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine (KlinMED), University of Oslo, Oslo, Norway
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Iver A Langmoen
- Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine (KlinMED), University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Cecilie J Sandberg
- Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway
| | - Philipp Euskirchen
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin,Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Einar O Vik-Mo
- Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine (KlinMED), University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
389
|
Han Y, Nikolić M, Gobs M, Franzen J, de Haan G, Geiger H, Wagner W. Targeted methods for epigenetic age predictions in mice. Sci Rep 2020; 10:22439. [PMID: 33384442 PMCID: PMC7775437 DOI: 10.1038/s41598-020-79509-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Age-associated DNA methylation reflects aspect of biological aging—therefore epigenetic clocks for mice can elucidate how the aging process in this model organism is affected by specific treatments or genetic background. Initially, age-predictors for mice were trained for genome-wide DNA methylation profiles and we have recently described a targeted assay based on pyrosequencing of DNA methylation at only three age-associated genomic regions. Here, we established alternative approaches using droplet digital PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CG dinucleotides (CpGs) the correlation of DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified at murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In comparison to C57BL/6 mice the single-read age-predictions using BBA-seq were also accelerated in the shorter-lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, we describe alternative targeted methods for epigenetic age predictions that provide new perspectives for aging-intervention studies in mice.
Collapse
Affiliation(s)
- Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, 89081, Ulm, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
390
|
Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods. BMC Genomics 2020; 21:889. [PMID: 33349243 PMCID: PMC7751105 DOI: 10.1186/s12864-020-07227-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Third-generation single molecule sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. RESULTS In this paper, we present a categorization and review of long read error correction methods, and provide a comprehensive evaluation of the corresponding long read error correction tools. Leveraging recent real sequencing data, we establish benchmark data sets and set up evaluation criteria for a comparative assessment which includes quality of error correction as well as run-time and memory usage. We study how trimming and long read sequencing depth affect error correction in terms of length distribution and genome coverage post-correction, and the impact of error correction performance on an important application of long reads, genome assembly. We provide guidelines for practitioners for choosing among the available error correction tools and identify directions for future research. CONCLUSIONS Despite the high error rate of long reads, the state-of-the-art correction tools can achieve high correction quality. When short reads are available, the best hybrid methods outperform non-hybrid methods in terms of correction quality and computing resource usage. When choosing tools for use, practitioners are suggested to be careful with a few correction tools that discard reads, and check the effect of error correction tools on downstream analysis. Our evaluation code is available as open-source at https://github.com/haowenz/LRECE .
Collapse
Affiliation(s)
- Haowen Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Chirag Jain
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Srinivas Aluru
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA. .,Institute for Data Engineering and Science, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
391
|
Chen W, Zhang P, Song L, Yang J, Han C. Simulation of Nanopore Sequencing Signals Based on BiGRU. SENSORS 2020; 20:s20247244. [PMID: 33348876 PMCID: PMC7766754 DOI: 10.3390/s20247244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023]
Abstract
Oxford Nanopore sequencing is an important sequencing technology, which reads the nucleotide sequence by detecting the electrical current signal changes when DNA molecule is forced to pass through a biological nanopore. The research on signal simulation of nanopore sequencing is highly desirable for method developments of nanopore sequencing applications. To improve the simulation accuracy, we propose a novel signal simulation method based on Bi-directional Gated Recurrent Units (BiGRU). In this method, the signal processing model based on BiGRU is built to replace the traditional low-pass filter to post-process the ground-truth signal calculated by the input nucleotide sequence and nanopore sequencing pore model. Gaussian noise is then added to the filtered signal to generate the final simulated signal. This method can accurately model the relation between ground-truth signal and real-world sequencing signal through experimental sequencing data. The simulation results reveal that the proposed method utilizing the powerful learning ability of the neural network can generate the simulated signal that is closer to the real-world sequencing signal in the time and frequency domains than the existing simulation method.
Collapse
Affiliation(s)
- Weigang Chen
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (W.C.); (P.Z.); (J.Y.)
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| | - Peng Zhang
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (W.C.); (P.Z.); (J.Y.)
| | - Lifu Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinsheng Yang
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (W.C.); (P.Z.); (J.Y.)
| | - Changcai Han
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (W.C.); (P.Z.); (J.Y.)
- Correspondence:
| |
Collapse
|
392
|
Chandak S, Tatwawadi T, Sridhar S, Weissman T. Impact of lossy compression of nanopore raw signal data on basecalling and consensus accuracy. Bioinformatics 2020; 36:5313-5321. [PMID: 33325499 DOI: 10.1093/bioinformatics/btaa1017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 11/14/2022] Open
Abstract
Motivation Nanopore sequencing provides a real-time and portable solution to genomic sequencing, enabling better assembly, structural variant discovery and modified base detection than second generation technologies. The sequencing process generates a huge amount of data in the form of raw signal contained in fast5 files, which must be compressed to enable efficient storage and transfer. Since the raw data is inherently noisy, lossy compression has potential to significantly reduce space requirements without adversely impacting performance of downstream applications. Results We explore the use of lossy compression for nanopore raw data using two state-of-the-art lossy time-series compressors, and evaluate the tradeoff between compressed size and basecalling/consensus accuracy. We test several basecallers and consensus tools on a variety of datasets at varying depths of coverage, and conclude that lossy compression can provide 35–50% further reduction in compressed size of raw data over the state-of-the-art lossless compressor with negligible impact on basecalling accuracy (≲0.2% reduction) and consensus accuracy (≲0.002% reduction). In addition, we evaluate the impact of lossy compression on methylation calling accuracy and observe that this impact is minimal for similar reductions in compressed size, although further evaluation with improved benchmark datasets is required for reaching a definite conclusion. The results suggest the possibility of using lossy compression, potentially on the nanopore sequencing device itself, to achieve significant reductions in storage and transmission costs while preserving the accuracy of downstream applications. Availabilityand implementation The code is available at https://github.com/shubhamchandak94/lossy_compression_evaluation.
Collapse
Affiliation(s)
- Shubham Chandak
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tatwawadi Tatwawadi
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Srivatsan Sridhar
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
393
|
Bull RA, Adikari TN, Ferguson JM, Hammond JM, Stevanovski I, Beukers AG, Naing Z, Yeang M, Verich A, Gamaarachchi H, Kim KW, Luciani F, Stelzer-Braid S, Eden JS, Rawlinson WD, van Hal SJ, Deveson IW. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat Commun 2020; 11:6272. [PMID: 33298935 PMCID: PMC7726558 DOI: 10.1038/s41467-020-20075-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
Viral whole-genome sequencing (WGS) provides critical insight into the transmission and evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Long-read sequencing devices from Oxford Nanopore Technologies (ONT) promise significant improvements in turnaround time, portability and cost, compared to established short-read sequencing platforms for viral WGS (e.g., Illumina). However, adoption of ONT sequencing for SARS-CoV-2 surveillance has been limited due to common concerns around sequencing accuracy. To address this, here we perform viral WGS with ONT and Illumina platforms on 157 matched SARS-CoV-2-positive patient specimens and synthetic RNA controls, enabling rigorous evaluation of analytical performance. We report that, despite the elevated error rates observed in ONT sequencing reads, highly accurate consensus-level sequence determination was achieved, with single nucleotide variants (SNVs) detected at >99% sensitivity and >99% precision above a minimum ~60-fold coverage depth, thereby ensuring suitability for SARS-CoV-2 genome analysis. ONT sequencing also identified a surprising diversity of structural variation within SARS-CoV-2 specimens that were supported by evidence from short-read sequencing on matched samples. However, ONT sequencing failed to accurately detect short indels and variants at low read-count frequencies. This systematic evaluation of analytical performance for SARS-CoV-2 WGS will facilitate widespread adoption of ONT sequencing within local, national and international COVID-19 public health initiatives.
Collapse
Affiliation(s)
- Rowena A Bull
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thiruni N Adikari
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - James M Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jillian M Hammond
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alicia G Beukers
- NSW Health Pathology, Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Zin Naing
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Malinna Yeang
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Andrey Verich
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ki Wook Kim
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sacha Stelzer-Braid
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity & Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - William D Rawlinson
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Sebastiaan J van Hal
- NSW Health Pathology, Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
394
|
Lee I, Razaghi R, Gilpatrick T, Molnar M, Gershman A, Sadowski N, Sedlazeck FJ, Hansen KD, Simpson JT, Timp W. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat Methods 2020; 17:1191-1199. [PMID: 33230324 PMCID: PMC7704922 DOI: 10.1038/s41592-020-01000-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
Abstract
Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Isac Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Roham Razaghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy Gilpatrick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Molnar
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Kasper D Hansen
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
395
|
Chucair-Elliott AJ, Ocañas SR, Stanford DR, Ansere VA, Buettner KB, Porter H, Eliason NL, Reid JJ, Sharpe AL, Stout MB, Beckstead MJ, Miller BF, Richardson A, Freeman WM. Inducible cell-specific mouse models for paired epigenetic and transcriptomic studies of microglia and astroglia. Commun Biol 2020; 3:693. [PMID: 33214681 PMCID: PMC7678837 DOI: 10.1038/s42003-020-01418-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available. Ana Chucair-Elliott, Sarah Ocaňas et al. present a NuTRAP approach for simultaneous analysis of transcript expression and DNA modifications in two specific mouse brain cell types, astrocytes and microglia. They further apply this approach to identify molecular changes in microglia following LPS treatment and identify both transcriptomic and epigenomic alterations not apparent in tissue-level analyses.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Buettner
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter Porter
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole L Eliason
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin J Reid
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. .,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
396
|
Liu J, Wang J, Xiao X, Lai X, Dai D, Zhang X, Zhu X, Zhao Z, Wang J, Li Z. A hybrid correcting method considering heterozygous variations by a comprehensive probabilistic model. BMC Genomics 2020; 21:753. [PMID: 33208104 PMCID: PMC7677778 DOI: 10.1186/s12864-020-07008-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The emergence of the third generation sequencing technology, featuring longer read lengths, has demonstrated great advancement compared to the next generation sequencing technology and greatly promoted the biological research. However, the third generation sequencing data has a high level of the sequencing error rates, which inevitably affects the downstream analysis. Although the issue of sequencing error has been improving these years, large amounts of data were produced at high sequencing errors, and huge waste will be caused if they are discarded. Thus, the error correction for the third generation sequencing data is especially important. The existing error correction methods have poor performances at heterozygous sites, which are ubiquitous in diploid and polyploidy organisms. Therefore, it is a lack of error correction algorithms for the heterozygous loci, especially at low coverages. Results In this article, we propose a error correction method, named QIHC. QIHC is a hybrid correction method, which needs both the next generation and third generation sequencing data. QIHC greatly enhances the sensitivity of identifying the heterozygous sites from sequencing errors, which leads to a high accuracy on error correction. To achieve this, QIHC established a set of probabilistic models based on Bayesian classifier, to estimate the heterozygosity of a site and makes a judgment by calculating the posterior probabilities. The proposed method is consisted of three modules, which respectively generates a pseudo reference sequence, obtains the read alignments, estimates the heterozygosity the sites and corrects the read harboring them. The last module is the core module of QIHC, which is designed to fit for the calculations of multiple cases at a heterozygous site. The other two modules enable the reads mapping to the pseudo reference sequence which somehow overcomes the inefficiency of multiple mappings that adopt by the existing error correction methods. Conclusions To verify the performance of our method, we selected Canu and Jabba to compare with QIHC in several aspects. As a hybrid correction method, we first conducted a groups of experiments under different coverages of the next-generation sequencing data. QIHC is far ahead of Jabba on accuracy. Meanwhile, we varied the coverages of the third generation sequencing data and compared performances again among Canu, Jabba and QIHC. QIHC outperforms the other two methods on accuracy of both correcting the sequencing errors and identifying the heterozygous sites, especially at low coverage. We carried out a comparison analysis between Canu and QIHC on the different error rates of the third generation sequencing data. QIHC still performs better. Therefore, QIHC is superior to the existing error correction methods when heterozygous sites exist.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China. .,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.
| | - Xiao Xiao
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Xin Lai
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Daocheng Dai
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Zhongmeng Zhao
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Shaanxi Engineering Research Center of Medical and Health Big Data, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China
| | - Juan Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China.,Annoroad Gene Institute, Beijing, 100176, China
| | - Zhimin Li
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710048, China. .,Annoroad Gene Institute, Beijing, 100176, China.
| |
Collapse
|
397
|
Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat Commun 2020; 11:5823. [PMID: 33199677 PMCID: PMC7669906 DOI: 10.1038/s41467-020-19452-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
MYCN amplification drives one in six cases of neuroblastoma. The supernumerary gene copies are commonly found on highly rearranged, extrachromosomal circular DNA (ecDNA). The exact amplicon structure has not been described thus far and the functional relevance of its rearrangements is unknown. Here, we analyze the MYCN amplicon structure using short-read and Nanopore sequencing and its chromatin landscape using ChIP-seq, ATAC-seq and Hi-C. This reveals two distinct classes of amplicons which explain the regulatory requirements for MYCN overexpression. The first class always co-amplifies a proximal enhancer driven by the noradrenergic core regulatory circuit (CRC). The second class of MYCN amplicons is characterized by high structural complexity, lacks key local enhancers, and instead contains distal chromosomal fragments harboring CRC-driven enhancers. Thus, ectopic enhancer hijacking can compensate for the loss of local gene regulatory elements and explains a large component of the structural diversity observed in MYCN amplification. MYCN amplification is common in neuroblastomas. Here the authors analyse the MYCN amplicon structure and its epigenetic regulation by integrating short- and longread genomic and epigenomic data and find two classes of MYCN amplicons in neuroblastomas, one driven by local enhancers and the other by hijacking of distal regulatory elements.
Collapse
|
398
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
399
|
Vereecke N, Bokma J, Haesebrouck F, Nauwynck H, Boyen F, Pardon B, Theuns S. High quality genome assemblies of Mycoplasma bovis using a taxon-specific Bonito basecaller for MinION and Flongle long-read nanopore sequencing. BMC Bioinformatics 2020; 21:517. [PMID: 33176691 PMCID: PMC7661149 DOI: 10.1186/s12859-020-03856-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Implementation of Third-Generation Sequencing approaches for Whole Genome Sequencing (WGS) all-in-one diagnostics in human and veterinary medicine, requires the rapid and accurate generation of consensus genomes. Over the last years, Oxford Nanopore Technologies (ONT) released various new devices (e.g. the Flongle R9.4.1 flow cell) and bioinformatics tools (e.g. the in 2019-released Bonito basecaller), allowing cheap and user-friendly cost-efficient introduction in various NGS workflows. While single read, overall consensus accuracies, and completeness of genome sequences has been improved dramatically, further improvements are required when working with non-frequently sequenced organisms like Mycoplasma bovis. As an important primary respiratory pathogen in cattle, rapid M. bovis diagnostics is crucial to allow timely and targeted disease control and prevention. Current complete diagnostics (including identification, strain typing, and antimicrobial resistance (AMR) detection) require combined culture-based and molecular approaches, of which the first can take 1-2 weeks. At present, cheap and quick long read all-in-one WGS approaches can only be implemented if increased accuracies and genome completeness can be obtained. RESULTS Here, a taxon-specific custom-trained Bonito v.0.1.3 basecalling model (custom-pg45) was implemented in various WGS assembly bioinformatics pipelines. Using MinION sequencing data, we showed improved consensus accuracies up to Q45.2 and Q46.7 for reference-based and Canu de novo assembled M. bovis genomes, respectively. Furthermore, the custom-pg45 model resulted in mean consensus accuracies of Q45.0 and genome completeness of 94.6% for nine M. bovis field strains. Improvements were also observed for the single-use Flongle sequencer (mean Q36.0 accuracies and 80.3% genome completeness). CONCLUSIONS These results implicate that taxon-specific basecalling of MinION and single-use Flongle Nanopore long reads are of great value to be implemented in rapid all-in-one WGS tools as evidenced for Mycoplasma bovis as an example.
Collapse
Affiliation(s)
- Nick Vereecke
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- PathoSense, Merelbeke, Belgium.
| | - Jade Bokma
- Faculty of Veterinary Medicine, Department of Large Animal Internal Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- PathoSense, Merelbeke, Belgium
| | - Filip Boyen
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bart Pardon
- Faculty of Veterinary Medicine, Department of Large Animal Internal Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sebastiaan Theuns
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- PathoSense, Merelbeke, Belgium
| |
Collapse
|
400
|
Prodanov T, Bansal V. Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Res 2020; 48:e114. [PMID: 33035301 PMCID: PMC7641771 DOI: 10.1093/nar/gkaa829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to characterize repetitive regions of the human genome is limited by the read lengths of short-read sequencing technologies. Although long-read sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies can potentially overcome this limitation, long segmental duplications with high sequence identity pose challenges for long-read mapping. We describe a probabilistic method, DuploMap, designed to improve the accuracy of long-read mapping in segmental duplications. It analyzes reads mapped to segmental duplications using existing long-read aligners and leverages paralogous sequence variants (PSVs)—sequence differences between paralogous sequences—to distinguish between multiple alignment locations. On simulated datasets, DuploMap increased the percentage of correctly mapped reads with high confidence for multiple long-read aligners including Minimap2 (74.3–90.6%) and BLASR (82.9–90.7%) while maintaining high precision. Across multiple whole-genome long-read datasets, DuploMap aligned an additional 8–21% of the reads in segmental duplications with high confidence relative to Minimap2. Using DuploMap-aligned PacBio circular consensus sequencing reads, an additional 8.9 Mb of DNA sequence was mappable, variant calling achieved a higher F1 score and 14 713 additional variants supported by linked-read data were identified. Finally, we demonstrate that a significant fraction of PSVs in segmental duplications overlaps with variants and adversely impacts short-read variant calling.
Collapse
Affiliation(s)
- Timofey Prodanov
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vikas Bansal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|