351
|
|
352
|
Smith AM, Tau NP, Smouse SL, Allam M, Ismail A, Ramalwa NR, Disenyeng B, Ngomane M, Thomas J. Outbreak of Listeria monocytogenes in South Africa, 2017-2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathog Dis 2019; 16:524-530. [PMID: 31062992 PMCID: PMC6653791 DOI: 10.1089/fpd.2018.2586] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In South Africa, a progressive increase in listeriosis cases was noted from mid-June 2017, heralding what was to become the world's largest listeriosis outbreak. A total of 1060 cases were reported for the period January 1, 2017 to July 17, 2018. We describe laboratory activities, experiences, and results of whole-genome sequencing (WGS) analysis of Listeria monocytogenes isolates associated with this outbreak. Bacteria were identified using the VITEK-2 COMPACT 15 microbial identification system. WGS was performed using Illumina MiSeq technology. WGS data were analyzed using CLC Genomics Workbench Software and free-to-use on-line analysis tools/pipelines. Multilocus sequence typing (MLST) showed that 91% of clinical isolates were sequence type 6 (ST6), determining that the outbreak was largely associated with L. monocytogenes ST6. Epidemiological and laboratory findings led to investigation of a large ready-to-eat processed meat production facility in South Africa, named Enterprise Foods. L. monocytogenes ST6 was found in environmental sampling swabs of the production facility and in ready-to-eat processed meat products (including polony, a product similar to bologna sausage) manufactured at the facility. ST6 isolates, sourced at the Enterprise Foods production facility and from Enterprise food products, were shown by single nucleotide polymorphism (SNP) analysis to be highly related to clinical isolates; these nonclinical ST6 isolates showed <10 SNP differences when compared to clinical ST6 isolates. Core-genome MLST showed that clinical ST6 isolates and Enterprise-related ST6 isolates had no more than 4 allele differences between each other, suggestive of a high probability of epidemiological relatedness. WGS data interpreted together with epidemiological data concluded that the source of the listeriosis outbreak was ready-to-eat processed meat products manufactured by Enterprise Foods. Listeriosis has now been added to the South African list of mandatory notifiable medical conditions. Surveillance systems have been strengthened to facilitate prevention and early detection of listeriosis outbreaks.
Collapse
Affiliation(s)
- Anthony M Smith
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.,2 Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nomsa P Tau
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shannon L Smouse
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mushal Allam
- 3 Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- 3 Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ntsieni R Ramalwa
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bolele Disenyeng
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mimmy Ngomane
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Juno Thomas
- 1 Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.,2 Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
353
|
Jagadeesan B, Baert L, Wiedmann M, Orsi RH. Comparative Analysis of Tools and Approaches for Source Tracking Listeria monocytogenes in a Food Facility Using Whole-Genome Sequence Data. Front Microbiol 2019; 10:947. [PMID: 31143162 PMCID: PMC6521219 DOI: 10.3389/fmicb.2019.00947] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
As WGS is increasingly used by food industry to characterize pathogen isolates, users are challenged by the variety of analysis approaches available, ranging from methods that require extensive bioinformatics expertise to commercial software packages. This study aimed to assess the impact of analysis pipelines (i.e., different hqSNP pipelines, a cg/wgMLST pipeline) and the reference genome selection on analysis results (i.e., hqSNP and allelic differences as well as tree topologies) and conclusion drawn. For these comparisons, whole genome sequences were obtained for 40 Listeria monocytogenes isolates collected over 18 years from a cold-smoked salmon facility and 2 other isolates obtained from different facilities as part of academic research activities; WGS data were analyzed with three hqSNP pipelines and two MLST pipelines. After initial clustering using a k-mer based approach, hqSNP pipelines were run using two types of reference genomes: (i) closely related closed genomes (“closed references”) and (ii) high-quality de novo assemblies of the dataset isolates (“draft references”). All hqSNP pipelines identified similar hqSNP difference ranges among isolates in a given cluster; use of different reference genomes showed minimal impacts on hqSNP differences identified between isolate pairs. Allelic differences obtained by wgMLST showed similar ranges as hqSNP differences among isolates in a given cluster; cgMLST consistently showed fewer differences than wgMLST. However, phylogenetic trees and dendrograms, obtained based on hqSNP and cg/wgMLST data, did show some incongruences, typically linked to clades supported by low bootstrap values in the trees. When a hqSNP cutoff was used to classify isolates as “related” or “unrelated,” use of different pipelines yielded a considerable number of discordances; this finding supports that cut-off values are valuable to provide a starting point for an investigation, but supporting and epidemiological evidence should be used to interpret WGS data. Overall, our data suggest that cgMLST-based data analyses provide for appropriate subtype differentiation and can be used without the need for preliminary data analyses (e.g., k-mer based clustering) or external closed reference genomes, simplifying data analyses needs. hqSNP or wgMLST analyses can be performed on the isolate clusters identified by cgMLST to increase the precision on determining the genomic similarity between isolates.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Leen Baert
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
354
|
Tolar B, Joseph LA, Schroeder MN, Stroika S, Ribot EM, Hise KB, Gerner-Smidt P. An Overview of PulseNet USA Databases. Foodborne Pathog Dis 2019; 16:457-462. [PMID: 31066584 DOI: 10.1089/fpd.2019.2637] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PulseNet USA is the molecular surveillance network for foodborne disease in the United States. The network consists of state and local public health laboratories, as well as food regulatory agencies, that follow PulseNet's standardized protocols to perform pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) and analyze the results using standardized software. The raw sequences are uploaded to the GenomeTrakr or PulseNet bioprojects at the National Center for Biotechnology Information. The PFGE patterns and analyzed sequence data are uploaded in real time with associated demographic data to the PulseNet national databases managed at the Centers for Disease Control and Prevention. The PulseNet databases are organism specific and provide a central storage location for molecular and demographic data related to an isolate. Sequences are compared in the databases, thereby facilitating the rapid detection of clusters of foodborne diseases that may represent widespread outbreaks. WGS genotyping data, for example, antibiotic resistance and virulence profiles, are also uploaded in real time to the PulseNet databases to improve food safety surveillance activities.
Collapse
Affiliation(s)
- Beth Tolar
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lavin A Joseph
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Morgan N Schroeder
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Efrain M Ribot
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kelley B Hise
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter Gerner-Smidt
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
355
|
Muchaamba F, Eshwar AK, Stevens MJA, von Ah U, Tasara T. Variable Carbon Source Utilization, Stress Resistance, and Virulence Profiles Among Listeria monocytogenes Strains Responsible for Listeriosis Outbreaks in Switzerland. Front Microbiol 2019; 10:957. [PMID: 31130938 PMCID: PMC6510287 DOI: 10.3389/fmicb.2019.00957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
A combination of phenotype microarrays, targeted stress resistance and virulence assays and comparative genome analysis was used to compare a set of Listeria monocytogenes strains including those involved in previous Swiss foodborne listeriosis outbreaks. Despite being highly syntenic in gene content these strains showed significant phenotypic variation in utilization of different carbon (C)-sources as well as in resistance of osmotic and pH stress conditions that are relevant to host and food associated environments. An outbreak strain from the 2005 Swiss Tomme cheese listeriosis outbreak (Lm3163) showed the highest versatility in C-sources utilized whereas the strain responsible for the 1983 to 1987 Vacherin Montd'or cheese listeriosis outbreak (LL195) showed the highest tolerance to both osmotic and pH stress conditions among the examined strains. Inclusion of L-norvaline led to enhanced resistance of acidic stress in all the examined strains and there were strain-strain-specific differences observed in the ability of other amino acids and urea to enhance acid stress resistance in L. monocytogenes. A strain dependent inhibition pattern was also observed upon inclusion of β-phenylethylamine under alkaline stress conditions. In targeted phenotypic analysis the strain-specific differences in salt stress tolerance uncovered in phenotypic microarrays were corroborated and variations in host cell invasion and virulence among the examined strains were also revealed. Outbreak associated strains representing lineage I serotype 4b showed superior pathogenicity in a zebrafish infection model whilst Lm3163 a lineage II serotype 1/2a outbreak strain demonstrated the highest cellular invasion capacity amongst the tested strains. A genome wide sequence comparison of the strains only revealed few genetic differences between the strains suggesting that variations in gene regulation and expression are largely responsible for the phenotypic differences revealed among the examined strains. Our results have generated data that provides a potential basis for the future design of improved Listeria specific media to enhance routine detection and isolation of this pathogen as well as provide knowledge for developing novel methods for its control in food.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | | | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|
356
|
Phylogenomic Pipeline Validation for Foodborne Pathogen Disease Surveillance. J Clin Microbiol 2019; 57:JCM.01816-18. [PMID: 30728194 DOI: 10.1128/jcm.01816-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Foodborne pathogen surveillance in the United States is transitioning from strain identification using restriction digest technology (pulsed-field gel electrophoresis [PFGE]) to shotgun sequencing of the entire genome (whole-genome sequencing [WGS]). WGS requires a new suite of analysis tools, some of which have long histories in academia but are new to the field of public health and regulatory decision making. Although the general workflow is fairly standard for collecting and analyzing WGS data for disease surveillance, there are a number of differences in how the data are collected and analyzed across public health agencies, both nationally and internationally. This impedes collaborative public health efforts, so national and international efforts are underway to enable direct comparison of these different analysis methods. Ultimately, the harmonization efforts will allow the (mutually trusted and understood) production and analysis of WGS data by labs and agencies worldwide, thus improving outbreak response capabilities globally. This review provides a historical perspective on the use of WGS for pathogen tracking and summarizes the efforts underway to ensure the major steps in phylogenomic pipelines used for pathogen disease surveillance can be readily validated. The tools for doing this will ensure that the results produced are sound, reproducible, and comparable across different analytic approaches.
Collapse
|
357
|
Whole-Genome Sequence of a Serotype 1/2b Listeria monocytogenes Strain Isolated from Raw Seafood in Japan. Microbiol Resour Announc 2019; 8:8/17/e00206-19. [PMID: 31023791 PMCID: PMC6486248 DOI: 10.1128/mra.00206-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Listeria monocytogenes is a pathogen typically acquired through the ingestion of foods. It has been specifically reported that the pathogen is widely distributed in raw seafood in Japan. Listeria monocytogenes is a pathogen typically acquired through the ingestion of foods. It has been specifically reported that the pathogen is widely distributed in raw seafood in Japan. Here, we report the whole-genome sequence and sequence type (ST) of a Listeria monocytogenes strain isolated from salmon roe sold in the Japanese retail market.
Collapse
|
358
|
Bouchez V, Guglielmini J, Dazas M, Landier A, Toubiana J, Guillot S, Criscuolo A, Brisse S. Genomic Sequencing of Bordetella pertussis for Epidemiology and Global Surveillance of Whooping Cough. Emerg Infect Dis 2019; 24:988-994. [PMID: 29774847 PMCID: PMC6004856 DOI: 10.3201/eid2406.171464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.
Collapse
|
359
|
Guglielmini J, Bourhy P, Schiettekatte O, Zinini F, Brisse S, Picardeau M. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl Trop Dis 2019; 13:e0007374. [PMID: 31026256 PMCID: PMC6513109 DOI: 10.1371/journal.pntd.0007374] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/13/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Leptospira is a highly heterogeneous bacterial genus that can be divided into three evolutionary lineages and >300 serovars. The causative agents of leptospirosis are responsible of an emerging zoonotic disease worldwide. To advance our understanding of the biodiversity of Leptospira strains at the global level, we evaluated the performance of whole-genome sequencing (WGS) as a genus-wide strain classification and genotyping tool. Herein we propose a set of 545 highly conserved loci as a core genome MLST (cgMLST) genotyping scheme applicable to the entire Leptospira genus, including non-pathogenic species. Evaluation of cgMLST genotyping was undertaken with 509 genomes, including 327 newly sequenced genomes, from diverse species, sources and geographical locations. Phylogenetic analysis showed that cgMLST defines species, clades, subclades, clonal groups and cgMLST sequence types (cgST), with high precision and robustness to missing data. Novel Leptospira species, including a novel subclade named S2 (saprophytes 2), were identified. We defined clonal groups (CG) optimally using a single-linkage clustering threshold of 40 allelic mismatches. While some CGs such as L. interrogans CG6 (serogroup Icterohaemorrhagiae) are globally distributed, others are geographically restricted. cgMLST was congruent with classical MLST schemes, but had greatly improved resolution and broader applicability. Single nucleotide polymorphisms within single cgST groups was limited to <30 SNPs, underlining a potential role for cgMLST in epidemiological surveillance. Finally, cgMLST allowed identification of serogroups and closely related serovars. In conclusion, the proposed cgMLST strategy allows high-resolution genotyping of Leptospira isolates across the phylogenetic breadth of the genus. The unified genomic taxonomy of Leptospira strains, available publicly at http://bigsdb.pasteur.fr/leptospira, will facilitate global harmonization of Leptospira genotyping, strain emergence follow-up and novel collaborative studies of the epidemiology and evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - Pascale Bourhy
- Institut Pasteur, Biology of Spirochetes unit, National Reference Center for Leptospirosis, Paris, France
| | - Olivier Schiettekatte
- Institut Pasteur, Biology of Spirochetes unit, National Reference Center for Leptospirosis, Paris, France
- Université Paris Diderot, Ecole Doctorale BioSPC, Paris, France
| | - Farida Zinini
- Institut Pasteur, Biology of Spirochetes unit, National Reference Center for Leptospirosis, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes unit, National Reference Center for Leptospirosis, Paris, France
| |
Collapse
|
360
|
Atypical Hemolytic Listeria innocua Isolates Are Virulent, albeit Less than Listeria monocytogenes. Infect Immun 2019; 87:IAI.00758-18. [PMID: 30670551 DOI: 10.1128/iai.00758-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/26/2023] Open
Abstract
Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.
Collapse
|
361
|
Kotzamanidis C, Papadopoulos T, Vafeas G, Tsakos P, Giantzi V, Zdragas A. Characterization of Listeria monocytogenes from encephalitis cases of small ruminants from different geographical regions, in Greece. J Appl Microbiol 2019; 126:1373-1382. [PMID: 30835952 DOI: 10.1111/jam.14244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to evaluate the genetic diversity and resistance phenotypes of Listeria monocytogenes strains isolated from clinical encephalitis cases, and compare this population to isolates derived from tank milk of healthy animals. METHODS AND RESULTS A total of 57 L. monocytogenes strains isolated from ruminant's listeriosis cases (n = 31) and from tank milk of healthy ruminants (n = 26) were characterized by species PCR, molecular serotyping, PCR detection of virulence genes, pulsed-field gel electrophoresis and antimicrobial susceptibility testing. All strains possessed inlA, inlC, inlJ, plcA, actA, hlyA and iap virulence-associated genes while serotyping analysis revealed that they were mainly assigned into IVb group. Genotyping revealed 50 pulsotypes among the 57 strains assigned into seven clusters while indistinguishable pulsotypes between clinical and milk strains were not identified. Resistance of L. monocytogenes isolates to 14-16 antimicrobial agents tested was observed and 23 antimicrobial resistance profiles (ARPs) were defined while no apparent predominant ARP type was observed among isolates. CONCLUSIONS Small ruminants are exposed to a broad range of antimicrobial-resistant as well as genetically diverse strains of L. monocytogenes carrying virulence-associated genes but not all of them associated with the disease. Pulsed-field gel electrophoresis analysis suggests that pulsotypes associated with encephalitis are found in farms only in association with listeriosis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings are valuable in understanding the ecology of this important food-borne pathogen and creating awareness for the emerging antimicrobial resistance.
Collapse
Affiliation(s)
- C Kotzamanidis
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - T Papadopoulos
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Thermi, Greece.,Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - G Vafeas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - P Tsakos
- Ministry of Rural Development and Food Directorate of Veterinary Centre of Thessaloniki Department of Microbiology, Infectious Diseases and Brucellosis, Thessaloniki, Greece
| | - V Giantzi
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - A Zdragas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| |
Collapse
|
362
|
Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB. Multiple Recombination Events Drive the Current Genetic Structure of Xanthomonas perforans in Florida. Front Microbiol 2019; 10:448. [PMID: 30930868 PMCID: PMC6425879 DOI: 10.3389/fmicb.2019.00448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Prior to the identification of Xanthomonas perforans associated with bacterial spot of tomato in 1991, X. euvesicatoria was the only known species in Florida. Currently, X. perforans is the Xanthomonas sp. associated with tomato in Florida. Changes in pathogenic race and sequence alleles over time signify shifts in the dominant X. perforans genotype in Florida. We previously reported recombination of X. perforans strains with closely related Xanthomonas species as a potential driving factor for X. perforans evolution. However, the extent of recombination across the X. perforans genomes was unknown. We used a core genome multilocus sequence analysis approach to identify conserved genes and evaluated recombination-associated evolution of these genes in X. perforans. A total of 1,356 genes were determined to be "core" genes conserved among the 58 X. perforans genomes used in the study. Our approach identified three genetic groups of X. perforans in Florida based on the principal component analysis (PCA) using core genes. Nucleotide variation in 241 genes defined these groups, that are referred as Phylogenetic-group Defining (PgD) genes. Furthermore, alleles of many of these PgD genes showed 100% sequence identity with X. euvesicatoria, suggesting that variation likely has been introduced by recombination at multiple locations throughout the bacterial chromosome. Site-specific recombinase genes along with plasmid mobilization and phage associated genes were observed at different frequencies in the three phylogenetic groups and were associated with clusters of recombinant genes. Our analysis of core genes revealed the extent, source, and mechanisms of recombination events that shaped the current population and genomic structure of X. perforans in Florida.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | | | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | | | - Peter Abrahamian
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Gary E. Vallad
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
363
|
Crowther CV, Hilton SH, Kemp L, Hayes MA. Isolation and identification of Listeria monocytogenes utilizing DC insulator-based dielectrophoresis. Anal Chim Acta 2019; 1068:41-51. [PMID: 31072476 DOI: 10.1016/j.aca.2019.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
Foodborne pathogens pose one of the greatest challenges facing public health in the modern day. One important pathogen, Listeria monocytogenes, is known to be challenging to detect and identify. Three serovars cause most of the Listeria related food-borne illnesses, which the Centers for Disease Control currently utilizes a combination of pulsed-field gel electrophoresis and whole genome sequencing for identification and the determination of clusters and outbreaks. There is a potential method for rapid collection of epidemiological information by exploiting the electrokinetic and dielectrophoretic properties of the L. monocytogenes serovars. Using dielectrophoresis, the three most commonly identified serovars of L. monocytogenes can be distinguished from each other. The electrokinetic and dielectrophoretic mobilities of each serovar was determined through a combination of electrokinetic velocity and dielectrophoretic trapping assessments, in conjunction with finite element multi-physics modeling. A mathematical model of the data, which defines the various factors of dielectrophoretic trapping, is utilized and verified based on the behavior of L. monocytogenes in the microchannel. The trapping condition for the serovars were evaluated as 2.8±0.2×109, 2.2±0.2×109, and 2.2±0.3×109Vm-2 and the electrokinetic mobility was assessed to be 19±0.7, 17±0.7, and for the L. monocytogenes serovars 1/2a, 1/2b, and 4b, respectively.
Collapse
Affiliation(s)
- Claire V Crowther
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - LaKeta Kemp
- Phoenix Research Institute, Phoenix, AZ, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
364
|
Bogaerts B, Winand R, Fu Q, Van Braekel J, Ceyssens PJ, Mattheus W, Bertrand S, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept. Front Microbiol 2019; 10:362. [PMID: 30894839 PMCID: PMC6414443 DOI: 10.3389/fmicb.2019.00362] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Despite being a well-established research method, the use of whole-genome sequencing (WGS) for routine molecular typing and pathogen characterization remains a substantial challenge due to the required bioinformatics resources and/or expertise. Moreover, many national reference laboratories and centers, as well as other laboratories working under a quality system, require extensive validation to demonstrate that employed methods are "fit-for-purpose" and provide high-quality results. A harmonized framework with guidelines for the validation of WGS workflows does currently, however, not exist yet, despite several recent case studies highlighting the urgent need thereof. We present a validation strategy focusing specifically on the exhaustive characterization of the bioinformatics analysis of a WGS workflow designed to replace conventionally employed molecular typing methods for microbial isolates in a representative small-scale laboratory, using the pathogen Neisseria meningitidis as a proof-of-concept. We adapted several classically employed performance metrics specifically toward three different bioinformatics assays: resistance gene characterization (based on the ARG-ANNOT, ResFinder, CARD, and NDARO databases), several commonly employed typing schemas (including, among others, core genome multilocus sequence typing), and serogroup determination. We analyzed a core validation dataset of 67 well-characterized samples typed by means of classical genotypic and/or phenotypic methods that were sequenced in-house, allowing to evaluate repeatability, reproducibility, accuracy, precision, sensitivity, and specificity of the different bioinformatics assays. We also analyzed an extended validation dataset composed of publicly available WGS data for 64 samples by comparing results of the different bioinformatics assays against results obtained from commonly used bioinformatics tools. We demonstrate high performance, with values for all performance metrics >87%, >97%, and >90% for the resistance gene characterization, sequence typing, and serogroup determination assays, respectively, for both validation datasets. Our WGS workflow has been made publicly available as a "push-button" pipeline for Illumina data at https://galaxy.sciensano.be to showcase its implementation for non-profit and/or academic usage. Our validation strategy can be adapted to other WGS workflows for other pathogens of interest and demonstrates the added value and feasibility of employing WGS with the aim of being integrated into routine use in an applied public health setting.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
365
|
Wang J, Li T, Shen R, Li G, Ling L. Polymerase Chain Reaction-Dynamic Light Scattering Sensor for DNA and Protein by Using Both Replication and Cleavage Properties of Taq Polymerase. Anal Chem 2019; 91:3429-3435. [DOI: 10.1021/acs.analchem.8b04929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
366
|
Painset A, Björkman JT, Kiil K, Guillier L, Mariet JF, Félix B, Amar C, Rotariu O, Roussel S, Perez-Reche F, Brisse S, Moura A, Lecuit M, Forbes K, Strachan N, Grant K, Møller-Nielsen E, Dallman TJ. LiSEQ - whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb Genom 2019; 5:e000257. [PMID: 30775964 PMCID: PMC6421348 DOI: 10.1099/mgen.0.000257] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
We present the LiSEQ (Listeria SEQuencing) project, funded by the European Food Safety Agency (EFSA) to compare Listeria monocytogenes isolates collected in the European Union from ready-to-eat foods, compartments along the food chain (e.g. food-producing animals, food-processing environments) and humans. In this article, we report the molecular characterization of a selection of this data set employing whole-genome sequencing analysis. We present an overview of the strain diversity observed in different sampled sources, and characterize the isolates based on their virulence and resistance profile. We integrate into our analysis the global L. monocytogenes genome collection described by Moura and colleagues in 2016 to assess the representativeness of the LiSEQ collection in the context of known L. monocytogenes strain diversity.
Collapse
Affiliation(s)
- Anaïs Painset
- Public Health England Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London, NW9 5EQ, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| | - Jonas T. Björkman
- Statens Serum Institut, 5 Artillerivej, DK-2300, Copenhagen S, Denmark
| | - Kristoffer Kiil
- Statens Serum Institut, 5 Artillerivej, DK-2300, Copenhagen S, Denmark
| | - Laurent Guillier
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-François Mariet
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Corinne Amar
- Public Health England Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Ovidiu Rotariu
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building. St Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Francisco Perez-Reche
- Institute of Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | | - Ken Forbes
- School of Medicine and Dentistry, The University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Norval Strachan
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building. St Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| | - Kathie Grant
- Public Health England Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London, NW9 5EQ, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| | | | - Timothy J. Dallman
- Public Health England Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London, NW9 5EQ, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| |
Collapse
|
367
|
Reimer A, Weedmark K, Petkau A, Peterson CL, Walker M, Knox N, Kent H, Mabon P, Berry C, Tyler S, Tschetter L, Jerome M, Allen V, Hoang L, Bekal S, Clark C, Nadon C, Van Domselaar G, Pagotto F, Graham M, Farber J, Gilmour M. Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria. Microb Genom 2019; 5. [PMID: 30648944 PMCID: PMC6412057 DOI: 10.1099/mgen.0.000237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.
Collapse
Affiliation(s)
- Aleisha Reimer
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kelly Weedmark
- 2Health Canada, Bureau of Microbial Hazards, Ottawa, ON, K1A 0K9, Canada
| | - Aaron Petkau
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Matthew Walker
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Natalie Knox
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Heather Kent
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Philip Mabon
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Chrystal Berry
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shaun Tyler
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Morganne Jerome
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Vanessa Allen
- 3Public Health Ontario, Toronto, ON, M5G 1M1, Canada
| | - Linda Hoang
- 4British Columbia Centre for Disease Control, Public Health Microbiology and Reference Laboratory, Vancouver, BC V5Z 4R4, Canada
| | - Sadjia Bekal
- 5Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, H9X 3R5, Canada
| | - Clifford Clark
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Celine Nadon
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | | | - Franco Pagotto
- 2Health Canada, Bureau of Microbial Hazards, Ottawa, ON, K1A 0K9, Canada
| | - Morag Graham
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Jeff Farber
- 6University of Guelph, Guelph, ON, N1G 2W, Canada
| | - Matthew Gilmour
- 1Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| |
Collapse
|
368
|
Fan Z, Xie J, Li Y, Wang H. Listeriosis in mainland China: A systematic review. Int J Infect Dis 2019; 81:17-24. [PMID: 30641204 DOI: 10.1016/j.ijid.2019.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The aim of this study was to conduct a systematic review to better understand the epidemiological and clinical characteristics of listeriosis patients in mainland China. METHODS The six most widely used Chinese and English language databases were searched. The records of patients with listeriosis in mainland China reported during the years 2011-2017 were extracted. The clinical data of patients and information on clinical isolates of Listeria were collected and analyzed. RESULTS In total, 136 records were identified, reporting 562 patients with listeriosis. The number of patients was much higher than that reported in the previous decade. The 227 non-perinatal listeriosis patients included had a mortality rate of 23.78%. Of the 231 perinatal listeriosis patients, 32.68% resulted in abortion and/or newborn death. All listeriosis cases were reported as being sporadic. The listeriosis was traced to infection via a meat product in only three patients, while 33.12% were healthcare-associated infections. CONCLUSIONS The number of patients with listeriosis in mainland China may have been underestimated previously. Perinatal cases in mainland China account for a much higher proportion than is usually described. Considering the high number of listeriosis patients in China, a comprehensive monitoring system for Listeria is urgently needed.
Collapse
Affiliation(s)
- Zhangling Fan
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xie
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Li
- The Institute of Medical Information (IMI) and Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanling Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
369
|
Taylor AJ, Stasiewicz MJ. CRISPR-Based Subtyping Using Whole Genome Sequence Data Does Not Improve Differentiation of Persistent and Sporadic Listeria monocytogenes Strains. J Food Sci 2019; 84:319-326. [PMID: 30620778 DOI: 10.1111/1750-3841.14426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The foodborne pathogen Listeria monocytogenes can persist in food-associated environments for long periods. To identify persistent strains, the subtyping method pulsed-field gel electrophoresis (PFGE) is being replaced by whole genome sequence (WGS)-based subtyping. It was hypothesized that analyzing specific mobile genetic elements, CRISPR (Clustered Regularly Interspaced Short Palindromic Short Repeat) spacer arrays, extracted from WGS data, could differentiate persistent and sporadic isolates within WGS-based clades. To test this hypothesis, 175 L. monocytogenes isolates, previously recovered from retail delis, were analyzed for CRISPR spacers using CRISPRFinder. These isolates represent 23 phylogenetic clades defined by WGS-based single nucleotide polymorphisms and closely related sporadic isolates. In 174/175 (99.4%) of isolates, at least one array with one spacer was identified. Numbers of spacers in a single array ranged from 1 to 28 spacers. Isolates were grouped into 13 spacer patterns (SPs) based on observed variability in the presence or absence of whole spacers. SP variation was consistent with WGS-based clades forming patterns of (i) one SP to one clade, (ii) one SP across many clades, (iii) many SPs within one clade, and (iv) many SPs across many clades. Unfortunately, SPs did not appear to differentiate persistent from sporadic isolates within any WGS-based clade. Overall, these data show that (i) CRISPR arrays are common in WGS data for these food-associated L. monocytogenes and (ii) CRISPR subtyping cannot improve the identification of persistent or sporadic isolates from retail delis. PRACTICAL APPLICATION: CRISPR spacer arrays are present in L. monocytogenes isolates and CRISPR spacer patterns are consistent with previous subtyping methods. These mobile genetic artifacts cannot improve the differentiation between persistent and sporadic L. monocytogenes isolates, used in this study. While CRISPR-based subtyping has been useful for other pathogens, it is not useful in understanding persistence in L. monocytogenes. Thus, the food safety community might be able to use CRISPRs in other areas, but CRISPRs do not seem likely to improve the differentiation of persistence in L. monocytogenes isolates from retail delis.
Collapse
Affiliation(s)
- Alexander J Taylor
- Dept. of Food Science and Human Nutrition, Coll. of Agricultural, Consumer, and Environmental Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew J Stasiewicz
- Dept. of Food Science and Human Nutrition, Coll. of Agricultural, Consumer, and Environmental Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
370
|
Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, Alles G, Hölzel C, Schlesiger F, Pietzka A, Schlüter D, Flieger A. A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg Microbes Infect 2019; 8:17-28. [PMID: 30866756 PMCID: PMC6455121 DOI: 10.1080/22221751.2018.1558960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Rita Prager
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sangeeta Banerji
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sylvia Kleta
- German Federal Institute for Risk AssessmentBerlin, Germany
| | - Eva Trost
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Georg Alles
- Paderborn District, Health Office, Paderborn, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Kiel, Germany
- Milk Hygiene, Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Friederike Schlesiger
- Chemical and Veterinary Analytical Institute Ostwestfalen-Lippe (CVUA-OWL), Detmold, Germany
| | - Ariane Pietzka
- German-Austrian Binational Consiliary Laboratory for Listeria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
371
|
Elson R, Awofisayo-Okuyelu A, Greener T, Swift C, Painset A, Amar CFL, Newton A, Aird H, Swindlehurst M, Elviss N, Foster K, Dallman TJ, Ruggles R, Grant K. Utility of Whole Genome Sequencing To Describe the Persistence and Evolution of Listeria monocytogenes Strains within Crabmeat Processing Environments Linked to Two Outbreaks of Listeriosis. J Food Prot 2019; 82:30-38. [PMID: 30702931 DOI: 10.4315/0362-028x.jfp-18-206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article describes the identification and investigation of two extended outbreaks of listeriosis in which crabmeat was identified as the vehicle of infection. Comparing contemporary and retrospective typing data of Listeria monocytogenes isolates from clinical cases and from food and food processing environments allowed the detection of cases going back several years. This information, combined with the analysis of routinely collected enhanced surveillance data, helped to direct the investigation and identify the vehicle of infection. Retrospective whole genome sequencing (WGS) analysis of isolates provided robust microbiological evidence of links between cases, foods, and the environments in which they were produced and demonstrated that for some cases and foods, identified by fluorescent amplified fragment length polymorphism, the molecular typing method in routine use at the time, were not part of the outbreak. WGS analysis also showed that the strains causing illness had persisted in two food production environments for many years and in one producer had evolved into two strains over a period of around 8 years. This article demonstrates the value of reviewing L. monocytogenes typing data from clinical cases together with that from foods as a means of identifying potential vehicles and sources of infection in outbreaks of listeriosis. It illustrates the importance of reviewing retrospective L. monocytogenes typing alongside enhanced surveillance data to characterize extended outbreaks and inform control measures. Also, this article highlights the advantages of WGS analysis for strain discrimination and clarification of evolutionary relationships that refine outbreak investigations and improve our understanding of L. monocytogenes in the food chain.
Collapse
Affiliation(s)
- Richard Elson
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Adedoyin Awofisayo-Okuyelu
- 2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Trevor Greener
- 3 North Tyneside Council, Public Protection Services, The Silverlink North, Cobalt Business Park, North Tyneside NE27 0BY, UK
| | - Craig Swift
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anaïs Painset
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | | | - Autilia Newton
- 4 Public Health England UKOT Program IHR, 133-135, Wellington Road, London SE1 8UG, UK
| | - Heather Aird
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Mark Swindlehurst
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Nicola Elviss
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Kirsty Foster
- 6 Public Health England, North East PHE Centre, Floor 2 Citygate, Gallowgate, Newcastle-upon-Tyne NE1 4WH, UK
| | - Timothy J Dallman
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Ruth Ruggles
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Kathie Grant
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| |
Collapse
|
372
|
Cherifi T, Carrillo C, Lambert D, Miniaï I, Quessy S, Larivière-Gauthier G, Blais B, Fravalo P. Genomic characterization of Listeria monocytogenes isolates reveals that their persistence in a pig slaughterhouse is linked to the presence of benzalkonium chloride resistance genes. BMC Microbiol 2018; 18:220. [PMID: 30572836 PMCID: PMC6302515 DOI: 10.1186/s12866-018-1363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/02/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the genomes of 30 Listeria monocytogenes isolates collected at a pig slaughterhouse to determine the molecular basis for their persistence. RESULTS Comparison of the 30 L. monocytogenes genomes showed that successive isolates (i.e., persistent types) recovered from thew sampling site could be linked on the basis of single nucleotide variants confined to prophage regions. In addition, our study revealed the presence among these strains of the bcrABC cassette which is known to produce efflux pump-mediated benzalkonium chloride resistance, and which may account for the persistence of these isolates in the slaughterhouse environment. The presence of the bcrABC cassette was confirmed by WGS and PCR and the resistance phenotype was determined by measuring minimum inhibitory concentrations. Furthermore, the BC-resistant strains were found to produce lower amounts of biofilm in the presence of sublethal concentrations of BC. CONCLUSIONS High resolution SNP-based typing and determination of the bcrABC cassette may provide a means of distinguishing between resident and sporadic L. monocytogenes isolates, and this in turn will support better management of this pathogen in the food industry.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Catherine Carrillo
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Dominic Lambert
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Ilhem Miniaï
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Sylvain Quessy
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Guillaume Larivière-Gauthier
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Burton Blais
- Food Microbiology Research Team, Canadian Food Inspection Agency, Ottawa, ON Canada
| | - Philippe Fravalo
- Chaire de Recherche en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Centre de Recherche sur les Maladies Infectieuses Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
- Groupe de Recherche et D’enseignement En Salubrité Des Aliments, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| |
Collapse
|
373
|
Molecular characterization of Listeria monocytogenes isolates from a small-scale meat processor in Montenegro, 2011-2014. Food Microbiol 2018; 79:116-122. [PMID: 30621866 DOI: 10.1016/j.fm.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
The presence of Listeria monocytogenes was evaluated in a small-scale meat processing facility in Montenegro during 2011-2014. L. monocytogenes isolates from traditional meat products and environmental swabs were subjected to a) molecular characterization b) serotyping by both multiplex PCR and next generation sequencing (NGS) c) potential antimicrobial resistance (AMR) was assessed by extraction of specific genes from NGS data and d) screening for the presence of some disinfectant resistance markers. Overall, traditional meat products were contaminated, most likely from incoming raw materials, with 4 major specific STs of L. monocytogenes (ST515, ST8, ST21, ST121) representing 4 clonal complexes (CC1, CC8, CC21, CC121) identified during the four-year period. These strains belonged to serogroup IIa which predominated, followed by IVb (ST515, CC1). The strains from environmental swabs belonged, exclusively, to ST21 and were isolated from cutting board and floor swabs in 2011. Furthermore, we found Tn6188, a novel transposon conferring tolerance to BC, to be specific to sequence type ST121. In addition, antimicrobial resistance genes mprF and fosX were present in clonal complexes CC21 and CC121, while complexes CC8 and CC1 exclusively harbored the mprF antimicrobial resistance gene.
Collapse
|
374
|
Reductions of Listeria monocytogenes on cold-smoked and raw salmon fillets by UV-C and pulsed UV light. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
375
|
Fritsch L, Felten A, Palma F, Mariet JF, Radomski N, Mistou MY, Augustin JC, Guillier L. Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to L. monocytogenes' ability to grow in cold conditions. Int J Food Microbiol 2018; 291:181-188. [PMID: 30530095 DOI: 10.1016/j.ijfoodmicro.2018.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Intraspecific variability of the behavior of most foodborne pathogens is well described and taken into account in Quantitative Microbial Risk Assessment (QMRA), but factors (strain origin, serotype, …) explaining these differences are scarce or contradictory between studies. Nowadays, Whole Genome Sequencing (WGS) offers new opportunities to explain intraspecific variability of food pathogens, based on various recently published bioinformatics tools. The objective of this study is to get a better insight into different existing bioinformatics approaches to associate bacterial phenotype(s) and genotype(s). Therefore, a dataset of 51 L. monocytogenes strains, isolated from multiple sources (i.e. different food matrices and environments) and belonging to 17 clonal complexes (CC), were selected to represent large population diversity. Furthermore, the phenotypic variability of growth at low temperature was determined (i.e. qualitative phenotype), and the whole genomes of selected strains were sequenced. The almost exhaustive gene content, as well as the core genome SNPs based phylogenetic reconstruction, were derived from the whole sequenced genomes. A Bayesian inference method was applied to identify the branches on which the phenotype distribution evolves within sub-lineages. Two different Genome Wide Association Studies (i.e. gene- and SNP-based GWAS) were independently performed in order to link genetic mutations to the phenotype of interest. The genomic analyses presented in this study were successfully applied on the selected dataset. The Bayesian phylogenetic approach emphasized an association with "slow" growth ability at 2 °C of the lineage I, as well as CC9 of the lineage II. Moreover, both gene- and SNP-GWAS approaches displayed significant statistical associations with the tested phenotype. A list of 114 significantly associated genes, including genes already known to be involved in the cold adaption mechanism of L. monocytogenes and genes associated to mobile genetic elements (MGE), resulted from the gene-GWAS. On the other hand, a group of 184 highly associated SNPs were highlighted by SNP-GWAS, including SNPs detected in genes which were already likely involved in cold adaption; hypothetical proteins; and intergenic regions where for example promotors and regulators can be located. The successful application of combined bioinformatics approaches associating WGS-genotypes and specific phenotypes, could contribute to improve prediction of microbial behaviors in food. The implementation of this information in hazard identification and exposure assessment processes will open new possibilities to feed QMRA-models.
Collapse
Affiliation(s)
- Lena Fritsch
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Federica Palma
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Jean-François Mariet
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France
| | - Jean-Christophe Augustin
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort F-94704, France
| | - Laurent Guillier
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort F-94701, France.
| |
Collapse
|
376
|
Leclercq A, Moura A, Vales G, Tessaud-Rita N, Aguilhon C, Lecuit M. Listeria thailandensis sp. nov. Int J Syst Evol Microbiol 2018; 69:74-81. [PMID: 30457511 DOI: 10.1099/ijsem.0.003097] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a screening of Listeria species in food samples in Thailand, a Listeria-like bacterium was recovered from fried chicken and could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 243 Listeria core genes placed the novel taxon within the Listeria aquatica, Listeria floridensis, Listeria fleishmannii and Listeria costaricensis clade (Listeria sensu lato), with highest similarity to L. floridensis (98.9 %) and L. costaricensis (98.8 %). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<86 %), the pairwise amino acid identity (AAI>64 %) and on the percentage of conserved proteins (POCP>77 %) with currently known Listeria species confirmed that the strain constituted a new taxon within the genus Listeria. At the phenotypical level, it differs from other Listeria species by the production of acid from d-tagatose and inositol. The name Listeria thailandensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2015/00305T (=CIP 111635T=DSM 107638T).
Collapse
Affiliation(s)
- Alexandre Leclercq
- 3Inserm U1117, Paris, France.,1Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,2Biology of Infection Unit, Institut Pasteur, Paris, France
| | - Alexandra Moura
- 1Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,3Inserm U1117, Paris, France.,2Biology of Infection Unit, Institut Pasteur, Paris, France
| | - Guillaume Vales
- 1Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,2Biology of Infection Unit, Institut Pasteur, Paris, France
| | - Nathalie Tessaud-Rita
- 1Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,2Biology of Infection Unit, Institut Pasteur, Paris, France
| | | | - Marc Lecuit
- 5Division of Infectious Diseases and Tropical Medicine, Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Necker-Enfants Malades University Hospital, APHP, Paris, France.,2Biology of Infection Unit, Institut Pasteur, Paris, France.,3Inserm U1117, Paris, France.,1Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| |
Collapse
|
377
|
Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance. mBio 2018; 9:mBio.02112-18. [PMID: 30425150 PMCID: PMC6234861 DOI: 10.1128/mbio.02112-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global public health concern due to increasing antimicrobial resistance (AMR). Characterization of S Typhi genomes for AMR and the evolution of different lineages, especially in countries where typhoid fever is endemic such as Bangladesh, will help public health professionals to better design and implement appropriate preventive measures. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh during 1999 to 2013 and compared those sequences with data from a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J. Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A. Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018, https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR phenotypes but needs further improvement for prediction of ciprofloxacin resistance. We detected a new local lineage of genotype 4.3.1 (named lineage Bd) which recently diverged into a sublineage (named Bdq) containing qnr genes associated with high-level ciprofloxacin resistance. We found a ceftriaxone-resistant isolate with the bla CTX-M-15 gene and a genotype distinct from the genotypes of extensively drug-resistant (XDR) isolates from Pakistan. This result suggests a different source and geographical origin of AMR. Genotype 4.3.1 was dominant in all three countries but formed country-specific clusters in the maximum likelihood phylogenetic tree. Thus, multiple independent genetic events leading to ciprofloxacin and ceftriaxone resistance took place in these neighboring regions of Pakistan, Nepal, and Bangladesh. These independent mutational events may enhance the risk of global spread of these highly resistant clones. A short-term global intervention plan is urgently needed.IMPORTANCE Typhoid fever, caused by Salmonella enterica serovar Typhi, is responsible for an estimated burden of approximately 17 million new episodes per year worldwide. Adequate and timely antimicrobial treatment invariably cures typhoid fever. The increasing antimicrobial resistance (AMR) of S Typhi severely limits the treatment options. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh between 1999 and 2013 and compared those sequences with data from a recent outbreak in Pakistan and a laboratory surveillance in Nepal. The analysis suggests that multiple ancestral origins of resistance against ciprofloxacin and ceftriaxone are present in three countries. Such independent genetic events and subsequent dissemination could enhance the risk of a rapid global spread of these highly resistant clones. Given the current treatment challenges, vaccination seems to be the most appropriate short-term intervention to reduce the disease burden of typhoid fever at a time of increasing AMR.
Collapse
|
378
|
Cook PW, Nightingale KK. Use of omics methods for the advancement of food quality and food safety. Anim Front 2018; 8:33-41. [PMID: 32002228 DOI: 10.1093/af/vfy024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Peter W Cook
- Center for Food Safety, University of Georgia, Griffin, GA.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
379
|
Abstract
The rapid development of sequencing technologies has to led to an explosion of pathogen sequence data, which are increasingly collected as part of routine surveillance or clinical diagnostics. In public health, sequence data are used to reconstruct the evolution of pathogens, to anticipate future spread, and to target interventions. In clinical settings, whole-genome sequencing can identify pathogens at the strain level, can be used to predict phenotypes such as drug resistance and virulence, and can inform treatment by linking closely related cases. While sequencing has become cheaper, the analysis of sequence data has become an important bottleneck. Deriving interpretable and actionable results for a large variety of pathogens, each with its own complexity, from continuously updated data is a daunting task that requires flexible bioinformatic workflows and dissemination platforms. Here, we review recent developments in real-time analyses of pathogen sequence data, with a particular focus on the visualization and integration of sequence and phenotype data.
Collapse
Affiliation(s)
- Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
380
|
Multi‐country outbreak of Listeria monocytogenes sequence type 8 infections linked to consumption of salmon products. ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
381
|
Horlbog JA, Jang H, Gopinath G, Stephan R, Guldimann C. Whole-Genome Sequences of Six Listeria monocytogenes Strains Isolated from Food. Microbiol Resour Announc 2018; 7:e01036-18. [PMID: 30533703 PMCID: PMC6256633 DOI: 10.1128/mra.01036-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/18/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we report the whole-genome sequences of six Listeria monocytogenes strains isolated from meat and milk products in Switzerland. All of these strains carry premature stop codons or amino acid deletions in inlA.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Hyein Jang
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Gopal Gopinath
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
382
|
Kuch A, Goc A, Belkiewicz K, Filipello V, Ronkiewicz P, Gołębiewska A, Wróbel I, Kiedrowska M, Waśko I, Hryniewicz W, Lomonaco S, Skoczyńska A. Molecular diversity and antimicrobial susceptibility of Listeria monocytogenes isolates from invasive infections in Poland (1997-2013). Sci Rep 2018; 8:14562. [PMID: 30267005 PMCID: PMC6162231 DOI: 10.1038/s41598-018-32574-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/11/2018] [Indexed: 11/24/2022] Open
Abstract
The epidemiology of invasive listeriosis in humans appears to be weakly characterized in Poland, the sixth most populous member state of the European Union. We obtained antimicrobial susceptibility data, PCR-serogroups and genotypic profiles for 344 invasive isolates of Listeria monocytogenes, collected between 1997 and 2013 in Poland. All isolates were susceptible to the 10 tested antimicrobials, except one that was resistant to tetracycline and minocycline and harbored the tet(M), tet(A) and tet(C) genes. Overall, no increasing MIC values were observed during the study period. Four PCR-serogroups were observed: IVb (55.8%), IIa (34.3%), IIb (8.1%) and IIc (1.8%). We identified clonal complexes (CCs) and epidemic clones (ECs) previously involved in outbreaks worldwide, with the most prevalent CCs/ECs being: CC6/ECII (32.6%), CC1/ECI (17.2%), CC8/ECV (6.1%) and CC2/ECIV (5.5%). The present study is the first extensive analysis of Polish L. monocytogenes isolates from invasive infections.
Collapse
Affiliation(s)
- Alicja Kuch
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Anna Goc
- Nicolaus Copernicus University, Department of Genetics, Toruń, 87-100, Poland.
| | - Katarzyna Belkiewicz
- National Tuberculosis and Lung Diseases Research Institute, Department of Microbiology, Warsaw, 01-138, Poland
| | - Virginia Filipello
- University of Turin, Department of Veterinary Sciences, Grugliasco, 10095, Italy
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Patrycja Ronkiewicz
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Agnieszka Gołębiewska
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Izabela Wróbel
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Marlena Kiedrowska
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Izabela Waśko
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Waleria Hryniewicz
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| | - Sara Lomonaco
- University of Turin, Department of Veterinary Sciences, Grugliasco, 10095, Italy
- US Food and Drug Administration, College Park, Maryland, 20740, USA
| | - Anna Skoczyńska
- National Medicines Institute, Department of Epidemiology and Clinical Microbiology, Warsaw, 00-725, Poland
| |
Collapse
|
383
|
Pirone-Davies C, Chen Y, Pightling A, Ryan G, Wang Y, Yao K, Hoffmann M, Allard MW. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics 2018; 19:708. [PMID: 30253738 PMCID: PMC6157050 DOI: 10.1186/s12864-018-5074-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Background Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments. Results No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates. Conclusions We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5074-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cary Pirone-Davies
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Yi Chen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Arthur Pightling
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Gina Ryan
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yu Wang
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Kuan Yao
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc W Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
384
|
Chen M, Cheng J, Wu Q, Zhang J, Chen Y, Xue L, Lei T, Zeng H, Wu S, Ye Q, Bai J, Wang J. Occurrence, Antibiotic Resistance, and Population Diversity of Listeria monocytogenes Isolated From Fresh Aquatic Products in China. Front Microbiol 2018; 9:2215. [PMID: 30283429 PMCID: PMC6157410 DOI: 10.3389/fmicb.2018.02215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is an important Gram-positive foodborne pathogen. However, limited information is available on the comprehensive investigation and potential risk of L. monocytogenes in fresh aquatic products, which are popular to consumers in China. This study aimed to determine the occurrence, virulence profiles, and population diversity of L. monocytogenes isolated from aquatic products in China. In total, 846 aquatic product samples were collected between July 2011 and April 2016 from 43 cities in China. Approximately 7.92% (67/846) aquatic product samples were positive for L. monocytogenes, 86.57% positive samples ranged from 0.3 to 10 MPN/g, whereas 5.97% showed over 110 MPN/g by the Most Probable Number method, which included two samples of products intended to be eaten raw. Serogroups I.1 (serotype 1/2a), I.2 (serotype 1/2b), and III (serotype 4c) were the predominant serogroups isolated, whereas serogroup II.1 (serotype 4b) was detected at much lower frequencies. Examination of antibacterial resistance showed that nine antibacterial resistance profiles were exhibited in 72 isolates, a high level susceptibility of 16 tested antibiotics against L. monocytogenes were observed, indicating these common antibacterial agents are still effective for treating L. monocytogenes infection. Multilocus sequence typing revealed that ST299, ST87, and ST8 are predominant in aquatic products, indicating that the rare ST299 (serotype 4c) may have a special ecological niche in aquatic products and associated environments. Except llsX and ptsA, the 72 isolates harbor nine virulence genes (prfA, actA, hly, plcA, plcB, iap, mpl, inlA, and inlB), premature stop codons (PMSCs) in inlA were found in four isolates, three of which belonged to ST9. A novel PMSC was found in 2929-1LM with a nonsense mutation at position 1605 (TGG→TGA). All ST87 isolates harbored the ptsA gene, whereas 8 isolates (11.11%) carried the llsX gene, and mainly belonged to ST1, ST3, ST308, ST323, ST330, and ST619. Taken together, these results first reported potential virulent L. monocytogenes isolates (ST8 and ST87) were predominant in aquatic products which may have implications for public health in China. It is thus necessary to perform continuous surveillance for L. monocytogenes in aquatic products in China.
Collapse
Affiliation(s)
- Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianheng Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuetao Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianling Bai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
385
|
Koopmans MM, Engelen-Lee J, Brouwer MC, Jaspers V, Man WK, Vall Seron M, van de Beek D. Characterization of a Listeria monocytogenes meningitis mouse model. J Neuroinflammation 2018; 15:257. [PMID: 30193592 PMCID: PMC6128981 DOI: 10.1186/s12974-018-1293-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Listeria monocytogenes is a common cause of bacterial meningitis. We developed an animal model of listerial meningitis. METHODS In survival studies, C57BL/6 mice received intracisternal injections with different L. monocytogenes sequence type 1 (ST1) colony forming units per milliliter (CFU; n = 48, 105, 106, 107, 108, and 109 CFU/ml). Second, mice were inoculated with 108 CFU/ml ST1 and sacrificed at 6 h and 24 h (n = 12/group). Outcome parameters were clinical score, CFUs, cyto- and chemokine levels, and brain histopathology. Third, 84 mice were inoculated (109 CFU/ml ST1) to determine optimal antibiotic treatment with different doses of amoxicillin and gentamicin. Fourth, mice were inoculated with 109 CFU/ml ST1, treated with amoxicillin, and sacrificed at 16 h and 24 h (n = 12/group) for outcome assessment. Finally, time point experiments were repeated with ST6 (n = 24/group). RESULTS Median survival time for inoculation with 108 and 109 CFU/ml ST1 was 46 h and 40 h; lower doses of bacteria led to minimal clinical signs of disease. Brain levels of IL-6, IL-17A, and IFN-γ were elevated at 24 h, and IL-1β, IL-6, IL-10, IFN-γ, and TNF-α were elevated in blood at 6 h and 24 h. Histopathology showed increased meningeal infiltration, vascular inflammation of meningeal vessels, hemorrhages, and ventriculitis. In the treatment model, brain levels of IL-6 and IL-17A and blood levels of IL-6 and IFN-γ were elevated. Compared to ST6, infection with ST1 led initially to higher levels of IL-1β and TNF-α in blood and more profound neuropathological damage. At 16 h post inoculation, IL-1β, IL-10, and TNF-α in blood and IL-6, IL17A, TNF-α, and IFN-γ levels in brain were higher in ST1 compared to ST6 without differences in CFUs between STs. At 24 h, neuropathology score was higher in ST1 compared to ST6 (p = 0.002) infected mice. CONCLUSIONS We developed and validated a murine model of listerial meningitis. ST1-infected mice had a more severe inflammatory response and brain damage as compared to ST6-infected mice.
Collapse
Affiliation(s)
- Merel M. Koopmans
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - JooYeon Engelen-Lee
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Valery Jaspers
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Wing Kit Man
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mercedes Vall Seron
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Diederik van de Beek
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
386
|
Scortti M, Han L, Alvarez S, Leclercq A, Moura A, Lecuit M, Vazquez-Boland J. Epistatic control of intrinsic resistance by virulence genes in Listeria. PLoS Genet 2018; 14:e1007525. [PMID: 30180166 PMCID: PMC6122793 DOI: 10.1371/journal.pgen.1007525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/29/2018] [Indexed: 01/31/2023] Open
Abstract
Elucidating the relationships between antimicrobial resistance and virulence is key to understanding the evolution and population dynamics of resistant pathogens. Here, we show that the susceptibility of the gram-positive bacterium Listeria monocytogenes to the antibiotic fosfomycin is a complex trait involving interactions between resistance and virulence genes and the environment. We found that a FosX enzyme encoded in the listerial core genome confers intrinsic fosfomycin resistance to both pathogenic and non-pathogenic Listeria spp. However, in the genomic context of the pathogenic L. monocytogenes, FosX-mediated resistance is epistatically suppressed by two members of the PrfA virulence regulon, hpt and prfA, which upon activation by host signals induce increased fosfomycin influx into the bacterial cell. Consequently, in infection conditions, most L. monocytogenes isolates become susceptible to fosfomycin despite possessing a gene that confers high-level resistance to the drug. Our study establishes the molecular basis of an epistatic interaction between virulence and resistance genes controlling bacterial susceptibility to an antibiotic. The reported findings provide the rationale for the introduction of fosfomycin in the treatment of Listeria infections even though these bacteria are intrinsically resistant to the antibiotic in vitro.
Collapse
Affiliation(s)
- Mariela Scortti
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| | - Lei Han
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
- Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Jose Vazquez-Boland
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| |
Collapse
|
387
|
Horlbog JA, Kent D, Stephan R, Guldimann C. Surviving host - and food relevant stresses: phenotype of L. monocytogenes strains isolated from food and clinical sources. Sci Rep 2018; 8:12931. [PMID: 30154513 PMCID: PMC6113203 DOI: 10.1038/s41598-018-30723-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to compare the phenotype of 40 strains of L. monocytogenes under food and host relevant stress conditions. The strains were chosen to represent food and clinical isolates and to be equally distributed between the most relevant clonal complexes for clinical and food isolates (CC1 and CC6 vs CC121 and CC9), plus one group of eight strains of rare clonal complexes. Human-associated CC1 had a faster maximal growth rate than the other major complexes, and the lag time of CC1 and CC6 was significantly less affected by the addition of 4% NaCl to the medium. Food-associated CC9 strains were hypohemolytic compared to other clonal complexes, and all strains found to be resistant to increased concentrations of benzalkonium chloride belonged to CC121 and were positive for Tn6188 carrying the qacH gene. Lactic acid affected the survival of L. monocytogenes more than HCl, and there was a distinct, strain specific pattern of acid tolerant and sensitive strains. Strains from CC6 and human clinical isolates are less resilient under acid stress than those from other complexes and from food. One strain isolated from a human patient exhibited significant growth defects across all conditions.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David Kent
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
388
|
Rychli K, Stessl B, Szakmary-Brändle K, Strauß A, Wagner M, Schoder D. Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants. Genes (Basel) 2018; 9:E428. [PMID: 30142903 PMCID: PMC6162745 DOI: 10.3390/genes9090428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Unregulated international flow of foods poses a danger to human health, as it may be contaminated with pathogens. Recent studies have investigated neglected routes of pathogen transmission and reported the occurrence of Listeria monocytogenes in food illegally imported into the European Union (EU), either confiscated at four international airports or sold illegally on the Romanian black market. In this study we investigated the genotype diversity and the amino acid sequence variability of three main virulence factors of 57 L. monocytogenes isolates. These isolates were derived from 1474 food samples illegally imported into the EU and originated from 17 different countries. Multilocus sequence typing revealed 16 different sequence types (STs) indicating moderate genotype diversity. The most prevalent STs were ST2, ST9, and ST121. The pulsed-field gel electrophoresis (PFGE) analysis resulted in 34 unique pulsotypes. PFGE types assigned to the most prevalent STs (ST2, ST9, and ST121) were highly related in their genetic fingerprint. Internalin A (InlA) was present in 20 variants, including six truncated InlA variants, all harbored by isolates of ST9 and ST121. We detected eight ST-specific listeriolysin O (LLO) variants, and among them, one truncated form. The actin-assembly-inducing protein ActA was present in 15 different ST-specific variants, including four ActA variants with an internal truncation. In conclusion, this study shows that L. monocytogenes, isolated from illegally imported food, have moderate genotype diversity, but diverse virulence factors variants, mainly of InlA.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Beatrix Stessl
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Kati Szakmary-Brändle
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Anja Strauß
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
389
|
Gelbíčová T, Zobaníková M, Tomáštíková Z, Van Walle I, Ruppitsch W, Karpíšková R. An outbreak of listeriosis linked to turkey meat products in the Czech Republic, 2012-2016. Epidemiol Infect 2018; 146:1407-1412. [PMID: 29909819 PMCID: PMC9133684 DOI: 10.1017/s0950268818001565] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/30/2018] [Accepted: 05/18/2018] [Indexed: 11/05/2022] Open
Abstract
Since 2012-2016 an increased number of listeriosis cases, especially from one region of the Czech Republic, were observed. Most of them were caused by strains of serotype 1/2a, clonal complex 8, indistinguishable by pulsed-field gel electrophoresis. Twenty-six human cases were reported, including two neonatal cases in twins. Three cases were fatal. The typing of Listeria monocytogenes isolates from food enabled to confirm a turkey meat delicatessen as the vehicle of infection for this local outbreak in the Moravian-Silesian Region. The food strains belonging to identical pulsotype were isolated from ready-to-eat turkey meat products packaged by the same producer between 2012 and 2016. This fact confirms that the described L. monocytogenes outbreak strain probably persisted in the environment of the aforementioned food-processing plant over several years. Whole-genome sequencing confirmed a very close relationship (zero to seven different alleles) between isolates from humans, foods and swabs from the environment of the food-processing plant under investigation.
Collapse
Affiliation(s)
- T. Gelbíčová
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - M. Zobaníková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Z. Tomáštíková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - I. Van Walle
- European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973 Solna, Sweden
| | - W. Ruppitsch
- Austrian Agency for Health and Food Safety, Währingerstrasse 25a, 1090 Vienna, Austria
| | - R. Karpíšková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
390
|
Van Walle I, Björkman JT, Cormican M, Dallman T, Mossong J, Moura A, Pietzka A, Ruppitsch W, Takkinen J. Retrospective validation of whole genome sequencing-enhanced surveillance of listeriosis in Europe, 2010 to 2015. Euro Surveill 2018; 23:1700798. [PMID: 30131096 PMCID: PMC6205253 DOI: 10.2807/1560-7917.es.2018.23.33.1700798] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background and aimThe trend in reported case counts of invasive Listeria monocytogenes (Lm), a potentially severe food-borne disease, has been increasing since 2008. In 2015, 2,224 cases were reported in the European Union/European Economic Area (EU/EEA). We aimed to validate the microbiological and epidemiological aspects of an envisaged EU/EEA-wide surveillance system enhanced by routine whole genome sequencing (WGS). Methods: WGS and core genome multilocus sequence typing (cgMLST) were performed on isolates from 2,726 cases from 27 EU/EEA countries from 2010-15. Results: Quality controls for contamination, mixed Lm cultures and sequence quality classified nearly all isolates with a minimum average coverage of the genome of 55x as acceptable for analysis. Assessment of the cgMLST variation between six different pipelines revealed slightly less variation associated with assembly-based analysis compared to reads-based analysis. Epidemiological concordance, based on 152 isolates from 19 confirmed outbreaks and a cluster cutoff of seven allelic differences, was good (sensitivity > 95% for two cgMLST schemes of 1,748 and 1,701 loci each; PPV 58‒68%). The proportion of sporadic cases was slightly below 50%. Of remaining isolates, around one third were in clusters involving more than one country, often spanning several years. Detection of multi-country clusters was on average several months earlier when pooling the data at EU/EEA level, compared with first detection at national level. Conclusions: These findings provide a good basis for comprehensive EU/EEA-wide, WGS-enhanced surveillance of listeriosis. Time limits should not be used for hypothesis generation during outbreak investigations, but should be for analytical studies.
Collapse
Affiliation(s)
- Ivo Van Walle
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | | | | | - Joël Mossong
- Laboratoire national de santé, Dudelange, Luxembourg
| | - Alexandra Moura
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Biology of Infection Unit, Inserm U1117, Paris, France
| | - Ariane Pietzka
- Österreichische Agentur für Gesundheit und Ernährungssicherheit, Graz/Vienna, Austria
| | - Werner Ruppitsch
- Österreichische Agentur für Gesundheit und Ernährungssicherheit, Graz/Vienna, Austria
| | - Johanna Takkinen
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
391
|
Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395-1404. [PMID: 30049790 PMCID: PMC6120633 DOI: 10.1101/gr.232397.117] [Citation(s) in RCA: 614] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
Abstract
Current methods struggle to reconstruct and visualize the genomic relationships of large numbers of bacterial genomes. GrapeTree facilitates the analyses of large numbers of allelic profiles by a static “GrapeTree Layout” algorithm that supports interactive visualizations of large trees within a web browser window. GrapeTree also implements a novel minimum spanning tree algorithm (MSTree V2) to reconstruct genetic relationships despite high levels of missing data. GrapeTree is a stand-alone package for investigating phylogenetic trees plus associated metadata and is also integrated into EnteroBase to facilitate cutting edge navigation of genomic relationships among bacterial pathogens.
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Martin J Sergeant
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Nina Luhmann
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Cátia Vaz
- Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento (INESC-ID), 1000-029 Lisboa, Portugal.,ADEETC, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
| | - Alexandre P Francisco
- Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento (INESC-ID), 1000-029 Lisboa, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João André Carriço
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
392
|
Pightling AW, Pettengill JB, Luo Y, Baugher JD, Rand H, Strain E. Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front Microbiol 2018; 9:1482. [PMID: 30042741 PMCID: PMC6048267 DOI: 10.3389/fmicb.2018.01482] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 12/05/2022] Open
Abstract
Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.
Collapse
Affiliation(s)
- Arthur W. Pightling
- Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | | | | | | | | | | |
Collapse
|
393
|
Multi‐country outbreak of Listeria monocytogenes serogroup IVb, multi‐locus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables – first update. ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
394
|
Parsons C, Costolo B, Brown P, Kathariou S. Penicillin-binding protein encoded by pbp4 is involved in mediating copper stress in Listeria monocytogenes. FEMS Microbiol Lett 2018; 364:4329268. [PMID: 29029084 DOI: 10.1093/femsle/fnx207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes raises major food safety and public health concerns due to its potential for severe foodborne disease and persistent colonization of food processing facilities. Copper is often employed to control pathogens in agriculture and is increasingly used in healthcare facilities, but mechanisms mediating tolerance of L. monocytogenes to copper remain poorly understood. A mariner-based mutant library of L. monocytogenes 2011L-2858, implicated in the 2011 listeriosis outbreak via whole cantaloupe, was screened for growth at sublethal levels of copper yielding mutant G2B4 with decreased copper tolerance. The transposon was localized in pbp4 (lmo2229 homolog), encoding a penicillin-binding protein (PBP). In addition to reduced copper tolerance, G2B4 exhibited increased susceptibility to β-lactam antibiotics, reduced biofilm formation and reduced virulence in the Galleria mellonella model. Mutant phenotypes were fully restored upon genetic complementation of G2B4 with intact pbp4. Findings provide the first evidence for the role of a PBP in copper tolerance of L. monocytogenes and suggest that pbp4 may be a suitable target to enable the use of lower levels of copper or enhance the effectiveness of levels currently in use. Given the wide distribution of PBPs and their highly conserved nature, this could have profound impacts in regard to ecology and control of L. monocytogenes and other microorganisms.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Ben Costolo
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Phillip Brown
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| |
Collapse
|
395
|
Timme RE, Rand H, Sanchez Leon M, Hoffmann M, Strain E, Allard M, Roberson D, Baugher JD. GenomeTrakr proficiency testing for foodborne pathogen surveillance: an exercise from 2015. Microb Genom 2018; 4. [PMID: 29906258 PMCID: PMC6113870 DOI: 10.1099/mgen.0.000185] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathogen monitoring is becoming more precise as sequencing technologies become more affordable and accessible worldwide. This transition is especially apparent in the field of food safety, which has demonstrated how whole-genome sequencing (WGS) can be used on a global scale to protect public health. GenomeTrakr coordinates the WGS performed by public-health agencies and other partners by providing a public database with real-time cluster analysis for foodborne pathogen surveillance. Because WGS is being used to support enforcement decisions, it is essential to have confidence in the quality of the data being used and the downstream data analyses that guide these decisions. Routine proficiency tests, such as the one described here, have an important role in ensuring the validity of both data and procedures. In 2015, the GenomeTrakr proficiency test distributed eight isolates of common foodborne pathogens to participating laboratories, who were required to follow a specific protocol for performing WGS. Resulting sequence data were evaluated for several metrics, including proper labelling, sequence quality and new single nucleotide polymorphisms (SNPs). Illumina MiSeq sequence data collected for the same set of strains across 21 different laboratories exhibited high reproducibility, while revealing a narrow range of technical and biological variance. The numbers of SNPs reported for sequencing runs of the same isolates across multiple laboratories support the robustness of our cluster analysis pipeline in that each individual isolate cultured and resequenced multiple times in multiple places are all easily identifiable as originating from the same source.
Collapse
Affiliation(s)
- Ruth E Timme
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Maria Sanchez Leon
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Errol Strain
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Dwayne Roberson
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Joseph D Baugher
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
396
|
Schjørring S, Gillesberg Lassen S, Jensen T, Moura A, Kjeldgaard JS, Müller L, Thielke S, Leclercq A, Maury MM, Tourdjman M, Donguy MP, Lecuit M, Ethelberg S, Nielsen EM. Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), Denmark and France, 2015 to 2017. ACTA ACUST UNITED AC 2018; 22. [PMID: 29258647 PMCID: PMC5743096 DOI: 10.2807/1560-7917.es.2017.22.50.17-00762] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In August 2017, an outbreak of six listeriosis cases in Denmark was traced to cold-smoked salmon, using epidemiological investigations and whole-genome sequencing (WGS) analyses. Exchange of genome sequences allowed identification in France of a food isolate from a salmon-derived product and a human isolate from 2016 within the same cgMLST cluster as the Danish isolates (L2-SL8-ST8-CT771). The salmon product came from a third European Union country. WGS can rapidly link human cases and food isolates across Europe.
Collapse
Affiliation(s)
- Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Gillesberg Lassen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Tenna Jensen
- The Danish Veterinary and Food Administration, Copenhagen, Denmark
| | - Alexandra Moura
- Institut Pasteur, National Reference Centre and WHO collaborating Center for Listeria, Biology of Infection Unit, Paris, France
| | - Jette S Kjeldgaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Luise Müller
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Stine Thielke
- The Danish Veterinary and Food Administration, Copenhagen, Denmark
| | - Alexandre Leclercq
- Institut Pasteur, National Reference Centre and WHO collaborating Center for Listeria, Biology of Infection Unit, Paris, France
| | - Mylene M Maury
- Institut Pasteur, National Reference Centre and WHO collaborating Center for Listeria, Biology of Infection Unit, Paris, France
| | - Mathieu Tourdjman
- Santé Publique France, the French Public Health Agency, Saint-Maurice, France
| | | | - Marc Lecuit
- Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases, Necker-Enfants Malades University Hospital, Institut Imagine, F-75743 Paris, France
.,Institut Pasteur, National Reference Centre and WHO collaborating Center for Listeria, Biology of Infection Unit, Paris, France
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Eva M Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
397
|
Whole-Genome Sequencing of Recent Listeria monocytogenes Isolates from Germany Reveals Population Structure and Disease Clusters. J Clin Microbiol 2018; 56:JCM.00119-18. [PMID: 29643197 DOI: 10.1128/jcm.00119-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/24/2018] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes causes foodborne outbreaks with high mortality. For improvement of outbreak cluster detection, the German consiliary laboratory for listeriosis implemented whole-genome sequencing (WGS) in 2015. A total of 424 human L. monocytogenes isolates collected in 2007 to 2017 were subjected to WGS and core-genome multilocus sequence typing (cgMLST). cgMLST grouped the isolates into 38 complexes, reflecting 4 known and 34 unknown disease clusters. Most of these complexes were confirmed by single nucleotide polymorphism (SNP) calling, but some were further differentiated. Interestingly, several cgMLST cluster types were further subtyped by pulsed-field gel electrophoresis, partly due to phage insertions in the accessory genome. Our results highlight the usefulness of cgMLST for routine cluster detection but also show that cgMLST complexes require validation by methods providing higher typing resolution. Twelve cgMLST clusters included recent cases, suggesting activity of the source. Therefore, the cgMLST nomenclature data presented here may support future public health actions.
Collapse
|
398
|
Listeria monocytogenes Source Distribution Analysis Indicates Regional Heterogeneity and Ecological Niche Preference among Serotype 4b Clones. mBio 2018; 9:mBio.00396-18. [PMID: 29666282 PMCID: PMC5904418 DOI: 10.1128/mbio.00396-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biodiversity analysis of the foodborne pathogen Listeria monocytogenes recently revealed four serotype 4b major hypervirulent clonal complexes (CCs), i.e., CC1, CC2, CC4, and CC6. Hypervirulence was indicated by overrepresentation of these clones, and serotype 4b as a whole, among human clinical isolates in comparison to food. However, data on potential source-dependent partitioning among serotype 4b clones in diverse regions are sparse. We analyzed a panel of 347 serotype 4b isolates, primarily from North America, to determine the distribution of clones in humans, other animals, food, and water. CC1, CC2, CC4, and CC6 predominated, but surprisingly, only three clones, i.e., CC2 and the singleton sequence types (STs) ST382 and ST639, exhibited significant source-dependent associations, with higher propensity for food (CC2) or water (ST382 and ST639) than other sources. Pairwise comparisons between human and food isolates identified CC4 as the only serotype 4b clone significantly overrepresented among human isolates. Our analysis also revealed several serotype 4b clones emerging in North America. Two such emerging clones, ST382 (implicated in several outbreaks since 2014) and ST639, were primarily encountered among human and water isolates. Findings suggest that in spite of the ubiquity of CC1, CC2, CC4, and CC6, regional heterogeneity in serotype 4b is substantially larger than previously surmised. Analysis of even large strain panels from one region may not adequately predict clones unique to, and emerging in, other areas. Serotype 4b clonal complexes may differ in ecological niche preference, suggesting the need to further elucidate reservoirs and vehicles, especially for emerging clones. In Listeria monocytogenes, serotype 4b strains are leading contributors to human disease, but intraserotype distributions among different sources and regions remain poorly elucidated. Analysis of 347 serotype 4b isolates from four different sources, mostly from North America, confirmed the overall predominance of the major clones CC1, CC2, CC4, and CC6 but found that only CC4 was significantly associated with human disease, while CC2 was significantly associated with food. Remarkably, several emerging clones were identified among human isolates from North America, with some of these also exhibiting a propensity for surface water. The latter included the singleton clones ST382, implicated in several outbreaks in the United States since 2014, and ST639. These clones were noticeably underrepresented among much larger panels from other regions. Though associated with North America for the time being, they may eventually become globally disseminated through the food trade or other venues.
Collapse
|
399
|
Abstract
For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.
Collapse
|
400
|
Jordan K, McAuliffe O. Listeria monocytogenes in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:181-213. [PMID: 30077222 DOI: 10.1016/bs.afnr.2018.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Listeria monocytogenes causes listeriosis, a rare foodborne disease with a mortality rate of 20%-30%. The elderly and immunocompromised are particularly susceptible to listeriosis. L. monocytogenes is ubiquitous in nature and can contaminate food-processing environments, posing a threat to the food chain. This is particularly important for ready-to-eat foods as there is no heat treatment or other antimicrobial step between production and consumption. Thus, occurrence and control of L. monocytogenes are important for industry and public health. Advances in whole-genome sequence technology are facilitating the investigation of disease outbreaks, linking sporadic cases to outbreaks, and linking outbreaks internationally. Novel control methods, such as bacteriophage and bacteriocins, can contribute to a reduction in the occurrence of L. monocytogenes in the food-processing environment, thereby reducing the risk of food contamination and contributing to a reduction in public health issues.
Collapse
|