351
|
Chen YP, Gu XJ, Song W, Hou YB, Ou RW, Zhang LY, Liu KC, Su WM, Cao B, Wei QQ, Zhao B, Wu Y, Shang HF. Rare Variants Analysis of Lysosomal Related Genes in Early-Onset and Familial Parkinson's Disease in a Chinese Cohort. JOURNAL OF PARKINSONS DISEASE 2021; 11:1845-1855. [PMID: 34250953 DOI: 10.3233/jpd-212658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetic studies have indicated that variants in several lysosomal genes are risk factors for idiopathic Parkinson's disease (PD). However, the role of lysosomal genes in PD in Asian populations is largely unknown. OBJECTIVE This study aimed to analyze rare variants in lysosomal related genes in Chinese population with early-onset and familial PD. METHODS In total, 1,136 participants, including 536 and 600 patients with sporadic early-onset PD (SEOPD) and familial PD, respectively, underwent whole-exome sequencing to assess the genetic etiology. Rare variants in PD were investigated in 67 candidate lysosomal related genes (LRGs), including 15 lysosomal function-related genes and 52 lysosomal storage disorder genes. RESULTS Compared with the autosomal dominant PD (ADPD) or SEOPD cohorts, a much higher proportion of patients with multiple rare damaging variants of LRGs were found in the autosomal recessive PD (ARPD) cohort. At a gene level, rare damaging variants in GBA and MAN2B1 were enriched in PD, but in SCARB2, MCOLN1, LYST, VPS16, and VPS13C were much less in patients. At an allele level, GBA p. Leu483Pro was found to increase the risk of PD. Genotype-phenotype correlation showed no significance in the clinical features among patients carrying a discrepant number of rare variants in LRGs. CONCLUSION Our study suggests rare variants in LRGs might be more important in the pathogenicity of ARPD cases compared with ADPD or SEOPD. We further confirm rare variants in GBA are involve in PD pathogenecity and other genes associated with PD identified in this study should be supported with more evidence.
Collapse
Affiliation(s)
- Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Bing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ru-Wei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling-Yu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun-Cheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
352
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
353
|
FAN ZY, LIU ZJ, ZHANG RL, HAN GM, ZHANG ZP. Preparation of Lysosome-targeting Carbon Dots and Its Application in Cell Imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
354
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
355
|
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The discovery of immune checkpoint blockade has revolutionized the field of immuno-oncology and established the foundation for developing various new therapies that can surpass conventional cancer treatments. Most recent immunotherapeutic strategies have focused on adaptive immune responses by targeting T cell-activating pathways, genetic engineering of T cells with chimeric antigen receptors, or bispecific antibodies. Despite the unprecedented clinical success, these T cell-based treatments have only benefited a small proportion of patients. Thus, the need for the next generation of cancer immunotherapy is driven by identifying novel therapeutic molecules or new immunoengineered cells. To maximize the therapeutic potency via innate immunogenicity, the convergence of innate immunity-based therapy and biomaterials is required to yield an efficient index in clinical trials. This review highlights how biomaterials can efficiently reprogram and recruit innate immune cells in tumors and ultimately initiate activation of T cell immunity against advanced cancers. Moreover, the design and specific biomaterials that improve innate immune cells' targeting ability to selectively activate immunogenicity with minimal adverse effects are discussed.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
356
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
357
|
Mukherjee A, Saha PC, Das RS, Bera T, Guha S. Acidic pH-Activatable Visible to Near-Infrared Switchable Ratiometric Fluorescent Probe for Live-Cell Lysosome Targeted Imaging. ACS Sens 2021; 6:2141-2146. [PMID: 34125510 DOI: 10.1021/acssensors.1c00961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we have designed and synthesized acidic pH-activatable visible to NIR switchable ratiometric pH-sensitive fluorescent dye. The design consists of a cell-permeable organic probe containing a lysosome targeting morpholine functionality and an acidic pH-activatable oxazolidine moiety. The visible closed oxazolidine form (λabs 418 nm) can be switched to the highly conjugated NIR Cy-7 form (λabs 780 nm) through ring opening of the oxazolidine moiety at acidic pH. This switching of the ratiometric fluorescent probe is highly reversible and can be controlled by pH. NMR, UV/vis, and fluorescence spectroscopies allowed monitoring of pH switching behavior of the probe. This bioresponsive in situ acidic organelle activatable fluorophore showed reversible pH-switchable ratiometric optical properties, high photostability, huge bathochromic emission shift of 320 nm from basic to acidic pH, off-to-on narrow NIR absorption and emission bands with enhanced molar extinction coefficient at lysosomal pH, good quantum yield, low cytotoxicity, and targeted imaging ability of live cell lysosomes with ideal pKa. The report demonstrated ratiometric imaging with improved specificity of the acidic lysosome while minimizing signals at the NIR region from nontargeted neutral or basic organelles in human carcinoma HeLa and A549 as well as rat healthy H9c2(2-1) live cells, which is monitored by confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
358
|
Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021; 22:2976-2984. [PMID: 34129319 PMCID: PMC8278386 DOI: 10.1021/acs.biomac.1c00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Responsive nanogel
systems are interesting for the drug delivery
of bioactive molecules due to their high stability in aqueous media.
The development of nanogels that are able to respond to biochemical
cues and compatible with the encapsulation and the release of large
and sensitive payloads remains challenging. Here, multistimuli-responsive
nanogels were synthesized using a bio-orthogonal and reversible reaction
and were designed for the selective release of encapsulated cargos
in a spatiotemporally controlled manner. The nanogels were composed
of a functionalized polysaccharide cross-linked with pH-responsive
hydrazone linkages. The effect of the pH value of the environment
on the nanogels was fully reversible, leading to a reversible control
of the release of the payloads and a “stop-and-go” release
profile. In addition to the pH-sensitive nature of the hydrazone network,
the dextran backbone can be degraded through enzymatic cleavage. Furthermore,
the cross-linkers were designed to be responsive to oxidoreductive
cues.
Disulfide groups, responsive to reducing environments, and thioketal
groups, responsive to oxidative environments, were integrated into
the nanogel network. The release of model payloads was investigated
in response to changes in the pH value of the environment or to the
presence of reducing or oxidizing agents.
Collapse
Affiliation(s)
| | - Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Dr, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
359
|
Niu H, Qian L, Luo Y, Wang F, Zheng H, Gao Y, Wang H, Hu X, Yuan H, Lou H. Targeting of VPS18 by the lysosomotropic agent RDN reverses TFE3-mediated drug resistance. Signal Transduct Target Ther 2021; 6:224. [PMID: 34099617 PMCID: PMC8184988 DOI: 10.1038/s41392-021-00547-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Huanmin Niu
- Key Laboratory of Natural Products & Chemical Biology of Ministry of Education, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lilin Qian
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanhai Luo
- Key Laboratory of Natural Products & Chemical Biology of Ministry of Education, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fang Wang
- Key Laboratory of Natural Products & Chemical Biology of Ministry of Education, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanhui Gao
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hanbo Wang
- Minimally Invasive Urology Center, Shandong Provincial Hospital, Jinan, China
| | - Xuelei Hu
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Huiqing Yuan
- Key Laboratory of Natural Products & Chemical Biology of Ministry of Education, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
360
|
Small molecule probes for targeting autophagy. Nat Chem Biol 2021; 17:653-664. [PMID: 34035513 DOI: 10.1038/s41589-021-00768-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.
Collapse
|
361
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
362
|
Inhibition of PI4KIIIα as a Novel Potential Approach for Gaucher Disease Treatment. Neurosci Bull 2021; 37:1234-1239. [PMID: 34019252 DOI: 10.1007/s12264-021-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022] Open
|
363
|
Wang H, Zhang H, Xiang Y, Pan W, Li N, Tang B. An efficient strategy for cancer therapy using a tumor- and lysosome-targeted organic photothermal agent. NANOSCALE 2021; 13:8790-8794. [PMID: 33978028 DOI: 10.1039/d1nr01547h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dual-targeted organic photothermal agent for tumor cells and lysosomes was developed. In vitro and in vivo experiments demonstrated that it possessed low cytotoxicity, good biological compatibility, and tumor inhibitory effects.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yanan Xiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
364
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
365
|
Lv S, Wang Z, Wang J, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role Through Regulating Autophagy in Ischemia/Reperfusion Injury. Front Mol Biosci 2021; 8:681676. [PMID: 34055892 PMCID: PMC8155623 DOI: 10.3389/fmolb.2021.681676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by limiting blood supply to organs, then restoring blood flow and reoxygenation. It leads to many diseases, including acute kidney injury, myocardial infarction, circulatory arrest, ischemic stroke, trauma, and sickle cell disease. Autophagy is an important and conserved cellular pathway, in which cells transfer the cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. Hydrogen sulfide (H2S), along with carbon monoxide (CO) and nitric oxide (NO), is an important gas signal molecule and regulates various physiological and pathological processes. In recent years, there are many studies on the improvement of I/R injury by H2S through regulating autophagy, but the related mechanisms are not completely clear. Therefore, we summarize the related research in the above aspects to provide theoretical reference for future in-depth research.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhu Wang
- Henan Technician College of Medicine and Health, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
366
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
367
|
Merchut-Maya JM, Maya-Mendoza A. The Contribution of Lysosomes to DNA Replication. Cells 2021; 10:cells10051068. [PMID: 33946407 PMCID: PMC8147142 DOI: 10.3390/cells10051068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, acidic, membrane-bound organelles, are not only the core of the cellular recycling machinery, but they also serve as signaling hubs regulating various metabolic pathways. Lysosomes maintain energy homeostasis and provide pivotal substrates for anabolic processes, such as DNA replication. Every time the cell divides, its genome needs to be correctly duplicated; therefore, DNA replication requires rigorous regulation. Challenges that negatively affect DNA synthesis, such as nucleotide imbalance, result in replication stress with severe consequences for genome integrity. The lysosomal complex mTORC1 is directly involved in the synthesis of purines and pyrimidines to support DNA replication. Numerous drugs have been shown to target lysosomal function, opening an attractive avenue for new treatment strategies against various pathologies, including cancer. In this review, we focus on the interplay between lysosomal function and DNA replication through nucleic acid degradation and nucleotide biosynthesis and how these could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Genome Integrity, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-35-25-73-10
| |
Collapse
|
368
|
Wilhelm M, Bonam SR, Schall N, Bendorius M, Korganow AS, Lumbroso C, Muller S. Implication of a lysosomal antigen in the pathogenesis of lupus erythematosus. J Autoimmun 2021; 120:102633. [PMID: 33932829 DOI: 10.1016/j.jaut.2021.102633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A. No cross-reaction was observed with LAMP2B or LAMP2C variants, with dsDNA or mononucleosomes, or with heat-shock protein A8. Moreover, administering chromatography-purified LAMP2A autoantibodies to MRL/lpr mice accelerated mortality. Furthermore, flow cytometry revealed elevated cell-surface expression of LAMP2A on MRL/lpr B cells. These findings reveal the involvement of a new class of autoantibodies targeting the C-terminus of LAMP2A, a receptor for cytosolic proteins targeted for degradation via chaperone-mediated autophagy. These autoantibodies could affect the autophagy process, which is abnormally upregulated in lupus. The data presented support a novel connection between autophagy dysregulation, autoimmune processes and pathophysiology in lupus.
Collapse
Affiliation(s)
- Maud Wilhelm
- CNRS, Strasbourg University Unit Biotechnology and Cell Signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Srinivasa Reddy Bonam
- CNRS, Strasbourg University Unit Biotechnology and Cell Signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Nicolas Schall
- CNRS, Strasbourg University Unit Biotechnology and Cell Signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Mykolas Bendorius
- CNRS, Strasbourg University Unit Biotechnology and Cell Signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Hôpitaux Universitaires de Strasbourg, France; Strasbourg University, INSERM Unit Molecular ImmunoRheumatology, Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | | | - Sylviane Muller
- CNRS, Strasbourg University Unit Biotechnology and Cell Signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
369
|
Körholz K, Ridinger J, Krunic D, Najafi S, Gerloff XF, Frese K, Meder B, Peterziel H, Vega-Rubin-de-Celis S, Witt O, Oehme I. Broad-Spectrum HDAC Inhibitors Promote Autophagy through FOXO Transcription Factors in Neuroblastoma. Cells 2021; 10:cells10051001. [PMID: 33923163 PMCID: PMC8144997 DOI: 10.3390/cells10051001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Depending on context and tumor stage, deregulation of autophagy can either suppress tumorigenesis or promote chemoresistance and tumor survival. Histone deacetylases (HDACs) can modulate autophagy; however, the exact mechanisms are not fully understood. Here, we analyze the effects of the broad-spectrum HDAC inhibitors (HDACi) panobinostat and vorinostat on the transcriptional regulation of autophagy with respect to autophagy transcription factor activity (Transcription factor EB-TFEB, forkhead boxO-FOXO) and autophagic flux in neuroblastoma cells. In combination with the late-stage autophagic flux inhibitor bafilomycin A1, HDACis increase the number of autophagic vesicles, indicating an increase in autophagic flux. Both HDACi induce nuclear translocation of the transcription factors FOXO1 and FOXO3a, but not TFEB and promote the expression of pro-autophagic FOXO1/3a target genes. Moreover, FOXO1/3a knockdown experiments impaired HDACi treatment mediated expression of autophagy related genes. Combination of panobinostat with the lysosomal inhibitor chloroquine, which blocks autophagic flux, enhances neuroblastoma cell death in culture and hampers tumor growth in vivo in a neuroblastoma zebrafish xenograft model. In conclusion, our results indicate that pan-HDACi treatment induces autophagy in neuroblastoma at a transcriptional level. Combining HDACis with autophagy modulating drugs suppresses tumor growth of high-risk neuroblastoma cells. These experimental data provide novel insights for optimization of treatment strategies in neuroblastoma.
Collapse
Affiliation(s)
- Katharina Körholz
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
| | - Johannes Ridinger
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility (LMF), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Sara Najafi
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Xenia F. Gerloff
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Karen Frese
- Institute for Cardiomyopathies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (K.F.); (B.M.)
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (K.F.); (B.M.)
- Genome Technology Center, Stanford University, Stanford, CA 94304, USA
| | - Heike Peterziel
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
| | | | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Oehme
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; (K.K.); (J.R.); (S.N.); (X.F.G.); (H.P.); (O.W.)
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
370
|
Platyphyllenone Induces Autophagy and Apoptosis by Modulating the AKT and JNK Mitogen-Activated Protein Kinase Pathways in Oral Cancer Cells. Int J Mol Sci 2021; 22:ijms22084211. [PMID: 33921647 PMCID: PMC8074098 DOI: 10.3390/ijms22084211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.
Collapse
|
371
|
Monfrini E, Zech M, Steel D, Kurian MA, Winkelmann J, Di Fonzo A. HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to the pathogenesis of dystonia. Brain 2021; 144:2610-2615. [PMID: 33871597 DOI: 10.1093/brain/awab161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The "homotypic fusion and protein sorting" (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the etiopathogenesis of inherited dystonias (i.e., VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name HOPS-associated Neurological Disorders (HOPSANDs) this group of diseases, which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Dora Steel
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
372
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|
373
|
Ramos VDM, Kowaltowski AJ, Kakimoto PA. Autophagy in Hepatic Steatosis: A Structured Review. Front Cell Dev Biol 2021; 9:657389. [PMID: 33937257 PMCID: PMC8081956 DOI: 10.3389/fcell.2021.657389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
374
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
375
|
Liu X, Xiang MH, Zhou WJ, Wang F, Chu X, Jiang JH. Clicking of organelle-enriched probes for fluorogenic imaging of autophagic and endocytic fluxes. Chem Sci 2021; 12:5834-5842. [PMID: 34168808 PMCID: PMC8179685 DOI: 10.1039/d0sc07057b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy and endocytosis are essential in regulating cellular homeostasis and cancer immunotherapeutic responses. Existing methods for autophagy and endocytosis imaging are susceptible to cellular micro-environmental changes, and direct fluorogenic visualization of their fluxes remains challenging. We develop a novel strategy via clicking of organelle-enriched probes (COP), which comprises a pair of trans-cyclooctenol (TCO) and tetrazine probes separately enriched in lysosomes and mitochondria (in autophagy) or plasma membrane (in endocytosis). These paired probes are merged and boost a fluorogenic click reaction in response to autophagic or endocytic flux that ultimately fuses mitochondria or plasma membrane into lysosomes. We demonstrate that this strategy enables direct visualization of autophagic and endocytic fluxes, and confer insight into correlation of autophagic or endocytic flux to cell surface expression of immunotherapeutic targets such as MHC-I and PD-L1. The COP strategy provides a new paradigm for imaging autophagic and endocytic fluxes, and affords potential for improved cancer immunotherapy using autophagy or endocytosis inhibitors.
Collapse
Affiliation(s)
- Xianjun Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Mei-Hao Xiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
376
|
Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22052772. [PMID: 33803403 PMCID: PMC7967199 DOI: 10.3390/ijms22052772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure–activity relationship modeling of the carborane–naphthalimide conjugates.
Collapse
|
377
|
Rheumatoid arthritis decreases risk for Parkinson's disease: a Mendelian randomization study. NPJ PARKINSONS DISEASE 2021; 7:17. [PMID: 33654087 PMCID: PMC7925660 DOI: 10.1038/s41531-021-00166-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 02/05/2023]
Abstract
Epidemiological and clinical studies have suggested comorbidity between rheumatoid arthritis and Parkinson’s disease (PD), but whether there exists a causal association and the effect direction of rheumatoid arthritis on PD is controversial and elusive. To evaluate the causal relationship, we first estimated the genetic correlation between rheumatoid arthritis and PD, and then performed a two-sample Mendelian randomization analysis based on summary statistics from large genome-wide association studies of rheumatoid arthritis (N = 47,580) and PD (N = 482,703). We identified negative and significant correlation between rheumatoid arthritis and PD (genetic correlation: −0.10, P = 0.0033). Meanwhile, one standard deviation increase in rheumatoid arthritis risk was associated with a lower risk of PD (OR: 0.904, 95% CI: 0.866–0.943, P: 2.95E–06). The result was robust under all sensitivity analyses. Our results provide evidence supporting a protective role of rheumatoid arthritis on PD. A deeper understanding of the inflammation and immune response is likely to elucidate the potential pathogenesis of PD and identify therapeutic targets for PD.
Collapse
|
378
|
Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang XJ. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J Control Release 2021; 331:282-295. [DOI: 10.1016/j.jconrel.2020.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
|
379
|
Abstract
Lysosomes offer a unique arrangement of degradative, exocytic, and signaling capabilities that make their continued function critical to cellular homeostasis. Lysosomes owe their function to the activity of lysosomal ion channels and transporters, which maintain concentration gradients of H+, K+, Ca2+, Na+, and Cl- across the lysosomal membrane. This review examines the contributions of lysosomal ion channels to lysosome function, showing how ion channel function is integral to degradation and autophagy, maintaining lysosomal membrane potential, controlling Ca2+ signaling, and facilitating exocytosis. Evidence of lysosome dysfunction in a variety of disease pathologies creates a need to understand how lysosomal ion channels contribute to lysosome dysfunction. For example, the loss of function of the TRPML1 Ca2+ lysosome channel in multiple lysosome storage diseases leads to lysosome dysfunction and disease pathogenesis while neurodegenerative diseases are marked by lysosome dysfunction caused by changes in ion channel activity through the TRPML1, TPC, and TMEM175 ion channels. Autoimmune disease is marked by dysregulated autophagy, which is dependent on the function of multiple lysosomal ion channels. Understanding the role of lysosomal ion channel activity in lysosome membrane permeability and NLRP3 inflammasome activation could provide valuable mechanistic insight into NLRP3 inflammasome-mediated diseases. Finally, this review seeks to show that understanding the role of lysosomal ion channels in lysosome dysfunction could give mechanistic insight into the efficacy of certain drug classes, specifically those that target the lysosome, such as cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
380
|
Ramu V, Kundu P, Upadhyay A, Kondaiah P, Chakravarty AR. Lysosome Specific Platinum(II) Catecholates with Photoactive BODIPY for Imaging and Photodynamic Therapy in Near‐IR Light. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vanitha Ramu
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 Karnataka India
| | - Paramita Kundu
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 Karnataka India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 Karnataka India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 Karnataka India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
381
|
Kuk MU, Lee YH, Kim JW, Hwang SY, Park JT, Park SC. Potential Treatment of Lysosomal Storage Disease through Modulation of the Mitochondrial-Lysosomal Axis. Cells 2021; 10:cells10020420. [PMID: 33671306 PMCID: PMC7921977 DOI: 10.3390/cells10020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Lysosomal storage disease (LSD) is an inherited metabolic disorder caused by enzyme deficiency in lysosomes. Some treatments for LSD can slow progression, but there are no effective treatments to restore the pathological phenotype to normal levels. Lysosomes and mitochondria interact with each other, and this crosstalk plays a role in the maintenance of cellular homeostasis. Deficiency of lysosome enzymes in LSD impairs the turnover of mitochondrial defects, leading to deterioration of the mitochondrial respiratory chain (MRC). Cells with MRC impairment are associated with reduced lysosomal calcium homeostasis, resulting in impaired autophagic and endolysosomal function. This malicious feedback loop between lysosomes and mitochondria exacerbates LSD. In this review, we assess the interactions between mitochondria and lysosomes and propose the mitochondrial-lysosomal axis as a research target to treat LSD. The importance of the mitochondrial-lysosomal axis has been systematically characterized in several studies, suggesting that proper regulation of this axis represents an important investigative guide for the development of therapeutics for LSD. Therefore, studying the mitochondrial-lysosomal axis will not only add knowledge of the essential physiological processes of LSD, but also provide new strategies for treatment of LSD.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Jae Won Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Su Young Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| |
Collapse
|
382
|
The conserved autoimmune-disease risk gene TMEM39A regulates lysosome dynamics. Proc Natl Acad Sci U S A 2021; 118:2011379118. [PMID: 33531362 DOI: 10.1073/pnas.2011379118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
TMEM39A encodes an evolutionarily conserved transmembrane protein and carries single-nucleotide polymorphisms associated with increased risk of major human autoimmune diseases, including multiple sclerosis. The exact cellular function of TMEM39A remains not well understood. Here, we report that TMEM-39, the sole Caenorhabditis elegans (C. elegans) ortholog of TMEM39A, regulates lysosome distribution and accumulation. Elimination of tmem-39 leads to lysosome tubularization and reduced lysosome mobility, as well as accumulation of the lysosome-associated membrane protein LMP-1. In mammalian cells, loss of TMEM39A leads to redistribution of lysosomes from the perinuclear region to cell periphery. Mechanistically, TMEM39A interacts with the dynein intermediate light chain DYNC1I2 to maintain proper lysosome distribution. Deficiency of tmem-39 or the DYNC1I2 homolog in C. elegans impairs mTOR signaling and activates the downstream TFEB-like transcription factor HLH-30. We propose evolutionarily conserved roles of TMEM39 family proteins in regulating lysosome distribution and lysosome-associated signaling, dysfunction of which in humans may underlie aspects of autoimmune diseases.
Collapse
|
383
|
Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:ph14020133. [PMID: 33562293 PMCID: PMC7915149 DOI: 10.3390/ph14020133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these drugs. Among multifarious designs, monofunctional platinum(II) complexes with a general formula of [Pt(3A)Cl]+ (A: Ammonia or amine) stand out as a class of "non-traditional" anticancer agents hopeful to overcome the defects of current platinum drugs. This review aims to summarize the development of monofunctional platinum(II) complexes in recent years. They are classified into four categories: fluorescent complexes, photoactive complexes, targeted complexes, and miscellaneous complexes. The intention behind the designs is either to visualize the cellular distribution, or to reduce the side effects, or to improve the tumor selectivity, or inhibit the cancer cells through non-DNA targets. The information provided by this review may inspire researchers to conceive more innovative complexes with potent efficacy to shake off the drawbacks of platinum anticancer drugs.
Collapse
|
384
|
Liu Y, Zhou Y, Ma X, Chen L. Inhibition Lysosomal Degradation of Clusterin by Protein Kinase D3 Promotes Triple-Negative Breast Cancer Tumor Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003205. [PMID: 33643800 PMCID: PMC7887572 DOI: 10.1002/advs.202003205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/30/2020] [Indexed: 06/10/2023]
Abstract
Triple negative breast cancer (TNBC), with its lack of targeted therapies, shows the worst mortality rate among all breast cancer subtypes. Clusterin (CLU) is implicated to play important oncogenic roles in cancer via promoting various downstream oncogenic pathways. Here, protein kinase D3 (PRKD3) is defined to be a key regulator of CLU in promoting TNBC tumor growth. Mechanically, PRKD3 with kinase activity binding to CLU is critical for CLU protein stability via inhibiting CLU's lysosomal distribution and degradation. CLU and PRKD3 protein level are significantly elevated and positively correlated in collected TNBC tumor samples. CLU silencer (OGX-011) and PRKDs inhibitor (CRT0066101) can both result in impressive tumor growth suppression in vitro and in vivo, suggesting targeting CLU and its key regulator-PRKD3 are promisingly efficient against TNBC. Finally, secreted CLU (sCLU) is found to be elevated in serums from TNBC patients and reduced in serum from TNBC murine models post OGX-011 and/or CRT0066101 treatment, suggesting serum sCLU is a promising blood-based biomarker for clinical management of TNBC. Taken together, this study provides a thorough molecular basis as well as preclinical evidences for targeting CLU pathway as a new promising strategy against TNBC via revealing PRKD3 as the key regulator of CLU in TNBC.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhou215163P. R. China
- Cancer InstituteDepartment of BiochemistryJiangsu Key Laboratory for Molecular and Medical BiotechnologyCollege of Life ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yehui Zhou
- The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006P. R. China
| | - Xinxing Ma
- The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006P. R. China
| | - Liming Chen
- Cancer InstituteDepartment of BiochemistryJiangsu Key Laboratory for Molecular and Medical BiotechnologyCollege of Life ScienceNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
385
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
386
|
Zhou Y, Zhou X, Huang X, Hong T, Zhang K, Qi W, Guo M, Nie S. Lysosome-Mediated Cytotoxic Autophagy Contributes to Tea Polysaccharide-Induced Colon Cancer Cell Death via mTOR-TFEB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:686-697. [PMID: 33369397 DOI: 10.1021/acs.jafc.0c07166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeting autophagy and lysosome may serve as a promising strategy for cancer therapy. Tea polysaccharide (TP) has shown promising antitumor effects. However, its mechanism remains elusive. Here, TP was found to have a significant inhibitory effect on the proliferation of colon cancer line HCT116 cells. RNA-seq analysis showed that TP upregulated autophagy and lysosome signal pathways, which was further confirmed through experiments. Immunofluorescence experiments indicated that TP activated transcription factor EB (TFEB), a key nuclear transcription factor modulating autophagy and lysosome biogenesis. In addition, TP inhibited the activity of mTOR, while it increased the expression of Lamp1. Furthermore, TP ameliorated the lysosomal damage and autophagy flux barrier caused by Baf A1 (lysosome inhibitor). Hence, our data suggested that TP repressed the proliferation of HCT116 cells by targeting lysosome to induce cytotoxic autophagy, which might be achieved through mTOR-TFEB signaling. In summary, TP may be used as a potential drug to overcome colon cancer.
Collapse
Affiliation(s)
- Yujia Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Wucheng Qi
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mi Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
387
|
Choi NE, Lee JY, Park EC, Lee JH, Lee J. Recent Advances in Organelle-Targeted Fluorescent Probes. Molecules 2021; 26:E217. [PMID: 33406634 PMCID: PMC7795030 DOI: 10.3390/molecules26010217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022] Open
Abstract
Recent advances in fluorescence imaging techniques and super-resolution microscopy have extended the applications of fluorescent probes in studying various cellular processes at the molecular level. Specifically, organelle-targeted probes have been commonly used to detect cellular metabolites and transient chemical messengers with high precision and have become invaluable tools to study biochemical pathways. Moreover, several recent studies reported various labeling strategies and novel chemical scaffolds to enhance target specificity and responsiveness. In this review, we will survey the most recent reports of organelle-targeted fluorescent probes and assess their general strategies and structural features on the basis of their target organelles. We will discuss the advantages of the currently used probes and the potential challenges in their application as well as future directions.
Collapse
Affiliation(s)
| | | | | | | | - Jiyoun Lee
- Department of Next-Generation Applied Science, and Global Medical Science, Sungshin University, Seoul 01133, Korea; (N.-E.C.); (J.-Y.L.); (E.-C.P.); (J.-H.L.)
| |
Collapse
|
388
|
Jin J, Zhang H, Weyand CM, Goronzy JJ. Lysosomes in T Cell Immunity and Aging. FRONTIERS IN AGING 2021; 2:809539. [PMID: 35822050 PMCID: PMC9261317 DOI: 10.3389/fragi.2021.809539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 05/01/2023]
Abstract
Lysosomes were initially recognized as degradation centers that regulate digestion and recycling of cellular waste. More recent studies document that the lysosome is an important signaling hub that regulates cell metabolism. Our knowledge of the role of lysosomes in immunity is mostly derived from innate immune cells, especially lysosomal degradation-specialized cells such as macrophages and dendritic cells. Their function in adaptive immunity is less understood. However, with the recent emphasis on metabolic regulation of T cell differentiation, lysosomes are entering center stage in T cell immunology. In this review, we will focus on the role of lysosomes in adaptive immunity and discuss recent findings on lysosomal regulation of T cell immune responses and lysosomal dysfunction in T cell aging.
Collapse
Affiliation(s)
- Jun Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jorg J. Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine/Rheumatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Jorg J. Goronzy,
| |
Collapse
|
389
|
Rafiq S, McKenna SL, Muller S, Tschan MP, Humbert M. Lysosomes in acute myeloid leukemia: potential therapeutic targets? Leukemia 2021; 35:2759-2770. [PMID: 34462526 PMCID: PMC8478647 DOI: 10.1038/s41375-021-01388-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Lysosomes, since their discovery, have been primarily known for degrading cellular macromolecules. However, in recent studies, they have begun to emerge as crucial regulators of cell homeostasis. They are at the crossroads of catabolic and anabolic pathways and are intricately involved in cellular trafficking, nutrient signaling, energy metabolism, and immune regulation. Their involvement in such essential cellular functions has renewed clinical interest in targeting the lysosome as a novel way to treat disease, particularly cancer. Acute myeloid leukemia (AML) is an aggressive blood cancer with a low survival probability, particularly in older patients. The genomic landscape of AML has been extensively characterized but few targeted therapies (with the exception of differentiation therapy) can achieve a long-term cure. Therefore, there is an unmet need for less intensive and more tolerable therapeutic interventions. In this review, we will give an overview on the myriad of functions performed by lysosomes and their importance in malignant disease. Furthermore, we will discuss their relevance in hematopoietic cells and different ways to potentially target them in AML.
Collapse
Affiliation(s)
- Sreoshee Rafiq
- grid.5734.50000 0001 0726 5157Division of Experimental Pathology, Institute of Pathology, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sharon L. McKenna
- grid.7872.a0000000123318773Cancer Research, UCC, Western Gateway Building, University College Cork, Cork, Ireland ,TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Barcelona, Spain
| | - Sylviane Muller
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Barcelona, Spain ,grid.418692.00000 0004 0610 0264CNRS and Strasbourg University Unit Biotechnology and Cell signaling / Strasbourg Drug Discovery and Development Institute (IMS); Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France ,grid.11843.3f0000 0001 2157 9291University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - Mario P. Tschan
- grid.5734.50000 0001 0726 5157Division of Experimental Pathology, Institute of Pathology, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland ,TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Barcelona, Spain
| | - Magali Humbert
- grid.5734.50000 0001 0726 5157Division of Experimental Pathology, Institute of Pathology, Bern, Switzerland ,TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Barcelona, Spain
| |
Collapse
|
390
|
Tannert A, Garcia Lopez J, Petkov N, Ivanova A, Peneva K, Neugebauer U. Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. J Mater Chem B 2021; 9:112-124. [DOI: 10.1039/d0tb02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomal pH is altered in many pathophysiological conditions. We describe synthesis and spectral properties of a new lysosomal fluorescent marker dye suitable for microscopic evaluation of lysosomal distribution and pH changes.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| |
Collapse
|
391
|
Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. MEMBRANES 2020; 10:E406. [PMID: 33316913 PMCID: PMC7764620 DOI: 10.3390/membranes10120406] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| |
Collapse
|
392
|
Bonam SR, Muller S, Bayry J, Klionsky DJ. Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine. Autophagy 2020; 16:2260-2266. [PMID: 32522067 PMCID: PMC7755324 DOI: 10.1080/15548627.2020.1779467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.Abbreviation: ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
- Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
393
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J Control Release 2020; 328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
|
394
|
Dolenc I, Štefe I, Turk D, Taler-Verčič A, Turk B, Turk V, Stoka V. Human cathepsin X/Z is a biologically active homodimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140567. [PMID: 33227497 DOI: 10.1016/j.bbapap.2020.140567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Human cathepsin X belongs to the cathepsin family of 11 lysosomal cysteine proteases. We expressed recombinant procathepsin X in Pichia pastoris in vitro and cleaved it into its active mature form using aspartic cathepsin E. We found, using size exclusion chromatography, X-ray crystallography, and small-angle X-ray scattering, that cathepsin X is a biologically active homodimer with a molecular weight of ~53 kDa. The novel finding that cathepsin X is a dimeric protein opens new horizons in the understanding of its function and the underlying pathophysiological mechanisms of various diseases including neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Ivica Štefe
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ajda Taler-Verčič
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
395
|
Zhou S, Yin X, Mayr M, Noor M, Hylands PJ, Xu Q. Proteomic landscape of TGF-β1-induced fibrogenesis in renal fibroblasts. Sci Rep 2020; 10:19054. [PMID: 33149203 PMCID: PMC7642370 DOI: 10.1038/s41598-020-75989-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) plays a premier role in fibrosis. To understand the molecular events underpinning TGF-β1-induced fibrogenesis, we examined the proteomic profiling of a TGF-β1-induced in vitro model of fibrosis in NRK-49F normal rat kidney fibroblasts. Mass spectrometric analysis indicated that 628 cell-lysate proteins enriched in 44 cellular component clusters, 24 biological processes and 27 molecular functions were regulated by TGF-β1. Cell-lysate proteins regulated by TGF-β1 were characterised by increased ribosomal proteins and dysregulated proteins involved in multiple metabolic pathways, including reduced Aldh3a1 and induced Enpp1 and Impdh2, which were validated by enzyme-linked immunosorbent assays (ELISA). In conditioned media, 62 proteins enriched in 20 cellular component clusters, 40 biological processes and 7 molecular functions were regulated by TGF-β1. Secretomic analysis and ELISA uncovered dysregulated collagen degradation regulators (induced PAI-1 and reduced Mmp3), collagen crosslinker (induced Plod2), signalling molecules (induced Ccn1, Ccn2 and Tsku, and reduced Ccn3) and chemokines (induced Ccl2 and Ccl7) in the TGF-β1 group. We conclude that TGF-β1-induced fibrogenesis in renal fibroblasts is an intracellular metabolic disorder and is inherently coupled with inflammation mediated by chemokines. Proteomic profiling established in this project may guide development of novel anti-fibrotic therapies in a network pharmacology approach.
Collapse
Affiliation(s)
- Shujun Zhou
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Xiaoke Yin
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Manuel Mayr
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Mazhar Noor
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Peter J Hylands
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Qihe Xu
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
396
|
The Emerging Role of the Lysosome in Parkinson's Disease. Cells 2020; 9:cells9112399. [PMID: 33147750 PMCID: PMC7692401 DOI: 10.3390/cells9112399] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.
Collapse
|
397
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
398
|
Bonam SR, Muller S. Parkinson's disease is an autoimmune disease: A reappraisal. Autoimmun Rev 2020; 19:102684. [PMID: 33131704 DOI: 10.1016/j.autrev.2020.102684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Parkinson's disease (PD) is a common, age-related, neurodegenerative disorder characterized by motor deficits and a cognitive decline. In the large majority of cases, it is associated with cytoplasmic aggregation of α-synuclein/SNCA and the formation of Lewy bodies in the dopamine neurons in the substantia nigra pars compacta. The etiopathogenesis of PD remains poorly understood. The disease results from an interplay of genetic and environmental factors, including pharmacological molecules, which destroy dopaminergic neurons. Recently, several notable data have highlighted various immune alterations underlying that PD is associated to autoimmune features and could be considered as an autoimmune disease. In this short article, we briefly review key elements participating to this emerging viewpoint.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
399
|
In Vivo Remodeling of Altered Autophagy-Lysosomal Pathway by a Phosphopeptide in Lupus. Cells 2020; 9:cells9102328. [PMID: 33092174 PMCID: PMC7589999 DOI: 10.3390/cells9102328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
The phosphopeptide P140/Lupuzor, which improves the course of lupus disease in mice and patients, targets chaperone-mediated autophagy (CMA), a selective form of autophagy that is abnormally upregulated in lupus-prone MRL/lpr mice. Administered intravenously to diseased mice, P140 reduces the expression level of two major protein players of CMA, LAMP2A and HSPA8, and inhibits CMA in vitro in a cell line that stably expresses a CMA reporter. Here, we aimed to demonstrate that P140 also affects CMA in vivo and to unravel the precise cellular mechanism of how P140 interacts with the CMA process. MRL/lpr mice and CBA/J mice used as control received P140 or control peptides intravenously. Lysosome-enriched fractions of spleen or liver were prepared to examine lysosomal function. Highly purified lysosomes were further isolated and left to incubate with the CMA substrate to study at which cellular step P140 interacts with the CMA process. The data show that P140 effectively regulates CMA in vivo in MRL/lpr mice at the step of substrate lysosomal uptake and restores some alterations of defective lysosomes. For the first time, it is demonstrated that by occluding the intralysosome uptake of CMA substrates, a therapeutic molecule can attenuate excessive CMA activity in a pathological pro-inflammatory context and protect against hyperinflammation. This recovery effect of P140 on hyperactivated CMA is not only important for lupus therapy but potentially also for treating other (auto)inflammatory diseases, including neurologic and metabolic disorders, where CMA modulation would be highly beneficial.
Collapse
|
400
|
Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19. Chem Biol Interact 2020; 331:109282. [PMID: 33031791 PMCID: PMC7536130 DOI: 10.1016/j.cbi.2020.109282] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The novel human coronavirus-2 (HCoV-2), called SARS-CoV-2, is the causative agent of Coronavirus Induced Disease (COVID-19) and has spread causing a global pandemic. Currently, there is no vaccine to prevent infection nor any approved drug for the treatment. The development of a new drug is time-consuming and cannot be relied on as a solution in combatting the immediate global challenge. In such a situation, the drug repurposing becomes an attractive solution to identify the potential of COVID-19 treatment by existing drugs, which are approved for other indications. Here, we review the potential use of rapamycin, an mTOR (Mammalian Target of Rapamycin) inhibitor that can be repurposed at low dosages for the treatment of COVID-19. Rapamycin inhibits protein synthesis, delays aging, reduces obesity in animal models, and inhibits activities or expression of pro-inflammatory cytokines such as IL-2, IL-6 and, IL-10. Overall, the use of rapamycin can help to control viral particle synthesis, cytokine storms and contributes to fight the disease by its anti-aging and anti-obesity effects. Since, rapamycin targets the host factors and not viral machinery, it represents a potent candidate for the treatment of COVID-19 than antiviral drugs as its efficacy is less likely to be dampened with high mutation rate of viral RNA. Additionally, the inhibitory effect of rapamycin on cell proliferation may aid in reducing viral replication. Therefore, by drug repurposing, low dosages of rapamycin can be tested for the potential treatment of COVID-19/SARS-CoV-2 infection. Rapamycin, an mTOR inhibitor can be repurposed for treatment of COVID-19. Rapamycin inhibits protein synthesis, pro-inflammatory cytokines and delays aging. Rapamycin action targeted on host factors and not viral machinery. Rapamycin act on cell proliferation may aid in reducing viral replication.
Collapse
|