351
|
Debonera F, Krasinkas AM, Gelman AE, Aldeguer X, Que X, Shaked A, Olthoff KM. Dexamethasone inhibits early regenerative response of rat liver after cold preservation and transplantation. Hepatology 2003; 38:1563-72. [PMID: 14647067 DOI: 10.1016/j.hep.2003.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regeneration is crucial for the recovery of hepatic mass following liver transplantation. Glucocorticoids, immunosuppressive and antiinflammatory agents commonly used in transplantation, are known to inhibit the expression of specific cytokines and growth factors. Some of these proteins, namely tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6), play a critical role in the initiation of liver regeneration. Following cold preservation and reperfusion of the transplanted liver, the normal recovery process is marked by increased expression of TNF-alpha and IL-6, followed by activation of cytokine-responsive transcription factors and progression of the cell cycle resulting in hepatocyte proliferation. We hypothesized that glucocorticoids may influence the repair mechanisms initiated after extended cold preservation and transplantation. Using a rat orthotopic liver transplant model, recipient animals were treated with dexamethasone at the time of transplantation of liver grafts with prolonged cold storage (16 hours). Treatment with dexamethasone suppressed and delayed the expression of TNF-alpha and IL-6 compared with animals receiving no treatment and attenuated downstream nuclear factor kappaB (NF-kappaB), signal transduction and activator of transcription 3 (STAT3), and activation protein 1 (AP-1) activation. This suppression was accompanied by poor cell-cycle progression, delayed cyclin D1 nuclear transposition, and impaired hepatocyte proliferation by BrdU uptake. Histologically, the liver grafts in treated animals demonstrated more injury than controls, which appeared to be necrosis, rather than apoptosis. In conclusion, these data provide evidence that the administration of glucocorticoids at the time of transplantation inhibits the initiation of the regenerative process and may have a deleterious effect on the recovery of liver grafts requiring significant regeneration. This may be particularly relevant for transplantation of partial liver grafts in the living donor setting.
Collapse
Affiliation(s)
- Fotini Debonera
- Department of Surgery, University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
352
|
Wolvetang EJ, Bradfield OM, Hatzistavrou T, Crack PJ, Busciglio J, Kola I, Hertzog PJ. Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiol Dis 2003; 14:349-56. [PMID: 14678752 DOI: 10.1016/s0969-9961(03)00107-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Down syndrome (trisomy 21) neurons display an increased rate of apoptosis in vitro. The genes on chromosome 21 that mediate this increased cell death remain to be elucidated. Here we show that the chromosome 21 transcription factor Ets2, a gene that is overexpressed in Down syndrome, is expressed in neurons, and that moderate overexpression of Ets2 leads to increased apoptosis of primary neuronal cultures from Ets2 tg mice that involves activation of caspase-3. Our data therefore suggest that overexpression of ETS2 may contribute to the increased rate of apoptosis of neurons in Down syndrome.
Collapse
Affiliation(s)
- E J Wolvetang
- Monash Institute of Reproduction and Development, Monash University, Monash Medical Center, 246 Clayton Road, 3168 Clayton, Australia.
| | | | | | | | | | | | | |
Collapse
|
353
|
Abstract
Increased airway smooth muscle mass has been demonstrated in patients with asthma, bronchopulmonary dysplasia and most recently, cystic fibrosis. These observations emphasize the need for further knowledge of the events involved in airway smooth muscle mitogenesis and hypertrophy. Workers in the field have developed cell culture systems involving tracheal and bronchial myocytes from different species. An emergent body of literature indicates that mutual signal transduction pathways control airway smooth muscle cell cycle entry across species lines. This article reviews what is known about mitogen-activated signal transduction in airway myocytes. The extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-kinase) pathways appear to be key positive regulators of airway smooth muscle mitogenesis; recent studies have also demonstrated specific roles for reactive oxygen and the JAK/STAT pathway. It is also possible that growth factor stimulation of airway smooth muscle concurrently elicits signaling through negative regulatory intermediates such as p38 mitogen-activated protein (MAP) kinase and protein kinase C (PKC) delta, conceivably as a defense against extreme growth.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics, University of Chicago, Chicago, IL 48109-0688, USA
| | | |
Collapse
|
354
|
Lynch J, Keller M, Guo RJ, Yang D, Traber P. Cdx1 inhibits the proliferation of human colon cancer cells by reducing cyclin D1 gene expression. Oncogene 2003; 22:6395-407. [PMID: 14508520 DOI: 10.1038/sj.onc.1206770] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transcription factor Cdx1 regulates intestine-specific gene expression and enterocyte differentiation. It has been hypothesized to play a role in regulating intestinal cell proliferation; however, the mechanism for this effect remains elusive. In a prior study, we demonstrated that Cdx1 expression reduced the proliferation of a nontransformed intestinal cell line. This study tests the hypothesis that Cdx1 expression inhibits colon cancer cell proliferation by reducing cyclin D1 gene expression. Cdx1 expression markedly reduced cancer cell proliferation and DNA synthesis and induced an accumulation of cells in G0/G1. A transcriptionally inactive Cdx1 mutant could not elicit this effect, suggesting that it required Cdx1 transcriptional activity. Cdx1 expression increased the hypophosphorylation of the retinoblastoma (pRb) and p130 proteins. Reductions in G1 cyclin-dependant kinase (cdk) activity accompanied this effect. Cyclin D1 mRNA and protein levels were diminished by Cdx1 expression. Restoration of cyclin D1 expression reversed the G0/G1 block and induced pRb hyperphosphorylation. Lastly, Cdx1 expression did not alter cyclin D1 mRNA stability but did reduce cyclin D1 promoter activity, suggesting that Cdx1 acts to diminish cyclin D1 gene transcription. We conclude that Cdx1 reduces the proliferation of human colon cancer cells by reducing cyclin D1 gene transcription.
Collapse
Affiliation(s)
- John Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
355
|
Lange CA. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol Endocrinol 2003; 18:269-78. [PMID: 14563938 DOI: 10.1210/me.2003-0331] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In classical models of nuclear steroid hormone receptor function, ligand binds receptor, heat shock proteins dissociate, and receptor dimers enter or are withheld in the nucleus and interact with coregulatory molecules to mediate changes in gene expression. The footnotes, "receptors become phosphorylated" and "dynamic nucleo-cytoplasmic shuttling occurs" describe well-accepted, but less well-understood aspects of receptor action. Recently, the idea that several protein kinases are activated in response to steroid hormone binding to cognate cytoplasmic or membrane-associated receptors has become fashionable. However, the precise role of steroid hormone receptor phosphorylation and our understanding of which cytoplasmic kinases are activated and their functional significance remain elusive. This review provides an overview of the primary ways in which steroid hormone receptor and growth factor cross-talk occurs, using the human progesterone receptor (PR) as a model. The functional consequences of PR phosphorylation by protein kinases classically activated in response to peptide growth factors and novel extranuclear or nongenomic functions of PR as potential independent initiators of signal transduction pathways are discussed. Intracellular protein kinases are emerging as key mediators of steroid hormone receptor action. Cross-talk between steroid receptor- and growth factor-initiated signaling events may explain how gene subsets are coordinately regulated by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to play a role in their cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, Division of Hematology, Oncology, and Transplant, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
356
|
Agarwal SK, Novotny EA, Crabtree JS, Weitzman JB, Yaniv M, Burns AL, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ. Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci U S A 2003; 100:10770-5. [PMID: 12960363 PMCID: PMC196878 DOI: 10.1073/pnas.1834524100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Different components of the AP1 transcription factor complex appear to have distinct effects on cell proliferation and transformation. In contrast to other AP1 components, JunD has been shown to inhibit cell proliferation. Also, in prior studies, JunD alone bound menin, product of the MEN1 tumor suppressor gene, and JunD's transcriptional activity was inhibited by menin, suggesting that JunD might achieve all or most of its unique properties through binding to menin. Analyses of JunD and menin effects on proliferation, morphology, and cyclin D1 in stable cell lines unmasked an unexpected growth promoting activity of JunD. Whereas stable overexpression of wild-type (wt) mouse JunD in JunD-/- immortalized fibroblasts inhibited their proliferation and reverted their transformed-like phenotype, overexpression of a missense mouse JunD mutant (mJunDG42E) with disabled binding to menin showed opposite or growth promoting effects. Similarly, stable overexpression of wt mouse JunD in wt immortalized fibroblasts inhibited growth. In contrast, its overexpression in Men1-/- immortalized fibroblasts enhanced their already transformed-like characteristics. To conclude, JunD changed from growth suppressor to growth promoter when its binding to menin was prevented by a JunD mutant unable to bind menin or by Men1-null genetic background.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Soh JW, Weinstein IB. Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes. J Biol Chem 2003; 278:34709-16. [PMID: 12794082 DOI: 10.1074/jbc.m302016200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although protein kinase C (PKC) has been implicated in cell cycle progression, cell proliferation, and tumor promotion, the precise roles of specific isoforms in these processes is not clear. Therefore, we constructed and analyzed a series of expression vectors that encode hemagglutinin-tagged wild type (WT), constitutively active mutants (Delta NPS and CAT), and dominant negative mutants of PKCs alpha, beta 1, beta 2, gamma, delta, epsilon, eta, zeta, and iota. Cyclin D1 promoter reporter assays done in serum-starved NIH3T3 cells indicated that the constitutively active mutants of PKC-alpha and PKC-epsilon were the most potent activators of this reporter, whereas the constitutively active mutant of PKC-delta inhibited its activity. Transient transfection studies with a series of 5'-deleted cyclin D1 promoter constructs showed that the proximal 964-base region, which contains AP-1, SP1, and CRE enhancer elements, is required for activation of the cyclin D1 promoter by PKC-alpha. Deletion of the AP-1 enhancer element located at position -954 upstream from the initiation site abolished PKC-alpha-dependent activation of cyclin D1 expression. Deletion of the SP1 or CRE enhancer elements did not have any effect. A dominant negative mutant of c-Jun inhibited activation of the cyclin D1 promoter in a concentration-dependent manner, providing further evidence that AP-1 activity is required for activation of the cyclin D1 promoter by PKC-alpha and PKC-epsilon. The constitutively active mutants of PKC-alpha and PKC-epsilon also activated c-fos, c-jun, and cyclin E promoter activity. Furthermore, NIH3T3 cells that stably express the constitutively active mutants of PKC-alpha or PKC-epsilon displayed increased expression of endogenous cyclins D1 and E and faster growth rates. These results provide evidence that the activation of PKC-alpha or PKC-epsilon in mouse fibroblasts can play an important role in enhancing cell cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Jae-Won Soh
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
358
|
Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 2003; 23:6139-49. [PMID: 12917336 PMCID: PMC180959 DOI: 10.1128/mcb.23.17.6139-6149.2003] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PTEN is a tumor suppressor frequently inactivated in brain, prostate, and uterine cancers that acts as a phosphatase on phosphatidylinositol-3,4,5-trisphosphate, antagonizing the activity of the phosphatidylinositol 3'-OH kinase. PTEN manifests its tumor suppressor function in most tumor cells by inducing G(1)-phase cell cycle arrest. To study the mechanism of cell cycle arrest, we established a tetracycline-inducible expression system for PTEN in cell lines lacking this gene. Expression of wild-type PTEN but not of mutant forms unable to dephosphorylate phosphoinositides reduced the expression of cyclin D1. Cyclin D1 reduction was accompanied by a marked decrease in endogenous retinoblastoma (Rb) protein phosphorylation on cyclin D/CDK4-specific sites, showing an early negative effect of PTEN on Rb inactivation. PTEN expression also prevented cyclin D1 from localizing to the nucleus during the G(1)- to S-phase cell cycle transition. The PTEN-induced localization defect and the cell growth arrest could be rescued by the expression of a nucleus-persistent mutant form of cyclin D1, indicating that an important effect of PTEN is at the level of nuclear availability of cyclin D1. Constitutively active Akt/PKB kinase counteracted the effect of PTEN on cyclin D1 translocation. The data are consistent with an oncogenesis model in which a lack of PTEN fuels the cell cycle by increasing the nuclear availability of cyclin D1 through the Akt/PKB pathway.
Collapse
Affiliation(s)
- Aurelian Radu
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York,USA
| | | | | | | | | |
Collapse
|
359
|
Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C, Li Z, Wu K, Hulit J, Neumeister P, Novikoff PM, Brownlee M, Scherer PE, Jones JG, Whitney KD, Donehower LA, Harris EL, Rohan T, Johns DC, Pestell RG. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol 2003; 23:6159-73. [PMID: 12917338 PMCID: PMC180960 DOI: 10.1128/mcb.23.17.6159-6173.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, D.C. 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Tsutsumi S, Yanagawa T, Shimura T, Fukumori T, Hogan V, Kuwano H, Raz A. Regulation of cell proliferation by autocrine motility factor/phosphoglucose isomerase signaling. J Biol Chem 2003; 278:32165-72. [PMID: 12783864 DOI: 10.1074/jbc.m304537200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autocrine motility factor (AMF)/phosphoglucose isomerase (PGI; EC 5.3.1.9) is a housekeeping cytosolic enzyme that plays a key role in both glycolysis and gluconeogenesis pathways. AMF/PGI is also a multifunctional protein that displays cytokine properties, eliciting mitogenic, motogenic, and differentiation activities, and has been implicated in tumor progression and metastasis. Because little is known about AMF/PGI-dependent signaling in general and during tumorigenesis in particular, we sought to study its effect on the cell cycle. To elucidate the functional role of PGI, we stably transfected its cDNA into NIH/3T3 and BALB/c 3T3-A31 fibroblasts. Ectopic overexpression of PGI results in the acquisition of a transformed phenotype associated with an acceleration of G1 to S cell cycle transition. These were manifested by up-regulation of cyclin D1 expression and cyclin-dependent kinase activity and down-regulation of the cyclin-dependent kinase inhibitor p27Kip1. The reduced p27Kip1 protein expression level in PGI-overexpressing cells could be restored to control levels by treatment with proteasome inhibitor. PGI-overexpressing cells also exhibited elevated expression of Skp2 involved in p27Kip1 ubiquitination and elevation in the levels of retinoblastoma protein hyperphosphorylation. Thus, we may conclude that the overexpression of AMF/PGI enhances cell proliferation together with up-regulation of cyclin/cyclin-dependent kinase activities and down-regulation of p27Kip1, whereas the induction of 3T3 fibroblast transformation by PGI is regulated by the retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Soichi Tsutsumi
- Tumor Progression and Metastasis, Karmanos Cancer Institute, The Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
361
|
Fassett JT, Tobolt D, Nelsen CJ, Albrecht JH, Hansen LK. The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G1-S progression in rat hepatocytes. J Biol Chem 2003; 278:31691-700. [PMID: 12794085 DOI: 10.1074/jbc.m300899200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adhesion to type 1 collagen can elicit different cellular responses dependent upon whether the collagen is in a fibrillar form (gel) or monomeric form (film). Hepatocytes adherent to collagen film spread extensively, express cyclin D1, and increase DNA synthesis in response to epidermal growth factor, whereas hepatocytes adherent to collagen gel have increased differentiated function, but lower DNA synthesis. The signaling mechanisms by which different forms of type I collagen modulate cell cycle progression are unknown. When ERK MAP kinase activation was analyzed in hepatocytes attached to collagen film, two peaks of ERK activity were demonstrated. Only the second peak, which correlated with an increase of cyclin D1, was required for G1-S progression. Notably, this second peak of ERK activity was absent in cells adherent to collagen gel, but not required in the presence of exogenous cyclin D1. Expression of activated mutants of the Ras/Raf/MEK signaling pathway in cells adherent to collagen gel restored ERK phosphorylation and DNA synthesis, but differentially affected cell shape. Although Ras, Raf, and MEK all increased expression of cyclin D1 on collagen film, only Ras and Raf significantly up-regulated cyclin D1 levels on collagen gel. These results demonstrate that adhesion to polymerized collagen induces growth arrest by inhibiting the Ras/ERK-signaling pathway to cyclin D1 required in late G1.
Collapse
Affiliation(s)
- John T Fassett
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
362
|
Mulloy R, Salinas S, Philips A, Hipskind RA. Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 2003; 22:5387-98. [PMID: 12934098 DOI: 10.1038/sj.onc.1206839] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional activation of the cyclin D1 gene is a key step in cell proliferation. Accordingly, cyclin D1 overexpression is frequently an early step in neoplastic transformation, particularly in mammary epithelium. Numerous studies have linked elevated cyclin D1 promoter activity to a sustained activation of the ERK1/2 cascade. Here we show that the ERK5 cascade, a distinct mitogen-induced MAPK pathway, can also drive cyclin D1 expression. In CCL39 cells, serum induces a strong, prolonged peak of ERK1/2 and ERK5 phosphorylation, and subsequently elevates cyclin D1 mRNA and protein levels. Overexpression of constitutively active MEK5 and wt ERK5 induces a cyclin D1 reporter gene (D1 -973-luciferase) at least as well as constitutively active MEK1. Activation is blocked by kinase-dead mutants of ERK5 and ERK2, respectively. Mutation of the CRE at -50 in the cyclin D1 promoter decreases activation by the ERK5 but not the ERK1/2 cascade. Importantly, expression of kinase-dead ERK5 diminishes endogenous cyclin D1 protein induction by serum in CCL39 cells and the breast cancer cell lines MCF-7 and HS579. These data identify the cyclin D1 gene as a novel target of the ERK5 cascade, an observation with important implications in cancers involving cyclin D1 deregulation.
Collapse
Affiliation(s)
- Roseann Mulloy
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, IFR 122, 1919 Route de Mende, 34293 Montpellier 5, France
| | | | | | | |
Collapse
|
363
|
Hida M, Fujita H, Ishikura K, Omori S, Hoshiya M, Awazu M. Eicosapentaenoic acid inhibits PDGF-induced mitogenesis and cyclin D1 expression via TGF-beta in mesangial cells. J Cell Physiol 2003; 196:293-300. [PMID: 12811822 DOI: 10.1002/jcp.10298] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid derived from fish oil, is efficacious in glomerular diseases where mesangial proliferation is a key event. We examined the mechanisms of action of EPA on platelet-derived growth factor (PDGF)-stimulated rat mesangial cell mitogenesis. EPA dose-dependently inhibited PDGF-stimulated [(3)H]-thymidine incorporation. PDGF-induced PDGF receptor autophosphorylation, an initial event for PDGF signaling, was not affected by 2 micro g/ml EPA. Similarly, PDGF-stimulated activation of extracellular signal-regulated kinase (ERK) was not altered. On the other hand, EPA inhibited cyclin-dependent kinase 4 (CDK4) activation and cyclin D1 protein induction, a critical step for G1/S progression. TGF-beta secretion assessed by ELISA and bioassay was increased by EPA at 18 h. Coincubation with anti-TGF-beta antibody inhibited the EPA-induced suppression of [(3)H]-thymidine incorporation and cyclin D1 expression. SB203580, an inhibitor of p38, a downstream kinase of TGF-beta, did not affect EPA's growth inhibitory effect. These results demonstrate that EPA inhibits PDGF-stimulated mesangial cell mitogenesis and cyclin D1 expression via TGF-beta.
Collapse
Affiliation(s)
- Mariko Hida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
364
|
Uemura K, Kitagawa N, Kohno R, Kuzuya A, Kageyama T, Shibasaki H, Shimohama S. Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling. J Neurosci Res 2003; 73:166-75. [PMID: 12836159 DOI: 10.1002/jnr.10641] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Presenilin 1 interacts with beta-catenin, an essential component of the Wnt signaling pathway. To elucidate the role of presenilin 1-beta-catenin interaction in neuronal differentiation, we established SH-SY5Y cells stably expressing wild-type presenilin 1, P117L mutant presenilin 1, which is linked to the early-onset familial form of Alzheimer's disease, and D385A mutant presenilin 1, which has no aspartyl proteinase activity. We demonstrate that SH-SY5Y cells stably expressing D385A mutant presenilin 1 failed to differentiate in response to retinoic acid treatment. Retinoic acid caused an increase in nuclear beta-catenin levels in SH-SY5Y cells, which was followed by an increase in cyclin D1 protein levels. Abnormal cellular accumulation of beta-catenin was observed in D385A mutant transfected cells, whereas nuclear beta-catenin and cellular cyclin D1 levels failed to increase. Conversely, SH-SY5Y cells expressing the P117L mutant differentiated normally and showed increased nuclear beta-catenin and cellular cyclin D1 levels. These findings suggest that neuronal differentiation of SH-SY5Y cells involves the Wnt signaling pathway and that presenilin 1 plays a crucial role in Wnt signal transduction by regulating the nuclear translocation of beta-catenin.
Collapse
Affiliation(s)
- Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
365
|
Anna CH, Iida M, Sills RC, Devereux TR. Expression of potential beta-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice. Toxicol Appl Pharmacol 2003; 190:135-45. [PMID: 12878043 DOI: 10.1016/s0041-008x(03)00170-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study we used liver neoplasms induced by several chemical carcinogens to investigate potential nuclear targets associated with beta-catenin/Wnt signaling and potential membrane-associated beta-catenin binding partners. Strong expression of cyclin D1, in a pattern similar to that observed previously for beta-catenin, was observed by Western analysis for all five hepatoblastomas examined regardless of treatment. Increased expression of cyclin D1 was also detected in 12 of 35 (34%) hepatocellular neoplasms. Ten of 15 tumors (67%) that had mutations in the Catnb gene had upregulation of cyclin D1, while only 2 of 20 tumors (10%) without Catnb mutations had increased cyclin D1 expression. Immunohistochemical analysis confirmed strong expression of cyclin D1 in most nuclei of hepatoblastomas and scattered nuclear staining in hepatocellular tumors that had Catnb mutations. Increased c-Jun expression was observed in 19 of 30 (63%) hepatocellular tumors and all hepatoblastomas, although upregulation was not completely correlated with Catnb mutation. C-Myc expression was not increased in the tumors. Reduced expression of E-cadherin, which interacts with beta-catenin at the membrane, was observed in some tumors, but this did not correlate with Catnb mutation. Expression of the epidermal growth factor receptor, which may have a role in beta-catenin tyrosine phosphorylation, was lower in some tumors than in normal tissue depending on chemical treatment. The results provide evidence that increased expression of cyclin D1 and c-Jun may provide an advantage during tumor progression and in the transition from hepatocellular neoplasms to hepatoblastomas. Moreover, it is likely increased cyclin D1 expression results at least in part from Catnb mutation, beta-catenin accumulation, and increased Wnt signaling.
Collapse
MESH Headings
- Adenoma, Liver Cell/chemically induced
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/metabolism
- Animals
- Biomarkers, Tumor/metabolism
- Cadherins/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cyclin D1/metabolism
- Cytoskeletal Proteins/genetics
- ErbB Receptors/metabolism
- Genes, ras/genetics
- Hepatoblastoma/chemically induced
- Hepatoblastoma/genetics
- Hepatoblastoma/metabolism
- Immunoenzyme Techniques
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Mice
- Mice, Inbred Strains
- Mutation
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Trans-Activators/genetics
- Wnt Proteins
- Zebrafish Proteins
- beta Catenin
Collapse
Affiliation(s)
- Colleen H Anna
- Laboratory of Molecular Carcinogenesis NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
366
|
Nelsen CJ, Rickheim DG, Tucker MM, McKenzie TJ, Hansen LK, Pestell RG, Albrecht JH. Amino acids regulate hepatocyte proliferation through modulation of cyclin D1 expression. J Biol Chem 2003; 278:25853-8. [PMID: 12736274 DOI: 10.1074/jbc.m302360200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mechanisms by which amino acids regulate the cell cycle are not well characterized. In this study, we examined the control of hepatocyte proliferation by amino acids and protein intake. In short-term culture, hepatocytes demonstrated normal entry into S phase and cell cycle protein expression in the absence of essential amino acids. However, deprivation of a set of nonessential amino acids (NEAA) potently inhibited cell cycle progression and selectively down-regulated the expression of proliferation-control proteins. Notably, NEAA withdrawal after the mitogen restriction point still inhibited entry into S phase, suggesting that these amino acids regulate a distinct checkpoint. Cyclin D1, an important mediator of hepatocyte proliferation, was markedly inhibited at the transcriptional level by NEAA deprivation, and transfection with cyclin D1 (but not cyclin E) overcame the cell cycle arrest. As previously shown, protein-deprived mice demonstrated impaired hepatocyte proliferation in vivo after 70% partial hepatectomy. The expression of cyclin D1 and downstream cell cycle proteins after partial hepatectomy was inhibited in these mice. Transfection with cyclin D1 in vivo triggered hepatocyte DNA synthesis and the expression of S phase proteins in the absence of dietary protein. Cyclin D1 also induced global protein synthesis in NEAA-deprived hepatocytes and promoted liver growth in vivo in the setting of protein deprivation. These results indicate that cyclin D1 is a key target of amino acid signaling in hepatocytes.
Collapse
Affiliation(s)
- Christopher J Nelsen
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota 55415, USA
| | | | | | | | | | | | | |
Collapse
|
367
|
Ghosh SS, Gehr TWB, Ghosh S, Fakhry I, Sica DA, Lyall V, Schoolwerth AC. PPARgamma ligand attenuates PDGF-induced mesangial cell proliferation: role of MAP kinase. Kidney Int 2003; 64:52-62. [PMID: 12787395 DOI: 10.1046/j.1523-1755.2003.00054.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial proliferation is a key feature in the pathogenesis of a number of renal diseases and can be experimentally induced by the mitogen platelet-derived growth factor (PDGF). Mitogen-activated protein kinase (MAPK) signaling plays a key role in mesangial cell proliferation. In the present study we examined whether peroxisome proliferator-activated receptor gamma (PPARgamma) activators/ligands, thiazolidinediones such as ciglitazone, troglitazone, and rosiglitazone, can inhibit cell proliferation by modulating individual steps in the MAPK pathway. METHODS Mouse mesangial cells were made quiescent and proliferation was measured following the application of PDGF. Using ciglitazone as the model compound, the mechanism of the antiproliferative effect of PPARgamma activators on MAPK and specific cell cycle regulatory proteins were examined by Western blot analysis and transfection studies. RESULTS Ciglitazone inhibited PDGF-induced mesangial cell proliferation in a dose-dependent manner (1 to 20 micromol/L). The inhibitory effect was blocked by a peroxisome proliferator-activated receptor element (PPRE) decoy oligonucleotide, indicating that the observed effect of ciglitazone was via PPARgamma activation. Ciglitazone (1 to 20 micromol/L) did not affect extracellular signal-regulated protein kinase (ERK) activation but inhibited the activation of serum response element (SRE) by 85 +/- 6% (P < 0.01). This effect was associated with a reduction in c-fos expression (80 +/- 9%, P < 0.01). Ciglitazone (1, 10, and 20 micromol/L) also inhibited cyclin D1 expression by 37 +/- 8%, 79 +/- 15%, and 87 +/- 12%, respectively (P < 0.001 to 0.001), and p21 expression by 45 +/- 6% (P < 0.01), 61 +/- 10% (P < 0.001), and 72 +/- 8% (P < 0.001), respectively. Ciglitazone inhibited PDGF-mediated up-regulation of p27. In addition, the antiproliferative effect of ciglitazone was potentiated by PD98059, a mitogen-activated protein (MAP) kinase kinase (MEK) inhibitor that acts at a step upstream from ERK. CONCLUSION These data indicate that PPARgamma activation may inhibit mesangial growth directly by affecting MAPK and cell cycle regulatory proteins. Furthermore, a MAP kinase inhibitor can potentiate the antiproliferative effect.
Collapse
Affiliation(s)
- Siddhartha S Ghosh
- Division of Nephrology, MCV Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
368
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 533] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Rajakangas J, Basu S, Salminen I, Mutanen M. Adenoma growth stimulation by the trans-10, cis-12 isomer of conjugated linoleic acid (CLA) is associated with changes in mucosal NF-kappaB and cyclin D1 protein levels in the Min mouse. J Nutr 2003; 133:1943-8. [PMID: 12771343 DOI: 10.1093/jn/133.6.1943] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Conjugated linoleic acid (CLA) is a term used to describe the different conjugated isomers of linoleic acid. CLA has been found to be anticarcinogenic in mammary cancer, but its effects on colon carcinogenesis are still inconclusive. In this study, the isomer-specific effects of the cis-9, trans-11 and trans-10, cis-12 CLA isomers were investigated in the Min mouse model for intestinal carcinogenesis. The Min mice (n = 10/group) were fed either an AIN-93G control diet or a diet containing 1 g/100 g cis-9, trans-11 or trans-10, cis-12 CLA for 8 wk. The number and size of adenomas were measured and the proteins from the small intestinal tissues extracted for immunoblotting analysis. The number of adenomas did not differ, but the size of the adenomas was greater in the distal part of the small intestine in mice fed the trans-10, cis-12 isomer than in controls (1.19 +/- 0.16 vs. 0.94 +/- 0.21 mm, mean +/- SD, P < 0.01). The same isomer caused an increase in lipid peroxidation, measured as urinary 8-iso-prostaglandin (PG)F(2alpha). Nuclear p65 protein of the mucosal tissue was not detectable in the trans-10, cis-12 group, which differed (P < 0.05) from the control group. Cyclin D1, a target for the nuclear factor (NF)-kappaB pathway, was elevated in the trans-10, cis-12 group compared with the control group (P < 0.01), but cyclooxygenase-2 levels were not higher. There was no difference in beta-catenin protein levels between the groups. The results indicate that the trans-10, cis-12 isomer of CLA can act as a cancer promoter in colon carcinogenesis possibly through pathways affecting NF-kappaB and cyclin D1.
Collapse
Affiliation(s)
- Johanna Rajakangas
- Department of Applied Chemistry and Microbiology, Division of Nutrition, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
370
|
Yuan Z, Schellekens H, Warner L, Janssen-Heininger Y, Burch P, Heintz NH. Reactive nitrogen species block cell cycle re-entry through sustained production of hydrogen peroxide. Am J Respir Cell Mol Biol 2003; 28:705-12. [PMID: 12600834 DOI: 10.1165/rcmb.2002-0112oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endogenous sources of reactive nitrogen species (RNS) act as second messengers in a variety of cell signaling events, whereas environmental sources of RNS like nitrogen dioxide (NO2) inhibit cell survival and growth through covalent modification of cellular macromolecules. To examine the effects of RNS on cell cycle progression, murine type II alveolar C10 cells arrested in G0 by serum deprivation were exposed to either NO2 or SIN-1, a generator of RNS, during cell cycle re-entry. In serum-stimulated cells, RNS did not prevent the immediate early gene response by AP-1, but rather blocked cyclin D1 gene expression, resulting cell cycle arrest at the boundary between G0 and G1. Dichlorofluorescin diacetate (DCF) fluorescence indicated that RNS induced sustained production of intracellular hydrogen peroxide (H2O2), which normally is produced only transiently in response to serum growth factors. Loading cells with catalase did not diminish the formation of 3-nitrotyrosine on the cell surface, but rather prevented enhanced DCF fluorescence and rescued cyclin D1 expression and S phase entry. These studies indicate environmental RNS interfere with cell cycle re-entry through an H2O2-dependent mechanism that influences expression of cyclin D1 and progression from G0 to the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Ziqiang Yuan
- Department of Pathology, University of Vermont College of Medicine, Burlington VT 05465, USA
| | | | | | | | | | | |
Collapse
|
371
|
Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst 2003; 95:733-40. [PMID: 12759391 DOI: 10.1093/jnci/95.10.733] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA), at concentrations present in ascitic fluid, indirectly stimulates the growth of malignant ovarian tumors by increasing the expression of vascular endothelial growth factor (VEGF) in ovarian cancer cells. We investigated whether LPA could also directly promote ovarian tumor growth by increasing the level of cyclin D1, a key G1-phase checkpoint regulator, which thereby increases cell proliferation. METHODS Expression of cyclin D1 and LPA receptors (EDG4 and EDG7) was determined in six ovarian cancer cell lines (including OVCAR-3 cells) and immortalized ovarian surface epithelial cells (IOSE-29). Cyclin D1 promoter activity was measured in LPA-treated OVCAR-3 cells cotransfected with cyclin D1 promoter-driven luciferase constructs and cDNA expression plasmids for IkappaBalphaM (a nuclear factor kappaB [NFkappaB] super-repressor). RESULTS Four of six cancer cell lines, including OVCAR-3, overexpressed cyclin D1 protein relative to levels in IOSE-29 cells. LPA treatment increased cyclin D1 protein in a dose- and time-dependent manner in OVCAR-3 cells but not in IOSE-29 cells. LPA stimulated cyclin D1 promoter activity (3.0-fold, 95% confidence interval [CI] = 2.7-fold to 3.3-fold). Mutation of the NFkappaB-binding site in the cyclin D1 promoter to block NFkappaB binding and expression of IkappaBalphaM, which binds NFkappaB and inhibits its binding to the promoter, markedly diminished LPA stimulation of cyclin D1 promoter activity (activity stimulated only 1.4-fold, 95% CI = 1.1-fold to 1.7-fold, and 0.7-fold, 95% CI = 0.6-fold to 0.8-fold, respectively). EDG4 was overexpressed in all cancer cell lines studied relative to that in IOSE-29 cells, but EDG7 was overexpressed in only two lines. CONCLUSIONS Dual mechanisms are probably involved in LPA stimulation of ovarian tumor growth in vivo. In addition to the previously characterized indirect mechanism that increases angiogenesis via VEGF, LPA may directly increase the level of cyclin D1 in ovarian cancer cells, increasing their proliferation.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Carcinoma/metabolism
- Cell Division/drug effects
- Cyclin D1/drug effects
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- I-kappa B Proteins/genetics
- Luciferases/metabolism
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Mutation
- NF-kappa B/genetics
- Ovarian Neoplasms/metabolism
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Serum Response Element/drug effects
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Yu-Long Hu
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, USA
| | | | | | | |
Collapse
|
372
|
Lebeau A, Unholzer A, Amann G, Kronawitter M, Bauerfeind I, Sendelhofert A, Iff A, Löhrs U. EGFR, HER-2/neu, cyclin D1, p21 and p53 in correlation to cell proliferation and steroid hormone receptor status in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 2003; 79:187-98. [PMID: 12825853 DOI: 10.1023/a:1023958324448] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abnormalities in G1/S transition in cell cultures have been attributed to alterations in ErbB (erythroblastic leukaemia viral [v-erb-b] oncogene homologue, avian) signalling, cyclin D1 overexpression or disturbance of the p21(WAF1) (p21)-mediated cell cycle arrest induced by p53. To investigate the significance of these mechanisms on an early stage of human breast tumour growth, we studied the expression of EGFR (ErbB1), HER-2/neu (ErbB2), cyclin D1, p21 and p53 as well as oestrogen (ER) and progesterone receptor (PgR) in paraffin sections of 45 ductal carcinoma in situ (DCIS) by immunohistochemistry. Cell proliferation was assessed by immunohistochemical quantification of Ki-67. Five cases with cyclin D1 overexpression were analysed by FISH for CCND1 amplification. Increased proliferative activity was observed in 46% of DCIS. It was correlated with the expression of EGFR and HER-2/neu (p < 0.05), but neither with cyclin D1 and p21 overexpression nor with p53 accumulation. ErbB positive status was associated with p21 overexpression (p < 0.05). In addition we found a correlation between the overexpression of p21 and cyclin D1 restricted to ErbB-positive cases (p = 0.013). ErbB-negative tumours with increased proliferative activity were ER and cyclin D1 positive. No CCND1 amplification was detected in the analysed cases. In conclusion, our data support that EGFR and HER-2/neu play an important role in cell cycle control in DCIS. p21 appears to be a potential mediator of ErbB signalling. We propose that cyclin D1 could be indirectly induced by ErbB signalling through p21. Besides, ER-mediated upregulation of cyclin D1 seems to be a possible mechanism of maintaining cell proliferation in DCIS in case of EGFR- and HER-2/neu-negativity.
Collapse
Affiliation(s)
- Annette Lebeau
- Pathologisches Institut, der Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL, Schoonhoven R, Brenner DA. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 2003; 37:824-32. [PMID: 12668975 DOI: 10.1053/jhep.2003.50135] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The c-Jun-N-terminal kinase (JNK) pathway is strongly activated after partial hepatectomy (PH), but its role in hepatocyte proliferation is not known. In this study, JNK activity was blocked with the small molecule inhibitor JNK SP600125 in vivo and in vitro as shown by a reduction of c-Jun phosphorylation, AP-1 DNA binding activity, and c-jun messenger RNA (mRNA) expression. SP600125 inhibited proliferating cell nuclear antigen (PCNA) expression, cyclin D1 mRNA and protein expression and reduced mitotic figures after PH. Survival was reduced significantly 3 days after PH in SP600125-treated versus vehicle-treated rats (3 of 11 vs. 8 of 9, P <.01). In epidermal growth factor (EGF)-treated primary cultures of rat hepatocytes, SP600125 decreased (3)H-thymidine uptake, cyclin D1 mRNA and protein expression, and inhibited the EGF-induced transcription of a cyclin D1 promoter-driven reporter gene. The defective regeneration and the decreased survival in SP600125-treated rats did not result from a major increase in apoptosis as shown by normal levels of caspase 3 activity and only slight increases in apoptotic figures. In conclusion, our data show that JNK drives G0 to G1 transition in hepatocytes and that cyclin D1 is a downstream target of the JNK pathway during liver regeneration.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
374
|
Ryo A, Liou YC, Lu KP, Wulf G. Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 2003; 116:773-83. [PMID: 12571275 DOI: 10.1242/jcs.00276] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation of proteins on serine or threonine residues preceding proline (Ser/Thr-Pro) is a major intracellular signaling mechanism. The phosphorylated Ser/Thr-Pro motifs in a certain subset of phosphoproteins are isomerized specifically by the peptidyl-prolyl cis-trans isomerase Pin1. This post-phosphorylation isomerization can lead to conformational changes in the substrate proteins and modulate their functions. Pin1 interacts with a number of mitotic phosphoproteins, and plays a critical role in mitotic regulation. Recent work indicates that Pin1 is overexpressed in many human cancers and plays an important role in oncogenesis. Pin1 regulates the expression of cyclin D1 by cooperating with Ras signaling and inhibiting the interaction of beta-catenin with the tumor suppressor APC and also directly stabilizing cyclin D1 protein. Furthermore, PIN1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Pin1 is also a critical regulator of the tumor suppressor p53 during DNA damage response. Given its role in cell growth control and oncogenesis, Pin1 could represent a new anti-cancer target.
Collapse
Affiliation(s)
- Akihide Ryo
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
375
|
Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A. Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Mol Cell Biol 2003; 23:1764-74. [PMID: 12588994 PMCID: PMC151693 DOI: 10.1128/mcb.23.5.1764-1774.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin D-dependent kinase is a critical mediator of mitogen-dependent G1 phase progression in mammalian cells. Given the high incidence of cyclin D1 overexpression in human neoplasias, the nature and complexity of cyclin D complexes in vivo have been subjects of intense interest. Besides its catalytic partner, the nature and complexity of cyclin D complexes in vivo remain ambiguous. To address this issue, we purified native cyclin D1 complexes from proliferating mouse fibroblasts by affinity chromatography and began to identify and functionally characterize the associated proteins. In this report, we describe the identification of Hsc70 and its functional importance for cyclin D1 and cyclin D1-dependent kinase maturation. We demonstrate that Hsc70 associates with newly synthesized cyclin D1 and is a component of a mature, catalytically active cyclin D1/CDK4 holoenzyme complex. Our data suggest that Hsc70 promotes stabilization of newly synthesized cyclin D1, thereby increasing its availability for assembly with CDK4. In addition, our data demonstrate that Hsc70 remains bound to cyclin D1 following its assembly with CDK4 and Cip/Kip proteins, where it ensures the formation of a catalytically active complex.
Collapse
Affiliation(s)
- J Alan Diehl
- The Leonard and Madlyn Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
376
|
Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 2003; 23:1633-46. [PMID: 12588983 PMCID: PMC151696 DOI: 10.1128/mcb.23.5.1633-1646.2003] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptors (ER) have been localized to the cell plasma membrane (PM), where signal transduction mediates some estradiol (E2) actions. However, the precise structural features of ER that result in membrane localization have not been determined. We obtained a partial tryptic peptide/mass spectrometry analysis of membrane mouse ERalpha protein. Based on this, we substituted alanine for the determined serine at amino acid 522 within the E domain of wild-type (wt) ERalpha. Upon transfection in CHO cells, the S522A mutant ERalpha resulted in a 62% decrease in membrane receptor number and reduced colocalization with caveolin 1 relative to those with expression of wt ERalpha. E2 was significantly less effective in stimulating multiple rapid signals from the membranes of CHO cells expressing ERalpha S522A than from those of CHO cells expressing wt ERalpha. In contrast, nuclear receptor expression and transcriptional function were very similar. The S522A mutant was also 60% less effective than wt ERalpha in binding caveolin 1, which facilitates ER transport to the PM. All functions of ERalpha mutants with other S-to-A substitutions were comparable to those of wt ER, and deletion of the A/B or C domain had little consequence for membrane localization or function. Transfection of ERalpha S522A into breast cancer cells that express native ER downregulated E2 binding at the membrane, signaling to ERK, and G1/S cell cycle events and progression. However, there was no effect on the E2 transactivation of an ERE-luciferase reporter. In summary, serine 522 is necessary for the efficient translocation and function of ERalpha at the PM. The S522A mutant also serves as a dominant-negative construct, identifying important functions of E2 that originate from activating PM ER.
Collapse
Affiliation(s)
- Mahnaz Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, California 90822, USA
| | | | | | | | | | | |
Collapse
|
377
|
Cui CB, Cooper LF, Yang X, Karsenty G, Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol Cell Biol 2003; 23:1004-13. [PMID: 12529404 PMCID: PMC140696 DOI: 10.1128/mcb.23.3.1004-1013.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 06/26/2002] [Accepted: 11/12/2002] [Indexed: 11/20/2022] Open
Abstract
Core-binding factor 1 (Cbfa1; also called Runx2) is a transcription factor belonging to the Runt family of transcription factors that binds to an osteoblast-specific cis-acting element (OSE2) activating the expression of osteocalcin, an osteoblast-specific gene. Using the yeast two-hybrid system, we identified a transcriptional coactivator, TAZ (transcriptional coactivator with PDZ-binding motif), that binds to Cbfa1. A functional relationship between Cbfa1 and TAZ is demonstrated by the coimmunoprecipitation of TAZ by Cbfa1 and by the fact that TAZ induces a dose-dependent increase in the activity of osteocalcin promoter-luciferase constructs by Cbfa1. A dominant-negative construct of TAZ in which the coactivation domains have been deleted reduces osteocalcin gene expression down to basal levels. NIH 3T3, MC 3T3, and ROS 17/2.8 cells showed the expected nuclear localization of Cbfa1, whereas TAZ was distributed throughout the cytoplasm with some nuclear localization when transfected with either Cbfa1 or TAZ. Upon cotransfection by both Cbfa1 and TAZ, the transfected TAZ shows predominant nuclear localization. The dominant-negative construct of TAZ shows minimal nuclear localization upon cotransfection with Cbfa1. These data indicate that TAZ is a transcription coactivator for Cbfa1 and may be involved in the regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Cai Bin Cui
- Department of Periodontology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
378
|
Albanese C, Wu K, D'Amico M, Jarrett C, Joyce D, Hughes J, Hulit J, Sakamaki T, Fu M, Ben-Ze'ev A, Bromberg JF, Lamberti C, Verma U, Gaynor RB, Byers SW, Pestell RG. IKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol Biol Cell 2003; 14:585-99. [PMID: 12589056 PMCID: PMC149994 DOI: 10.1091/mbc.02-06-0101] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Wnt/beta-catenin/Tcf and IkappaB/NF-kappaB cascades are independent pathways involved in cell cycle control, cellular differentiation, and inflammation. Constitutive Wnt/beta-catenin signaling occurs in certain cancers from mutation of components of the pathway and from activating growth factor receptors, including RON and MET. The resulting accumulation of cytoplasmic and nuclear beta-catenin interacts with the Tcf/LEF transcription factors to induce target genes. The IkappaB kinase complex (IKK) that phosphorylates IkappaB contains IKKalpha, IKKbeta, and IKKgamma. Here we show that the cyclin D1 gene functions as a point of convergence between the Wnt/beta-catenin and IkappaB pathways in mitogenic signaling. Mitogenic induction of G(1)-S phase progression and cyclin D1 expression was PI3K dependent, and cyclin D1(-/-) cells showed reduced PI3K-dependent S-phase entry. PI3K-dependent induction of cyclin D1 was blocked by inhibitors of PI3K/Akt/IkappaB/IKKalpha or beta-catenin signaling. A single Tcf site in the cyclin D1 promoter was required for induction by PI3K or IKKalpha. In IKKalpha(-/-) cells, mitogen-induced DNA synthesis, and expression of Tcf-responsive genes was reduced. Reintroduction of IKKalpha restored normal mitogen induction of cyclin D1 through a Tcf site. In IKKalpha(-/-) cells, beta-catenin phosphorylation was decreased and purified IKKalpha was sufficient for phosphorylation of beta-catenin through its N-terminus in vitro. Because IKKalpha but not IKKbeta induced cyclin D1 expression through Tcf activity, these studies indicate that the relative levels of IKKalpha and IKKbeta may alter their substrate and signaling specificities to regulate mitogen-induced DNA synthesis through distinct mechanisms.
Collapse
Affiliation(s)
- Chris Albanese
- The Albert Einstein Cancer Center, Division of Hormone-Dependent Tumor Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
380
|
Moriuchi A, Ido A, Nagata Y, Nagata K, Uto H, Hasuike S, Hori T, Hirono S, Hayashi K, Tsubouchi H. A CRE and the region occupied by a protein induced by growth factors contribute to up-regulation of cyclin D1 expression in hepatocytes. Biochem Biophys Res Commun 2003; 300:415-21. [PMID: 12504100 DOI: 10.1016/s0006-291x(02)02867-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induction of cyclin D1 expression is a critical feature of growth factor-induced cell proliferation in hepatocytes. To clarify the mechanisms regulating cyclin D1 gene expression, we isolated the rat cyclin D1 gene and analyzed the transcriptional regulatory elements in rat hepatoma cells and primary cultured rat hepatocytes. Two transcriptional regulatory regions were analyzed. One was mapped to a cAMP-responsive element (CRE) at position -41bp and was occupied by a CRE-binding protein (CREB), resulting in cyclin D1 expression. Another (CD1E0.7), located at -753bp, revealed high homology with binding sites for the Ets family, the hepatocyte nuclear factor-3beta, or the nuclear factor of activated T cells. However, CD1E0.7 did not interact with these nuclear factors and specific interaction with a protein extracted from growth factor-treated rat hepatocytes in primary cultures. These results indicate that CREB binds to the CRE and mediates activation of the cyclin D1 promoter, and suggest that CD1E0.7 may be possibly occupied by a protein induced by growth factors in hepatocytes.
Collapse
Affiliation(s)
- Akihiro Moriuchi
- Department of Internal Medicine II, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Wulf G, Ryo A, Liou YC, Lu KP. The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res 2003; 5:76-82. [PMID: 12631385 PMCID: PMC154150 DOI: 10.1186/bcr572] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 12/11/2002] [Accepted: 01/03/2003] [Indexed: 11/10/2022] Open
Abstract
The prolyl isomerase Pin1 specifically isomerizes certain phosphorylated Ser/Thr-Pro bonds and thereby regulates various cellular processes. Pin1 is a target of several oncogenic pathways and is overexpressed in human breast cancer. Its overexpression can lead to upregulation of cyclin D1 and transformation of breast epithelial cells in collaboration with the oncogenic pathways. In contrast, inhibition of Pin1 can suppress the transformation of breast epithelial cells. In addition, Pin1 knockout in mice prevents massive proliferation of breast epithelial cells during pregnancy. Pin1 plays a pivotal role in breast development and may be a promising new anticancer target.
Collapse
Affiliation(s)
- Gerburg Wulf
- Cancer Biology Program, Division of Hematology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Akihide Ryo
- Cancer Biology Program, Division of Hematology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yih-Cherng Liou
- Cancer Biology Program, Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kun Ping Lu
- Cancer Biology Program, Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
382
|
Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 2002; 21:8852-61. [PMID: 12483537 DOI: 10.1038/sj.onc.1206048] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 09/10/2002] [Accepted: 09/16/2002] [Indexed: 01/19/2023]
Abstract
Cyclin D1 is a proto-oncogene that is overexpressed in many cancers including breast and prostate. It plays a role in cell proliferation through activation of cyclin-dependent kinases. Curcumin, a diferuloylmethane, is a chemopreventive agent known to inhibit the proliferation of several breast and prostate cancer cell lines. It is possible that the effect of curcumin is mediated through the regulation of cyclin D1. In the present report we show that inhibition of the proliferation of various prostate, breast and squamous cell carcinoma cell lines by curcumin correlated with the down-regulation of the expression of cyclin D1 protein. In comparison, the down-regulation by curcumin of cyclin D2 and cyclin D3 was found only in selective cell lines. The suppression of cyclin D1 by curcumin led to inhibition of CDK4-mediated phosphorylation of retinoblastoma protein. We found that curcumin-induced down-regulation of cyclin D1 was inhibited by lactacystin, an inhibitor of 26S proteosome, suggesting that curcumin represses cyclin D1 expression by promoting proteolysis. We found that curcumin also down-regulated mRNA expression, thus suggesting transcriptional regulation. Curcumin also inhibited the activity of the cyclin D1 promoter-dependent reporter gene expression. Overall our results suggest that curcumin down-regulates cyclin D1 expression through activation of both transcriptional and post-transcriptional mechanisms, and this may contribute to the antiproliferative effects of curcumin against various cell types.
Collapse
Affiliation(s)
- Asok Mukhopadhyay
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, Texas, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
383
|
D'Abaco GM, Hooper S, Paterson H, Marshall CJ. Loss of Rb overrides the requirement for ERK activity for cell proliferation. J Cell Sci 2002; 115:4607-16. [PMID: 12415005 DOI: 10.1242/jcs.00161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras GTPase is a critical transducer of mitogenic signals ultimately leading to inactivation of the retinoblastoma (Rb) protein, but the molecular basis underlying Ras-dependent control of cell cycle kinetics remains to a great extent unknown. In an effort to further elucidate the role of Ras activation in cell cycle control, we have studied the role of the downstream Mek-ERK pathway in facilitating exit from the quiescent G0 state and passage through the G1/S transition. We have adopted a genetic approach in combination with U0126, an inhibitor of Mek activation to study the role of Mek in cell cycle progression. Here we report that whereas wild-type (Wt) mouse embryo fibroblasts (MEFs) depend on ERK activation to enter the cell cycle, Rb-deficient (Rb(-/-)) MEFs have a reduced requirement for ERK signalling. Indeed in the presence of U0126 we found that Rb-null MEFs can exit G0, make the G1/S transition and proliferate. Analysis of Rb-deficient tumour cell lines also revealed a reduced requirement for ERK signalling in asynchronous growth. We discuss the molecular mechanism that may underlie this escape from MAP kinase signalling.
Collapse
Affiliation(s)
- Giovanna M D'Abaco
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
384
|
Lin HM, Pestell RG, Raz A, Kim HRC. Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene 2002; 21:8001-10. [PMID: 12439750 DOI: 10.1038/sj.onc.1205820] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 06/14/2002] [Accepted: 06/28/2002] [Indexed: 12/30/2022]
Abstract
Galectin-3 is a multifunctional carbohydrate-binding protein found in the nucleus, cytoplasm and the extracellular milieu. Nuclear galectin-3 expression is associated with cell proliferation, and its role in pre-mRNA splicing has been suggested. In this report, we investigated the role of galectin-3 on cyclin D(1) gene expression, a critical inducer of the cell cycle and a potential oncogene in human cancer. We found that galectin-3 induces cyclin D(1) promoter activity in human breast epithelial cells independent of cell adhesion through multiple cis-elements, including the SP1 and CRE sites. We present evidence that galectin-3 induction of the cyclin D(1) promoter may result from enhancement/stabilization of nuclear protein-DNA complex formation at the CRE site of the cyclin D(1) promoter. We also show that galectin-3 co-operates with, but does not depend on, pRb for cyclin D(1) promoter activation. The present study reveals a growth promoting activity of galectin-3 through cyclin D(1) induction, and suggests a novel function of nuclear galectin-3 in the regulation of gene transcription.
Collapse
Affiliation(s)
- Huei-Min Lin
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, MI 48201, USA
| | | | | | | |
Collapse
|
385
|
Paratore C, Brugnoli G, Lee HY, Suter U, Sommer L. The role of the Ets domain transcription factor Erm in modulating differentiation of neural crest stem cells. Dev Biol 2002; 250:168-80. [PMID: 12297104 DOI: 10.1006/dbio.2002.0795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Erm is a member of the Pea3 subfamily of Ets domain proteins that is expressed in multipotent neural crest cells, peripheral neurons, and satellite glia. A specific role of Erm during development has not yet been established. We addressed the function of Erm in neural crest development by forced expression of a dominant-negative form of Erm. Functional inhibition of Erm in neural crest cells interfered with neuronal fate decision, while progenitor survival and proliferation were not affected. In contrast, blocking Erm function in neural crest stem cells did not influence their ability to adopt a glial fate, independent of the glia-inducing signal. Furthermore, glial survival and differentiation were normal. However, the proliferation rate was drastically diminished in glial cells, suggesting a glia-specific role of Erm in controlling cell cycle progression. Thus, in contrast to other members of the Pea3 subfamily that are involved in late steps of neurogenesis, Erm appears to be required in early neural crest development. Moreover, our data point to multiple, lineage-specific roles of Erm in neural crest stem cells and their derivatives, suggesting that Erm function is dependent on the cell intrinsic and extrinsic context.
Collapse
Affiliation(s)
- Christian Paratore
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
386
|
Melkoumian ZK, Martirosyan AR, Strobl JS. Myc protein is differentially sensitive to quinidine in tumor versus immortalized breast epithelial cell lines. Int J Cancer 2002; 102:60-9. [PMID: 12353235 DOI: 10.1002/ijc.10648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quinidine regulates growth and differentiation in human breast tumor cells, but the immortalized mammary epithelial MCF-10A cell line is insensitive to quinidine. We found that a morphologically similar differentiation response was evoked by quinidine and c-myc antisense oligonucleotides in MCF-7 cells and this prompted us to investigate the actions of quinidine on c-myc gene expression. Myc protein levels were suppressed in human breast tumor cell lines, but not in MCF-10A cells, an observation that supports the hypothesis that suppression of c-myc gene expression is involved in the preferential growth and differentiation response of breast tumor cells to quinidine. Quinidine reduced c-myc mRNA levels in MCF-7 cells. Acute induction of c-myc mRNA by estradiol, as well as the c-myc response to sub-cultivation in fresh serum and H-ras driven elevations in c-myc mRNA were depressed by 50-60% in the presence of quinidine. Quinidine decreased c-myc promoter activity in MCF-7 cells in a transient reporter gene assay and a 168 bp region of human c-myc promoter (-100 to +68 with respect to the P1 promoter) was sufficient to confer responsiveness to quinidine. Quinidine is a potential lead compound for developing pharmacological agents to regulate Myc. In addition, the study of quinidine-regulated events is a promising approach to unravel differentiation control pathways that become disrupted in breast cancer.
Collapse
Affiliation(s)
- Zaroui K Melkoumian
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
387
|
Santana C, Ortega E, García-Carrancá A. Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner. Mutat Res 2002; 508:49-58. [PMID: 12379461 DOI: 10.1016/s0027-5107(02)00172-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of p53 in controlling the G2 checkpoint, in part by repressing cyclin B1 transcription, has been well established. However, accumulating evidence indicate that p53-independent pathways may also play an important role. Ras proteins have been shown to regulate G1/S, but also G2/M transitions. Since cyclin B1/cdc2 complex is the key regulator controlling the G2/M checkpoint, we were interested in addressing if the H-ras oncogene could regulate cyclin B1 expression in a p53-independent manner. We observed an induction of cyclin B1 promoter activity in the presence of H-ras oncogene in SW480 cells, which contain null p53 alleles. In addition, HeLa cells known to express the HPV18 E6 oncogene that inactivates p53, exhibited increased levels of cyclin B1 mRNA and protein when transfected with the H-ras oncogene. Higher expression of cyclin B1 correlated with higher levels of cyclin B1/cdc2 complex and kinase activity that interestingly, showed no inhibition at G2/M after DNA damage. These data suggest that H-ras participates in pathways that regulate cyclin B1 expression and therefore controls the G2/M checkpoint in a p53-independent manner.
Collapse
Affiliation(s)
- Carla Santana
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | |
Collapse
|
388
|
Guo Y, Stacey DW, Hitomi M. Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene 2002; 21:7545-56. [PMID: 12386817 DOI: 10.1038/sj.onc.1205907] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 07/11/2002] [Accepted: 07/18/2002] [Indexed: 01/25/2023]
Abstract
During continuous proliferation, cyclin D1 protein is induced to high levels in a Ras-dependent manner as cells progress from S phase to G2 phase. To understand the mechanism of the Ras-dependent cyclin D1 induction, cyclin D1 mRNA levels were determined by quantitative image analysis following fluorescent in situ hybridization. Although a slight increase in mRNA expression levels was detected during the S/G2 transition, this increase could not explain the more robust induction of cyclin D1 protein levels. This suggested the involvement of post-transcriptional regulation as a mechanism of cyclin D1 protein induction. To directly test this hypothesis, the cyclin D1 transcription rate was determined by run-on assays. The transcription rate of cyclin D1 stayed steady during the synchronous transition from S the G2 phase. We further demonstrated that cyclin D1 protein levels could increase during G2 phase in the absence of new mRNA synthesis. alpha-Amanitin, a transcription inhibitor, did not suppress cyclin D1 protein elevation as the cells progressed from S to G2 phase, even though the inhibitor was able to completely block cyclin D1 protein induction during reentry into the cell cycle from quiescence. The half life of cyclin D1 protein was shortest during S phase indicating that a change in protein stability might play a role in post-translational induction of cyclin D1 in G2 phase. These data indicate a fundamental difference in the regulation of cyclin D1 production during continuous cell cycle progression and re-initiation of the cell cycle.
Collapse
Affiliation(s)
- Yang Guo
- The Department of Molecular Biology, NC2-150 The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| | | | | |
Collapse
|
389
|
Ostrovsky O, Bengal E, Aronheim A. Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J Biol Chem 2002; 277:40043-54. [PMID: 12171923 DOI: 10.1074/jbc.m205494200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle cell differentiation is a result of a complex interplay between transcription factors and cell signaling proteins. Proliferating myoblasts must exit from the cell cycle prior to their differentiation. The muscle regulatory factor and myocyte enhancer factor-2 protein families play a major role in promoting muscle cell differentiation. Conversely, members of the AP-1 family of transcription factors that promote cell proliferation antagonize muscle cell differentiation. Here we tested the role of the c-Jun dimerization protein JDP2 in muscle cell differentiation. Endogenous expression of JDP2 was induced in both C2C12 myoblast and rhabdomyosarcoma (RD) cells programmed to differentiate. Ectopic expression of JDP2 in C2C12 myoblast cells inhibited cell cycle progression and induced spontaneous muscle cell differentiation. Likewise, constitutive expression of JDP2 in RD cells reduced their tumorigenic characteristics and restored their ability to differentiate into myotubes. JDP2 potentiated and synergized with 12-O-tetradecanoylphorbol-13-acetate to induce muscle cell differentiation of RD cells. In addition, JDP2 induced p38 activity in both C2 and RD cells programmed to differentiate. This is the first demonstration of a single transcription factor that rescues the myogenic program in an otherwise non-differentiating cancer cell line. Our results indicate that the JDP2 protein plays a major role in promoting skeletal muscle differentiation via its involvement in cell cycle arrest and activation of the myogenic program.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Molecular Genetics, B. Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
390
|
Abstract
Cell cycle activation is coordinated by D-type cyclins which are rate limiting and essential for the progression through the G1 phase of the cell cycle. D-type cyclins bind to and activate the cyclin-dependent kinases Cdk4 and Cdk6, which in turn phosphorylate their downstream target, the retinoblastoma protein Rb. Upon Rb phosphorylation, the E2F transcription factors activate the expression of S-phase genes and thereby induce cell cycle progression. The raise of cyclin D levels in early G1 also serves to titrate Kip/Cip proteins away from cyclinE/Cdk2 complexes, further accelerating cell cycle progression. Therefore, cyclin D plays essential roles in the response to mitogens, transmitting their signal to the Rb/E2F pathway. Surprisingly, cyclin D1-deficient animals are viable and have developmental abnormalities limited to restricted tissues, such as retina, the nervous system and breast epithelium. This observation, combined with several other studies, have raised the possibility that cyclin D1 may have new activities that are unrelated to its function as a cdk regulatory subunit and as regulator of Rb. Effectively, cyclin D has been reported to have transcriptional functions since it interacts with several transcription factors to regulate their activity. Most often, this effect does not rely on the kinase function of Cdk4, indicating that this function is probably independent of cell cycle progression. Further extending its role in gene regulation, cyclin D interacts with histone acetylases such as P/CAF or NcoA/SRC1a but also with components of the transcriptional machinery such as TAF(II)250. Therefore, these studies suggest that the functions of cyclin D might need to be reevaluated. They have established a new cdk-independent role of cyclin D1 as a transcriptional regulator, indicating that cyclin D1 can act via two different mechanisms, as a cdk activator it regulates cell cycle progression and as a transcriptional regulator, it modulates the activity of transcription factors.
Collapse
Affiliation(s)
- Olivier Coqueret
- INSERM U564, 4 rue Larrey, CHU Angers, 49033 Angers Cedex, France.
| |
Collapse
|
391
|
Muñoz CM, van Meeteren LA, Post JA, Verkleij AJ, Verrips CT, Boonstra J. Hydrogen peroxide inhibits cell cycle progression by inhibition of the spreading of mitotic CHO cells. Free Radic Biol Med 2002; 33:1061-72. [PMID: 12374617 DOI: 10.1016/s0891-5849(02)00988-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) induces a number of events, which are also induced by mitogens. Since the progression through the G1 phase of the cell cycle is dependent on mitogen stimulation, we were interested to study the effect of H(2)O(2) on the cell cycle progression. This study demonstrates that H(2)O(2) inhibits DNA synthesis in a dose-dependent manner when given to cells in mitosis or at different points in the G1 phase. Interestingly, mitotic cells treated immediately after synchronization are significantly more sensitive to H(2)O(2) than cells treated in the G1, and this is due to the inhibition of the cell spreading after mitosis by H(2)O(2). H(2)O(2) reversibly inhibits focal adhesion activation and stress fiber formation of mitotic cells, but not those of G1 cells. The phosphorylation of MAPK is also reversibly inhibited in both mitotic and G1 cells. Taken together, H(2)O(2) is probably responsible for the inhibition of the expression of cyclin D1 and cyclin A observed in cells in both phases. In conclusion, H(2)O(2) inhibits cell cycle progression by inhibition of the spreading of mitotic CHO cells. This may play a role in pathological processes in which H(2)O(2) is generated.
Collapse
Affiliation(s)
- C Martínez Muñoz
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
392
|
Burdon D, Patel R, Challiss RAJ, Blank JL. Growth inhibition by the muscarinic M(3) acetylcholine receptor: evidence for p21(Cip1/Waf1) involvement in G(1) arrest. Biochem J 2002; 367:549-59. [PMID: 12126481 PMCID: PMC1222904 DOI: 10.1042/bj20020446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Revised: 07/04/2002] [Accepted: 07/18/2002] [Indexed: 12/30/2022]
Abstract
We have assessed the growth response of Chinese-hamster ovary (CHO) cells to activation of recombinantly expressed G-protein-coupled muscarinic M(2) or M(3) acetylcholine receptors (AChRs). We show that activation of these receptors leads to divergent growth responses: M(2) AChR activation causes an increase in DNA synthesis, whereas M(3) AChR activation causes a dramatic decrease in DNA synthesis. We have characterized the M(3) AChR-mediated growth inhibition and show that it involves a G(1) phase cell-cycle arrest. Further analysis of this arrest indicates that it involves an increase in expression of the cyclin-dependent kinase (CDK) inhibitor, p21(Cip1/Waf1) (where Cip1 is CDK-interacting protein 1 and Waf1 is wild-type p53-associated fragment 1), in response to M(3) AChR activation. This increase in protein expression leads to an increase in p21(Cip1/Waf1) association with CDK2, a decrease in CDK2 activity and an accumulation of hypophosphorylated retinoblastoma protein. The increased p21(Cip1/Waf1) expression is due, at least in part, to an increase in p21(Cip1/Waf1) mRNA, and receptor-mediated changes in phosphorylation of c-Jun provide a mechanism to account for this p21(Cip1/Waf1) transcriptional regulation. Evaluation of the extracellular signal-regulated protein kinase and c-Jun N-terminal kinase activities has shown striking differences in the profiles of activation of these mitogen-activated protein kinases by the M(2) and M(3) AChRs, and their potential involvement in mediating growth arrest by the M(3) AChR is discussed.
Collapse
Affiliation(s)
- Drew Burdon
- Department of Cell Physiology and Pharmacology, University of Leicester School of Medicine, Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, U.K
| | | | | | | |
Collapse
|
393
|
Hulit J, Lee RJ, Russell RG, Pestell RG. ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochem Pharmacol 2002; 64:827-36. [PMID: 12213576 DOI: 10.1016/s0006-2952(02)01145-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neu (c-erbB-2, HER2) proto-oncogene encodes a receptor tyrosine kinase that is a member of an important growth factor receptor family which includes the epidermal growth factor receptor (EGFR, ErbB1), ErbB3 and ErbB4. The neu is found over-expressed in 20-30% of human breast tumors. The c-erbB-2 is sufficient for the induction of mammary tumorigenesis in transgenic mice and the pathology of these mammary tumors strongly resembles human breast cancer. Murine transgenic models engineered to recapitulate human breast cancer provide an excellent and straightforward approach to dissect the molecular mechanisms governing the onset and progression of this disease. The molecular mechanisms by which ErbB-2 transforms cells involves direct effects on components of the cell-cycle regulatory apparatus. Recent studies have demonstrated a key role for components of the cell-cycle, in particular cyclin D1 and p27Kip1 (p27) in the onset and progression of ErbB-2-induced murine mammary tumorigenesis. Such studies have provided further impetus to therapeutics targeting these cell-cycle proteins.
Collapse
Affiliation(s)
- James Hulit
- The Albert Einstein Comprehensive Cancer Center, Division of Hormone-Dependent Tumor Biology, Department of Medicine, Chanin 302, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
394
|
Abstract
Pluripotent mouse embryonic stem (ES) cells can be expanded in large numbers in vitro owing to a process of symmetrical self-renewal. Self-renewal entails proliferation with a concomitant suppression of differentiation. Here we describe how the cytokine leukaemia inhibitory factor (LIF) sustains self-renewal through activation of the transcription factor STAT3, and how two other signals - extracellular-signal-related kinase (ERK) and phosphatidylinositol-3-OH kinase (PI3K) - can influence differentiation and propagation, respectively. We relate these observations to the unusual cell-cycle properties of ES cells and speculate on the role of the cell cycle in maintaining pluripotency.
Collapse
Affiliation(s)
- Tom Burdon
- Department of Gene Expression and Development, Roslin Institute, Midlothian, EH25 9PS, Roslin, UK
| | | | | |
Collapse
|
395
|
Beier F, LuValle P. The cyclin D1 and cyclin A genes are targets of activated PTH/PTHrP receptors in Jansen's metaphyseal chondrodysplasia. Mol Endocrinol 2002; 16:2163-73. [PMID: 12198252 DOI: 10.1210/me.2001-0103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Jansen's metaphyseal chondrodysplasia (JMC) is an autosomal dominant disorder characterized by short-limbed dwarfism, delayed ossification, and hypercalcemia. Activating mutations in the PTH/PTHrP receptor have been identified as the molecular cause of this disorder. Although these mutations have been shown to increase cAMP accumulation, little is known about possible target genes of the downstream signaling pathways that may contribute to the pathogenesis of the disease. Here we demonstrate that JMC mutations of the PTH/PTHrP receptor induce activation of the cyclin D1 and cyclin A promoters in primary mouse chondrocytes and rat chondrosarcoma cells. Induction of cyclin D1 expression is required for stimulation of E2F-dependent transcription by mutant receptors. Activation of the cyclin D1 and cyclin A promoters requires a functional cAMP response element in both genes. Inhibition of protein kinase A or the transcription factor cAMP response element binding protein blocks the stimulation of both promoters by mutant receptors, whereas inhibition of activating transcription factor 2, c-Fos, or c-Jun has only minor effects. In summary, our data suggest that stimulation of cell cycle gene expression and cell cycle progression by mutant PTH/PTHrP receptors contribute to the pathogenesis of JMC.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins
- Chondrocytes
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclin A/genetics
- Cyclin D1/genetics
- DNA-Binding Proteins
- E2F Transcription Factors
- Exostoses, Multiple Hereditary/genetics
- Exostoses, Multiple Hereditary/metabolism
- Gene Expression Regulation
- Humans
- Mice
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Rats
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, Parathyroid Hormone/genetics
- Receptors, Parathyroid Hormone/metabolism
- Response Elements/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Frank Beier
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | |
Collapse
|
396
|
Pruitt K, Pruitt WM, Bilter GK, Westwick JK, Der CJ. Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation. J Biol Chem 2002; 277:31808-17. [PMID: 12082106 DOI: 10.1074/jbc.m203964200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK.
Collapse
Affiliation(s)
- Kevin Pruitt
- University of North Carolina, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
397
|
Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 2002; 21:5515-28. [PMID: 12165850 DOI: 10.1038/sj.onc.1205728] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2002] [Revised: 04/25/2002] [Accepted: 06/07/2002] [Indexed: 12/21/2022]
Abstract
Mouse embryonic stem (ES) cells are known to express D-type cyclins at very low levels and these levels increase dramatically during in vitro and in vivo differentiation. Here, we investigate some of the signalling pathways regulating expression of cyclin D1 and progression to S phase, the Ras/Extracellular signal-regulated protein kinase (ERK) pathway and the phosphatidylinositol 3-kinase (PI3-kinase) pathway. We demonstrate that ERK phosphorylation is fully dispensable for the regulation of cyclin D1 level and for the progression from G1 to S phase in ES cells. By contrast, PI3-kinase activity is required for both. Differentiation induced by retinoic acid results in the gain of ERK-dependent control of cyclin D1 expression and of S phase progression. Differentiation is also paralleled by an increase in PI3-kinase activity. This leads (a) to an increase in the p70 S6 kinase-dependent regulation of the steady-state level of cyclin D1, and (b) to a concomitant decrease in the GSK3beta-dependent rate of cyclin D1 degradation. Altogether, these multiple pathways account for the dramatic increase in the level of cyclin D1 protein which parallels ES cell differentiation. Our studies suggest that PI3-kinase is an important regulator of the ES cell cycle and that its activity is not regulated by mitogen stimulation.
Collapse
Affiliation(s)
- Ludmila Jirmanova
- Laboratoire de Biologie Moléculaire et Cellulaire, CNRS UMR 5665, INRA LA913, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
398
|
Page K, Li J, Corbit KC, Rumilla KM, Soh JW, Weinstein IB, Albanese C, Pestell RG, Rosner MR, Hershenson MB. Regulation of airway smooth muscle cyclin D1 transcription by protein kinase C-delta. Am J Respir Cell Mol Biol 2002; 27:204-13. [PMID: 12151312 DOI: 10.1165/ajrcmb.27.2.20010016oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The precise mechanism by which protein kinase C-delta (PKCdelta) inhibits cell cycle progression is not known. We investigated the regulation of cyclin D1 transcription by PKCdelta in primary bovine airway smooth muscle cells. Overexpression of the active catalytic subunit of PKCdelta attenuated platelet-derived growth factor (PDGF)-mediated transcription from the cyclin D1 promoter, whereas overexpression of a dominant-negative PKCdelta increased promoter activity. A PKCdelta-specific pseudosubstrate increased cyclin D1 protein abundance. To determine the transcriptional mechanism by which PKCdelta negatively regulates cyclin D1 expression, we transiently transfected cells with cDNAs encoding cyclin D1 promoter 5' deletions and site mutations in the context of a -66 promoter fragment. We found that the -57 to -52 CRE/ATF2 site functions as a basal level and PDGF enhancer, whereas the -39 to -30 nuclear factor-kappaB site functions as a basal level suppressor. Further, PDGF and PKCdelta responsiveness of the cyclin D1 promoter was maintained following 5' deletion to the Ets-containing -22 minimal promoter. Finally, using electrophoretic mobility gel shift and reporter assays, we determined that PKCdelta inhibits CRE/ATF2 binding and transactivation, activates nuclear factor-kappaB binding and transactivation, and attenuates Ets transactivation. These data suggest that PKCdelta attenuates cyclin D1 promoter activity via the regulation of three distinct cis-acting regulatory elements.
Collapse
Affiliation(s)
- Kristen Page
- Department of Pediatrics and the Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
|
400
|
Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 2002; 22:5281-95. [PMID: 12101225 PMCID: PMC133940 DOI: 10.1128/mcb.22.15.5281-5295.2002] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncogenes Neu/HER2/ErbB2 and Ras can induce mammary tumorigenesis via upregulation of cyclin D1. One major regulatory mechanism in these oncogenic signaling pathways is phosphorylation of serines or threonines preceding proline (pSer/Thr-Pro). Interestingly, the pSer/Thr-Pro motifs in proteins exist in two completely distinct cis and trans conformations, whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. By isomerizing pSer/Thr-Pro bonds, Pin1 can regulate the conformation and function of certain phosphorylated proteins. We have previously shown that Pin1 is overexpressed in breast tumors and positively regulates cyclin D1 by transcriptional activation and posttranslational stabilization. Moreover, in Pin1 knockout mice, mammary epithelial cells fail to undergo massive proliferation during pregnancy, as is the case in cyclin D1 null mice. These results indicate that Pin1 is upregulated in breast cancer and may be involved in mammary tumors. However, the mechanism of Pin1 overexpression in cancer and its significance in cell transformation remain largely unknown. Here we demonstrate that PIN1 expression is mediated by the transcription factor E2F and enhanced by c-Neu and Ha-Ras via E2F. Furthermore, overexpression of Pin1 not only confers transforming properties on mammary epithelial cells but also enhances the transformed phenotypes of Neu/Ras-transformed mammary epithelial cells. In contrast, inhibition of Pin1 suppresses Neu- and Ras-induced transformed phenotypes, which can be fully rescued by overexpression of a constitutively active cyclin D1 mutant that is refractory to the Pin1 inhibition. Thus, Pin1 is an E2F target gene that is essential for the Neu/Ras-induced transformation of mammary epithelial cells through activation of cyclin D1.
Collapse
Affiliation(s)
- Akihide Ryo
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|