351
|
|
352
|
Bartosch B, Bukh J, Meunier JC, Granier C, Engle RE, Blackwelder WC, Emerson SU, Cosset FL, Purcell RH. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci U S A 2003; 100:14199-204. [PMID: 14617769 PMCID: PMC283569 DOI: 10.1073/pnas.2335981100] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our understanding of the humoral immune response to hepatitis C virus (HCV) is limited because the virus can be studied only in humans and chimpanzees and because previously described neutralization assays have not been robust or simple to perform. Nevertheless, epidemiologic and laboratory studies suggested that neutralizing Ab to HCV might be important in preventing infection. We have recently described a neutralization assay based on the neutralization of pseudotyped murine retrovirus constructs bearing HCV envelope glycoproteins on their surface. We have applied the assay to well characterized clinical samples from HCV-infected patients and chimpanzees, confirmed the existence of neutralizing Ab to HCV, and validated most previously reported neutralizations of the virus. We did not find neutralizing anti-HCV in resolving infections but did find relatively high titers (>1:320) of such Ab in chronic infections. Neutralizing Ab was directed not only to epitope(s) in the hypervariable region of the E2 envelope protein but also to one or more epitopes elsewhere in the envelope of the virus. Neutralizing Ab was broadly reactive and could neutralize pseudotype particles bearing the envelope glycoproteins of two different subgenotypes (1a and 1b). The ability to assay neutralizing anti-HCV should permit an assessment of the prospects for successful Ab-mediated passive and active immunoprophylaxis against hepatitis C.
Collapse
Affiliation(s)
- Birke Bartosch
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Institut National de la Santé et de la Recherche Médicale U412, IFR 128, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Khromykh AA, Kondratieva N, Sgro JY, Palmenberg A, Westaway EG. Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 2003; 77:10623-9. [PMID: 12970446 PMCID: PMC228497 DOI: 10.1128/jvi.77.19.10623-10629.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA.
Collapse
Affiliation(s)
- Alexander A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Clinical Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
354
|
Sen A, Steele R, Ghosh AK, Basu A, Ray R, Ray RB. Inhibition of hepatitis C virus protein expression by RNA interference. Virus Res 2003; 96:27-35. [PMID: 12951263 DOI: 10.1016/s0168-1702(03)00170-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis C virus (HCV) is a serious human pathogen and an estimated 170 million people are infected worldwide. Current therapeutic regimens have shown limited efficacy against selected genotypes of the virus. The phenomenon of RNA interference can be used to selectively block homologous genes post-transcriptionally, and has revolutionized approaches to study gene function. In this report, we have demonstrated that small interfering RNAs (siRNAs) targeted against NS5A of HCV genotype 1a specifically inhibit NS5A RNA and protein expression in a human hepatoma (HepG2) cell line. Expression of endogenous alpha-actin and the ds-RNA activated serine/threonine kinase-PKR were unaltered, demonstrating that the inhibitory effect observed from siRNA was specific to the HCV NS5A protein. We next examined whether siRNA directed against NS5A could inhibit core protein expression, the first gene product synthesized in virus infected cells due to its localization at the 5' end of the HCV polyprotein. For this purpose, a full-length cDNA clone from HCV (H77, genotype 1a) was used, and results indicated that the introduction of NS5A targeted siRNA resulted in an inhibition of NS5A and core protein expression. Moreover, we observed that this siRNA effectively inhibited NS5A mediated activation of the IL-8 promoter. Taken together, our results demonstrated that siRNA was effective in inhibiting HCV protein expression, and may have therapeutic potential to limit HCV replication in chronically infected patients.
Collapse
Affiliation(s)
- Adrish Sen
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
355
|
Abstract
The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly benefit from in vitro systems for the identification and the study of resistant variants. We report the use of HCV subgenomic replicons to isolate and characterize mutants resistant to a protease inhibitor. Taking advantage of the replicons' ability to transduce resistance to neomycin, we selected replicons with decreased sensitivity to the inhibitor by culturing the host cells in the presence of the inhibitor and neomycin. The selected replicons replicated to the same extent as those in parental cells. Sequence analysis followed by transfection of replicons containing isolated mutations revealed that resistance was mediated by amino acid substitutions in the protease. These results were confirmed by in vitro experiments with mutant enzymes and by modeling the inhibitor in the three-dimensional structure of the protease.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory for Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
356
|
Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J Virol 2003; 77:10131-8. [PMID: 12941925 PMCID: PMC224611 DOI: 10.1128/jvi.77.18.10131-10138.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the absence of a hepatitis C virus (HCV) culture system, the use of a Semliki Forest virus replicon expressing genes encoding HCV structural proteins that assemble into HCV-like particles provides an opportunity to study HCV morphogenesis. Using this system, we showed that the HCV core protein constitutes the budding apparatus of the virus and that its targeting to the endoplasmic reticulum by means of the signal sequence of E1 protein is essential for budding. In addition, the aspartic acid at position 111 in the HCV core protein sequence was found to be crucial for virus assembly, demonstrating the usefulness of this system for mapping amino acids critical to HCV morphogenesis.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- Laboratoire de Virologie, Faculté de Médecine et Centre Hospitalier Universitaire, 2 bis Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Aizaki H, Nagamori S, Matsuda M, Kawakami H, Hashimoto O, Ishiko H, Kawada M, Matsuura T, Hasumura S, Matsuura Y, Suzuki T, Miyamura T. Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor. Virology 2003; 314:16-25. [PMID: 14517056 DOI: 10.1016/s0042-6822(03)00383-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lack of efficient culture systems for hepatitis C virus (HCV) has been a major obstacle in HCV research. Human liver cells grown in a three-dimensional radial-flow bioreactor were successfully infected following inoculation with plasma from an HCV carrier. Subsequent detection of increased HCV RNA suggested viral replication. Furthermore, transfection of HCV RNA transcribed from full-length cDNA also resulted in the production and release of HCV virions into supernatant. Infectivity was shown by successful secondary passage to a new culture. Introduction of mutations in RNA helicase and polymerase regions of HCV cDNA abolished virus replication, indicating that reverse genetics of this system is possible. The ability to replicate and detect the extracellular release of HCV might provide clues with regard to the persistent nature of HCV infection. It will also accelerate research into the pathogenicity of HCV, as well as the development of prophylactic agents and new therapy.
Collapse
Affiliation(s)
- Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Martin A, Bodola F, Sangar DV, Goettge K, Popov V, Rijnbrand R, Lanford RE, Lemon SM. Chronic hepatitis associated with GB virus B persistence in a tamarin after intrahepatic inoculation of synthetic viral RNA. Proc Natl Acad Sci U S A 2003; 100:9962-7. [PMID: 12907703 PMCID: PMC187902 DOI: 10.1073/pnas.1731505100] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Progress in understanding the pathogenesis of hepatitis C virus (HCV) has been slowed by the absence of tractable small animal models. Whereas GB virus B (GBV-B, an unclassified flavivirus) shares a phylogenetic relationship and several biologic attributes with HCV, including hepatotropism, it is not known to cause persistent infection, a hallmark of HCV. Here, we document persistent GBV-B infection in one of two healthy tamarins (Saguinus oedipus) inoculated intrahepatically with infectious synthetic RNA. High-titer viremia (108 to 109 genome equivalents per ml) and transiently elevated serum alanine transaminase activities were present from weeks 4 to 12 postinoculation in both animals. However, whereas GBV-B was eliminated from one animal by 20 weeks, the second animal remained viremic (103 to 107 genome equivalents per ml) for >2 years, with alanine transaminase levels becoming elevated again before spontaneous resolution of the infection. A liver biopsy taken late in the course of infection demonstrated hepatitis with periportal mononuclear infiltrates, hepatocellular microvesicular changes, cytoplasmic lipid droplets, and disordered mitochondrial ultrastructure, findings remarkably similar to chronic hepatitis C. GBV-B-infected hepatocytes contained numerous small vesicular membranous structures resembling those associated with expression of HCV nonstructural proteins, and sequencing of GBV-B RNA demonstrated a rate of molecular evolution comparable to that of HCV. We conclude that GBV-B is capable of establishing persistent infections in healthy tamarins, a feature that substantially enhances its value as a model for HCV. Mitochondrial structural changes and altered lipid metabolism leading to steatosis are conserved features of the pathogenesis of chronic hepatitis caused by these genetically distinct flaviviruses.
Collapse
MESH Headings
- Animals
- Chronic Disease
- Disease Models, Animal
- Flaviviridae Infections/etiology
- Flaviviridae Infections/pathology
- Flaviviridae Infections/virology
- GB virus B/genetics
- GB virus B/pathogenicity
- Genome, Viral
- Hepacivirus/genetics
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/etiology
- Hepatitis, Viral, Animal/etiology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Liver/pathology
- Molecular Sequence Data
- Mutation
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- Saguinus/virology
- Time Factors
Collapse
Affiliation(s)
- Annette Martin
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Abstract
Hepatitis C virus (HCV) uses complex and unique mechanisms to prevent, evade or subvert innate and adaptive immune responses and to establish persistent infection and chronic hepatitis. Recently developed experimental systems have significantly facilitated the analysis of HCV replication, virus-host interaction and pathogenesis of chronic hepatitis and have provided new insights into the mechanisms of HCV clearance and persistence.
Collapse
Affiliation(s)
- Vito Racanelli
- Liver Diseases Section, NIDDK, National Institutes of Health, 10 Center Drive, Room 9B16, Bethesda, MD 20892, USA
| | | |
Collapse
|
360
|
Imbert I, Dimitrova M, Kien F, Kieny MP, Schuster C. Hepatitis C virus IRES efficiency is unaffected by the genomic RNA 3'NTR even in the presence of viral structural or non-structural proteins. J Gen Virol 2003; 84:1549-1557. [PMID: 12771425 DOI: 10.1099/vir.0.18907-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) translation is mediated by an IRES structure. Instead of a poly(A) tail, the 3' end of the genome contains a tripartite 3'NTR composed of a non-conserved region, a polypyrimidine tract and a highly conserved stretch of 98 nt, termed the 3'X region. Using a set of bicistronic recombinant DNA constructs expressing two reporter genes separated by the HCV IRES, it was determined whether the HCV 3'NTR sequence, in the presence or absence of HCV proteins, played a role in the efficiency of HCV IRES-dependent translation ex vivo. Bicistronic expression cassettes were transfected into hepatic and non-hepatic cell lines. These results show that neither the entire 3'NTR nor the 3'X sequence alters IRES-dependent translation efficiency, whatever the cell line tested. A potential effect of the 3'NTR on IRES-dependent translation in the presence of HCV proteins was investigated further. Neither non-structural nor structural HCV proteins had any effect on the efficiency of IRES in this system. In addition, in order to mimic HCV genome organization, monocistronic expression cassettes containing the IRES and a Core-DsRed fusion gene were constructed with or without the 3'NTR. In this context, no effect of the 3'NTR on IRES translation efficiency was observed, even in the presence of HCV proteins. These data demonstrate that HCV translation is not modulated by the viral genomic 3'NTR sequence, even in the presence of HCV structural or non-structural proteins.
Collapse
Affiliation(s)
- Isabelle Imbert
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Maria Dimitrova
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - François Kien
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Marie Paule Kieny
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Catherine Schuster
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
361
|
Bergqvist A, Sundström S, Dimberg LY, Gylfe E, Masucci MG. The hepatitis C virus core protein modulates T cell responses by inducing spontaneous and altering T-cell receptor-triggered Ca2+ oscillations. J Biol Chem 2003; 278:18877-83. [PMID: 12639962 DOI: 10.1074/jbc.m300185200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alterations of cytokine responses are thought to favor the establishment of persistent hepatitis C virus (HCV) infection, enhancing the risk of liver cirrhosis and hepatocellular carcinoma. Expression of the HCV core (C) protein modulates transcription of the IL-2 promoter in T lymphocytes by activating the nuclear factor of activated T lymphocyte (NFAT) pathway. Here we report on the effect of HCV C on Ca2+ signaling, which is essential for activation of NFAT. Expression of HCV C correlated with increased levels of cytosolic Ca2+ and spontaneous Ca2+ oscillations in transfected Jurkat cells. Triggering of the T-cell receptor induced a prolonged Ca2+ response characterized by vigorous high frequent oscillations in a high proportion of the responding cells. This was associated with decreased sizes and accelerated emptying of the intracellular calcium stores. The effect of HCV C on calcium mobilization was not dependent on phospholipase C-gamma 1 (PLC-gamma) activity or increased inositol 1,4,5-trisphosphate (IP3) production and did not require functional IP3 receptors, suggesting that insertion of the viral protein in the endoplasmic reticulum membrane may be sufficient to promote Ca2+ leakage with dramatic downstream consequences on the magnitude and duration of the response. Our data suggest that expression of HCV C in infected T lymphocytes may contribute to the establishment of persistent infections by inducing Ca2+ oscillations that regulate both the efficacy and information content of Ca2+ signals and are ultimately responsible for induction of gene expression and functional differentiation.
Collapse
Affiliation(s)
- Anders Bergqvist
- Microbiology and Tumor Biology Centre, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
362
|
Grobler JA, Markel EJ, Fay JF, Graham DJ, Simcoe AL, Ludmerer SW, Murray EM, Migliaccio G, Flores OA. Identification of a key determinant of hepatitis C virus cell culture adaptation in domain II of NS3 helicase. J Biol Chem 2003; 278:16741-6. [PMID: 12615931 DOI: 10.1074/jbc.m212602200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient replication of hepatitis C virus (HCV) replicons in cell culture is associated with specific sequences not generally observed in vivo. These cell culture adaptive mutations dramatically increase the frequency with which replication is established in vitro. However, replicons derived from HCV isolates that have been shown to replicate in chimpanzees do not replicate in cell culture even when these adaptive mutations are introduced. To better understand this apparent paradox, we performed a gain-of-function screen to identify sequences that could confer cell culture replication competence to replicons derived from chimpanzee infectious HCV isolates. We found that residue 470 in domain II of the NS3 helicase is a critical determinant in cell culture adaptation. Substitutions in residue 470 when combined with the NS5A-S232I adaptive mutation are both necessary and sufficient to confer cell culture replication to otherwise inactive replicons, including those derived from genotype 1b HCV-BK and genotype 1a HCV-H77 isolates. The specific substitution at residue 470 required for replication is context-dependent, with R470M and P470L being optimal for the activity of HCV-BK and HCV-H77 replicons, respectively. Together these data indicate that mutations in the NS3 helicase domain II act in concert with previously identified adaptive mutations and predict that introduction of compatible residues at these positions can confer cell culture replication activity to diverse HCV isolates.
Collapse
Affiliation(s)
- Jay A Grobler
- Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Dimitrova M, Imbert I, Kieny MP, Schuster C. Protein-protein interactions between hepatitis C virus nonstructural proteins. J Virol 2003; 77:5401-14. [PMID: 12692242 PMCID: PMC153952 DOI: 10.1128/jvi.77.9.5401-5414.2003] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 02/04/2003] [Indexed: 12/23/2022] Open
Abstract
Replication of the hepatitis C virus (HCV) genome has been proposed to take place close to the membrane of the endoplasmic reticulum in membrane-associated replicase complexes, as is the case with several other plus-strand RNA viruses, such as poliovirus and flaviviruses. The most obvious benefits of this property are the possibility of coupling functions residing in different polypeptidic chains and the sequestration of viral proteins and nucleic acids in a distinct cytoplasmic compartment with high local concentrations of viral components. Indeed, HCV nonstructural (NS) proteins were clearly colocalized in association with membranes derived from the endoplasmic reticulum. This observation, together with the demonstration of the existence of several physical interactions between HCV NS proteins, supports the idea of assembly of a highly ordered multisubunit protein complex(es) probably involved in the replication of the viral genome. The objective of this study, therefore, was to examine all potential interactions between HCV NS proteins which could result in the formation of a replication complex(es). We identified several interacting viral partners by using a glutathione S-transferase pull-down assay, by in vitro and ex vivo coimmunoprecipitation experiments in adenovirus-infected Huh-7 cells allowing the expression of HCV NS proteins, and, finally, by using the yeast two-hybrid system. In addition, by confocal laser scanning microscopy, NS proteins were clearly shown to colocalize when expressed together in Huh-7 cells. We have been able to demonstrate the existence of a complex network of interactions implicating all six NS proteins. Our observations confirm previously described associations and identify several novel homo- and heterodimerizations.
Collapse
Affiliation(s)
- Maria Dimitrova
- INSERM UMR_U544, Institut de Virologie, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
364
|
Bocharov G, Klenerman P, Ehl S. Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology. J Theor Biol 2003; 221:349-78. [PMID: 12642113 DOI: 10.1006/jtbi.2003.3180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we develop a mathematical model for analysis of the compartmental aspects and immunopathology of lymphocytic choriomeningitis virus (LCMV) infection in mice. We used sets of original and published data on systemic (extrasplenic) virus distribution to estimate the parameters of virus growth and elimination for spleen and other anatomical compartments, such as the liver, kidney, thymus and lung as well as transfer rates between blood and the above organs. A mathematical model quantitatively integrating the virus distribution kinetics in the host, the specific cytotoxic T lymphocyte (CTL) response in spleen and the re-circulation of effector CTL between spleen, blood and liver is advanced to describe the CTL-mediated immunopathology (hepatitis) in mice infected with LCMV. For intravenous and "peripheral" routes of infection we examine the severity of the liver disease, as a function of the virus dose and the host's immune status characterized by the numbers of precursor and/or cytolytic effector CTL. The model is used to predict the efficacy of protection against virus persistence and disease in a localized viral infection as a function of the composition of CTL population. The modelling analysis suggests quantitative demands to CTL memory for maximal protection against a wide range of doses of infection with a primarily peripheral site of virus replication without the risk of favoring immunopathology. It specifies objectives for CTL vaccination to ensure virus elimination with minimal immunopathology vs. vaccination for disease.
Collapse
Affiliation(s)
- Gennady Bocharov
- Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
365
|
Matsui M, Moriya O, Akatsuka T. Enhanced induction of hepatitis C virus-specific cytotoxic T lymphocytes and protective efficacy in mice by DNA vaccination followed by adenovirus boosting in combination with the interleukin-12 expression plasmid. Vaccine 2003; 21:1629-39. [PMID: 12639484 DOI: 10.1016/s0264-410x(02)00704-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We evaluated the prime-boost immunization consisting of hepatitis C virus (HCV)-core expression plasmid (pCEP4-core) and replication-defective adenovirus expressing HCV-core (Adex1SR3ST) for core-specific CTL induction in mice. Compared to a single booster, double boosters after priming enhance CTL induction. The prime-double boosts immunization involving pCEP4-core priming followed by pCEP4-core and Adex1SR3ST boostings (pC/pC/aC) can induce core-specific CTLs as well as other combinations: pC/aC/aC; aC/pC/pC; aC/aC/aC, whereas pC/pC/pC does not induce CTLs. Furthermore, co-administration of interleukin-12 (IL-12) expression plasmid leads to the highly efficient CTL induction and clearance of HCV-core expressing vaccinia virus challenged. Thus, the prime-double boosts immunization together with IL-12 may be promising for HCV vaccine.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, 350-0495, Saitama, Japan.
| | | | | |
Collapse
|
366
|
Nascimbeni M, Mizukoshi E, Bosmann M, Major ME, Mihalik K, Rice CM, Feinstone SM, Rehermann B. Kinetics of CD4+ and CD8+ memory T-cell responses during hepatitis C virus rechallenge of previously recovered chimpanzees. J Virol 2003; 77:4781-93. [PMID: 12663785 PMCID: PMC152131 DOI: 10.1128/jvi.77.8.4781-4793.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunological correlates of hepatitis C virus (HCV)-specific immunity are not well understood. Antibodies to HCV structural proteins do not appear to play a key role in clearance of the virus and do not persist after recovery. Here, we studied the kinetics of the cellular immune responses of three HCV-recovered chimpanzees during rechallenge with increasing doses of homologous HCV. Although HCV envelope antibodies remained undetectable throughout the rechallenge, all animals mounted rapid HCV-specific T-cell responses. The pattern of the cellular immune response in blood and liver correlated with the virological outcome. The animal that most rapidly cleared circulating HCV as determined by nested reverse transcription-PCR (RT-PCR) displayed the most vigorous and sustained response of gamma interferon (IFN-gamma)-producing and proliferating CD4(+) T cells in the blood. Vigorous CD4(+) T-cell proliferation during viremia was followed by an increased frequency and a phenotypic and functional change of the tetramer(+) CD8(+) T-cell population. The second animal cleared HCV initially with strong peripheral and intrahepatic CD4(+) T-cell responses but experienced low-level HCV recrudescence 12 weeks later, when HCV-specific T cells became undetectable. The third animal maintained minute amounts of circulating HCV, detectable only by nested RT-PCR, in the face of a weak IFN-gamma(+) T-cell response. Collectively, the results suggest protective rather than sterilizing immunity after recovery from hepatitis C. The rate of HCV clearance following reexposure depends on the cellular immune response, the quality and quantity of which may vary among chimpanzees that recovered from HCV infection.
Collapse
Affiliation(s)
- Michelina Nascimbeni
- Liver Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003; 77:4070-80. [PMID: 12634366 PMCID: PMC150620 DOI: 10.1128/jvi.77.7.4070-4080.2003] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DC-SIGN and DC-SIGNR are two closely related membrane-associated C-type lectins that bind human immunodeficiency virus (HIV) envelope glycoprotein with high affinity. Binding of HIV to cells expressing DC-SIGN or DC-SIGNR can enhance the efficiency of infection of cells coexpressing the specific HIV receptors. DC-SIGN is expressed on some dendritic cells, while DC-SIGNR is localized to certain endothelial cell populations, including hepatic sinusoidal endothelial cells. We found that soluble versions of the hepatitis C virus (HCV) E2 glycoprotein and retrovirus pseudotypes expressing chimeric forms of both HCV E1 and E2 glycoproteins bound efficiently to DC-SIGN and DC-SIGNR expressed on cell lines and primary human endothelial cells but not to other C-type lectins tested. Soluble E2 bound to immature and mature human monocyte-derived dendritic cells (MDDCs). Binding of E2 to immature MDDCs was dependent on DC-SIGN interactions, while binding to mature MDDCs was partly independent of DC-SIGN, suggesting that other cell surface molecules may mediate HCV glycoprotein interactions. HCV interactions with DC-SIGN and DC-SIGNR may contribute to the establishment or persistence of infection both by the capture and delivery of virus to the liver and by modulating dendritic cell function.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Han W, Hu Z, Jiang X, Wasserman ZR, Decicco CP. Glycine alpha-ketoamides as HCV NS3 protease inhibitors. Bioorg Med Chem Lett 2003; 13:1111-4. [PMID: 12643923 DOI: 10.1016/s0960-894x(03)00031-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a tetrapeptide-based alpha-ketoamide template, various amines and amino acids were incorporated to explore the prime side of the HCV NS3 protease catalytic site. Glycine carboxylic acid was found to be the most effective prime group. Further optimization yielded an inhibitor with IC(50) of 0.060 microM.
Collapse
Affiliation(s)
- Wei Han
- Department of Discovery Chemistry, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, PO Box 5400, Princeton, NJ 08543, USA.
| | | | | | | | | |
Collapse
|
369
|
Abstract
Hepatitis C virus (HCV) genotype 1 (subtypes 1a and 1b) is responsible for the majority of treatment-resistant liver disease worldwide. Thus far, efficient HCV RNA replication has been observed only for subgenomic and full-length RNAs derived from genotype 1b isolates. Here, we report the establishment of efficient RNA replication systems for genotype 1a strain H77. Replication of subgenomic and full-length H77 1a RNAs required the highly permissive Huh-7.5 hepatoma subline and adaptive amino acid substitutions in both NS3 and NS5A. Replication could be detected by RNA quantification, fluorescence-activated cell sorting, and metabolic labeling of HCV-specific proteins. Replication efficiencies were similar for subgenomic and full-length RNAs and were most efficient for HCV RNAs lacking heterologous RNA elements. Interestingly, both subtype 1a and 1b NS3 adaptive mutations are surface exposed and present on only one face of the NS3 structure. The cell culture-adapted subtype 1a replicons should be useful for basic replication studies and for antiviral development. These results are also encouraging for the development of adapted replicons for the remaining HCV genotypes.
Collapse
|
370
|
Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S, Sarangi F, Harris-Brandts M, Beaulieu S, Richardson CD. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci U S A 2003; 100:2783-8. [PMID: 12594341 PMCID: PMC151418 DOI: 10.1073/pnas.252758799] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects >270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both a messenger RNA and replication template, making it an attractive target for the study of RNA interference. Double-stranded small interfering RNA (siRNA) molecules designed to target the HCV genome were introduced through electroporation into a human hepatoma cell line (Huh-7) that contained an HCV subgenomic replicon. Two siRNAs dramatically reduced virus-specific protein expression and RNA synthesis to levels that were 90% less than those seen in cells treated with negative control siRNAs. These same siRNAs protected naive Huh-7 cells from challenge with HCV replicon RNA. Treatment of cells with synthetic siRNA was effective >72 h, but the duration of RNA interference could be extended beyond 3 weeks through stable expression of complementary strands of the interfering RNA by using a bicistronic expression vector. These results suggest that a gene-therapeutic approach with siRNA could ultimately be used to treat HCV.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Blotting, Northern
- Blotting, Western
- Cell Line
- Electrophoresis, Polyacrylamide Gel
- Electroporation
- Genetic Vectors
- Hepatitis C/metabolism
- Humans
- Liver/cytology
- Models, Genetic
- Mutation
- Plasmids/metabolism
- RNA/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/physiology
- RNA, Viral/genetics
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Joyce A Wilson
- Ontario Cancer Institute, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Blight KJ, McKeating JA, Marcotrigiano J, Rice CM. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 2003; 77:3181-90. [PMID: 12584342 PMCID: PMC149761 DOI: 10.1128/jvi.77.5.3181-3190.2003] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 1 (subtypes 1a and 1b) is responsible for the majority of treatment-resistant liver disease worldwide. Thus far, efficient HCV RNA replication has been observed only for subgenomic and full-length RNAs derived from genotype 1b isolates. Here, we report the establishment of efficient RNA replication systems for genotype 1a strain H77. Replication of subgenomic and full-length H77 1a RNAs required the highly permissive Huh-7.5 hepatoma subline and adaptive amino acid substitutions in both NS3 and NS5A. Replication could be detected by RNA quantification, fluorescence-activated cell sorting, and metabolic labeling of HCV-specific proteins. Replication efficiencies were similar for subgenomic and full-length RNAs and were most efficient for HCV RNAs lacking heterologous RNA elements. Interestingly, both subtype 1a and 1b NS3 adaptive mutations are surface exposed and present on only one face of the NS3 structure. The cell culture-adapted subtype 1a replicons should be useful for basic replication studies and for antiviral development. These results are also encouraging for the development of adapted replicons for the remaining HCV genotypes.
Collapse
Affiliation(s)
- Keril J Blight
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
372
|
De Francesco R, Tomei L, Altamura S, Summa V, Migliaccio G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res 2003; 58:1-16. [PMID: 12719002 DOI: 10.1016/s0166-3542(03)00028-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The treatment of chronic disease caused by the hepatitis C virus (HCV) is an unmet clinical need, since current therapy is only partially effective and limited by undesirable side effects. The viral serine protease and the RNA-dependent RNA polymerase are the best-studied targets for the development of novel therapeutic agents. These enzymes have been extensively characterized at the biochemical and structural level and thus used to set up screening assays for the identification of selective inhibitors. These efforts lead to the discovery of several classes of compounds with potential antiviral activity. The hepatitis C virus does not replicate in the laboratory. The formidable challenge posed by the difficulty of developing cell-based assays and preclinical animal systems has been partially overcome with several alternative approaches. The development of new assays permitted the optimization of enzyme inhibitors leading eventually to molecules with the desired drug-like properties, the most advanced of which are being considered for clinical trials.
Collapse
Affiliation(s)
- Raffaele De Francesco
- Instituto di Ricerche di Biologia Molecolare, P. Angeletti, 00040 Pomezia-Rome, Italy.
| | | | | | | | | |
Collapse
|
373
|
Kien F, Abraham JD, Schuster C, Kieny MP. Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. J Gen Virol 2003; 84:561-566. [PMID: 12604806 DOI: 10.1099/vir.0.18927-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatitis C virus (HCV) E1 and E2 glycoproteins assemble intracellularly to form a non-covalently linked heterodimer, which is retained in the endoplasmic reticulum (ER). To study the subcellular localization of E2 in live cells, the enhanced green fluorescent protein (EGFP) was fused to the N terminus of E2. Using fluorescence and confocal microscopy, we have confirmed that E2 is located in the ER, where budding of HCV virions is thought to occur. Immunoprecipitation experiments using a conformation-sensitive antibody and a GST pull-down assay showed that fusion of EGFP to E2 interferes neither with its heterodimeric assembly with E1, nor with proper folding of the ectodomain, nor with the capacity of E2 to interact with human CD81, indicating that the EGFP-E2 fusion protein is functional. As a tool to study binding of E2 to target cells, we also described the expression of an EGFP-E2 fusion protein at the cell surface.
Collapse
Affiliation(s)
- François Kien
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Jean-Daniel Abraham
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Catherine Schuster
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Marie Paule Kieny
- INSERM U544, Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
374
|
O'Farrell D, Trowbridge R, Rowlands D, Jäger J. Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol 2003; 326:1025-35. [PMID: 12589751 DOI: 10.1016/s0022-2836(02)01439-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several crystal structures of the hepatitis C virus NS5B protein (genotype-1b, strain J4) complexed with metal ions, single-stranded RNA or nucleoside-triphosphates have been determined. These complexes illustrate how conserved amino acid side-chains, together with essential structural features within the active site, control nucleotide binding and likely mediate de-novo initiation. The incoming nucleotide interacts with several basic residues from an extension on the NS5B fingers domain, a beta-hairpin from the NS5B thumb domain and the C-terminal arm. The modular, bi-partite fingers domain carries a long binding groove which guides the template towards the catalytic site. The apo-polymerase structure provides unprecedented insights into potential non-nucleoside inhibitor binding sites located between palm and thumb near motif E, which is unique to RNA polymerases and reverse transcriptases.
Collapse
Affiliation(s)
- Damien O'Farrell
- Astbury Centre of Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
375
|
Dumas E, Staedel C, Colombat M, Reigadas S, Chabas S, Astier-Gin T, Cahour A, Litvak S, Ventura M. A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5' UTR. Nucleic Acids Res 2003; 31:1275-81. [PMID: 12582247 PMCID: PMC150218 DOI: 10.1093/nar/gkg199] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hepatitis C virus (HCV) 5' untranslated region (UTR) has been extensively studied with regard to its internal ribosomal entry site (IRES) activity. In this work we present results suggesting the existence of a strong promoter activity carried by the DNA sequence corresponding to the HCV 5' UTR. This activity was not detected when the HCV 5' UTR sequence was replaced by HCV 3' UTR or poliovirus 5' UTR sequences. These results were further confirmed by using bicistronic constructions. We demonstrated the presence of an mRNA initiated in this 5' UTR sequence and located the initiation site by the 5' RACE method at nucleotide 67. Furthermore, northern experiments and flow cytometry analysis showed the unambiguous activity of such a promoter sequence in stably transfected cells. Our results strongly suggest that the data obtained using bicistronic DNA constructs carrying the HCV 5' UTR should be analyzed not only at the translational but also at the transcriptional level.
Collapse
Affiliation(s)
- Estelle Dumas
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, Institut Fédératif de Recherches 66 Pathologies Infectieuses, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Ghosh AK, Majumder M, Steele R, Ray R, Ray RB. Modulation of interferon expression by hepatitis C virus NS5A protein and human homeodomain protein PTX1. Virology 2003; 306:51-9. [PMID: 12620797 DOI: 10.1016/s0042-6822(02)00029-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatitis C virus (HCV) NS5A protein transcriptionally modulates a number of cellular genes. Since there is no evidence of binding of NS5A protein to DNA, it is likely to exert its activity in concert with cellular factor(s). In this study, we have identified a specific interaction of HCV NS5A with homeodomain protein PTX1 of human origin by a yeast two-hybrid interacting cloning system. The authenticity of this interaction was verified by mammalian two-hybrid assay, in vivo co-immunoprecipitation analysis, and from a colocalization study. Recently, murine PTX1 (mPTX1) has been shown to repress virus-induced murine interferonA4 promoter activity. Interferon-à alone or together with ribavirin is the only available therapy for HCV-infected patients. Therefore, we examined whether coexpression of NS5A and human PTX1 (hPTX1) proteins modulate human IFN-à promoter activity. An in vitro reporter assay by transfection of HepG2 cells with NS5A suggested an activation of IFN-à promoter to approximately 20-fold upon Newcastle disease virus (NDV) infection. Under similar experimental conditions, hPTX1-activated IFN-à prompter to approximately sevenfold, unlike mPTX1. However, cotransfection of NS5A and hPTX1 displayed a lower interferon promoter activity, probably for physical association between these two proteins. Subsequent study demonstrated that activation of IFN promoter by NS5A is associated with an increased expression of IRF-3. Further analysis revealed that ectopic expression of NS5A in HepG2 cells enhances endogenous IFN-à secretion and MxA expression upon induction with NDV. However, exogenous expression of hPTX1 did not significantly alter NS5A-mediated function in the stable transfectants. Taken together, these results suggested that the level of endogenous hPTX1 is not sufficient to block the function of NS5A for augmentation of virus-mediated IFN activity in HepG2 cells.
Collapse
Affiliation(s)
- Asish K Ghosh
- Department of Pathology, Saint Louis Unoversity, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
377
|
Abstract
In recent years, significant advances have been achieved both in the development of animal- and tissue-culture models for HCV. Among all the new systems, the small animal model based on transgenic mice with chimeric mouse-human livers and the replicon system will presumably have the most profound impact on future HCV research. Yet, in spite of this progress, much more work will be required to optimizse both systems. In case of the mouse model, breeding homozygous Alb-uPa animals is difficult because of the toxicity of the transgene, and the transplantation of primary human hepatocytes into mice a few days after birth is technically challenging. These are immunodeficient, and, therefore, it will be desirable to furnish them with components of the human immune system in order to expand the applicability of this in vivo model to questions related to pathogenesis. Advances in cryopreservation techniques are urgently needed, moreover, as this would improve the availability of primary hepatocytes and in turn also the accessibility of this small animal model. As regards the replicon system, a number of open questions remain that will hopefully be answered by future research. Why, for instance, has replication in cell culture so far been achieved only with genotype 1b isolates, whereas an isolate with proven infectivity derived from genotype 1a failed to replicate in Huh-7 cells? And why can replicons so far be propagated only in this particular cell line? Is this attributable to the lack of certain inhibitory factors, or the presence of specific activators? What are the mechanisms underlying cell-culture adaptation. and what determines whether a certain Huh-7 cell replicates HCV RNA more efficiently? Finally, the replicon system may also lead the way to the development of systems for efficient virus production in cell culture, and ultimately also a permissive cell line. These developments would at last allow us to model the complete viral life cycle, something researchers have been struggling with ever since the first identification of HCV.
Collapse
Affiliation(s)
- Thomas Pietschmann
- Department of Molecular Virology, University of Heidelberg, 350 Otto-Meyerhof-Zentrum Im Neuenheimer Feld, Heidelberg 69120, Germany
| | | |
Collapse
|
378
|
Thomson M, Nascimbeni M, Havert MB, Major M, Gonzales S, Alter H, Feinstone SM, Murthy KK, Rehermann B, Liang TJ. The clearance of hepatitis C virus infection in chimpanzees may not necessarily correlate with the appearance of acquired immunity. J Virol 2003; 77:862-70. [PMID: 12502802 PMCID: PMC140840 DOI: 10.1128/jvi.77.2.862-870.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 10/01/2002] [Indexed: 12/21/2022] Open
Abstract
Clearance of hepatitis C virus (HCV) infection in humans and chimpanzees is thought to be associated with the induction of strong T-cell responses. We studied four chimpanzees infected with HCV derived from an infectious full-length HCV genotype 1b cDNA. Two of the chimpanzees cleared the infection to undetectable levels for more than 12 months of follow-up; the other two became persistently infected. Detailed analyses of HCV-specific immune responses were performed during the courses of infection in these chimpanzees. Only weak and transient T helper responses were detected during the acute phase in all four chimpanzees. A comparison of the frequency of gamma interferon (IFN-gamma)-producing CD4(+) and CD8(+) T cells in peripheral blood by ELISpot assay did not reveal any correlation between viral clearance and T-cell responses. In addition, analyses of IFN-gamma, IFN-alpha, and interleukin-4 mRNA levels in liver biopsies, presumably indicative of intrahepatic T-cell responses, revealed no distinct pattern in these chimpanzees with respect to infection outcome. The present study suggests that the outcome of HCV infection in chimpanzees is not necessarily attributable to HCV sequence variation and that chimpanzees may recover from HCV infection by mechanisms other than the induction of readily detectable HCV-specific T-cell responses.
Collapse
Affiliation(s)
- Michael Thomson
- Liver Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Bantel H, Schulze-Osthoff K. Apoptosis in hepatitis C virus infection. Cell Death Differ 2003; 10 Suppl 1:S48-58. [PMID: 12655346 DOI: 10.1038/sj.cdd.4401119] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Revised: 06/03/2002] [Accepted: 06/11/2002] [Indexed: 12/11/2022] Open
Abstract
Infection with hepatitis C virus (HCV) is characterized by inflammatory liver damage and a long viral persistence associated with an increased risk of developing hepatocellular carcinoma. Both in liver damage and in oncogenesis a disturbance of apoptosis has been implicated, although the underlying mechanisms in these apparently opposite processes are incompletely understood. HCV-triggered liver injury is mediated mainly by host immune mechanisms and eventually by direct cytopathic effects of HCV. Recent data shows that caspase activation, either triggered by death ligands, other cytokines, granzyme B or HCV proteins, is considerably upregulated in HCV-infected liver. Interestingly, caspase activation appears to correlate closely with the inflammatory response. Data about the role of single HCV proteins, either in cultured cells or transgenic animals models, however, are contradictory, as both pro- and anti-apoptotic effects have been observed. Nevertheless, apoptosis induction upon HCV infection may critically contribute to liver damage, while inhibition of apoptosis may result in HCV persistence and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- H Bantel
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | | |
Collapse
|
380
|
Walker MP, Appleby TC, Zhong W, Lau JYN, Hong Z. Hepatitis C virus therapies: current treatments, targets and future perspectives. Antivir Chem Chemother 2003; 14:1-21. [PMID: 12790512 DOI: 10.1177/095632020301400101] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the cause of an emerging global epidemic of chronic liver disease. Current combination therapies are at best 80% efficacious and are often poorly tolerated. Strategies to improve the therapeutic response include the development of novel interferons, nucleoside analogues with reduced haemolysis compared with ribavirin and inosine 5'-monophosphate dehydrogenase inhibitors. Compounds in preclinical or early clinical trials include small molecules that inhibit virus-specific enzymes (such as the serine proteases, RNA polymerase and helicase) or interfere with translation (including anti-sense molecules, iRNA and ribozymes). Advances in understanding HCV replication, obtaining a sub-genomic replicon and contriving potential small animal models, in addition to solving crystallographic structures for the replication enzymes, have improved prospects for developing novel therapies. This review summarizes current and evolving treatments for chronic hepatitis C infection. In addition, progress in HCV targets and drug discovery tools valuable in the search for novel anti-HCV agents is detailed.
Collapse
|
381
|
Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 2003; 77:546-59. [PMID: 12477859 PMCID: PMC140572 DOI: 10.1128/jvi.77.1.546-559.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We used a baculovirus-based system to prepare structural proteins of hepatitis C virus (HCV) genotype 1a. Binding of this preparation to cultured human hepatic cells was both dose dependent and saturable. This binding was decreased by calcium depletion and was partially prevented by ligands of the asialoglycoprotein receptor (ASGP-R), thyroglobulin, asialothyroglobulin, and antibody against a peptide in the carbohydrate recognition domain of ASGP-R but not preimmune antibody. Uptake by hepatocytes was observed with both radiolabeled and dye-labeled HCV structural proteins. With hepatocytes expressing the hH1 subunit of the ASGP-R fused to green fluorescent protein, we could show by confocal microscopy that dye stain cointernalized with the fusion protein in an area surrounding the nucleus. Internalization was more efficient with a preparation containing p7 than with one that did not. The two preparations bound to transfected 3T3-L1 cells expressing either both (hH1 and hH2) subunits of the ASGP-R (3T3-22Z cells) or both hH1 and a functionally defective variant of hH2 (3T3-24X cells) but not to parental cells. Additionally, uptake of dye-labeled preparation containing p7 was observed with 3T3-22Z cells but not with 3T3-L1 or 3T3-24X cells or with the preparation lacking p7, suggesting that p7 regulates the internalization properties of HCV structural proteins. Our observations suggest that HCV structural proteins bind to and cointernalize with the ASGP-R in cultured human hepatocytes.
Collapse
Affiliation(s)
- Bertrand Saunier
- Edison Biotechnology Institute and College of Osteopathic Medicine, Ohio University, Athens 45701, USA.
| | | | | | | | | | | |
Collapse
|
382
|
Puig M, Mihalik K, Yu MY, Feinstone SM, Major ME. Sensitivity and reproducibility of HCV quantitation in chimpanzee sera using TaqMan real-time PCR assay. J Virol Methods 2002; 105:253-63. [PMID: 12270658 DOI: 10.1016/s0166-0934(02)00119-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The availability of molecular protocols for the detection and quantitation of very low numbers of hepatitis C virus (HCV) particles in biological samples is an issue of interest in both clinical and analytical fields of HCV research. A sensitive and reproducible assay is described for HCV RNA quantitation using the TaqMan PCR fluorogenic real-time detection system to establish the levels of HCV RNA in chimpanzee plasma. Our TaqMan PCR protocol and synthetic full length HCV RNA template show that the threshold of sensitivity for our TaqMan PCR is two copies per reaction. As few as 10 genome copies per reaction could be quantitated maintaining a linear range. The accuracy of the TaqMan PCR test was comparable to commercial bDNA and Amplicor tests. The RNA standards of the laboratory were tested in parallel with a World Health Organization (WHO) International Standard for HCV RNA obtaining ratios of 2.7+/-0.7 RNA copies per HCV international unit (IU). Our method using RNA extracted from chimpanzee samples had an estimated sensitivity of 200 RNA copies/ml of plasma (approximately eight copies/reaction or 74 WHO IU/ml). Serial plasma samples from HCV-infected chimpanzees were analyzed using this methodology to evaluate its applicability, and RNA profiles were observed consistent with the evolution of the pathology in each animal. The present study therefore illustrates the high reproducibility, sensitivity and reliability of our TaqMan methodology, providing a useful method for HCV research to consistently detect and quantify viral RNA throughout a range of concentrations.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Division of Viral Products, CBER, FDA, Building 29A, Room 1D02, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
383
|
Locarnini SA. Mechanisms of drug resistance and novel approaches to therapy for chronic hepatitis C. J Gastroenterol Hepatol 2002; 17 Suppl 3:S351-9. [PMID: 12472963 DOI: 10.1046/j.1440-1746.17.s3.27.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is now the major cause of transfusion-associated and parenterally transmitted viral hepatitis and accounts for a significant proportion of hepatitis cases worldwide. The majority of infections become persistent and approximately 20% of chronically infected individuals develop cirrhosis, which is strongly associated with progression to hepatocellular carcinoma. Molecular biological investigations into the structure and function of HCV and its genes has led to the identification of a number of potential targets for selective antiviral intervention. The present review summarizes current research activity into these novel drug targets and addresses the basis for clinical non-response in the current interferon-alpha-based therapies. Future therapeutic strategies that utilize HCV-specific antiviral agents should prove effective in controlling active viral replication, but the risk of emergence of drug-resistance will need to be addressed due to the quasispecies feature of HCV replication.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia.
| |
Collapse
|
384
|
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
385
|
Ivashkina N, Wölk B, Lohmann V, Bartenschlager R, Blum HE, Penin F, Moradpour D. The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J Virol 2002; 76:13088-93. [PMID: 12438637 PMCID: PMC136709 DOI: 10.1128/jvi.76.24.13088-13093.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) belongs to a class of membrane proteins termed tail-anchored proteins. Here, we show that the HCV RdRp C-terminal membrane insertion sequence traverses the phospholipid bilayer as a transmembrane segment. Moreover, the HCV RdRp was found to be retained in the endoplasmic reticulum (ER) or an ER-derived modified compartment both following transient transfection and in the context of a subgenomic replicon. An absolutely conserved GVG motif was not essential for membrane insertion but possibly provides a docking site for transmembrane protein-protein interactions. These findings have important implications for the functional architecture of the HCV replication complex.
Collapse
Affiliation(s)
- Natalia Ivashkina
- Department of Medicine II, University Hospital, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
386
|
Priestley ES, De Lucca I, Ghavimi B, Erickson-Viitanen S, Decicco CP. P1 Phenethyl peptide boronic acid inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 2002; 12:3199-202. [PMID: 12372533 DOI: 10.1016/s0960-894x(02)00682-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A series of peptide boronic acids containing extended, hydrophobic P1 residues was prepared to probe the shallow, hydrophobic S1 region of HCV NS3 protease. The p-trifluoromethylphenethyl P1 substituent was identified as optimal with respect to inhibitor potency for NS3 and selectivity against elastase and chymotrypsin.
Collapse
Affiliation(s)
- E Scott Priestley
- Bristol-Myers Squibb Pharmaceutical Research Institute, Experimental Station, Wilmington,DE 19880-0500, USA.
| | | | | | | | | |
Collapse
|
387
|
Tan SL, Pause A, Shi Y, Sonenberg N. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 2002; 1:867-81. [PMID: 12415247 DOI: 10.1038/nrd937] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is an emerging global epidemic. The development of effective HCV antiviral therapeutics continues to be a daunting challenge owing to the absence of adequate animal models and tissue-culture systems for analysis and propagation of the virus. Despite these obstacles, inhibitors of the replicative elements of HCV, immune modulators and non-specific hepatoprotective agents are being pursued and exciting progress has been made. Successful therapeutic intervention of HCV will probably require combination approaches and new approaches, including host drug discovery targets.
Collapse
Affiliation(s)
- Seng-Lai Tan
- Infectious Diseases Research, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
388
|
Affiliation(s)
- Xavier Forns
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Villaroel 170, Barcelona 08036, Spain.
| | | | | |
Collapse
|
389
|
Bukh J, Pietschmann T, Lohmann V, Krieger N, Faulk K, Engle RE, Govindarajan S, Shapiro M, St Claire M, Bartenschlager R. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A 2002; 99:14416-21. [PMID: 12391335 PMCID: PMC137898 DOI: 10.1073/pnas.212532699] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of a subgenomic replicon derived from the hepatitis C virus (HCV) strain Con1 enabled the study of viral RNA replication in Huh-7 cells. The level of replication of replicons, as well as full-length Con1 genomes, increased significantly by a combination of two adaptive mutations in NS3 (E1202G and T1280I) and a single mutation in NS5A (S2197P). However, these cell culture-adaptive mutations influenced in vivo infectivity. After intrahepatic transfection of chimpanzees, the wild-type Con1 genome was infectious and produced viral titers similar to those produced by other infectious HCV clones. Repeated independent transfections with RNA transcripts of a Con1 genome containing the three adaptive mutations failed to achieve active HCV infection. Furthermore, although a chimpanzee transfected with RNA transcripts of a Con1 genome with only the NS5A mutation became infected, this mutation was detected only in virus genomes recovered from serum at day 4; viruses recovered at day 7 had a reversion back to the original Con1 sequence. Our study demonstrates that mutations that are adaptive for replication of HCV in cell culture may be highly attenuating in vivo.
Collapse
Affiliation(s)
- Jens Bukh
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A 2002. [PMID: 12391335 DOI: 10.1073/pnas.212532699.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of a subgenomic replicon derived from the hepatitis C virus (HCV) strain Con1 enabled the study of viral RNA replication in Huh-7 cells. The level of replication of replicons, as well as full-length Con1 genomes, increased significantly by a combination of two adaptive mutations in NS3 (E1202G and T1280I) and a single mutation in NS5A (S2197P). However, these cell culture-adaptive mutations influenced in vivo infectivity. After intrahepatic transfection of chimpanzees, the wild-type Con1 genome was infectious and produced viral titers similar to those produced by other infectious HCV clones. Repeated independent transfections with RNA transcripts of a Con1 genome containing the three adaptive mutations failed to achieve active HCV infection. Furthermore, although a chimpanzee transfected with RNA transcripts of a Con1 genome with only the NS5A mutation became infected, this mutation was detected only in virus genomes recovered from serum at day 4; viruses recovered at day 7 had a reversion back to the original Con1 sequence. Our study demonstrates that mutations that are adaptive for replication of HCV in cell culture may be highly attenuating in vivo.
Collapse
|
391
|
Smith RM, Walton CM, Wu CH, Wu GY. Secondary structure and hybridization accessibility of hepatitis C virus 3'-terminal sequences. J Virol 2002; 76:9563-74. [PMID: 12208936 PMCID: PMC136501 DOI: 10.1128/jvi.76.19.9563-9574.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 3'-terminal sequences of hepatitis C virus (HCV) positive- and negative-strand RNAs contribute cis-acting functions essential for viral replication. The secondary structure and protein-binding properties of these highly conserved regions are of interest not only for the further elucidation of HCV molecular biology, but also for the design of antisense therapeutic constructs. The RNA structure of the positive-strand 3' untranslated region has been shown previously to influence binding by various host and viral proteins and is thus thought to promote HCV RNA synthesis and genome stability. Recent studies have attributed analogous functions to the negative-strand 3' terminus. We evaluated the HCV negative-strand secondary structure by enzymatic probing with single-strand-specific RNases and thermodynamic modeling of RNA folding. The accessibility of both 3'-terminal sequences to hybridization by antisense constructs was evaluated by RNase H cleavage mapping in the presence of combinatorial oligodeoxynucleotide libraries. The mapping results facilitated identification of antisense oligodeoxynucleotides and a 10-23 deoxyribozyme active against the positive-strand 3'-X region RNA in vitro.
Collapse
Affiliation(s)
- Robert M Smith
- Division of Gastroenterology-Hepatology, Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
392
|
Moradpour D, Brass V, Gosert R, Wölk B, Blum HE. Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 2002; 8:476-82. [PMID: 12383770 DOI: 10.1016/s1471-4914(02)02395-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic hepatitis C is a leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. Although current treatment options are limited, progress in understanding the molecular virology of hepatitis C has led to the identification of novel antiviral targets. Moreover, in vitro and in vivo model systems have been developed that allow systematic evaluation of new therapeutic strategies. This review details current concepts in molecular virology and emerging therapies for hepatitis C.
Collapse
Affiliation(s)
- Darius Moradpour
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, Germany.
| | | | | | | | | |
Collapse
|
393
|
Triyatni M, Saunier B, Maruvada P, Davis AR, Ulianich L, Heller T, Patel A, Kohn LD, Liang TJ. Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 2002; 76:9335-44. [PMID: 12186916 PMCID: PMC136469 DOI: 10.1128/jvi.76.18.9335-9344.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus-like particles (HCV-LPs) containing the structural proteins of HCV H77 strain (1a genotype) was used as a model for HCV virion to study virus-cell interaction. HCV-LPs showed a buoyant density of 1.17 to 1.22 g/cm(3) in a sucrose gradient and formed double-shelled particles 35 to 49 nm in diameter. Flow cytometry analysis by an indirect method (detection with anti-E2 antibody) and a direct method (use of dye-labeled HCV-LPs) showed that HCV-LPs binds to several human hepatic (primary hepatocytes, HepG2, HuH7, and NKNT-3) and T-cell (Molt-4) lines. HCV-LPs binding to cells occurred in a dose- and calcium-dependent manner and was not mediated by CD81. Scatchard plot analysis suggests the presence of two binding sites for HCV-LPs with high (K(d) approximately 1 microg/ml) and low (K(d) approximately 50 to 60 microg/ml) affinities of binding. Anti-E1 and -E2 antibodies inhibited HCV-LPs binding to cells. While preincubation of HCV-LPs with very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), or high-density lipoprotein (HDL) blocked its binding to cells, preincubation of cells with VLDL, LDL, HDL, or anti-LDL-R antibody did not. Confocal microscopy analysis showed that, after binding to cells, dye-labeled HCV-LPs were internalized into the cytoplasm. This process could be inhibited with anti-E1 or anti-E2 antibodies, suggesting that E1 and E2 proteins mediate HCV-LPs binding and, subsequently, their entry into cells. Altogether, our results indicate that HCV-LPs can be used to further characterize the mechanisms involved in the early steps of HCV infection.
Collapse
Affiliation(s)
- Miriam Triyatni
- Liver Diseases Section, National Institute of Diabetes and DigestiveKidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
394
|
McLauchlan J, Lemberg MK, Hope G, Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 2002; 21:3980-8. [PMID: 12145199 PMCID: PMC126158 DOI: 10.1093/emboj/cdf414] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 06/14/2002] [Accepted: 06/14/2002] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein.
Collapse
Affiliation(s)
- John McLauchlan
- MRC Virology Unit, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK and Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH Hoenggerberg, 8093 Zürich, Switzerland Corresponding author e-mail:
| | - Marius K. Lemberg
- MRC Virology Unit, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK and Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH Hoenggerberg, 8093 Zürich, Switzerland Corresponding author e-mail:
| | - Graham Hope
- MRC Virology Unit, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK and Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH Hoenggerberg, 8093 Zürich, Switzerland Corresponding author e-mail:
| | - Bruno Martoglio
- MRC Virology Unit, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK and Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH Hoenggerberg, 8093 Zürich, Switzerland Corresponding author e-mail:
| |
Collapse
|
395
|
Schuster C, Isel C, Imbert I, Ehresmann C, Marquet R, Kieny MP. Secondary structure of the 3' terminus of hepatitis C virus minus-strand RNA. J Virol 2002; 76:8058-68. [PMID: 12134011 PMCID: PMC155128 DOI: 10.1128/jvi.76.16.8058-8068.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The 3'-terminal ends of both the positive and negative strands of the hepatitis C virus (HCV) RNA, the latter being the replicative intermediate, are most likely the initiation sites for replication by the viral RNA-dependent RNA polymerase, NS5B. The structural features of the very conserved 3' plus [(+)] strand untranslated region [3' (+) UTR] are well established (K. J. Blight and C. M. Rice, J. Virol. 71:7345-7352, 1997). However, little information is available concerning the 3' end of the minus [(-)] strand RNA. In the present work, we used chemical and enzymatic probing to investigate the conformation of that region, which is complementary to the 5' (+) UTR and the first 74 nucleotides of the HCV polyprotein coding sequence. By combining our experimental data with computer predictions, we have derived a secondary-structure model of this region. In our model, the last 220 nucleotides, where initiation of the (+) strand RNA synthesis presumably takes place, fold into five stable stem-loops, forming domain I. Domain I is linked to an overall less stable structure, named domain II, containing the sequences complementary to the pseudoknot of the internal ribosomal entry site in the 5' (+) UTR. Our results show that, even though the (-) strand 3'-terminal region has the antisense sequence of the 5' (+) UTR, it does not fold into its mirror image. Interestingly, comparison of the replication initiation sites on both strands reveals common structural features that may play key functions in the replication process.
Collapse
|
396
|
Major ME, Mihalik K, Puig M, Rehermann B, Nascimbeni M, Rice CM, Feinstone SM. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J Virol 2002; 76:6586-95. [PMID: 12050371 PMCID: PMC136282 DOI: 10.1128/jvi.76.13.6586-6595.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Responses in three chimpanzees were compared following challenge with a clonal hepatitis C virus (HCV) contained in plasma from an animal that had received infectious RNA transcripts. Two of the chimpanzees (Ch1552 and ChX0186) had recovered from a previous infection with HCV, while the third (Ch1605) was a naïve animal. All animals were challenged by reverse titration with decreasing dilutions of plasma and became serum RNA positive following challenge. Ch1605 displayed a typical disease profile for a chimpanzee. We observed increasing levels of serum RNA from week 1 postinoculation (p.i.), reaching a peak of 10(6) copies/ml at week 9 p.i., and alanine aminotransferase (ALT) elevations and seroconversion to HCV antibodies at week 10 p.i. In contrast, both Ch1552 and ChX0186 exhibited much shorter periods of viremia (4 weeks), low serum RNA levels (peak, 10(3) copies/ml), and minimal ALT elevations. A comparison of intrahepatic cytokine levels in Ch1552 and Ch1605 showed greater and earlier gamma interferon (IFN-gamma) and tumor necrosis factor alpha responses in the previously infected animal, responses that were 30-fold greater than baseline responses at week 4 p.i. for IFN-gamma in Ch1552 compared to 12-fold in Ch1605 at week 10 p.i. These data indicate (i) that clonal HCV generated from an infectious RNA transcript will lead to a typical HCV infection in naïve chimpanzees, (ii) that there are memory immune responses in recovered chimpanzees that control HCV infection upon rechallenge, and (iii) that these responses seem to be T-cell mediated, as none of the animals had detectable antibody against the HCV envelope glycoproteins. These observations have encouraging implications for the development of a vaccine for HCV.
Collapse
Affiliation(s)
- Marian E Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
397
|
Buonocore L, Blight KJ, Rice CM, Rose JK. Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 2002; 76:6865-72. [PMID: 12072487 PMCID: PMC136334 DOI: 10.1128/jvi.76.14.6865-6872.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These DeltaG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.
Collapse
Affiliation(s)
- Linda Buonocore
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
398
|
Triyatni M, Vergalla J, Davis AR, Hadlock KG, Foung SKH, Liang TJ. Structural features of envelope proteins on hepatitis C virus-like particles as determined by anti-envelope monoclonal antibodies and CD81 binding. Virology 2002; 298:124-32. [PMID: 12093180 DOI: 10.1006/viro.2002.1463] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The envelope glycoprotein E2 of hepatitis C virus (HCV) is a major component of the viral envelope. Knowledge of its topologic features and antigenic determinants in virions is crucial in understanding the viral binding sites to cellular receptor(s) and the induction of neutralizing antibodies. The lack of a robust cell culture system for virus propagation has hampered the characterization of E2 presented on the virion. Here we report the structural features of hepatitis C virus-like particles (HCV-LPs) of the 1a and 1b genotypes as determined by various mouse and human monoclonal anti-envelope antibodies. Our results show that the E2 protein of HCV-LPs reacts with human monoclonal antibodies recognizing conformational determinants. Monoclonal antibodies (mAbs) specific for the hypervariable region 1 (HVR-1) sequence reacted strongly with HCV-LPs, suggesting that the HVR-1 is exposed on the viral surface. Several mAbs recognized both HCV-LPs with equally high affinity, indicating that the corresponding epitopes [amino acids (aa) 192-217 of E1 and aa 412-423, aa 522-531, and aa 640-653 of E2] are conserved in both genotypes and exposed on the surface of the HCV-LP. The E2 and E1/E2 dimers of 1a bound strongly to the recombinant large extracellular loop (LEL) of CD81 (CD81-LEL) of human and African green monkey, while the HCV-LP of 1a bound weakly to human CD81-LEL. E1/E2 dimers and the HCV-LPs of 1b did not bind CD81-LEL, consistent with the notion that CD81 recognition by E2 is strain-specific and does not correlate with permissiveness of infection. A model of the topology and exposed antigenic determinants of the envelope proteins of HCV is proposed.
Collapse
Affiliation(s)
- Miriam Triyatni
- Liver Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
399
|
Cheney IW, Naim S, Lai VCH, Dempsey S, Bellows D, Walker MP, Shim JH, Horscroft N, Hong Z, Zhong W. Mutations in NS5B polymerase of hepatitis C virus: impacts on in vitro enzymatic activity and viral RNA replication in the subgenomic replicon cell culture. Virology 2002; 297:298-306. [PMID: 12083828 DOI: 10.1006/viro.2002.1461] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) essential for virus replication. Several consensus sequence motifs have been identified in NS5B, some of which have been shown to be critical for its enzymatic activity. A unique beta-hairpin structure located between amino acids 443 and 454 in the thumb subdomain has also been shown to play an important role in ensuring terminal initiation of RNA synthesis in vitro. However, the importance of these sequence and structural elements in viral RNA replication in infected cells has not been established, mainly due to the lack of a reliable cell culture system for HCV. In this study, we investigated the effect of several single amino acid substitutions and beta-hairpin truncations in NS5B on viral RNA replication by using the subgenomic replicon cell culture system. A strong correlation between in vitro polymerase activity and viral RNA replication was observed with most of the substitutions. Interestingly, truncations of the beta-hairpin (by four and eight amino acid residues, respectively), which did not reduce the in vitro enzymatic activity, completely abolished the ability of the replicon RNA to replicate in Huh-7 cells, demonstrating its essential role in viral RNA replication. Furthermore, a conservative substitution in motif D, from an arginine residue (AMTR(345)), which is conserved among all HCV isolates, to a lysine residue, resulted in significant improvements in both transient RNA replication and colony formation efficiencies. This result also correlates with a previous observation that the enzymatic activity of NS5B increased by about 50% when the same NS5B substitution was introduced (V. Lohmann, F. Korner, U. Herian, and R. Bartenschlager, J. Virol. 1997, 71, 8416-8428).
Collapse
Affiliation(s)
- I Wayne Cheney
- Drug Discovery, Ribapharm, Inc., 3300 Hyland Avenue, Costa Mesa, California 92626, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Mizukoshi E, Nascimbeni M, Blaustein JB, Mihalik K, Rice CM, Liang TJ, Feinstone SM, Rehermann B. Molecular and immunological significance of chimpanzee major histocompatibility complex haplotypes for hepatitis C virus immune response and vaccination studies. J Virol 2002; 76:6093-103. [PMID: 12021342 PMCID: PMC136197 DOI: 10.1128/jvi.76.12.6093-6103.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-gamma) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-gamma-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.
Collapse
Affiliation(s)
- Eishiro Mizukoshi
- Liver Diseases Section, NIDDK, National Institutes of Health. Laboratory of Hepatitis Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|