351
|
Perretti M, Leroy X, Bland EJ, Montero-Melendez T. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci 2015; 36:737-755. [PMID: 26478210 DOI: 10.1016/j.tips.2015.07.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
Current medicines for the clinical management of inflammatory diseases act by inhibiting specific enzymes or antagonising specific receptors or blocking their ligands. In the past decade, a new paradigm in our understanding of the inflammatory process has emerged with the appreciation of genetic, molecular, and cellular mechanisms that are engaged to actively resolve inflammation. The 'resolution of acute inflammation' is enabled by counter-regulatory checkpoints to terminate the inflammatory reaction, promoting healing and repair. It may be possible to harness this knowledge for innovative approaches to the treatment of inflammatory pathologies. Here we discuss current translational attempts to develop agonists at proresolving targets as a strategy to rectify chronic inflammatory status. We reason this new approach will lead to the identification of better drugs that will establish a new branch of pharmacology, 'resolution pharmacology'.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Xavier Leroy
- Drug Discovery Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | |
Collapse
|
352
|
Ling WC, Lau YS, Murugan DD, Vanhoutte PM, Mustafa MR. Sodium nitrite causes relaxation of the isolated rat aorta: By stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle. Vascul Pharmacol 2015; 74:87-92. [DOI: 10.1016/j.vph.2015.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
353
|
Pinheiro LC, Amaral JH, Ferreira GC, Portella RL, Ceron CS, Montenegro MF, Toledo JC, Tanus-Santos JE. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension. Free Radic Biol Med 2015; 87:252-62. [PMID: 26159506 DOI: 10.1016/j.freeradbiomed.2015.06.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/11/2015] [Accepted: 06/26/2015] [Indexed: 01/01/2023]
Abstract
Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Marcelo F Montenegro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Jose Carlos Toledo
- Department of Chemistry, Faculty of Philosophy and Sciences of Ribeirao Preto, University of Sao Paulo, 14040-901, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
354
|
Rathod KS, Velmurugan S, Ahluwalia A. A 'green' diet-based approach to cardiovascular health? Is inorganic nitrate the answer? Mol Nutr Food Res 2015; 60:185-202. [PMID: 26256112 DOI: 10.1002/mnfr.201500313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/16/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
Abstract
Ingestion of fruit and vegetables rich in inorganic nitrate (NO(3)(-)) has emerged as an effective method for acutely elevating vascular nitric oxide (NO) levels through formation of an NO(2)(-) intermediate. As such a number of beneficial effects of NO(3)(-) and NO(2)(-) ingestion have been demonstrated including reductions in blood pressure, measures of arterial stiffness and platelet activity. The pathway for NO generation from such dietary interventions involves the activity of facultative oral microflora that facilitate the reduction of inorganic NO(3)(-), ingested in the diet, to inorganic NO(2)(-). This NO(2)(-) then eventually enters the circulation where, through the activity of one or more of a range of distinct NO(2)(-) reductases, it is chemically reduced to NO. This pathway provides an alternative route for in vivo NO generation that could be utilized for therapeutic benefit in those cardiovascular disease states where reduced bioavailable NO is thought to contribute to pathogenesis. Indeed, the cardiovascular benefits of NO(2)(-) and NO(3)(-) are now starting to be translated in patients in several clinical trials. In this review, we discuss recent evidence supporting the potential utility of delivery of NO(3)(-) or NO(2)(-) for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Krishnaraj Sinhji Rathod
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| | - Shanti Velmurugan
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
355
|
Golzarand M, Bahadoran Z, Mirmiran P, Zadeh-Vakili A, Azizi F. Consumption of nitrate-containing vegetables is inversely associated with hypertension in adults: a prospective investigation from the Tehran Lipid and Glucose Study. J Nephrol 2015; 29:377-384. [PMID: 26335410 DOI: 10.1007/s40620-015-0229-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is growing evidence of the potential properties of nitrate-rich foods against development of hypertension (HTN) and vascular disease. In this study, we investigated the association of nitrate-containing vegetables (NCVs) with risk of HTN after 3 years of follow-up. METHODS This prospective study was conducted on 1546 non-hypertensive subjects, aged 20-70 years. Blood pressure was measured at baseline and after 3 years and HTN was defined by the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure criteria. Dietary intake was collected using a validated semi-quantitative food frequency questionnaire (FFQ). NCVs and high-, medium- and low-NCV subcategories were defined, and the odds of HTN after 3 years according to tertiles of NCV and NCV-category intake were estimated by logistic regression and adjusted for potential variables. RESULTS Mean age of participants was 38.0 ± 12.0 years at baseline and 57.0 % were women. Mean dietary intake of energy-adjusted NCV was 298.0 ± 177.3 g/day. After adjustment for total energy intake, fiber, sodium, potassium and processed meat, a significant inverse association was observed between NCV and the risk of HTN in the highest tertile category (odds ratio 0.63, 95 % confidence interval: 0.41-0.98, p for trend = 0.05). There was no significant association of 3 year risk of HTN across tertiles of low nitrate-, medium nitrate- and high-nitrate vegetables. CONCLUSION Higher dietary nitrate intake from vegetables sources may have a protective effect against development of HTN.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran. .,, No. 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 19395-4763, Tehran, Islamic Republic of Iran.
| | - Azita Zadeh-Vakili
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
356
|
McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: From villain to hero in metabolic disease? Mol Nutr Food Res 2015; 60:67-78. [PMID: 26227946 PMCID: PMC4863140 DOI: 10.1002/mnfr.201500153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Ben McNally
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
357
|
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 2015; 14:623-41. [PMID: 26265312 DOI: 10.1038/nrd4623] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a key signalling molecule in the cardiovascular, immune and central nervous systems, and crucial steps in the regulation of NO bioavailability in health and disease are well characterized. Although early approaches to therapeutically modulate NO bioavailability failed in clinical trials, an enhanced understanding of fundamental subcellular signalling has enabled a range of novel therapeutic approaches to be identified. These include the identification of: new pathways for enhancing NO synthase activity; ways to amplify the nitrate-nitrite-NO pathway; novel classes of NO-donating drugs; drugs that limit NO metabolism through effects on reactive oxygen species; and ways to modulate downstream phosphodiesterases and soluble guanylyl cyclases. In this Review, we discuss these latest developments, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Mark T Gladwin
- Vascular Medicine Institute, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pennsylvania 15213, USA
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| |
Collapse
|
358
|
Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ, Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr 2015; 102:368-75. [PMID: 26135348 DOI: 10.3945/ajcn.114.101188] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/22/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dietary nitrate, which is in green leafy vegetables and beetroot, decreases blood pressure through the enterosalivary nitrate-nitrite-nitric oxide pathway in healthy individuals. Whether similar effects would occur in individuals with treated hypertension and, therefore, at increased risk of cardiovascular disease is unclear. OBJECTIVE We assessed whether increased dietary nitrate intake by using beetroot juice for 1 wk lowers blood pressure in treated hypertensive men and women. DESIGN Participants (n = 27) were recruited to a randomized, placebo-controlled, double-blind crossover trial. The effect of 1-wk intake of nitrate-rich beetroot juice was compared with 1-wk intake of nitrate-depleted beetroot juice (placebo). The primary outcome was blood pressure assessed by measuring home blood pressure during the intervention and 24-h ambulatory blood pressure on day 7 of the intervention. Other outcomes included nitrate metabolism assessed by measuring nitrate and nitrite in plasma, saliva, and urine. RESULTS Relative to the placebo, 1-wk intake of nitrate-rich beetroot juice resulted in a 3-fold increase in plasma nitrite and nitrate, a 7-fold increase in salivary nitrite, an 8-fold higher salivary nitrate, and a 4-fold increase in both urinary nitrite and nitrate (P < 0.001). However, no differences in home blood pressure and 24-h ambulatory blood pressure were observed with 1-wk intake of nitrate-rich beetroot juice in comparison with the placebo. CONCLUSION An increase in dietary nitrate intake may not be an effective short-term approach to further lower blood pressure in treated hypertensive subjects.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia;
| | - Alex H Liu
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Sujata Shinde
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Yuben Moodley
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; and
| | - Ian B Puddey
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Richard J Woodman
- Research Centers, School of Medicine, Flinders University, Adelaide, Australia
| | - Jonathan M Hodgson
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| |
Collapse
|
359
|
de Lima Portella R, Lynn Bickta J, Shiva S. Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxid Redox Signal 2015; 23:307-27. [PMID: 26094636 DOI: 10.1089/ars.2015.6260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nitrite is now recognized as an intrinsic signaling molecule that mediates a number of biological processes. One of the most reproducible effects of nitrite is its ability to mediate cytoprotection after ischemia/reperfusion (I/R). This robust phenomenon has been reproduced by a number of investigators in varying animal models focusing on different target organs. Furthermore, nitrite's cytoprotective versatility is highlighted by its ability to mediate delayed preconditioning and remote conditioning in addition to acute protection. RECENT ADVANCES In the last 10 years, significant progress has been made in elucidating the mechanisms underlying nitrite-mediated ischemic tolerance. CRITICAL ISSUES The mitochondrion, which is essential to both the progression of I/R injury and the protection afforded by preconditioning, has emerged as a major subcellular target for nitrite. This review will outline the role of the mitochondrion in I/R injury and preconditioning, review the accumulated preclinical studies demonstrating nitrite-mediated cytoprotection, and finally focus on the known interactions of nitrite with mitochondria and their role in the mechanism of nitrite-mediated ischemic tolerance. FUTURE DIRECTIONS These studies set the stage for current clinical trials testing the efficacy of nitrite to prevent warm and cold I/R injury.
Collapse
Affiliation(s)
- Rafael de Lima Portella
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Janelle Lynn Bickta
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
360
|
Petersen K, Blanch N, Keogh J, Clifton P. Weight Loss, Dietary Intake and Pulse Wave Velocity. Pulse (Basel) 2015; 3:134-40. [PMID: 26587462 DOI: 10.1159/000435792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials.
Collapse
Affiliation(s)
- Kristina Petersen
- Division of Health Sciences, School of Pharmacy and Medical Science, University of South Australia, Adelaide, S.A., Australia
| | - Natalie Blanch
- Division of Health Sciences, School of Pharmacy and Medical Science, University of South Australia, Adelaide, S.A., Australia
| | - Jennifer Keogh
- Division of Health Sciences, School of Pharmacy and Medical Science, University of South Australia, Adelaide, S.A., Australia
| | - Peter Clifton
- Division of Health Sciences, School of Pharmacy and Medical Science, University of South Australia, Adelaide, S.A., Australia
| |
Collapse
|
361
|
Future Treatment of Hypertension: Shifting the Focus from Blood Pressure Lowering to Arterial Stiffness Modulation? Curr Hypertens Rep 2015; 17:67. [DOI: 10.1007/s11906-015-0569-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
362
|
Kobayashi J, Ohtake K, Uchida H. NO-Rich Diet for Lifestyle-Related Diseases. Nutrients 2015; 7:4911-37. [PMID: 26091235 PMCID: PMC4488823 DOI: 10.3390/nu7064911] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Decreased nitric oxide (NO) availability due to obesity and endothelial dysfunction might be causally related to the development of lifestyle-related diseases such as insulin resistance, ischemic heart disease, and hypertension. In such situations, instead of impaired NO synthase (NOS)-dependent NO generation, the entero-salivary nitrate-nitrite-NO pathway might serve as a backup system for NO generation by transmitting NO activities in the various molecular forms including NO and protein S-nitrosothiols. Recently accumulated evidence has demonstrated that dietary intake of fruits and vegetables rich in nitrate/nitrite is an inexpensive and easily-practicable way to prevent insulin resistance and vascular endothelial dysfunction by increasing the NO availability; a NO-rich diet may also prevent other lifestyle-related diseases, including osteoporosis, chronic obstructive pulmonary disease (COPD), and cancer. This review provides an overview of our current knowledge of NO generation through the entero-salivary pathway and discusses its safety and preventive effects on lifestyle-related diseases.
Collapse
Affiliation(s)
- Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| | - Kazuo Ohtake
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| | - Hiroyuki Uchida
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| |
Collapse
|
363
|
Wightman EL, Haskell-Ramsay CF, Thompson KG, Blackwell JR, Winyard PG, Forster J, Jones AM, Kennedy DO. Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Physiol Behav 2015; 149:149-58. [PMID: 26037632 DOI: 10.1016/j.physbeh.2015.05.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023]
Abstract
Nitrate derived from vegetables is consumed as part of a normal diet and is reduced endogenously via nitrite to nitric oxide. It has been shown to improve endothelial function, reduce blood pressure and the oxygen cost of sub-maximal exercise, and increase regional perfusion in the brain. The current study assessed the effects of dietary nitrate on cognitive performance and prefrontal cortex cerebral blood-flow (CBF) parameters in healthy adults. In this randomised, double-blind, placebo-controlled, parallel-groups study, 40 healthy adults received either placebo or 450 ml beetroot juice (~5.5 mmol nitrate). Following a 90 minute drink/absorption period, participants performed a selection of cognitive tasks that activate the frontal cortex for 54 min. Near-Infrared Spectroscopy (NIRS) was used to monitor CBF and hemodynamics, as indexed by concentration changes in oxygenated and deoxygenated-haemoglobin, in the frontal cortex throughout. The bioconversion of nitrate to nitrite was confirmed in plasma by ozone-based chemi-luminescence. Dietary nitrate modulated the hemodynamic response to task performance, with an initial increase in CBF at the start of the task period, followed by consistent reductions during the least demanding of the three tasks utilised. Cognitive performance was improved on the serial 3s subtraction task. These results show that single doses of dietary nitrate can modulate the CBF response to task performance and potentially improve cognitive performance, and suggest one possible mechanism by which vegetable consumption may have beneficial effects on brain function.
Collapse
Affiliation(s)
- Emma L Wightman
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Crystal F Haskell-Ramsay
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Kevin G Thompson
- Sport, Exercise and Wellbeing Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Jamie R Blackwell
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - Paul G Winyard
- Peninsula College of Medicine and Dentistry, St. Luke's Campus, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - Joanne Forster
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Andrew M Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - David O Kennedy
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
364
|
Clodfelter WH, Basu S, Bolden C, Dos Santos PC, King SB, Kim-Shapiro DB. The relationship between plasma and salivary NOx. Nitric Oxide 2015; 47:85-90. [PMID: 25910583 PMCID: PMC4439285 DOI: 10.1016/j.niox.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Several studies have shown that fasting plasma nitrite (NO2(-)) is an indicator of endothelial nitric oxide synthase (NOS) activity while plasma nitrate (NO3(-)) or the sum of NO2(-) and NO3(-) (NOx) does not reflect NOS function. Plasma NO2(-) can also be elevated through dietary NO3(-) where the NO3(-) is partially reduced to NO2(-) by oral bacteria and enters the plasma through the digestive system. NO3(-) is taken up from plasma by salivary glands and the cycle repeats itself. Thus, one may propose that salivary NO2(-) is an indicator of plasma NO2(-) and consequently of NO production. Many brands of nitric oxide (NO) saliva test strips have been developed that suggest that their product is indicative of circulatory NO availability. However, data supporting a relationship between salivary and plasma NO2(-) or NO bioavailability are lacking. Here we have measured basal salivary and plasma NO2(-) and NO3(-) to determine if any correlation exists between these in 13 adult volunteers. We found no significant correlation between basal salivary and plasma NO2(-). Also no correlation exists between salivary NO3(-) and plasma NO2(-). However, we did see a correlation between salivary NO3(-) and plasma NO3(-), and between salivary NO2(-) and plasma NO3(-). In a separate study, we compared the efficiency of salivary NO3(-) reduction with the efficacy of increasing plasma NO3(-) and NO2(-) after drinking beet juice, a high NO3(-)-containing beverage, in 10 adult volunteers. No significant correlation was observed between the ex vivo salivary reduction of NO3(-) to NO2(-) and plasma increases in NO3(-) or NO2(-). These results suggest that measures of salivary NO3(-), NO2(-) or NOx are not good indicators of endothelial function. In addition, the efficiency of saliva to reduce NO3(-) to NO2(-)ex-vivo does not demonstrate one's ability to increase plasma NO2(-) following consumption of dietary NO3(-).
Collapse
Affiliation(s)
- William H Clodfelter
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA; Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Crystal Bolden
- Department of Molecular Medicine and Translational Science, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA.
| | - Daniel B Kim-Shapiro
- Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA; Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
365
|
Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: An individual participant meta-analysis. Nitric Oxide 2015; 47:97-105. [PMID: 25937622 DOI: 10.1016/j.niox.2015.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Abnormal circadian oscillations of blood pressure (BP) and nocturnal-diurnal BP differences (i.e., dipping) increase cardiovascular risk. Whether inorganic nitrate supplementation influences 24-hr BP variability is currently unknown. We studied the effects of high-nitrate beetroot juice supplementation on BP variability measured by 24-hr ambulatory BP monitoring (24-hr ABPM) in older subjects. METHODS Data from four independent randomised clinical trials were collated. Eighty-five older participants (age range: 55-76 years) were included in the final database. Two trials had an open-label, parallel design and two trials had a cross-over, double-blind design. Participants were randomised to either beetroot juice or placebo. Changes in 24-hr ABPM (daily, diurnal, nocturnal), variability (weighted-SDs), night-dipping, morning surge for systolic and diastolic BP were measured. Meta-analysis was conducted to obtain pooled estimates of the effect size for each BP outcome. Sub-group analyses were conducted to evaluate the influence of age, BMI, gender, BP status and changes in nitrite concentrations on the effect size. RESULTS The pooled effect of beetroot juice on all BP outcomes was not significant. Beetroot juice ingestion determined a significant decrease in nocturnal systolic BP variability in subjects aged less than 65 y (2.8 mmHg, -4.5 -1.0, p = 0.002) compared to the older group (≥ 65 y; 1.0 mmHg, -2.2 4.2, p = 0.54). A greater change in NO2(-) concentrations after beetroot supplementation was associated with significant differences for nocturnal mean (-3.4 mmHg, -0.6 -2.4, p = 0.02) and variability (-0.8 mmHg, -1.5 -0.06, p = 0.03) of systolic BP. CONCLUSIONS The vascular responsiveness to inorganic nitrate may be modified by mechanisms of vascular ageing influencing the reducing capacity to convert inorganic nitrate into nitrite and tissue-specific responses to dietary nitrate supplementation.
Collapse
|
366
|
Bahadoran Z, Mirmiran P, Ghasemi A, Kabir A, Azizi F, Hadaegh F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide 2015; 47:65-76. [PMID: 25889269 DOI: 10.1016/j.niox.2015.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
The potential effects of inorganic nitrate/nitrite on global health are a much debated issue. In addition to possible methemoglobinemia and carcinogenic properties, anti-thyroid effects of nitrate/nitrite have been suggested. Considering the growing significance of nitrate/nitrite and since there is no comprehensive review in data available, clarifying the effect of nitrate/nitrite on thyroid disorder outcomes is essential. Therefore, we conducted this systematic review of experimental and clinical studies, and a meta-analysis of relevant cohort and cross-sectional studies investigating the association of nitrate/nitrite exposure and thyroid function. Most animal studies show that high exposure (~10-600 times of acceptable daily intake) to nitrate/nitrite induces anti-thyroid effects, including decreased serum level of thyroid hormones and histomorphological changes in thyroid gland; however no similar observations have been documented in humans. Based on our meta-analysis, no significant association was observed between nitrate exposure and the risk of thyroid cancer, hyper- and hypothyroidism; findings from three cohort studies however showed a significant association between higher exposure to nitrite and the risk of thyroid cancer (risk = 1.48, 95% confidence interval = 1.09-2.02, P = 0.012). Additional research is needed to clarify the association between nitrate/nitrite exposures and both thyroid function and cancer.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Kabir
- Minimally Invasive Surgery Research Center; Iran University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
367
|
Cicero AFG, Colletti A. Nutraceuticals and Blood Pressure Control: Results from Clinical Trials and Meta-Analyses. High Blood Press Cardiovasc Prev 2015; 22:203-13. [PMID: 25788027 DOI: 10.1007/s40292-015-0081-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022] Open
Abstract
Beyond the well-known effects on blood pressure (BP) of the dietary approaches to stop hypertension (DASH) and the Mediterranean diets, a large number of studies has investigated the possible BP lowering effect of different dietary supplements and nutraceuticals, the most part of them being antioxidant agents with a high tolerability and safety profile. In particular relatively large body of evidence support the use of potassium, L-arginine, vitamin C, cocoa flavonoids, beetroot juice, coenzyme Q10, controlled-release melatonin, and aged garlic extract. However there is a need for data about the long-term safety of a large part of the above discussed products. Moreover further clinical research is advisable to identify between the available active nutraceuticals those with the best cost-effectiveness and risk-benefit ratio for a large use in general population with low-added cardiovascular risk related to uncomplicated hypertension.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy,
| | | |
Collapse
|
368
|
Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals. Nutrients 2015; 7:1906-15. [PMID: 25774606 PMCID: PMC4377889 DOI: 10.3390/nu7031906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 11/17/2022] Open
Abstract
Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake.
Collapse
|
369
|
Abstract
Significant effects on blood pressure (BP) have been reported from large nutritional interventions, particularly the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet. In more recent years, numerous studies have investigated the possible BP-lowering effect of different nutraceuticals; these range from specific foods to minerals, lipids, whole proteins, peptides, amino acids, probiotics, and vitamins. While a very large body of evidence supports the use of potassium, L-arginine, vitamins C and D, cocoa flavonoids, beetroot juice, some probiotics, coenzyme Q10, controlled-release melatonin, aged garlic extract, and coffee, the use of other nutraceuticals, such as green tea, flaxseed, and resveratrol, has not as yet been supported by adequate evidence. In some cases, e.g. proteins/peptides, the responsible component needs also to be fully uncovered. Finally, while for most of the products only short-term studies are available, with no specific end-points, an ongoing very large prospective study on chocolate flavanols will answer the question whether this may reduce cardiovascular risk. Thus, in addition to data on long-term safety, further clinical research is advisable in order to identify, among active nutraceuticals, those with the best cost-effectiveness and risk-benefit ratio for a wide use in the general population with a raised cardiovascular risk consequent to uncomplicated hypertension.
Collapse
Affiliation(s)
- Cesare R Sirtori
- a Department of Pharmacological and Biomolecular Sciences , University of Milan , Milano , Italy
| | - Anna Arnoldi
- b Department of Pharmaceutical Sciences , University of Milan , Milano , Italy
| | - Arrigo F G Cicero
- c Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|