401
|
Xu J, Yıldıztekin M, Han D, Keskin C, Baran A, Baran MF, Eftekhari A, Ava CA, Kandemir Sİ, Cebe DB, Dağ B, Beilerli A, Khalilov R. Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon 2023; 9:e19061. [PMID: 37636361 PMCID: PMC10457445 DOI: 10.1016/j.heliyon.2023.e19061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Metallic nanoparticle biosynthesis is thought to offer opportunities for a wide range of biological uses. The green process of turning biological waste into utilizable products gaining attention due to its economical and eco-friendly approach in recent years. This study reported the ability of Solanum tuberosum (ST) peel extract to the green synthesis of non-toxic, stable, small-sized silver nanoparticles without any toxic reducing agent utilizing the phytochemical components present in its structure. UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, flourier scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy dispersive analysis X-ray confirmed the biosynthesis and characterization of silver nanoparticles. Also, dynamic light scattering and thermogravimetric analyses showed stable synthesized nanoparticles. The antibacterial activity of the biosynthesized silver nanoparticles was evaluated against four different bacterial strains, Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis), and a yeast, Candida albicans (C. albicans) using the minimum inhibitory concentration technique. The cytotoxic activities were determined against Human dermal fibroblast (HDF), glioblastoma (U118), colorectal adenocarcinoma (CaCo-2), and human ovarian (Skov-3) cell lines cancer cells using MTT test. The nanoparticle capping agents that could be involved in the reduction of silver ions to Ag NPs and their stabilization was identified using FTIR. Nanoparticles were spherical in shape and had a size ranging from 3.91 to 27.07 nm, showed crystalline nature, good stability (-31.3 mV), and the presence of capping agents. ST-Ag NPs significantly decreased the growth of bacterial strains after treatment. The in vitro analysis showed that the ST-Ag NPs demonstrated dose-dependent cytotoxicity against cell lines. Based on the data, it is feasible to infer that biogenic Ag NPs were capped with functional groups and demonstrated considerable potential as antibacterial and anticancer agents for biomedical and industrial applications.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str,Nangang District,Harbin,P.R.China, 150001
| | - Mahmut Yıldıztekin
- Department of Herbal and Animal Production, Koycegiz Vocational School, Muğla Sıtkı Kocman University, Mugla, Turkey
| | - Dayong Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str,Nangang District,Harbin,P.R.China, 150001
| | - Cumali Keskin
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Turkey
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| | - Canan Aytuğ Ava
- Dicle University Science and Technology Application and Research Center, Dicle University, Diyarbakır, Turkey
| | - Sevgi İrtegün Kandemir
- Department of Medical Biology, Dicle University Central Research Laboratory, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | | | - Beşir Dağ
- Department of Chemistry, Batman University, Batman, Turkey
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| |
Collapse
|
402
|
Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects. World J Stem Cells 2023; 15:687-700. [PMID: 37545757 PMCID: PMC10401423 DOI: 10.4252/wjsc.v15.i7.687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland.
| |
Collapse
|
403
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
Affiliation(s)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland;
| |
Collapse
|
404
|
Ciccone L, Nencetti S, Rossello A, Orlandini E. Pomegranate: A Source of Multifunctional Bioactive Compounds Potentially Beneficial in Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1036. [PMID: 37513947 PMCID: PMC10385237 DOI: 10.3390/ph16071036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate fruit (PF) is a fruit rich in nutraceuticals. Nonedible parts of the fruit, especially peels, contain high amounts of bioactive components that have been largely used in traditional medicine, such as the Chinese, Unani, and Ayurvedic ones, for treating several diseases. Polyphenols such as anthocyanins, tannins, flavonoids, phenolic acids, and lignans are the major bioactive molecules present in PF. Therefore, PF is considered a source of natural multifunctional agents that exert simultaneously antioxidant, anti-inflammatory, antitumor, antidiabetic, cardiovascular, and neuroprotective activities. Recently, several studies have reported that the nutraceuticals contained in PF (seed, peel, and juice) have a potential beneficial role in Alzheimer's disease (AD). Research suggests that the neuroprotective effect of PF is mostly due to its potent antioxidant and anti-inflammatory activities which contribute to attenuate the neuroinflammation associated with AD. Despite the numerous works conducted on PF, to date the mechanism by which PF acts in combatting AD is not completely known. Here, we summarize all the recent findings (in vitro and in vivo studies) related to the positive effects that PF and its bioactive components can have in the neurodegeneration processes occurring during AD. Moreover, considering the high biotransformation characteristics of the nutraceuticals present in PF, we propose to consider the chemical structure of its active metabolites as a source of inspiration to design new molecules with the same beneficial effects but less prone to be affected by the metabolic degradation process.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
405
|
Saber A, Abedimanesh N, Somi MH, Khosroushahi AY, Moradi S. Anticancer properties of red beetroot hydro-alcoholic extract and its main constituent; betanin on colorectal cancer cell lines. BMC Complement Med Ther 2023; 23:246. [PMID: 37464362 DOI: 10.1186/s12906-023-04077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Red beetroot (Beta vulgaris) contains Betanin as its major betacyanin, possessing wide proapoptotic effects. This study aimed to investigate the anticancer and pro-papoptotic effects of beetroot hydro-alcoholic extract (BHE) and betanin, on colorectal cancer cell lines. BHE and betanin were used to treat Caco-2 and HT-29 colorectal cancer cells. MTT assay, DAPI staining, and FACS-flow cytometry tests were used to determine the half-maximal inhibitory concentration (IC50) and apoptosis-inducing evaluations. Intended genes were assessed by real-time polymerase chain reaction (RT-PCR). The IC50 for HT-29 and Caco-2 cell lines were 92 μg/mL, 107 μg/mL for BHE, and 64 μg/mL, 90 μg/mL for betanin at 48 h, respectively. BHE and betanin significantly inhibited the growth of both cancer cell lines time and dose-dependently. DAPI staining and flow cytometry results revealed significant apoptosis symptoms in treated cancerous cell lines. The expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than in untreated and normal cells. In contrast, the anti-apoptotic gene (Bcl-2) was significantly downregulated. BHE and betanin effectively inhibited cancer cell proliferation and induced apoptosis via the modification of effective genes.
Collapse
Affiliation(s)
- Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran.
| | - Nasim Abedimanesh
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Moradi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran
- Student Research Committee, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
406
|
Dong J, Li X. Lead pollution-related health of children in China: Disparity, challenge, and policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163383. [PMID: 37068684 DOI: 10.1016/j.scitotenv.2023.163383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Lead (Pb) is a neurotoxic metal, and no level of lead exposure is safe for children. China has still experienced problems on child lead poisoning even though the Chinese government has phased out leaded gasoline since 2000. The underlying problem affecting the lead pollution-related health of children in China remains to be comprehensively investigated. It is found that although the significant decline of BLLs, as the Geometric Mean (GM), from 91.40 μg/LGM in 2001 to 37.52 μg/LGM in 2018 is observed, the average BLLs of children are still above 50 μg/L or more [average 59.70 (60.50-65.02, 95 % CI) μg/LGM] after phasing out leaded gasoline since 2000 in China. Lead exposure causes 29.67 MID per 1000 children with a loss of 98.23 (59.40-146.21, 95 % CI) DALYs per 1000 in China, which is greater than the levels reported from the Western Pacific Region and other low- and middle-income countries. A significant correlation is observed between the number of child crimes (NoCCs) and the outcomes of long-term lead exposure for children in China. Although the disparities in BLLs in China are strongly influenced by unequal distributions of potential multi-lead related sources (soil lead, PM2.5 lead, dust lead), unbalance development of local industrialization and economies, as well as incorrect health care for younger children, the notable emissions from coal combustion (CC) and non-ferrous metals (NMS) exploitation dominate the crucial sources of low-level lead exposure to children after phasing out leaded gasoline in China currently. Faced with the unequal and disparate distribution of BLLs in China, the big bottleneck is to decrease the BLLs exertions of 36-45 μg/L in the next few decades. The Chinese government needs to make more efforts on developing more strict guidelines, implementing more policy strategies on prevention and management of blood Pb poisoning, and monitoring the nationwide changes in children's BLLs continuously.
Collapse
Affiliation(s)
- Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
407
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
408
|
Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, Mishra D, Tryphena KP, Kawakita S, Khan S, Azhar M, Khatri DK, Patel K, Singh Thakur RR. CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207512. [PMID: 37166046 PMCID: PMC10323670 DOI: 10.1002/advs.202207512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Clustered randomly interspaced short palindromic repeats (CRISPRs) and its associated endonuclease protein, i.e., Cas9, have been discovered as an immune system in bacteria and archaea; nevertheless, they are now being adopted as mainstream biotechnological/molecular scissors that can modulate ample genetic and nongenetic diseases via insertion/deletion, epigenome editing, messenger RNA editing, CRISPR interference, etc. Many Food and Drug Administration-approved and ongoing clinical trials on CRISPR adopt ex vivo strategies, wherein the gene editing is performed ex vivo, followed by reimplantation to the patients. However, the in vivo delivery of the CRISPR components is still under preclinical surveillance. This review has summarized the nonviral nanodelivery strategies for gene editing using CRISPR/Cas9 and its recent advancements, strategic points of view, challenges, and future aspects for tissue-specific in vivo delivery of CRISPR/Cas9 components using nanomaterials.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Department of PharmacyBirla Institute of Technology and Science‐PilaniBITS‐Pilani, Vidya ViharPilaniRajasthan333031India
| | - Lalitkumar K. Vora
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Aishwarya Saraswat
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Jasmin Monpara
- Department of Pharmaceutical SciencesUniversity of SciencesPhiladelphiaPA19104USA
| | - Anisha A. D'Souza
- Graduate School of Pharmaceutical Sciences and School of PharmacyDuquesne UniversityPittsburghPA15282USA
| | - Deepakkumar Mishra
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Satoru Kawakita
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Shahid Khan
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Mohd Azhar
- Research and Development Tata Medical and Diagnostics LimitedMumbaiMaharashtra400001India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Ketan Patel
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | | |
Collapse
|
409
|
Batiha GES, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, Teibo TKA, Al-kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Morus alba: a comprehensive phytochemical and pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1399-1413. [PMID: 36877269 PMCID: PMC10244279 DOI: 10.1007/s00210-023-02434-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Morus alba is a fast-growing shrub or medium-sized tree with a straight, cylindrical trunk. Medicinally, whole plants, leaves, fruits, branches, and roots have been employed. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical components and pharmacologic and mechanism of action of the Morus alba. This was reviewed to assess important updates about Morus alba. The fruits of Morus alba have traditionally been used as an analgesic, anthelmintic, antibacterial, anti-rheumatic, diuretic, hypotensive, hypoglycemia, purgative, restorative, sedative tonic, and blood stimulant. Various plant parts were used as a cooling, sedating, diuretic, tonic, and astringent agent to treat nerve disorders. The plant contained tannins, steroids, phytosterols, sitosterol, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, phenolics, flavonoids, benzofuran derivatives, anthocyanins, anthraquinones, glycosides, vitamins, and minerals. Previous pharmacological research identified antimicrobial, anti-inflammatory, immunological, analgesic, antipyretic, antioxidant, anti-cancer, antidiabetic, gastrointestinal, respiratory, cardiovascular, hypolipidemic, anti-obesity, dermatological, neurological, muscular, and protecting effects. This study looked at Morus alba's traditional uses, chemical components, and pharmacological effects.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 El Beheira Egypt
| | - Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - Mahdi M. Thuwaini
- College of Medical and Healthy Techniques, Southern Technique University, Basra, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão, Preto Medical School
, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 El Beheira Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, University of São Paulo, Ribeirão PretoRibeirão Preto, São Paulo, Brazil
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine
, Almustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Garbeeb
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine
, Almustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| |
Collapse
|
410
|
Mahmoud M, Tan Y. New advances in the treatments of drug-resistant tuberculosis. Expert Rev Anti Infect Ther 2023; 21:863-870. [PMID: 37477234 DOI: 10.1080/14787210.2023.2240022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION TB is associated with high mortality and morbidity among infected individuals and a high transmission rate from person to person. Despite the availability of vaccines and several anti-TB,TB infection continues to increase. Global resistance to TB remains the greatest challenge. There has not been extensive research into a new treatment and management strategy for TB resistance therapy. This review is based on a review of new advances and alternative drugs in the treatment of drug-resistant TB. AREAS COVERED New drug-resistant Mycobacterium tuberculosis therapy involves a combination of the latest TB drugs, new anti-TB drugs based on medicinal plant extracts for drug-resistant TB, mycobacteriophage therapy, the CRISPR/Cas9 system, and nanotechnology. EXPERT OPINION It is necessary to determine the function of individual gene alterations in drug-resistant TB. A combination of the most recent anti-TB drugs, such as bedaquiline and delamanid, is recommended. Longitudinal studies and animal model experiments with some medicinal plant extracts are required for better results. Nanotechnology has the potential to reduce drug side effects. Useful efficacy of phage therapy and CRISPR-cas9 technology as adjunct therapies for the management of drug-resistant TB.
Collapse
Affiliation(s)
- Mohanad Mahmoud
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
411
|
Viudez‐Martínez A, Ramírez‐López A, López‐Nieto J, Climent‐Grana E, Riera G. Antiparkinsonian Medication Reconciliation as a Strategy to Improve Safety by Preventing Medication Errors. Mov Disord Clin Pract 2023; 10:1090-1098. [PMID: 37476316 PMCID: PMC10354616 DOI: 10.1002/mdc3.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 07/22/2023] Open
Abstract
Background About 70% of neurologists report that PD patients do not get their medication properly when hospitalized, and 33% are prescribed contraindicated drugs. Objectives To execute medication reconciliation (MedRec) focused on antiparkinsonian drugs to identify, characterize and, eventually, prevent medication errors, thus promoting therapeutic quality and safety in daily practice. Methods An interventional, single-center, 1 year, prospective study. All the patients who were hospitalized and had, at least, one active prescription containing an antiparkinsonian drug at hospital admission were included. MedRec was performed by following a three-phased check: inpatient electronic prescription validation after assessing the outpatient medication schedule, review of the latest clinical report emitted by the Neurology Department/General Practitioner, and pharmacist-driven interview of the patient and/or caregiver to confirm the information regarding medication gathered. Results A total of 171 admission episodes from 132 patients were registered (February 1, 2021, and January 31, 2022). Of 224 prescription lines involving antiparkinsonian drugs, 179 contained, at least, one medication error (59.8%). Commission errors (91.62%) were more frequent than omitted drugs (8.38%). The most common medication errors were related to timing (41.90%), frequency (21.23%), and dosing (19.55%). The implementation of this program prevented the erroneous administration of 2716 antiparkinsonian doses, 60% of the total number of doses prescribed. Interestingly, a significant relationship between the number of medication errors and having levodopa prescribed was evidenced (P < 0.05). A contraindicated drug was prescribed in almost one-third of the episodes (29.82%). Conclusions Clinical pharmacists' implementation of an antiparkinsonians reconciliation program sharply reduced medication errors and prescription of contraindicated drugs.
Collapse
Affiliation(s)
- Adrián Viudez‐Martínez
- Pharmacy DepartmentInstituto Investigación Biomédica y Sanitaria de Alicante (ISABIAL) Hospital General Universitario Dr. BalmisAlicanteSpain
| | - Ana Ramírez‐López
- Pharmacy DepartmentInstituto Investigación Biomédica y Sanitaria de Alicante (ISABIAL) Hospital General Universitario Dr. BalmisAlicanteSpain
| | - Javier López‐Nieto
- Pharmacy DepartmentInstituto Investigación Biomédica y Sanitaria de Alicante (ISABIAL) Hospital General Universitario Dr. BalmisAlicanteSpain
| | - Eduardo Climent‐Grana
- Pharmacy DepartmentInstituto Investigación Biomédica y Sanitaria de Alicante (ISABIAL) Hospital General Universitario Dr. BalmisAlicanteSpain
| | - Gerónima Riera
- Pharmacy DepartmentInstituto Investigación Biomédica y Sanitaria de Alicante (ISABIAL) Hospital General Universitario Dr. BalmisAlicanteSpain
| |
Collapse
|
412
|
Ali A, Bhattacharjee B. Nutrition security, constraints, and agro-diversification strategies of neglected and underutilized crops to fight global hidden hunger. Front Nutr 2023; 10:1144439. [PMID: 37426189 PMCID: PMC10324569 DOI: 10.3389/fnut.2023.1144439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Neglected and underutilized crop species (NUCS) or forbidden crops offer tremendous potential to combat malnutrition, poverty, and global hidden hunger. Since overdependence on a few dominant cereal crops, viz., rice, maize, and wheat, is insufficient to meet the global food energy intake, the identification, genetic improvement, and implementation of various policies for wenumerates comprehensive comparative analyses of the nutrient profile of staple crops vs. potent underutilized crops with reference to cultivation constraints and climate resilience with different agro-diversification strategies. Methodology The research databases Scopus, JSTOR, Web of Science, EBSCO, Google Scholar, ScienceDirect, PubMed, and Academic Search were searched using relevant research queries. Result Out of 2,345 hits, 99 articles pertinent to the subject domain showed that underutilized crops are nutritionally superior, contain health-promoting bioactive components, and are more climate resilient than cereal crops. However, several constraints hinder the efficient utilization of these crops. Discussion Despite underutilized crops' many health benefits, improved cultivation techniques for the large-scale production of these crops are still in their infancy. Most of the time, however, the scientific knowledge gleaned from various study domains stays within the scientific community. The most crucial need of the hour, therefore, is an efficient network structure connecting governments, farmers, researchers, and people in business. Moreover, care must be taken to ensure that the policies of governments and INGOs/NGOs are properly implemented within a NUCS framework.
Collapse
|
413
|
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, El-Bouseary MM, Hamad RS, Abdelhamid M, Batiha GES. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J Immunol Res 2023; 2023:5544819. [PMID: 37383608 PMCID: PMC10299886 DOI: 10.1155/2023/5544819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
414
|
Yin Y, Martínez R, Zhang W, Estévez M. Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Crit Rev Food Sci Nutr 2023; 64:10009-10035. [PMID: 37335106 DOI: 10.1080/10408398.2023.2219763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Remigio Martínez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
- Infectious Diseases Unit. Animal Health Department, University of Extremadura, Caceres, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
415
|
Satpathy R. Quantitative Structure-Activity Relationship (QSAR) Study of Potential Phytochemicals for the Development of Drugs Against Neurological Diseases. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:1-21. [DOI: 10.4018/978-1-6684-9463-9.ch001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neurological diseases have recently evolved into a global concern and are commonly observed in elderly populations. Common examples of these diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The remarkable application of the computational approach in biological sciences has expedited the drug development process from natural compounds that uncover opportunities to develop new medications. In the computer-aided drug design (CADD) process, the quantitative structure-activity relationship (QSAR) method is crucial in molecule screening and lead optimization. This chapter discusses the potential phytochemicals used to treat these diseases. The process of CADD, along with QSAR methods and the importance of blood-brain barriers (BBB), has been elaborated. The targets of AD and the QSAR analysis of the phytochemicals have been discussed by taking AD as a case study with the challenges of treating these diseases.
Collapse
|
416
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
417
|
Naz N, Khan MR, Shabbir MA, Faisal MN. Effect of iron-fortified jamun leather on the Asunra-induced anemia in Sprague Dawley rats. Front Nutr 2023; 10:1195981. [PMID: 37384107 PMCID: PMC10293738 DOI: 10.3389/fnut.2023.1195981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Micronutrients such as minerals and vitamins are required in a minute quantity but play a pivotal role in the functioning of the body. Therefore, deficiency in one of them can lead to lethal health conditions. Iron deficiency anaemia is one of the most common micronutrient deficiencies across the world and is affecting women and children. Methods The present study aimed to investigate the anti-anaemic effect of fortified jamun leather on anaemia biomarkers and haematology in anaemic female Sprague Dawley rats. A total of 40 Sprague Dawley rats were used in 4 groups. Iron deficiency anaemia was induced by oral administration of the Asunra drug. The treatments were fed at two dosage levels i.e., 40 and 60% iron-fortified leather. All animals were treated for 60 days and the parameters including biochemical, and histopathology of the kidney and liver were examined. Results The experiment's findings showed that the group fed with iron-fortified leather (G3) succeeded significantly (P < 0.05) in restoring the serum iron (98.68 ± 2.88 μg/dL), haemoglobin (12.41 ± 0.32 g/dL), ferritin (24.54 ± 1.98 ng/mL) and haematocrit levels (39.30 ± 1.66%) at the end of the 60 days period. Additionally, the treated group's mean values for transferrin and total iron binding capacity were lower than those of the anaemic rats, indicating an improvement in iron levels. The microscopic analysis revealed that treatments had no toxic effects on the kidney and liver tissues, except in the diseased group, which had necrosis and irregular cell structure. Conclusion Conclusively, iron-fortified jamun leather helped improve iron deficiency biomarkers and imparted a non-toxic effect on tissues in rats.
Collapse
Affiliation(s)
- Nosheen Naz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
418
|
Pauwels EKJ, Boer GJ. Parkinson's Disease: A Tale of Many Players. Med Princ Pract 2023; 32:155-165. [PMID: 37285828 PMCID: PMC10601631 DOI: 10.1159/000531422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
In 2020, more than 9 million patients suffering from Parkinson's disease (PD) were reported worldwide, and studies predict that the burden of this disease will grow substantially in industrial countries. In the last decade, there has been a better understanding of this neurodegenerative disorder, clinically characterized by motor disturbances, impaired balance, coordination, memory difficulties, and behavioral changes. Various preclinical investigations and studies on human postmortem brains suggest that local oxidative stress and inflammation promote misfolding and aggregation of alpha-synuclein within Lewy bodies and cause nerve cell damage. Parallel to these investigations, the familial contribution to the disease became evident from studies on genome-wide association in which specific genetic defects were linked to neuritic alpha-synuclein pathology. As for treatment, currently available pharmacological and surgical interventions may improve the quality of life but do not stop the progress of neurodegeneration. However, numerous preclinical studies have provided insights into the pathogenesis of PD. Their results provide a solid base for clinical trials and further developments. In this review, we discuss the pathogenesis, the prospects, and challenges of synolytic therapy, CRISPR, gene editing, and gene- and cell-based therapy. We also throw light on the recent observation that targeted physiotherapy may help improve the gait and other motor impairments.
Collapse
Affiliation(s)
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
419
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
420
|
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES. SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. J Neurosci Res 2023; 101:952-975. [PMID: 36717481 DOI: 10.1002/jnr.25171] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida, USA
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
421
|
Ali HS, Barzani HA, Yardım Y. Utilizing epicatechin voltammetric oxidation signal for the estimation of total phenolic content in the tea samples via the unmodified boron-doped diamond electrode surface. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
422
|
Xu Lou I, Chen J, Ali K, Shaikh AL, Chen Q. Mapping new pharmacological interventions for cognitive function in Alzheimer's disease: a systematic review of randomized clinical trials. Front Pharmacol 2023; 14:1190604. [PMID: 37332343 PMCID: PMC10270324 DOI: 10.3389/fphar.2023.1190604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background and Objective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, that is, characterized by cognitive decline. To date, there are no effective treatments for AD. Therefore, the objective of this study was to map new perspectives on the effects of pharmacological treatment on cognitive function and the overall psychological state in patients with AD. Methods: Two independent researchers searched for randomized clinical trials (RCTs) exploring new pharmacological approaches related to cognition in Alzheimer's disease in adults from 2018 to 2023 in PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 17 RCTs were included in this review. Results: The results show that in recent years, new drugs have been tested in patients with Alzheimer's disease, including masitinib, methylphenidate, levetiracetam, Jiannao Yizhi, and Huannao Yicong formulas. Most studies have been conducted in populations with mild to moderate Alzheimer's disease. Conclusion: Although some of the drugs found suggested improvement in cognitive function, the scarcity of available studies highlights the need for further research in this area. Systematic review registration: [www.crd.york.ac.uk/prospero], identifier [CRD42023409986].
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jiayue Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
- Hangzhou Clinical Medical College Internal Medicine of Traditional Chinese Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Abdul Lateef Shaikh
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
423
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
424
|
Antonosante A, Castelli V, Sette M, Alfonsetti M, Catanesi M, Benedetti E, Ardini M, Cimini A, d'Angelo M. Neuroprotective effects of the PPARβ/δ antagonist GSK0660 in in vitro and in vivo Parkinson's disease models. Biol Res 2023; 56:27. [PMID: 37226204 DOI: 10.1186/s40659-023-00438-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/29/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARβ/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS Basing on this concept, in this work, we tested the potential effects of a specific PPARβ/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS Our findings suggested that PPARβ/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARβ/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARβ/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS In summary, PPARβ/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Andrea Antonosante
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina Sette
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Margherita Alfonsetti
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Ardini
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Dpt of Biology, Temple University, Philadelphia, USA
| | - Michele d'Angelo
- Dpt of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
425
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
426
|
Raigond P, Jayanty SS, Parmar V, Dutt S, Changan SS, Luthra SK, Singh B. Health-Promoting compounds in Potatoes: Tuber exhibiting great potential for human health. Food Chem 2023; 424:136368. [PMID: 37210846 DOI: 10.1016/j.foodchem.2023.136368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/20/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Potatoes are consumed worldwide because of their high accessibility, low cost, taste, and diversity of cooking methods. The high carbohydrate content of potatoes masks the presence of -vitamins, polyphenols, minerals, amino acids, lectins and protein inhibitors in the minds of consumers. The consumption of potatoes faces challenges among health-conscious people. This review paper attempted to provide up-to-date information on new metabolites reported in potatoes that play role in disease prevention and overall human well-being. We tried to compile information on antidiabetic, antihypertensive, anticancer, antiobesity, antihyperlipidemic, and anti-inflammatory potential of potato along with role in improving gut health and satiety. In-vitro studies, human cell culture, and experimental animal and human clinical studies showed potatoes to exhibit a variety of health-enhancing properties. This article will not only popularize potato as a healthy food, but will also improve its use as a staple for the foreseeable future.
Collapse
Affiliation(s)
- Pinky Raigond
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, India.
| | - Sastry S Jayanty
- Department of Horticulture and LA, Colorado State University, USA
| | - Vandana Parmar
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Som Dutt
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sushil S Changan
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Satish Kumar Luthra
- Division of Crop Improvement, ICAR-Central Potato Research Institute-Regional Station, Modipuram, Uttar Pradesh, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
427
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
428
|
Ma P, Yu F, Zhong Y, Xu L, Xiao P. Protective effects of flavonoids in Coreopsis tinctoria Nutt. in a mouse model of type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116214. [PMID: 36736673 DOI: 10.1016/j.jep.2023.116214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coreopsis tinctoria Nutt., a popular tea drink used in the Xinjiang region of China, has been traditionally used to treat diabetes and chronic metabolic diseases in China, Portugal, and North America. The bioactive extraction and potential mechanism have not been fully elucidated until now. AIM OF THE STUDY Traditional herbal medicines usually share network targets due to multicomponent therapeutics. Therefore, we tried to explore the protective effects of C. tinctoria on diabetes and the related molecular mechanism. MATERIALS AND METHODS A flavonoid-rich fraction of C. tinctoria (CTF) was prepared. After 15 weeks of continuous treatment with CTF, the blood glucose and blood lipid levels of experimental mice were evaluated. Tissue was collected for differentially expressed genes (DEGs), bioinformatics analysis, RT‒PCR and Western blot for target-related DEGs. RESULTS After 15 weeks of continuous treatment with CTF, db/db mice showed reversed levels of glucose, insulin, glucagon and glycated hemoglobin A1c. CTF treatment also regulated total cholesterol, triglycerides, low density lipoprotein, nonesterified fatty acid, alanine transaminase, and aspartate transaminase. Major metabolic pathways were found to be dysregulated in the liver using a combined analysis of transcriptomics and network pharmacology. CTF treatment regulated 48.2% of 6357 dysregulated genes in db/db mice. The mitochondrial electron transport chain and tricarboxylic acid cycle were mainly affected. The sequencing data showed that fifty-nine predicted target genes for CTF were reverse regulated. Together with 1528 coexpressed genes, these genes reflected the main characteristics of the whole perturbed transcriptomic profile, i.e., dysregulated mitochondrial metabolism. The important genes of the target and coexpressed genes were further verified at the gene and protein levels. CONCLUSIONS The results confirm that the metabolic changes induced by hyperglycemia are closely related to mitochondrial metabolism in the liver. CTF alters a core gene set that exerts regulatory effects at the biological pathway level in db/db mice. In conclusion, our data reveal that an important molecular event for CTF treatment is the regulation of mitochondrial metabolism and support the idea that herbs or natural compounds are potential therapeutic substances for mitochondrial dysfunction-related diabetes.
Collapse
Affiliation(s)
- Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Fan Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
429
|
Bai Y, Wu H, Zheng L, Xie Y, Liu F, Wan Y, Li Q, Guo P. Mechanisms of Yajieshaba in the treatment of liver fibrosis through the Keap1-Nrf2 signaling pathway. Front Pharmacol 2023; 14:1124015. [PMID: 37229248 PMCID: PMC10203482 DOI: 10.3389/fphar.2023.1124015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Yajieshaba (YJSB), a traditional Dai medicine formula containing botanical drugs, is commonly employed in Yunnan due to its significant therapeutic effects on liver protection. Consequently, to determine the efficacy of YJSB and the mechanism of action of Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway against liver fibrosis. We wanted to see if YJSB could treat CCl4-induced liver fibrosis by regulating the Keap1-Nrf2 signaling pathway. YJSB significantly improved liver function biochemical indices, liver fibrosis quadruple, hydroxyproline (Hyp), and transforming growth factor-β1 (TGF-β1) levels. The staining results demonstrated that the degree of liver fibrosis was significantly reduced. YJSB reduced the content of malondialdehyde (MDA) and elevated the content of superoxide dismutase (SOD) in the liver, exhibiting antioxidant effects; meanwhile, it regulated the expression of Keap1-Nrf2 pathway protein, increased the expression of NAD(P)H: Quinone oxidoreductase (NQO1), Heme Oxygenase 1 (HO-1), Glutamate cysteine ligase modifier subunit (GCLM), and Glutamate cysteine ligase catalytic subunit (GCLC) expression in the liver decreased while Nrf2 expression increased. Fluorescence immunoassay studies demonstrated that YJSB promoted the trans-nuclearization of Nrf2. YJSB possesses anti-liver fibrosis pharmacological effects that improve liver function and effectively counteract CCl4-induced liver fibrosis damage. The mechanism of action might be related to the regulation of protein expression of the Keap1-Nrf2 pathway, increasing the ability of the body to resist oxidative stress and reduce oxidative stress injury.
Collapse
Affiliation(s)
- Yuanmei Bai
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haimei Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijie Zheng
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhuan Xie
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Feifan Liu
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yan Wan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiongchao Li
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
430
|
Al Qahtani SY. Impact of hyperchloremia on inflammatory markers, serum creatinine, hemoglobin, and outcome in critically ill patients with COVID-19 infection. J Med Life 2023; 16:699-706. [PMID: 37520482 PMCID: PMC10375338 DOI: 10.25122/jml-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/05/2023] [Indexed: 08/01/2023] Open
Abstract
Hyperchloremia has negative consequences, such as increased proinflammatory mediators, renal dysfunction, and mortality in patients with septic shock. However, data on the effects of hyperchloremia on COVID-19 infections are scarce. The study aimed to investigate the effects of hyperchloremia on inflammatory markers, serum creatinine, hemoglobin levels, and outcomes in critically ill COVID-19 patients. A retrospective review of all adult patients admitted to the ICU at King Fahd University Hospital with a moderate to severe COVID-19 infection from January 2020 to August 2021 was performed. Serum chloride levels, ferritin, lactate dehydrogenase (LDH), C-reactive protein (CRP), creatinine, and hemoglobin levels were collected on the first and third days of ICU admission. Demographic data, oxygen support modality, ICU length of stay (ICU LOS), renal replacement therapy (RRT), and deaths were collected. Of 420 patients, 255 were included; 97 (38%) had hyperchloremia, while 158 (62%) did not. Hyperchloremic patients had a higher percentage of increases in ferritin (54.6%), CRP (6.2%), and LDH (15.5%) between the first and third days of admission, compared to non-hyperchloremic patients (43.7%, 6.3%, and 5.7%, respectively). The decrease in hemoglobin levels was similar in both groups (p=0.103). There was a significant association between hyperchloremia and an increase in serum creatinine (p<0.0001). Sixty-six (68%) patients required endotracheal intubation in the hyperchloremic group (p=0.003). The mortality rate was significant in the hyperchloremic cohort (p=<0.0001). Hyperchloremia was significantly associated with increased risks of kidney injury, endotracheal intubation, and death. However, hyperchloremia was not associated with increased ferritin, CRP, or hemoglobin decreases in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Shaya Yaanallah Al Qahtani
- Department of Internal Medicine and Critical Care, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
431
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: Insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023; 16:104680. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
432
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
433
|
Silva JM, Gomes Cochicho J, Cruz Nodarse A, Lavadinho I. A Compelling Case of Autoimmune Hemolytic Anemia and Its Potential Association With SARS-CoV-2. Cureus 2023; 15:e39566. [PMID: 37378094 PMCID: PMC10292631 DOI: 10.7759/cureus.39566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Autoimmune hemolytic anemia can be caused by infections, lymphoproliferative disorders, autoimmune disorders, or triggered by drugs or toxins. We present the case of a 92-year-old man admitted with gastrointestinal symptoms. He presented with autoimmune hemolytic anemia. The etiologic study was negative for autoimmune conditions or solid masses. Viral serologies were negative, and RT-PCR for SARS-CoV-2 was positive. The patient began treatment with corticoid, with resulted in cessation of hemolysis and improvement of the anemia. A few cases of autoimmune hemolytic anemia have been reported in COVID-19 patients. In this case, the infection seems to coincide with the hemolysis period, and we found no other cause for this event. So, we highlight the need to search for SARS-CoV-2 as a possible infective cause of autoimmune hemolytic anemia.
Collapse
Affiliation(s)
- José Miguel Silva
- Internal Medicine, Hospital Doutor José Maria Grande, Portalegre, PRT
| | | | | | - Isabel Lavadinho
- Internal Medicine, Hospital Doutor José Maria Grande, Portalegre, PRT
| |
Collapse
|
434
|
Farajizadeh F, Taghian F, Jalali Dehkordi K, Mirsafaei Rizi R. Swimming training and herbal nanoformulations as natural remedies to improve sensory-motor impairment in rat midbrain tumor models: system biology, behavioral test, and experimental validation. 3 Biotech 2023; 13:149. [PMID: 37131964 PMCID: PMC10148939 DOI: 10.1007/s13205-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Motor impairment worsens health-related quality of life in patients with primary and metastatic midbrain tumors. Here, 56-male-Wistar rats were divided into eight groups: Normal group, Midbrain Tomur Model group, Model + Exe group, Model + Lipo, Model + Extract, Model + Lipo-Extract, Model + Extract-Exe, Model + Lipo-Extract + Exe. According to the aim, mid-brain tumor models were conducted by injections of the C6 glioma cell line (5 × 105 cell suspension) and stereotaxic techniques in the substantia nigra area. Furthermore, consumption of nanoformulation of herbals extract (100 mg/kg/day), crude extract (100 mg/kg/day), and swimming training (30 min, 3 days/week) as interventional protocols were performed for 6 weeks. In addition, we evaluated the effect of polyherbal nanoliposomes containing four plant extracts and swimming training on the GABArα1/TRKB/DRD2/DRD1a/TH network in the substantia nigra of the midbrain tumor rat model. Data emphasized that DRD2 might be a druggable protein with the network's highest significance cut-point effect that could modulate sensory-motor impairment. Furthermore, we found Quercetin, Ginsenosides, Curcumin, and Rutin, as bioactive compounds present in Ginseng, Matthiola incana, Turmeric, and Green-Tea extracts, could bind over the DRD2 protein with approved binding affinity scores. Based on our data, swimming training, and nanoliposome-enriched combined supplements could consider effective complementary medicine for motor impairment recovery induced by the midbrain tumor in the substantia nigra area. Hence, regular swimming training and natural medicines rich in polyphenolic bioactive components and antioxidative effects could modify and improve the dopamine receptors' function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03574-3.
Collapse
Affiliation(s)
- Fariba Farajizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Rezvan Mirsafaei Rizi
- Department of Sports Injuries, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
435
|
Ma Y, Li Y, Yin R, Guo P, Lei N, Li G, Xiong L, Xie Y. Therapeutic potential of aromatic plant extracts in Alzheimer's disease: Comprehensive review of their underlying mechanisms. CNS Neurosci Ther 2023. [PMID: 37122144 DOI: 10.1111/cns.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
AIMS The aim of this review is to outline recent advancements in the application and mechanistic studies of aromatic plant extracts in Alzhermer`s disease (AD) to demonstrate their value in the management of this disease. BACKGROUND AD is a neurodegenerative disease with a complex pathogenesis characterized by severe cognitive impairment. Currently, there are very few drugs available for the treatment of AD, and treatments are primarily focused on symptom relief. Aromatherapy is a traditional complementary alternative therapy that focuses on the prevention and treatment of the disease through the inhalation or transdermal administration of aromatic plant extracts. Over the past few years, studies on the use of aromatic plant extracts for the treatment of AD have been increasing and have demonstrated a definitive therapeutic effect. METHODS We systematically summarized in vitro, in vivo, and clinical studies focusing on the potential use of aromatic plant extracts in the treatment of AD in PubMed, ScienceDirect, Google Scholar, and the Chinese National Knowledge Infrastructure from 2000 to 2022. RESULTS Our literature survey indicates that aromatic plant extracts exert anti-AD effects by modulating pathological changes through anti-amyloid, anti-tau phosphorylation, anti-cholinesterase, anti-inflammation, and anti-oxidative stress mechanisms (Figure 1). CONCLUSION This review provides a future strategy for the research of novel anti-AD drugs from aromatic plant extracts.
Collapse
Affiliation(s)
- Yue Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingming Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Run Yin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Nai Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Lei Xiong
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| |
Collapse
|
436
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
437
|
Choi R, Park W, Chun G, Lee SG, Lee EH. Utilization of Glucose-6-Phosphate Dehydrogenase Test and the Prevalence of Enzyme Deficiency in Korea. J Clin Med 2023; 12:jcm12093179. [PMID: 37176619 PMCID: PMC10179720 DOI: 10.3390/jcm12093179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Glucose-5-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder that affects red blood cells' metabolism. This retrospective study aimed to investigate the prevalence and characteristics of G6PD testing in Korea. Data were collected from laboratory information systems between July 2021 and June 2022. A total of 5193 patients (1722 males and 3471 females) with a median age of 55.1 years (interquartile range, IQR 44.6 to 64.5) were tested for whole blood G6PD, with 1.6% of tests performed on patients of non-Korean ethnicity. The majority of tests were performed in hospitals (37.7%) or local clinics (34.5%). Interestingly, no female children were tested for whole blood G6PD during the study period. The prevalence of decreased G6PD activity (<7.9 U/g Hb) was 0.4% (19/5111 Koreans and 2/82 non-Koreans), and only seven male patients with G6PD deficiency (<30% of the male median) were identified, with ages ranging from 4.8 months to 50.2 years. No female patients with G6PD deficiency were found. Further research is necessary to determine the clinical significance of G6PD test results and monitor their use.
Collapse
Affiliation(s)
- Rihwa Choi
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin 16924, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Wonseo Park
- Infectious Disease Research Center, Green Cross Laboratories, Yongin 16924, Republic of Korea
| | - Gayoung Chun
- Infectious Disease Research Center, Green Cross Laboratories, Yongin 16924, Republic of Korea
| | - Sang Gon Lee
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin 16924, Republic of Korea
| | - Eun Hee Lee
- Green Cross Laboratories, Yongin 16924, Republic of Korea
| |
Collapse
|
438
|
Lomartire S, Gonçalves AMM. Marine Macroalgae Polyphenols as Potential Neuroprotective Antioxidants in Neurodegenerative Diseases. Mar Drugs 2023; 21:md21050261. [PMID: 37233455 DOI: 10.3390/md21050261] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenols are beneficial natural compounds with antioxidant properties that have recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore, these compounds can be included in several areas of drug development. Authors have considered the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their antioxidant activity; therefore, the use of these natural compounds would improve the quality of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols, and present the highest antioxidant activity in comparison to red algae and green algae. The present paper collects the most recent in vitro and in vivo evidence from investigations regarding polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in drug development to delay cell loss in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
439
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
440
|
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial Properties of Amyloidogenic Proteins and Peptides: New Data in the COVID Era. Biomedicines 2023; 11:1215. [PMID: 37189833 PMCID: PMC10136278 DOI: 10.3390/biomedicines11041215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fatemeh N. Emamzadeh
- Analytical Development Department, Iovance Biotherapeutics, Inc., Tampa, FL 33612, USA
| | - Mariya Titova
- The College of Liberal Arts & Sciences, Kansas University, Lawrence, KS 66045, USA
| | - Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
441
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
442
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
443
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
444
|
Wang Z, Zhang C, He S, Xu D. An ultrasensitive fluorescence aptasensor for SARS-CoV-2 antigen based on hyperbranched rolling circle amplification. Talanta 2023; 255:124221. [PMID: 36608425 PMCID: PMC9792189 DOI: 10.1016/j.talanta.2022.124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and accurate diagnosis of SARS-CoV-2 infection at early stages can help to attenuate the effects of the COVID-19. Compared to RNA and antibodies detection, direct detection of viral antigens could reflect infectivity more appropriately. However, it is still a great challenge to construct a convenient, accurate and sensitive biosensor with a suitable molecular recognition element for SARS-CoV-2 antigens. Herein, we report a HRCA-based aptasensor for simple, ultrasensitive and quantitative detection of SARS-CoV-2 S1 protein and pseudovirus. The aptamer sequence used here is selected from several published aptamers by enzyme-linked oligonucleotide assay and molecular docking simulation. The sensor forms an antibody-target-aptamer sandwich complex on the surface of microplates and elicits HRCA for fluorescent detection. Without complicated operations or special instruments and reagents, the aptasensor can detect S1 protein with a LOD of 89.7 fg/mL in the linear range of 100 fg/mL to 1 μg/mL. And it can also detect SARS-CoV-2 spike pseudovirus in artificial saliva with a LOD of 51 TU/μL. Therefore, this simple and ultrasensitive aptasensor has the potential to detect SARS-CoV-2 infection at early stages. It may improve the timeliness and accuracy of SARS-CoV-2 diagnosis and demonstrate a strategy to conduct aptasensors for other targets.
Collapse
|
445
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
446
|
Alomair BM, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Buhadily AK, Alexiou A, Papadakis M, Alshammari MA, Saad HM, Batiha GE. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis 2023; 11:e838. [PMID: 37102645 PMCID: PMC10132185 DOI: 10.1002/iid3.838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19) is caused by a novel severe acute respiratory syndrome coronavirus virus type 2 (SARS-CoV-2) leading to the global pandemic worldwide. Systemic complications in Covid-19 are mainly related to the direct SARS-CoV-2 cytopathic effects, associated hyperinflammation, hypercytokinemia, and the development of cytokine storm (CS). As well, Covid-19 complications are developed due to the propagation of oxidative and thrombotic events which may progress to a severe state called oxidative storm and thrombotic storm (TS), respectively. In addition, inflammatory and lipid storms are also developed in Covid-19 due to the activation of inflammatory cells and the release of bioactive lipids correspondingly. Therefore, the present narrative review aimed to elucidate the interrelated relationship between different storm types in Covid-19 and the development of the mixed storm (MS). In conclusion, SARS-CoV-2 infection induces various storm types including CS, inflammatory storm, lipid storm, TS and oxidative storm. These storms are not developing alone since there is a close relationship between them. Therefore, the MS seems to be more appropriate to be related to severe Covid-19 than CS, since it develops in Covid-19 due to the intricate interface between reactive oxygen species, proinflammatory cytokines, complement activation, coagulation disorders, and activated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Department of Medicine, College of Medicine, Internal Medicine and EndocrinologyJouf UniversityAl‐JoufSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine, and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Majed Ayed Alshammari
- Department of MedicinePrince Mohammed Bin Abdulaziz Medical CitySakakaAl‐JoufSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsaMatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
447
|
Mustapha M, Mat Taib CN. Beneficial Role of Vitexin in Parkinson's Disease. Malays J Med Sci 2023; 30:8-25. [PMID: 37102042 PMCID: PMC10125247 DOI: 10.21315/mjms2023.30.2.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 04/28/2023] Open
Abstract
Today, Parkinson's disease (PD) is the foremost neurological disorder all across the globe. In the quest for a novel therapeutic agent for PD with a multimodal mechanism of action and relatively better safety profile, natural flavonoids are now receiving greater attention as a potential source of neuroprotection. Vitexin have been shown to exhibit diverse biological benefits in various disease conditions, including PD. It exerts its anti-oxidative property in PD patients by either directly scavenging reactive oxygen species (ROS) or by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the activities of antioxidant enzymes. Also, vitexin activates the ERK1/1 and phosphatidyl inositol-3 kinase/Akt (PI3K/Akt) pro-survival signalling pathway, which upregulates the release of anti-apoptotic proteins and downregulates the expression of pro-apoptotic proteins. It could be antagonistic to protein misfolding and aggregation. Studies have shown that it can also act as an inhibitor of monoamine oxidase B (MAO-B) enzyme, thereby increasing striatal dopamine levels, and hence, restoring the behavioural deficit in experimental PD models. Such promising pharmacological potential of vitexin could be a game-changer in devising novel therapeutic strategies against PD. This review discusses the chemistry, properties, sources, bioavailability and safety profile of vitexin. The possible molecular mechanisms underlying the neuroprotective action of vitexin in the pathogenesis of PD alongside its therapeutic potential is also discussed.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
448
|
Jiang Z, Liang Z, Cui Y, Zhang C, Wang J, Wang H, Wang T, Chen Y, He W, Liu Z, Guo Z. Blood-Brain Barrier Permeable Photoacoustic Probe for High-Resolution Imaging of Nitric Oxide in the Living Mouse Brain. J Am Chem Soc 2023; 145:7952-7961. [PMID: 37000012 DOI: 10.1021/jacs.2c13315] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Alternations in the brain nitric oxide (NO) homeostasis are associated with a variety of neurodegeneration diseases; therefore, high-resolution imaging of NO in the brain is essential for understanding pathophysiological processes. However, currently available NO probes are unsuitable for this purpose due to their poor ability to cross the blood-brain barrier (BBB) or to image in deep tissues with spatial resolution. Herein, we developed a photoacoustic (PA) probe with BBB crossing ability to overcome this obstacle. The probe shows a highly selective ratiometric response toward NO, which enables the probe to image NO with micron resolution in the whole brain of living mice. Using three-dimensional PA imaging, we demonstrated that the probe could be used to visualize the detailed NO distribution in varying depth cross-sections (0-8 mm) of the living Parkinson's disease (PD) mouse brain. We also investigated the therapeutic properties of natural polyphenols in the PD mouse brain using the probe as an imaging agent and suggested the potential of the probe for screening therapeutic agents. This study provides a promising imaging agent for imaging of NO in the mouse brain with high resolution. We anticipate that these findings may open up new possibilities for understanding the biological functions of NO in the brain and the development of new imaging agents for the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yijing Cui
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jing Wang
- TomoWave Laboratories, Inc., Houston, Texas 77054, United States
| | - Hong Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianzhu Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
449
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
450
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|