401
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
402
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
403
|
Bourquard T, Lee K, Al-Ramahi I, Pham M, Shapiro D, Lagisetty Y, Soleimani S, Mota S, Wilhelm K, Samieinasab M, Kim YW, Huh E, Asmussen J, Katsonis P, Botas J, Lichtarge O. Functional variants identify sex-specific genes and pathways in Alzheimer's Disease. Nat Commun 2023; 14:2765. [PMID: 37179358 PMCID: PMC10183026 DOI: 10.1038/s41467-023-38374-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of Alzheimer's Disease in females is almost double that of males. To search for sex-specific gene associations, we build a machine learning approach focused on functionally impactful coding variants. This method can detect differences between sequenced cases and controls in small cohorts. In the Alzheimer's Disease Sequencing Project with mixed sexes, this approach identified genes enriched for immune response pathways. After sex-separation, genes become specifically enriched for stress-response pathways in male and cell-cycle pathways in female. These genes improve disease risk prediction in silico and modulate Drosophila neurodegeneration in vivo. Thus, a general approach for machine learning on functionally impactful variants can uncover sex-specific candidates towards diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Minh Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dillon Shapiro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yashwanth Lagisetty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX, 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin Wilhelm
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maryam Samieinasab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Young Won Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eunna Huh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer Asmussen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
404
|
Nepal C, Andersen JB. Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes. Nat Commun 2023; 14:2712. [PMID: 37169774 PMCID: PMC10175279 DOI: 10.1038/s41467-023-38272-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Transcriptional regulation is commonly governed by alternative promoters. However, the regulatory architecture in alternative and reference promoters, and how they differ, remains elusive. In 100 CAGE-seq libraries from hepatocellular carcinoma patients, here we annotate 4083 alternative promoters in 2926 multi-promoter genes, which are largely undetected in normal livers. These genes are enriched in oncogenic processes and predominantly show association with overall survival. Alternative promoters are narrow nucleosome depleted regions, CpG island depleted, and enriched for tissue-specific transcription factors. Globally tumors lose DNA methylation. We show hierarchical retention of intragenic DNA methylation with CG-poor regions rapidly losing methylation, while CG-rich regions retain it, a process mediated by differential SETD2, H3K36me3, DNMT3B, and TET1 binding. This mechanism is validated in SETD2 knockdown cells and SETD2-mutated patients. Selective DNA methylation loss in CG-poor regions makes the chromatin accessible for alternative transcription. We show alternative promoters can control tumor transcriptomes and their regulatory architecture.
Collapse
Affiliation(s)
- Chirag Nepal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark.
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
405
|
Liu H, Zhu Y, Ng KTP, Lo CM, Man K. The Landscape of Aberrant Alternative Splicing Events in Steatotic Liver Graft Post Transplantation via Transcriptome-Wide Analysis. Int J Mol Sci 2023; 24:ijms24098216. [PMID: 37175922 PMCID: PMC10179559 DOI: 10.3390/ijms24098216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The application of steatotic liver graft has been increased significantly due to the severe donor shortage and prevalence of non-alcoholic fatty liver disease. However, steatotic donor livers are vulnerable to acute phase inflammatory injury, which may result in cancer recurrence. Alternative splicing events (ASEs) are critical for diverse transcriptional variants in hepatocellular carcinoma (HCC). Here, we aimed to depict the landscape of ASEs, as well as to identify the differential ASEs in steatotic liver graft and their association with tumor recurrence after transplantation. The overall portrait of intragraft transcripts and ASEs were elucidated through RNA sequencing with the liver graft biopsies from patients and rat transplant models. Various differential ASEs were identified in steatotic liver grafts. CYP2E1, ADH1A, CYP2C8, ADH1C, and HGD, as corresponding genes to the common pathways involved differential ASEs in human and rats, were significantly associated with HCC patients' survival. The differential ASEs related RNA-binding proteins (RBPs) were enriched in metabolic pathways. The altered immune cell distribution, particularly macrophages and neutrophils, were perturbated by differential ASEs. The cancer hallmarks were enriched in steatotic liver grafts and closely associated with differential ASEs. Our work identified the differential ASE network with metabolic RBPs, immune cell distribution, and cancer hallmarks in steatotic liver grafts. We verified the link between steatotic liver graft injury and tumor recurrence at post-transcriptional level, offered new evidence to explore metabolism and immune responses, and provided the potential prognostic and therapeutic markers for tumor recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung-Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
406
|
Cho YA, Kim SE, Park CK, Koh HH, Park CK, Ha SY. Loss of F-Box and Leucine Rich Repeat Protein 5 (FBXL5) Expression Is Associated With Poor Survival in Patients With Hepatocellular Carcinoma After Curative Resection: A Two-institute Study. Cancer Genomics Proteomics 2023; 20:298-307. [PMID: 37093682 PMCID: PMC10148071 DOI: 10.21873/cgp.20382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND/AIM Alteration of F-box and leucine-rich repeat protein 5 (FBXL5), an iron-sensing ubiquitin ligase, might be related with carcinogenesis of hepatocellular carcinoma (HCC), by disturbing cellular iron homeostasis. However, the clinical implications of FBXL5 expression using patient samples need to be elucidated. PATIENTS AND METHODS We collected HCC tissue samples from two institutes: Samsung Medical Center (n=259) and Hallym University Sacred Heart Hospital (n=115) and evaluated FBXL5 expression using immunohistochemistry. Using cut-off values determined by X-tile software, association between FBXL5 expression and several clinicopathological parameters was investigated. For external validation, the Cancer Genome Atlas (TCGA) cohort was used. RESULTS The best cutoff value for FBXL5 IHC expression associated with recurrence-free survival (RFS) was 5%. Low FBXL5 expression was found in 18.7% of the total 374 HCCs and was associated with non-viral etiology (p=0.019). Low FBXL5 expression was related with inferior disease-specific survival (DSS, p=0.002) and RFS (p=0.001) and also was an independent prognostic factor for DSS and RFS. In addition, cases with low FBLX5 mRNA levels showed inferior DSS and RFS (p<0.001 and p=0.002, respectively) compared to high FBLX5 mRNA levels in the TCGA cohort. CONCLUSION Down-regulation of FBXL5 expression in HCCs might be associated with poor prognosis. FBXL5 might be a prognostic biomarker of HCCs and a potential therapeutic target in conjunction with iron homeostasis.
Collapse
Affiliation(s)
- Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Cheol Keun Park
- Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hyun Hee Koh
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol-Keun Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Pathology, Korea Clinical Laboratory, Korea Phill Medical Foundation, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
407
|
Chen Y, Zhu Z, Ma T, Zhang L, Chen J, Jiang J, Lu C, Ding Y, Guan W, Yi N, Ren H. TP53 mutation-related senescence is an indicator of hepatocellular carcinoma patient outcomes from multiomics profiles. SMART MEDICINE 2023; 2:e20230005. [PMID: 39188277 PMCID: PMC11235654 DOI: 10.1002/smmd.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 08/28/2024]
Abstract
TP53 mutation frequently occurs in hepatocellular carcinoma (HCC). Senescence also plays a vital role in the ongoing process of HCC. P53 is believed to regulate the advancement of senescence in HCC. However, the exact mechanism of TP53 mutation-related senescence remains unclear. In this study, we found the TP53 mutation was positively correlated with senescence in HCC, and the differential expressed genes were primarily located in macrophages. Our results proved that the risk score could have an independent and vital role in predicting the prognosis of HCC patients. In addition, HCC patients with a high risk score may most probably benefit from immune checkpoint block therapy. We also found the risk score is elevated in chemotherapy-treated HCC samples, with a high level of senescence-associated secretory phenotype. Finally, we validated the risk-score genes in the protein level and noticed the risk score is positively related with M2 polarization. Of note, we considered that the risk score under the TP53 mutation and senescence is a promising biomarker with the potential to aid in predicting prognosis, defining tumor environment characteristics, and assessing the benefits of immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yu‐Yan Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zheng‐Yi Zhu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Tao Ma
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Jing Chen
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Jia‐Wei Jiang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Cui‐Hua Lu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi‐Tao Ding
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Wen‐Xian Guan
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Nan Yi
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Hao‐Zhen Ren
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
408
|
Lim M, Franses JW, Imperial R, Majeed U, Tsai J, Hsiehchen D. EGFR/ERBB2 Amplifications and Alterations Associated With Resistance to Lenvatinib in Hepatocellular Carcinoma. Gastroenterology 2023; 164:1006-1008.e3. [PMID: 36708791 DOI: 10.1053/j.gastro.2023.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Mir Lim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph W Franses
- Division of Hematology-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robin Imperial
- Division of Hematology-Oncology, Mayo Clinic, Jacksonville, Florida
| | - Umair Majeed
- Division of Hematology-Oncology, Mayo Clinic, Jacksonville, Florida
| | - Jill Tsai
- Guardant Health Inc, Redwood City, California
| | - David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
409
|
Fulgenzi CAM, Scheiner B, Korolewicz J, Stikas CV, Gennari A, Vincenzi B, Openshaw MR, Silletta M, Pinter M, Cortellini A, Scotti L, D'Alessio A, Pinato DJ. Efficacy and safety of frontline systemic therapy for advanced HCC: A network meta-analysis of landmark phase III trials. JHEP Rep 2023; 5:100702. [PMID: 37025943 PMCID: PMC10070142 DOI: 10.1016/j.jhepr.2023.100702] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 04/08/2023] Open
Abstract
Background & Aims Direct comparisons across first-line regimens for advanced hepatocellular carcinoma are not available. We performed a network metanalysis of phase III of trials to compare first-line systemic treatments for hepatocellular carcinoma in terms of overall survival (OS), progression-free survival (PFS), objective response rate, disease control rate, and incidence of adverse events (AEs). Methods After performing a literature review from January 2008 to September 2022, we screened 6,329 studies and reviewed 3,009 studies, leading to identification of 15 phase III trials for analysis. We extracted odds ratios for objective response rate and disease control rate, relative risks for AEs, and hazard ratios (HRs) with 95% CIs for OS and PFS, and used a frequentist network metanalysis, with fixed-effect multivariable meta-regression models to estimate the indirect pooled HRs, odds ratios, relative risks, and corresponding 95% CIs, considering sorafenib as reference. Results Of 10,820 included patients, 10,444 received active treatment and 376 placebo. Sintilimab + IBI350, camrelizumab + rivoceranib, and atezolizumab + bevacizumab provided the greatest reduction in the risk of death compared with sorafenib, with HRs of 0.57 (95% CI 0.43-0.75), 0.62 (95% CI 0.49-0.79), and 0.66 (95% CI 0.52-0.84), respectively. Considering PFS, camrelizumab + rivoceranib and pembrolizumab + lenvatinib were associated with the greatest reduction in the risk of PFS events compared with sorafenib, with HRs of 0.52 (95% CI 0.41-0.65) and 0.52 (95% CI 0.35-0.77), respectively. Immune checkpoint inhibitor (ICI) monotherapies carried the lowest risk for all-grade and grade ≥3 AEs. Conclusions The combinations of ICI + anti-vascular endothelial growth factor, and double ICIs lead to the greatest OS benefit compared with sorafenib, whereas ICI + kinase inhibitor regimens are associated with greater PFS benefit at the cost of higher toxicity rates. Impact and Implications In the last few years, many different therapies have been studied for patients with primary liver cancer that cannot be treated with surgery. In these cases, anticancer drugs (alone or in combination) are given with the intent to keep the cancer at bay and, ultimately, to prolong survival. Among all the therapies that have been investigated, the combination of immunotherapy (drugs that boost the immune system against the cancer) and anti-angiogenic agents (drugs that act on tumoural vessels) has appeared the best to improve survival. Similarly, the combination of two types of immunotherapies that activate the immune system at different levels has also shown positive results. Systematic Review Registration PROSPERO CRD42022366330.
Collapse
Affiliation(s)
- Claudia Angela Maria Fulgenzi
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Bernhard Scheiner
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - James Korolewicz
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mark R Openshaw
- University Hospitals Birmingham Cancer Centre, Birmingham, UK
| | - Marianna Silletta
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessio Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Lorenza Scotti
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
| |
Collapse
|
410
|
Zabransky DJ, Danilova L, Leatherman JM, Lopez-Vidal TY, Sanchez J, Charmsaz S, Gross NE, Shin S, Yuan X, Hernandez A, Yang H, Xavier S, Shu D, Saeed A, Munjal K, Kamdar Z, Kagohara LT, Jaffee EM, Yarchoan M, Ho WJ. Profiling of syngeneic mouse HCC tumor models as a framework to understand anti-PD-1 sensitive tumor microenvironments. Hepatology 2023; 77:1566-1579. [PMID: 35941803 PMCID: PMC9905363 DOI: 10.1002/hep.32707] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The treatment of hepatocellular carcinoma (HCC) has been transformed by the use of immune checkpoint inhibitors. However, most patients with HCC do not benefit from treatment with immunotherapy. There is an urgent need to understand the mechanisms that underlie response or resistance to immunotherapy for patients with HCC. The use of syngeneic mouse models that closely recapitulate the heterogeneity of human HCC will provide opportunities to examine the complex interactions between cancer cells and nonmalignant cells in the tumor microenvironment. APPROACH AND RESULTS We leverage a multifaceted approach that includes imaging mass cytometry and suspension cytometry by time of flight to profile the tumor microenvironments of the Hep53.4, Hepa 1-6, RIL-175, and TIBx (derivative of TIB-75) syngeneic mouse HCC models. The immune tumor microenvironments vary across these four models, and various immunosuppressive pathways exist at baseline in orthotopic liver tumors derived from these models. For instance, TIBx, which is resistant to anti-programmed cell death protein 1 therapy, contains a high proportion of "M2-like" tumor-associated macrophages with the potential to diminish antitumor immunity. Investigation of The Cancer Genome Atlas reveals that the baseline immunologic profiles of Hep53.4, RIL-175, and TIBx are broadly representative of human HCCs; however, Hepa 1-6 does not recapitulate the immune tumor microenvironment of the vast majority of human HCCs. CONCLUSIONS There is a wide diversity in the immune tumor microenvironments in preclinical models and in human HCC, highlighting the need to use multiple syngeneic HCC models to improve the understanding of how to treat HCC through immune modulation.
Collapse
Affiliation(s)
- Daniel J. Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M. Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara Y. Lopez-Vidal
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Sanchez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E. Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuan Yuan
- Flow/Mass Cytometry Facility, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongqui Yang
- Flow/Mass Cytometry Facility, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Xavier
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Shu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Saeed
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zeal Kamdar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Cancer Convergence Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Flow/Mass Cytometry Facility, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
411
|
Sgro A, Cursons J, Waryah C, Woodward EA, Foroutan M, Lyu R, Yeoh GCT, Leedman PJ, Blancafort P. Epigenetic reactivation of tumor suppressor genes with CRISPRa technologies as precision therapy for hepatocellular carcinoma. Clin Epigenetics 2023; 15:73. [PMID: 37120619 PMCID: PMC10149030 DOI: 10.1186/s13148-023-01482-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Joseph Cursons
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Charlene Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Eleanor A Woodward
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Momeneh Foroutan
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, 3065, Australia
- Melbourne Integrative Genomics/School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - George C T Yeoh
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Peter J Leedman
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, Perth, WA, 6009, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
412
|
Luo G, Letterio JJ. LOCC: a novel visualization and scoring of cutoffs for continuous variables. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536461. [PMID: 37090530 PMCID: PMC10120642 DOI: 10.1101/2023.04.11.536461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Objective There is a need for new methods to select and analyze cutoffs employed to define genes that are most prognostic significant and impactful. We designed LOCC (Luo's Optimization Categorization Curve), a novel tool to visualize and score continuous variables for a dichotomous outcome. Methods To demonstrate LOCC with real world data, we analyzed TCGA hepatocellular carcinoma gene expression and patient data using LOCC. We compared LOCC visualization to receiver operating characteristic (ROC) curve for prognostic modeling to showcase its utility in understanding predictors in various TCGA datasets. Results Analysis of E2F1 expression in hepatocellular carcinoma using LOCC demonstrated appropriate cutoff selection and validation. In addition, we compared LOCC visualization and scoring to ROC curves and c-statistics, demonstrating that LOCC better described predictors. Analysis of a previously published gene signature showed large differences in LOCC scoring, and removing the lowest scoring genes did not affect prognostic modeling of the gene signature demonstrating LOCC scoring could distinguish which predictors were most critical. Conclusion Overall, LOCC is a novel visualization tool for understanding and selecting cutoffs, particularly for gene expression analysis in cancer. The LOCC score can be used to rank genes for prognostic potential and is more suitable than ROC curves for prognostic modeling.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - John J. Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children’s Hospital, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
413
|
Ji JH, Ha SY, Lee D, Sankar K, Koltsova EK, Abou-Alfa GK, Yang JD. Predictive Biomarkers for Immune-Checkpoint Inhibitor Treatment Response in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:7640. [PMID: 37108802 PMCID: PMC10144688 DOI: 10.3390/ijms24087640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has one of the highest mortality rates among solid cancers. Late diagnosis and a lack of efficacious treatment options contribute to the dismal prognosis of HCC. Immune checkpoint inhibitor (ICI)-based immunotherapy has presented a new milestone in the treatment of cancer. Immunotherapy has yielded remarkable treatment responses in a range of cancer types including HCC. Based on the therapeutic effect of ICI alone (programmed cell death (PD)-1/programmed death-ligand1 (PD-L)1 antibody), investigators have developed combined ICI therapies including ICI + ICI, ICI + tyrosine kinase inhibitor (TKI), and ICI + locoregional treatment or novel immunotherapy. Although these regimens have demonstrated increasing treatment efficacy with the addition of novel drugs, the development of biomarkers to predict toxicity and treatment response in patients receiving ICI is in urgent need. PD-L1 expression in tumor cells received the most attention in early studies among various predictive biomarkers. However, PD-L1 expression alone has limited utility as a predictive biomarker in HCC. Accordingly, subsequent studies have evaluated the utility of tumor mutational burden (TMB), gene signatures, and multiplex immunohistochemistry (IHC) as predictive biomarkers. In this review, we aim to discuss the current state of immunotherapy for HCC, the results of the predictive biomarker studies, and future direction.
Collapse
Affiliation(s)
- Jun Ho Ji
- Division of Hematology and Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sang Yun Ha
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Danbi Lee
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kamya Sankar
- Division of Medical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina K. Koltsova
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weil Cornell Medicine, Cornell University, New York, NY 14853, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
414
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:7463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
415
|
Scarpa JR, Elemento O. Multi-omic molecular profiling and network biology for precision anaesthesiology: a narrative review. Br J Anaesth 2023:S0007-0912(23)00125-3. [PMID: 37055274 DOI: 10.1016/j.bja.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 04/15/2023] Open
Abstract
Technological advancement, data democratisation, and decreasing costs have led to a revolution in molecular biology in which the entire set of DNA, RNA, proteins, and various other molecules - the 'multi-omic' profile - can be measured in humans. Sequencing 1 million bases of human DNA now costs US$0.01, and emerging technologies soon promise to reduce the cost of sequencing the whole genome to US$100. These trends have made it feasible to sample the multi-omic profile of millions of people, much of which is publicly available for medical research. Can anaesthesiologists use these data to improve patient care? This narrative review brings together a rapidly growing literature in multi-omic profiling across numerous fields that points to the future of precision anaesthesiology. Here, we discuss how DNA, RNA, proteins, and other molecules interact in molecular networks that can be used for preoperative risk stratification, intraoperative optimisation, and postoperative monitoring. This literature provides evidence for four fundamental insights: (1) Clinically similar patients have different molecular profiles and, as a consequence, different outcomes. (2) Vast, publicly available, and rapidly growing molecular datasets have been generated in chronic disease patients and can be repurposed to estimate perioperative risk. (3) Multi-omic networks are altered in the perioperative period and influence postoperative outcomes. (4) Multi-omic networks can serve as empirical, molecular measurements of a successful postoperative course. With this burgeoning universe of molecular data, the anaesthesiologist-of-the-future will tailor their clinical management to an individual's multi-omic profile to optimise postoperative outcomes and long-term health.
Collapse
Affiliation(s)
- Joseph R Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
416
|
Deficiency of Carbamoyl Phosphate Synthetase 1 Engenders Radioresistance in Hepatocellular Carcinoma via Deubiquitinating c-Myc. Int J Radiat Oncol Biol Phys 2023; 115:1244-1256. [PMID: 36423742 DOI: 10.1016/j.ijrobp.2022.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.
Collapse
|
417
|
Chen J, Li M, Liu Y, Guan T, Yang X, Wen Y, Zhu Y, Xiao Z, Shen X, Zhang H, Tang H, Liu T. PIN1 and CDK1 cooperatively govern pVHL stability and suppressive functions. Cell Death Differ 2023; 30:1082-1095. [PMID: 36813923 PMCID: PMC10070344 DOI: 10.1038/s41418-023-01128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.
Collapse
Affiliation(s)
- Jiayi Chen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Tangming Guan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yalei Wen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutic Sciences, Guizhou Medical University, University Town, Guiyang City and Guian New District, Guiyang, 550025, P. R. China
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, P. R. China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, P. R. China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, P. R. China.
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China.
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
| |
Collapse
|
418
|
Zhou L, Xia S, Liu Y, Ji Q, Li L, Gao X, Guo X, Yi X, Chen F. A lipid metabolism-based prognostic risk model for HBV-related hepatocellular carcinoma. Lipids Health Dis 2023; 22:46. [PMID: 37004044 PMCID: PMC10067291 DOI: 10.1186/s12944-023-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Up to 85% of hepatocellular carcinoma (HCC) cases in China can be attributed to infection of hepatitis B virus (HBV). Lipid metabolism performs important function in hepatocarcinogenesis of HBV-related liver carcinoma. However, limited studies have explored the prognostic role of lipid metabolism in HBV-related HCC. This study established a prognostic model to stratify HBV-related HCC based on lipid metabolisms. METHODS Based on The Cancer Genome Atlas HBV-related HCC samples, this study selected prognosis-related lipid metabolism genes and established a prognosis risk model by performing uni- and multi-variate Cox regression methods. The final markers used to establish the model were selected through the least absolute shrinkage and selection operator method. Analysis of functional enrichment, immune landscape, and genomic alteration was utilized to investigate the inner molecular mechanism involved in prognosis. RESULTS The risk model independently stratified HBV-infected patients with liver cancer into two risk groups. The low-risk groups harbored longer survival times (with P < 0.05, log-rank test). TP53, LRP1B, TTN, and DNAH8 mutations and high genomic instability occurred in high-risk groups. Low-risk groups harbored higher CD8 T cell infiltration and BTLA expression. Lipid-metabolism (including "Fatty acid metabolism") and immune pathways were significantly enriched (P < 0.05) in the low-risk groups. CONCLUSIONS This study established a robust model to stratify HBV-related HCC effectively. Analysis results decode in part the heterogeneity of HBV-related liver cancer and highlight perturbation of lipid metabolism in HBV-related HCC. This study's findings could facilitate patients' clinical classification and give hints for treatment selection.
Collapse
Affiliation(s)
- Lili Zhou
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Shaohuai Xia
- Beijing Fuzheng Cancer Hospital, No. 20 Jinghai 3rd road, Yizhuang Economic and Technological Development Zone, Beijing, 100070, China
| | - Yaoyao Liu
- Beijing GenePlus Genomics Institute, Beijing, 102205, China
| | - Qiang Ji
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Lifeng Li
- Beijing GenePlus Genomics Institute, Beijing, 102205, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen GenePlus Clinical Laboratory, ShenZhen, 518122, China
| | - Xiaodi Guo
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Xin Yi
- Beijing GenePlus Genomics Institute, Beijing, 102205, China
| | - Feng Chen
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
419
|
Sun L, Gu M, Cai J, Yang W, Pan B, Wang B, Zhang C, Guo W. Combining γ-GT, PIVKA-II, and AFP to predict long-term prognosis in patients with hepatocellular carcinoma after hepatectomy. Clin Exp Pharmacol Physiol 2023; 50:287-297. [PMID: 36507841 DOI: 10.1111/1440-1681.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the top five contributors to the cancer burden in China, with a poor prognosis and heavy disability-adjusted life year burden. The criteria used for HCC prognosis are complicated and therefore restricted in routine clinical practice. Multiple factors influence HCC malignancy and progression. In this study, we retrospectively evaluated 173 patients with HCC who underwent curative resection for 9 years to evaluate the correlation of a combination of γ-glutamyl transferase (γ-GT), protein induced by vitamin K absence or antagonist-II (PIVKA-II), and α-fetoprotein (AFP) with the long-term survival of patients with HCC. Multivariate analysis revealed that the γ-GT level was an independent prognostic factor for recurrence. The prediction rate of early recurrence with γ-GT, PIVKA-II, and AFP levels individually was 63.5%, 79.4%, and 39.7%, respectively, whereas the prediction rate of early recurrence was 95.2% with the combination of γ-GT, PIVKA-II, and AFP levels as a composite indicator. Our long-term retrospective study revealed that γ-GT, PIVKA-II, and AFP can aid in predicting long-term prognosis of HCC recurrence. The combination of γ-GT, PIVKA-II, and AFP can further aid in identifying patients with early recurrence. Together, γ-GT, PIVKA-II, and AFP may a be used to develop a new prediction method to improve the prognosis of patients with HCC, and our results indicate the requirement of more active HCC treatment strategies.
Collapse
Affiliation(s)
- Lin Sun
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Meixiu Gu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
420
|
Zhu J, Xu X, Jiang M, Yang F, Mei Y, Zhang X. Comprehensive characterization of ferroptosis in hepatocellular carcinoma revealing the association with prognosis and tumor immune microenvironment. Front Oncol 2023; 13:1145380. [PMID: 37051544 PMCID: PMC10083400 DOI: 10.3389/fonc.2023.1145380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundFerroptosis is a type of regulatory cell death (RCD) mode that depends on iron-mediated oxidative damage. It has the potential to improve the efficacy of tumor immunotherapy by modulating the tumor microenvironment (TME). Currently, immunotherapy has significantly improved the overall treatment strategy for advanced hepatocellular carcinoma (HCC), but the distinct immune microenvironment and high tolerance to the immune make massive differences in the immunotherapy effect of HCC patients. As a result, it is imperative to classify HCC patients who may benefit from immune checkpoint therapy. Simultaneously, the predictive value of ferroptosis in HCC and its potential role in TME immune cell infiltration also need to be further clarified.MethodsThree ferroptosis molecular models were built on the basis of mRNA expression profiles of ferroptosis-related genes (FRGs), with notable variations in immunocyte infiltration, biological function, and survival prediction. In order to further investigate the predictive impact of immunotherapy response in HCC patients, the ferroptosis score was constructed using the principal component analysis (PCA) algorithm to quantify the ferroptosis molecular models of individual tumors.ResultsIn HCC, there were three totally different ferroptosis molecular models. The ferroptosis score can be used to assess genetic variation, immunotherapy response, TME characteristics, and prognosis. Notably, tumors with low ferroptosis scores have extensive tumor mutations and immune exhaustion, which are associated with a poor prognosis and enhanced immunotherapy response.ConclusionsOur study indicates that ferroptosis plays an indispensable role in the regulation of the tumor immune microenvironment. For HCC, the ferroptosis score is an independent prognostic indicator. Assessing the molecular model of ferroptosis in individual tumors will assist us in better understanding the characteristics of TME, predicting the effect of immunotherapy in HCC patients, and thus guiding a more reasonable immunotherapy program.
Collapse
Affiliation(s)
- Jingjuan Zhu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiao Xu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Man Jiang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingying Mei
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Xiaochun Zhang,
| |
Collapse
|
421
|
Perez S, Lavi-Itzkovitz A, Gidoni M, Domovitz T, Dabour R, Khurana I, Davidovich A, Tobar A, Livoff A, Solomonov E, Maman Y, El-Osta A, Tsai Y, Yu ML, Stemmer SM, Haviv I, Yaari G, Gal-Tanamy M. High-Resolution Genomic Profiling of Liver Cancer Links Etiology With Mutation and Epigenetic Signatures. Cell Mol Gastroenterol Hepatol 2023; 16:63-81. [PMID: 36965814 PMCID: PMC10212990 DOI: 10.1016/j.jcmgh.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a model of a diverse spectrum of cancers because it is induced by well-known etiologies, mainly hepatitis C virus (HCV) and hepatitis B virus. Here, we aimed to identify HCV-specific mutational signatures and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization. METHODS To identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from 3 etiology groups: hepatitis B virus, HCV, or other. To explore the link between the genomic signature and genome-wide chromatin organization we performed chromatin immunoprecipitation sequencing for the transcriptionally permissive H3K4Me3, H3K9Ac, and suppressive H3K9Me3 modifications after HCV infection. RESULTS Regional variation in mutation rate analysis showed significant etiology-dependent regional mutation rates in 12 genes: LRP2, KRT84, TMEM132B, DOCK2, DMD, INADL, JAK2, DNAH6, MTMR9, ATM, SLX4, and ARSD. We found an enrichment of C->T transversion mutations in the HCV-associated HCC cases. Furthermore, these cases showed regional variation in mutation rates associated with genomic intervals in which HCV infection dictated epigenetic alterations. This signature may be related to the HCV-induced decreased expression of genes encoding key enzymes in the base excision repair pathway. CONCLUSIONS We identified novel distinct HCV etiology-dependent mutation signatures in HCC associated with HCV-induced alterations in histone modification. This study presents a link between cancer-causing mutagenesis and the increased predisposition to liver cancer in chronic HCV-infected individuals, and unveils novel etiology-specific mechanisms leading to HCC and cancer in general.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Anat Lavi-Itzkovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moriah Gidoni
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Tom Domovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Roba Dabour
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Ateret Davidovich
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ana Tobar
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilay Medical Center, Faculty of Medicine, Ben Gurion University, Beer Sheva, Israel
| | | | - Yaakov Maman
- The Laboratory of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yishan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Haviv
- Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; AID Genomics, Ltd, Rehovot, Israel.
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.
| | - Meital Gal-Tanamy
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
422
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Zhu H, Ma L. LIFR recruits HGF-producing neutrophils to promote liver injury repair and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533289. [PMID: 36993315 PMCID: PMC10055204 DOI: 10.1101/2023.03.18.533289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The molecular links between tissue repair and tumorigenesis remain elusive. Here, we report that loss of the liver tumor suppressor Lifr in mouse hepatocytes impairs the recruitment and activity of reparative neutrophils, resulting in the inhibition of liver regeneration after partial hepatectomy or toxic injuries. On the other hand, overexpression of LIFR promotes liver repair and regeneration after injury. Interestingly, LIFR deficiency or overexpression does not affect hepatocyte proliferation ex vivo or in vitro . In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of the neutrophil chemoattractant CXCL1 (which binds CXCR2 to recruit neutrophils) and cholesterol in a STAT3-dependent manner. Cholesterol, in turn, acts on the recruited neutrophils to secrete hepatocyte growth factor (HGF) to accelerate hepatocyte proliferation and regeneration. Altogether, our findings reveal a LIFR-STAT3- CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-HGF axis that mediate hepatic damage- induced crosstalk between hepatocytes and neutrophils to repair and regenerate the liver.
Collapse
|
423
|
Cheng Z, Li L, Zhang Y, Ren Y, Gu J, Wang X, Zhao H, Lu H. HBV-infected hepatocellular carcinoma can be robustly classified into three clinically relevant subgroups by a novel analytical protocol. Brief Bioinform 2023; 24:7025463. [PMID: 36736372 DOI: 10.1093/bib/bbac601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide, and hepatocellular carcinoma (HCC) accounts for a relatively large proportion of all primary liver malignancies. Among the several known risk factors, hepatitis B virus (HBV) infection is one of the important causes of HCC. In this study, we demonstrated that the HBV-infected HCC patients could be robustly classified into three clinically relevant subgroups, i.e. Cluster1, Cluster2 and Cluster3, based on consistent differentially expressed mRNAs and proteins, which showed better generalization. The proposed three subgroups showed different molecular characteristics, immune microenvironment and prognostic survival characteristics. The Cluster1 subgroup had near-normal levels of metabolism-related proteins, low proliferation activity and good immune infiltration, which were associated with its good liver function, smaller tumor size, good prognosis, low alpha-fetoprotein (AFP) levels and lower clinical stage. In contrast, the Cluster3 subgroup had the lowest levels of metabolism-related proteins, which corresponded with its severe liver dysfunction. Also, high proliferation activity and poor immune microenvironment in Cluster3 subgroup were associated with its poor prognosis, larger tumor size, high AFP levels, high incidence of tumor thrombus and higher clinical stage. The characteristics of the Cluster2 subgroup were between the Cluster1 and Cluster3 groups. In addition, MCM2-7, RFC2-5, MSH2, MSH6, SMC2, SMC4, NCPAG and TOP2A proteins were significantly upregulated in the Cluster3 subgroup. Meanwhile, abnormally high phosphorylation levels of these proteins were associated with high levels of DNA repair, telomere maintenance and proliferative features. Therefore, these proteins could be identified as potential diagnostic and prognostic markers. In general, our research provided a novel analytical protocol and insights for the robust classification, treatment and prevention of HBV-infected HCC.
Collapse
Affiliation(s)
- Zhiwei Cheng
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
| | - Leijie Li
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
| | - Yuening Zhang
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
| | - Yongyong Ren
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
| | - Jianlei Gu
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Xinbo Wang
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Hui Lu
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
424
|
Wang T, Zhou Y, Zhou Z, Zhang P, Yan R, Sun L, Ma W, Zhang T, Shen S, Liu H, Lu H, Ye L, Feng J, Chen Z, Zhong X, Wu G, Cai Y, Jia W, Gao P, Zhang H. Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nat Commun 2023; 14:1513. [PMID: 36934105 PMCID: PMC10024721 DOI: 10.1038/s41467-023-37227-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Hepatocytes function largely through the secretion of proteins that regulate cell proliferation, metabolism, and intercellular communications. During the progression of hepatocellular carcinoma (HCC), the hepatocyte secretome changes dynamically as both a consequence and a causative factor in tumorigenesis, although the full scope of secreted protein function in this process remains unclear. Here, we show that the secreted pseudo serine protease PRSS35 functions as a tumor suppressor in HCC. Mechanistically, we demonstrate that active PRSS35 is processed via cleavage by proprotein convertases. Active PRSS35 then suppresses protein levels of CXCL2 through targeted cleavage of tandem lysine (KK) recognition motif. Consequently, CXCL2 degradation attenuates neutrophil recruitment to tumors and formation of neutrophil extracellular traps, ultimately suppressing HCC progression. These findings expand our understanding of the hepatocyte secretome's role in cancer development while providing a basis for the clinical translation of PRRS35 as a therapeutic target or diagnostic biomarker.
Collapse
Affiliation(s)
- Ting Wang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingli Zhou
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zilong Zhou
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Pinggen Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghui Yan
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhao Ma
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiying Liu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Lu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ling Ye
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junru Feng
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaolin Chen
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gao Wu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
425
|
Santo D, Mendonça PV, Serra AC, Coelho JFJ, Faneca H. Targeted downregulation of MYC mediated by a highly efficient lactobionic acid-based glycoplex to enhance chemosensitivity in human hepatocellular carcinoma cells. Int J Pharm 2023; 637:122865. [PMID: 36940837 DOI: 10.1016/j.ijpharm.2023.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA+ SF 1.9 μM compared to 6.9 μM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.
Collapse
Affiliation(s)
- Daniela Santo
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Patrícia V Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Arménio C Serra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal
| | - Jorge F J Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal.
| |
Collapse
|
426
|
USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis 2023; 14:194. [PMID: 36906615 PMCID: PMC10008583 DOI: 10.1038/s41419-023-05699-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.
Collapse
|
427
|
Zou L, Liu K, Shi Y, Li G, Li H, Zhao C. ScRNA-seq revealed targeting regulator of G protein signaling 1 to mediate regulatory T cells in Hepatocellular carcinoma. Cancer Biomark 2023; 36:299-311. [PMID: 36938729 DOI: 10.3233/cbm-220226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Regulatory T cells (Tregs) are central to determine immune response outcomes, thus targeting Tregs for immunotherapy is a promising strategy against tumor development and metastasis. OBJECTIVES The objective of this study was to identify genes for targeting Tregs to improve the outcome of HCC. METHODS We integrated expression data from different samples to remove batch effects and further applied embedding function in Scanpy to conduct sub-clustering of CD4+ T cells in HCC for each of two independent scRNA-seq data. The activity of transcription factors (TFs) was inferred by DoRothEA. Gene expression network analysis was performed in WGCNA R package. We finally used R packages (survminer and survival) to conduct survival analysis. Multiplex immunofluorescence analysis was performed to validate the result from bioinformatic analyses. RESULTS We found that regulator of G protein signaling 1 (RGS1) expression was significantly elevated in Tregs compared to other CD4+ T cells in two independent public scRNA-seq datasets, and increased RGS1 predicted inferior clinical outcome of HCC patients. Multiplex immunofluorescence analysis supported that the higher expression of RGS1 in HCC Tregs in tumor tissue compared to it in adjacent tissue. Moreover, RGS1 expression in Tregs was positively correlated with the expression of marker genes of Tregs, C-X-C chemokine receptor 4 (CXCR4), and three CXCR4-dependent genes in both scRNA-seq and bulk RNA-seq data. We further identified that these three genes were selectively expressed in Tregs as compared to other CD4+ T cells. The activities of two transcription factors, recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and yin yang 1 (YY1), were significantly different in HCC Tregs with RGS1 high and RGS1 low. CONCLUSIONS Our findings suggested that RGS1 may regulate Treg function possibly through CXCR4 signaling and RGS1 could be a potential target to improve responses for immunotherapy in HCC.
Collapse
Affiliation(s)
- Lianhong Zou
- Institute of Translational Medicine, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Kaihua Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yongzhong Shi
- Institute of Translational Medicine, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Guowei Li
- Department of Hepatobiliary Surgery, The First People'S Hospital of Guiyang, Guiyang, Guizhou, China
| | - Haiyang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaoxian Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
428
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide reductase subunit switching in hepatoblastoma drug response and relapse. Commun Biol 2023; 6:249. [PMID: 36882565 PMCID: PMC9992519 DOI: 10.1038/s42003-023-04630-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meifen Lu
- Center for Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
429
|
Karim MA, Singal AG, Kum HC, Lee YT, Park S, Rich NE, Noureddin M, Yang JD. Clinical Characteristics and Outcomes of Nonalcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma in the United States. Clin Gastroenterol Hepatol 2023; 21:670-680.e18. [PMID: 35307595 PMCID: PMC9481743 DOI: 10.1016/j.cgh.2022.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The extent to which nonalcoholic fatty liver disease (NAFLD) contributes to hepatocellular carcinoma (HCC) prevalence in contemporary practices and whether there are any etiologic differences in surveillance receipt, tumor stage, and overall survival (OS) remain unclear. We aimed to estimate the burden of NAFLD-related HCC and magnitude of associations with surveillance receipt, clinical presentation, and outcomes in a contemporary HCC cohort. METHODS In a cohort of HCC patients from the Surveillance, Epidemiology and End Results-Medicare database between 2011 and 2015, we used multivariable logistic regression to identify factors associated with surveillance receipt, early-stage tumor detection, and curative treatment. Cox regression was used to identify factors associated with OS. RESULTS Among 5098 HCC patients, NAFLD was the leading etiology, accounting for 1813 cases (35.6%). Compared with those with hepatitis C-related HCC, NAFLD was associated with lower HCC surveillance receipt (adjusted odds ratio, 0.22; 95% confidence interval [CI], 0.17-0.28), lower early-stage HCC detection (adjusted odds ratio, 0.49; 95% CI, 0.40-0.60), and modestly worse OS (adjusted hazard ratio, 1.20; 95% CI, 1.09-1.32). NAFLD subgroup analysis showed that early-stage HCC, absence of ascites/hepatic encephalopathy, surveillance, and curative treatment receipt were associated with improved OS. NAFLD patients with coexisting liver disease were more likely to have surveillance, early-stage detection, curative treatment, and improved OS than NAFLD patients without coexisting liver diseases. CONCLUSIONS NAFLD is the leading etiology of HCC among Medicare beneficiaries. Compared with other etiologies, NAFLD was associated with lower HCC surveillance receipt, early-stage detection, and modestly poorer survival. Multifaceted interventions for improving surveillance uptake are needed to improve prognosis of patients with NAFLD-related HCC.
Collapse
Affiliation(s)
- Mohammad A Karim
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas; Population Informatics Lab, School of Public Health, Texas A&M University, College Station, Texas
| | - Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hye Chung Kum
- Population Informatics Lab, School of Public Health, Texas A&M University, College Station, Texas
| | - Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Sulki Park
- Population Informatics Lab, School of Public Health, Texas A&M University, College Station, Texas
| | - Nicole E Rich
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California; Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, Los Angeles, California
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California; Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, Los Angeles, California; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
430
|
Akce M, El-Rayes BF, Wajapeyee N. Combinatorial targeting of immune checkpoints and epigenetic regulators for hepatocellular carcinoma therapy. Oncogene 2023; 42:1051-1057. [PMID: 36854723 DOI: 10.1038/s41388-023-02646-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The five-year survival rate of patients with unresectable HCC is about 12%. The liver tumor microenvironment (TME) is immune tolerant and heavily infiltrated with immunosuppressive cells. Immune checkpoint inhibitors (ICIs), in some cases, can reverse tumor cell immune evasion and enhance antitumor immunity. Rapidly evolving ICIs have expanded systemic treatment options in advanced HCC; however, single-agent ICIs achieve a limited 15-20% objective response rate in advanced HCC. Therefore, other combinatorial approaches that amplify the efficacy of ICIs or suppress other tumor-promoting pathways may enhance clinical outcomes. Epigenetic alterations (e.g., changes in chromatin states and non-genetic DNA modifications) have been shown to drive HCC tumor growth and progression as well as their response to ICIs. Recent studies have combined ICIs and epigenetic inhibitors in preclinical and clinical settings to contain several cancers, including HCC. In this review, we outline current ICI treatments for HCC, the mechanism behind their successes and failures, and how ICIs can be combined with distinct epigenetic inhibitors to increase the durability of ICIs and potentially treat "immune-cold" HCC.
Collapse
Affiliation(s)
- Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| |
Collapse
|
431
|
Genomic landscape of Chinese patients with hepatocellular carcinoma using next-generation sequencing and its association with the prognosis. Ann Hepatol 2023; 28:100898. [PMID: 36634747 DOI: 10.1016/j.aohep.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES The occurrence of hepatocellular carcinoma (HCC) is not entirely clear at present. This study comprehensively described the landscape of genetic aberrations in Chinese HCC patients using next-generation sequencing (NGS) and investigated the association of genetic aberrations with clinicopathological characteristics and prognosis. MATERIALS AND METHODS The clinicopathological data of 78 HCC patients undergoing surgery were retrospectively analyzed. The genomic DNA extracted from tumor samples was detected using a NGS-based gene panel. RESULTS Mutations in TP53 (55%), TERT (37%), MUC16 (29%) and CTNNB1 (27%) were most common in HCC. The co-occurrences between frequently mutated genes occurring ≥10% were relatively common in HCC. Forty-eight (61.5%) cases harbored DNA damage repair gene mutations, mainly including PRKDC (11.5%), SLX4 (9.0%), ATM (7.7%), MSH6 (7.7%), and PTEN (6.4%), and 39 (50.0%) patients had at least one actionable mutation. FH amplification (odds ratio: 3.752, 95% confidence interval: 1.170-12.028, p=0.026) and RB1 mutations (odds ratio: 13.185, 95% confidence interval: 1.214-143.198, p=0.034) were identified as the independent risk factors for early postoperative recurrence in HCC. CONCLUSIONS Our study provides a novel insight into the genomic profiling of Chinese HCC patients. FH amplification and RB1 mutations may be associated with an increased risk of early postoperative recurrence in HCC.
Collapse
|
432
|
Zadran B, Sudhindar PD, Wainwright D, Bury Y, Luli S, Howarth R, McCain MV, Watson R, Huet H, Palinkas F, Berlinguer-Palmini R, Casement J, Mann DA, Oakley F, Lunec J, Reeves H, Faulkner GJ, Shukla R. Impact of retrotransposon protein L1 ORF1p expression on oncogenic pathways in hepatocellular carcinoma: the role of cytoplasmic PIN1 upregulation. Br J Cancer 2023; 128:1236-1248. [PMID: 36707636 PMCID: PMC10050422 DOI: 10.1038/s41416-023-02154-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS We observed positive associations between L1 and activated TGFβ-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFβ-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFβ-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Bassier Zadran
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Praveen Dhondurao Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Yvonne Bury
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Saimir Luli
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Misti Vanette McCain
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robyn Watson
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Hannah Huet
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Fanni Palinkas
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | - John Casement
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fiona Oakley
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Helen Reeves
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS foundation, Newcastle-upon-Tyne, UK
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK.
| |
Collapse
|
433
|
Shi L, Shen W, Davis MI, Kong K, Vu P, Saha SK, Adil R, Kreuzer J, Egan R, Lee TD, Greninger P, Shrimp JH, Zhao W, Wei TY, Zhou M, Eccleston J, Sussman J, Manocha U, Weerasekara V, Kondo H, Vijay V, Wu MJ, Kearney SE, Ho J, McClanaghan J, Murchie E, Crowther GS, Patnaik S, Boxer MB, Shen M, Ting DT, Kim WY, Stanger BZ, Deshpande V, Ferrone CR, Benes CH, Haas W, Hall MD, Bardeesy N. SULT1A1-dependent sulfonation of alkylators is a lineage-dependent vulnerability of liver cancers. NATURE CANCER 2023; 4:365-381. [PMID: 36914816 PMCID: PMC11090616 DOI: 10.1038/s43018-023-00523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.
Collapse
Affiliation(s)
- Lei Shi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - William Shen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ke Kong
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Phuong Vu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Supriya K Saha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ramzi Adil
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Regina Egan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ting-Yu Wei
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason Eccleston
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Sussman
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vajira Weerasekara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Hiroshi Kondo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Vindhya Vijay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Meng-Ju Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Sara E Kearney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Joseph McClanaghan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ellen Murchie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Deshpande
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Cancer Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
434
|
Ko A, Hasanain M, Oh YT, D'Angelo F, Sommer D, Frangaj B, Tran S, Bielle F, Pollo B, Paterra R, Mokhtari K, Soni RK, Peyre M, Eoli M, Papi L, Kalamarides M, Sanson M, Iavarone A, Lasorella A. LZTR1 Mutation Mediates Oncogenesis through Stabilization of EGFR and AXL. Cancer Discov 2023; 13:702-723. [PMID: 36445254 DOI: 10.1158/2159-8290.cd-22-0376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Mohammad Hasanain
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Suzanne Tran
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Bianca Pollo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karima Mokhtari
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
| | - Rajesh Kumar Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthieu Peyre
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marica Eoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Michel Kalamarides
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
- Onconeurotek Tumor Bank, Brain and Spinal Cord Institute ICM, 75013 Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
435
|
Fang G, Fan J, Ding Z, Zeng Y. Application of biological big data and radiomics in hepatocellular carcinoma. ILIVER 2023; 2:41-49. [DOI: 10.1016/j.iliver.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
436
|
Li Y, Chen J, Wang B, Xu Z, Wu C, Ma J, Song Q, Geng Q, Yu J, Pei H, Yao Y. FOXK2 affects cancer cell response to chemotherapy by promoting nucleotide de novo synthesis. Drug Resist Updat 2023; 67:100926. [PMID: 36682222 DOI: 10.1016/j.drup.2023.100926] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
AIMS Nucleotide de novo synthesis is essential to cell growth and survival, and its dysregulation leads to cancers and drug resistance. However, how this pathway is dysregulated in cancer has not been well clarified. This study aimed to identify the regulatory mechanisms of nucleotide de novo synthesis and drug resistance. METHODS By combining the ChIP-Seq data from the Cistrome Data Browser, RNA sequencing (RNA-Seq) and a luciferase-based promoter assay, we identified transcription factor FOXK2 as a regulator of nucleotide de novo synthesis. To explore the biological functions and mechanisms of FOXK2 in cancers, we conducted biochemical and cell biology assays in vitro and in vivo. Finally, we assessed the clinical significance of FOXK2 in hepatocellular carcinoma. RESULTS FOXK2 directly regulates the expression of nucleotide synthetic genes, promoting tumor growth and cancer cell resistance to chemotherapy. FOXK2 is SUMOylated by PIAS4, which elicits FOXK2 nuclear translocation, binding to the promoter regions and transcription of nucleotide synthetic genes. FOXK2 SUMOylation is repressed by DNA damage, and elevated FOXK2 SUMOylation promotes nucleotide de novo synthesis which causes resistance to 5-FU in hepatocellular carcinoma. Clinically, elevated expression of FOXK2 in hepatocellular carcinoma patients was associated with increased nucleotide synthetic gene expression and correlated with poor prognoses for patients. CONCLUSION Our findings establish FOXK2 as a novel regulator of nucleotide de novo synthesis, with potentially important implications for cancer etiology and drug resistance.
Collapse
Affiliation(s)
- Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziwen Xu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Ci Wu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinming Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA.
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
437
|
Development of Prognostic Features of Hepatocellular Carcinoma Based on Metabolic Gene Classification and Immune and Oxidative Stress Characteristic Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1847700. [PMID: 36860731 PMCID: PMC9969974 DOI: 10.1155/2023/1847700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023]
Abstract
Background The molecular classification of HCC premised on metabolic genes might give assistance for diagnosis, therapy, prognosis prediction, immune infiltration, and oxidative stress in addition to supplementing the limitations of the clinical staging system. This would help to better represent the deeper features of HCC. Methods TCGA datasets combined with GSE14520 and HCCDB18 datasets were used to determine the metabolic subtype (MC) using ConsensusClusterPlus. ssGSEA method was used to calculate the IFNγ score, the oxidative stress pathway scores, and the score distribution of 22 distinct immune cells, and their differential expressions were assessed with the use of CIBERSORT. To generate a subtype classification feature index, LDA was utilized. Screening of the metabolic gene coexpression modules was done with the help of WGCNA. Results Three MCs (MC1, MC2, and MC3) were identified and showed different prognoses (MC2-poor and MC1-better). Although MC2 had a high immune microenvironment infiltration, T cell exhaustion markers were expressed at a high level in MC2 in contrast with MC1. Most oxidative stress-related pathways are inhibited in the MC2 subtype and activated in the MC1 subtype. The immunophenotyping of pan-cancer showed that the C1 and C2 subtypes with poor prognosis accounted for significantly higher proportions of MC2 and MC3 subtypes than MC1, while the better prognostic C3 subtype accounted for significantly lower proportions of MC2 than MC1. As per the findings of the TIDE analysis, MC1 had a greater likelihood of benefiting from immunotherapeutic regimens. MC2 was found to have a greater sensitivity to traditional chemotherapy drugs. Finally, 7 potential gene markers indicate HCC prognosis. Conclusion The difference (variation) in tumor microenvironment and oxidative stress among metabolic subtypes of HCC was compared from multiple angles and levels. A complete and thorough clarification of the molecular pathological properties of HCC, the exploration of reliable markers for diagnosis, the improvement of the cancer staging system, and the guiding of individualized treatment of HCC all gain benefit greatly from molecular classification associated with metabolism.
Collapse
|
438
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
439
|
Zhang Y, Liu Z, Li J, Li X, Duo M, Weng S, Lv P, Jiang G, Wang C, Li Y, Liu S, Li Z. Prognosis and Personalized Treatment Prediction in Different Mutation-Signature Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:241-255. [PMID: 36815095 PMCID: PMC9939670 DOI: 10.2147/jhc.s398431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Mutation patterns have been extensively explored to decipher the etiologies of hepatocellular carcinoma (HCC). However, the study and potential clinical role of mutation patterns to stratify high-risk patients and optimize precision therapeutic strategies remain elusive in HCC. Methods Using exon-sequencing data in public (n=362) and in-house (n=30) cohorts, mutation signatures were extracted to decipher relationships with the etiology and prognosis in HCC. The proteomics (n=159) and cell-line transcriptome data (n=1019) were collected to screen the implication of sensitive drugs. A novel multi-step machine-learning framework was then performed to construct a classification predictor, including recognizing stable reversed gene pairs, establishing a robust prediction model, and validating the robustness of the predictor in five independent cohorts (n=900). Results Two heterogeneous mutation signature clusters were identified, and a high-risk prognosis cluster was recognized for further analysis. Notably, mutation signature cluster 1 (MSC1) was featured by activated anti-tumor immune and metabolism dysfunctional states, higher genomic instability (high TMB, SNV neoantigen, indel neoantigens, and total neoantigens), and a dismal prognosis. Notably, MSC performed as an independent risk factor than clinical traits (eg, stage, vascular invasion). Additionally, afatinib and canertinib were recognized which might have potential therapeutic implications in MSC1, and the targets of these drugs presented a higher expression in both gene and protein levels in HCC. Discussion Our studies may provide a promising platform for improving prognosis and tailoring therapy in HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Peijie Lv
- Department of Radiology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yan Li
- Department Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shichao Liu
- Department Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China,Correspondence: Zhen Li, Email
| |
Collapse
|
440
|
Yang Z, Gao S, Wong CC, Liu W, Chen H, Shang H, Wu ZY, Xu L, Zhang X, Wong N, Kuang M, Yu J. TUBB4B is a novel therapeutic target in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Pathol 2023; 260:71-83. [PMID: 36787097 DOI: 10.1002/path.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an emerging malignancy due to the rising prevalence of NAFLD. However, no drug is available to target NAFLD-HCC. In this study, we aim to unravel novel therapeutic targets of NAFLD-HCC utilizing a high-throughput CRISPR/Cas9 screening strategy. We utilized the Epi-drug CRISPR/Cas9 library consisting of single-guide RNAs (sgRNAs) targeting over 1,000 genes representing the FDA-approved drug targets and epigenetic regulators to perform loss-of-function screening in two NAFLD-HCC cell lines (HKCI2 and HKCI10). CRISPR/Cas9 library screening unraveled TUBB4B as an essential gene for NAFLD-HCC cell growth. TUBB4B was overexpressed in NAFLD-HCC tumors compared with adjacent normal tissues (N = 17) and was associated with poor survival (p < 0.01). RNA-sequencing and functional assays revealed that TUBB4B knockout in NAFLD-HCC promoted cell apoptosis, cell cycle arrest, and cellular senescence, leading to suppressed NAFLD-HCC growth in vitro and in vivo. We identified that TUBB4B inhibitor mebendazole (MBZ), an FDA-approved drug, inhibited NAFLD-HCC growth by inducing apoptosis and cellular senescence. Since protein expression of pro-survival Bcl-xL was induced in TUBB4B knockout NAFLD-HCC cells, we examined combination of TUBB4B inhibition with navitoclax, a Bcl-xL inhibitor that selectively targets senescent cells. Consistent with our hypothesis, either TUBB4B knockout or MBZ synergized with navitoclax to inhibit NAFLD-HCC cell growth via the induction of intrinsic and extrinsic apoptosis pathways. In summary, TUBB4B is a novel therapeutic target in NAFLD-HCC. Inhibition of TUBB4B with MBZ in combination with navitoclax synergistically inhibited NAFLD-HCC cell growth, representing a promising strategy for the treatment of NAFLD-HCC. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Shanshan Gao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zoe Yuet Wu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Nathalie Wong
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Kuang
- Department of Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
441
|
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043710. [PMID: 36835122 PMCID: PMC9964410 DOI: 10.3390/ijms24043710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma is today the sixth leading cause of cancer-related death worldwide, despite the decreased incidence of chronic hepatitis infections. This is due to the increased diffusion of metabolic diseases such as the metabolic syndrome, diabetes, obesity, and nonalcoholic steatohepatitis (NASH). The current protein kinase inhibitor therapies in HCC are very aggressive and not curative. From this perspective, a shift in strategy toward metabolic therapies may represent a promising option. Here, we review current knowledge on metabolic dysregulation in HCC and therapeutic approaches targeting metabolic pathways. We also propose a multi-target metabolic approach as a possible new option in HCC pharmacology.
Collapse
|
442
|
Integrative proteomic characterization of adenocarcinoma of esophagogastric junction. Nat Commun 2023; 14:778. [PMID: 36774361 PMCID: PMC9922290 DOI: 10.1038/s41467-023-36462-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
The incidence of adenocarcinoma of the esophagogastric junction (AEG) has been rapidly increasing in recent decades, but its molecular alterations and subtypes are still obscure. Here, we conduct proteomics and phosphoproteomics profiling of 103 AEG tumors with paired normal adjacent tissues (NATs), whole exome sequencing of 94 tumor-NAT pairs, and RNA sequencing in 83 tumor-NAT pairs. Our analysis reveals an extensively altered proteome and 252 potential druggable proteins in AEG tumors. We identify three proteomic subtypes with significant clinical and molecular differences. The S-II subtype signature protein, FBXO44, is demonstrated to promote tumor progression and metastasis in vitro and in vivo. Our comparative analyses reveal distinct genomic features in AEG subtypes. We find a specific decrease of fibroblasts in the S-III subtype. Further phosphoproteomic comparisons reveal different kinase-phosphosubstrate regulatory networks among AEG subtypes. Our proteogenomics dataset provides valuable resources for understanding molecular mechanisms and developing precision treatment strategies of AEG.
Collapse
|
443
|
Chen HA, Ho YJ, Mezzadra R, Adrover JM, Smolkin R, Zhu C, Woess K, Bernstein N, Schmitt G, Fong L, Luan W, Wuest A, Tian S, Li X, Broderick C, Hendrickson RC, Egeblad M, Chen Z, Alonso-Curbelo D, Lowe SW. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discov 2023; 13:432-453. [PMID: 36302222 PMCID: PMC9901536 DOI: 10.1158/2159-8290.cd-22-0528] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence involves a stable cell-cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune-competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell-surface proteome to alter how tumor cells sense environmental factors, as exemplified by type II interferon (IFNγ). Compared with proliferating cells, senescent cells upregulate the IFNγ receptor, become hypersensitized to microenvironmental IFNγ, and more robustly induce the antigen-presenting machinery-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFNγ sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals and imply that each process is required for their effective immune surveillance. SIGNIFICANCE Our work uncovers an interplay between tissue remodeling and tissue-sensing programs that can be engaged by senescence in advanced cancers to render tumor cells more visible to the adaptive immune system. This new facet of senescence establishes reciprocal heterotypic signaling interactions that can be induced therapeutically to enhance antitumor immunity. See related article by Marin et al., p. 410. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ryan Smolkin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katharina Woess
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | - Linda Fong
- Calico Life Sciences, South San Francisco, California
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Wuest
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiang Li
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhenghao Chen
- Calico Life Sciences, South San Francisco, California
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
444
|
Huang H, Tsui YM, Ng IOL. Fueling HCC Dynamics: Interplay Between Tumor Microenvironment and Tumor Initiating Cells. Cell Mol Gastroenterol Hepatol 2023; 15:1105-1116. [PMID: 36736664 PMCID: PMC10036749 DOI: 10.1016/j.jcmgh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
445
|
Ren Y, Bo L, Shen B, Yang J, Xu S, Shen W, Chen H, Wang X, Chen H, Cai X. Development and validation of a clinical-radiomics model to predict recurrence for patients with hepatocellular carcinoma after curative resection. Med Phys 2023; 50:778-790. [PMID: 36269204 DOI: 10.1002/mp.16061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Recurrence is the leading cause of death in hepatocellular carcinoma (HCC) patients with curative resection. In this study, we aimed to develop a preoperative predictive model based on high-throughput radiomics features and clinical factors for prediction of long- and short-term recurrence for these patients. METHODS A total of 270 patients with HCC who were followed up for at least 5 years after curative hepatectomy between June 2014 and December 2017 were enrolled in this retrospective study. Regions of interest were manually delineated in preoperative T2-weighted images using ITK-SNAP software on each HCC tumor slice. A total of 1197 radiomics features were extracted, and the recursive feature elimination method based on logistic regression was used for radiomics signature building. Tenfold cross-validation was applied for model development. Nomograms were constructed and assessed by calibration plot, which compares nomogram-predicated probability with observed outcome. Receiver-operating characteristic was then generated to evaluate the predictive performance of the model in the development and test cohorts. RESULTS The 10 most recurrence-free survival-related radiomics features were selected for the radiomics signatures. A multiparametric clinical-radiomics model combining albumin and radiomics score for recurrence prediction was further established. The integrated model demonstrated good calibration and satisfactory discrimination, with the area under the curve (AUC) of 0.864, 95% CI 0.842-0.903, sensitivity of 0.889, and specificity of 0.644 in the test set. Calibration curve showed good agreement concerning 5-year recurrence risk predicted by the nomogram. In addition, the AUC of 1-, 2-, 3-, and 4-year recurrence was 0.935 (95% CI 0.836-1.000), 0.861 (95% CI 0.723-0.999), 0.878 (95% CI 0.762-0.994), and 0.878 (95% CI 0.762-0.994) in the test set, respectively. CONCLUSIONS The clinical-radiomics model integrating radiomics features and clinical factors can improve recurrence predictions beyond predictions made using clinical factors or radiomics features alone. Our clinical-radiomics model is a valid method to predict recurrence that should improve preoperative prognostic performance and allow more individualized treatment decisions.
Collapse
Affiliation(s)
- Yiyue Ren
- Department of General Surgery, Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Bo
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, China
| | - Bo Shen
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Jing Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shufeng Xu
- Department of Radiology, People's Hospital of Quzhou, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Weiqiang Shen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Hao Chen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xiaoyan Wang
- Department of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
| | - Haipeng Chen
- Deepwise Artificial Intelligence Laboratory, Beijing, China
| | - Xiujun Cai
- Department of General Surgery, Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
446
|
Fu J, Yu M, Xu W, Yu S. High Expression of G9a Induces Cisplatin Resistance in Hepatocellular Carcinoma. CELL JOURNAL 2023; 25:118-125. [PMID: 36840458 PMCID: PMC9968374 DOI: 10.22074/cellj.2022.557564.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Chemotherapeutic drug resistance is the main obstacle that affects the efficacy of current therapies of hepatocellular carcinoma (HCC), which needs to be addressed urgently. High expression of histone methyltransferase G9a was reported to play a pivotal role in the progression of HCC. Regulatory mechanism of aberrant activation of G9a in HCC and the association with subsequent cisplatin (DDP) resistance still remains ambiguous. This study strived to investigate mechanism of G9a overexpression and its impact on cisplatin resistance in HCC cells. MATERIALS AND METHODS In this experimental study, we investigated effects of different concentrations of cisplatin in combination with BIX-01294 or PR-619 on viability and apoptosis of HuH7 and SNU387 cells via CCK-8 kit and flow cytometric analysis, respectively. Colony formation capacity was applied to evaluate effect of cisplatin with or without BIX-01294 on cell proliferation, and western blotting was used to verify expression level of the related proteins. Global mRNA expression profile analysis was adopted to identify differentially expressed genes associated with overexpression of G9a. RESULTS We observed that overexpression of G9a admittedly promoted cisplatin resistance in HCC cells. Global mRNA expression profile analysis after G9a inhibition showed that DNA repair and cell cycle progression were downregulated. Moreover, we identified that deubiquitination enzymes (DUBs) stabilized high expression of G9a in HCC through deubiquitination. Additionally, cisplatin could significantly inhibit proliferation of DUBs-deficient HCC cells, while promoting their apoptosis. CONCLUSION Collectively, our data indicated that DUBs stabilize G9a through deubiquitination, thereby participating in the cisplatin resistance of HCC cells. The elucidation of this mechanism contributes to propose a potential alternative intervention strategy for the treatment of HCC patients harboring high G9a levels.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua,
Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua,
Zhejiang Province, China,Department of Hepatobiliary and Pancreatic SurgeryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang ProvinceChina
| |
Collapse
|
447
|
McClure MB, Kogure Y, Ansari-Pour N, Saito Y, Chao HH, Shepherd J, Tabata M, Olopade OI, Wedge DC, Hoadley KA, Perou CM, Kataoka K. Landscape of Genetic Alterations Underlying Hallmark Signature Changes in Cancer Reveals TP53 Aneuploidy-driven Metabolic Reprogramming. CANCER RESEARCH COMMUNICATIONS 2023; 3:281-296. [PMID: 36860655 PMCID: PMC9973382 DOI: 10.1158/2767-9764.crc-22-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/08/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The hallmark signatures based on gene expression capture core cancer processes. Through a pan-cancer analysis, we describe the overview of hallmark signatures across tumor types/subtypes and reveal significant relationships between these signatures and genetic alterations. TP53 mutation exerts diverse changes, including increased proliferation and glycolysis, which are closely mimicked by widespread copy-number alterations. Hallmark signature and copy-number clustering identify a cluster of squamous tumors and basal-like breast and bladder cancers with elevated proliferation signatures, frequent TP53 mutation, and high aneuploidy. In these basal-like/squamous TP53-mutated tumors, a specific and consistent spectrum of copy-number alterations is preferentially selected prior to whole-genome duplication. Within Trp53-null breast cancer mouse models, these copy-number alterations spontaneously occur and recapitulate the hallmark signature changes observed in the human condition. Together, our analysis reveals intertumor and intratumor heterogeneity of the hallmark signatures, uncovering an oncogenic program induced by TP53 mutation and select aneuploidy events to drive a worsened prognosis. Significance Our data demonstrate that TP53 mutation and a resultant selected pattern of aneuploidies cause an aggressive transcriptional program including upregulation of glycolysis signature with prognostic implications. Importantly, basal-like breast cancer demonstrates genetic and/or phenotypic changes closely related to squamous tumors including 5q deletion that reveal alterations that could offer therapeutic options across tumor types regardless of tissue of origin.
Collapse
Affiliation(s)
- Marni B. McClure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naser Ansari-Pour
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hann-Hsiang Chao
- Department of Radiation Oncology, Richmond VA Medical Center, Richmond, Virginia
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics & Global Health, University of Chicago School of Medicine, The University of Chicago, Chicago, Illinois
| | - David C. Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
448
|
Kolluri A, Li D, Li N, Duan Z, Roberts LR, Ho M. Human VH-based chimeric antigen receptor T cells targeting glypican 3 eliminate tumors in preclinical models of HCC. Hepatol Commun 2023; 7:e0022. [PMID: 36691969 PMCID: PMC9851680 DOI: 10.1097/hc9.0000000000000022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND AIMS Efficacy of chimeric antigen receptor (CAR) T cells for treating solid tumors, including HCC, remains a challenge. Nanobodies are emerging building blocks of CAR T cells due to their small size and high expression. Membrane proximal sites have been shown as attractive epitopes of CAR T cells. However, current CAR formats are not tailored toward nanobodies or targeting membrane distal epitopes. APPROACH AND RESULTS Using hYP7 Fv (membrane proximal) and HN3 VH nanobody (membrane distal) as GPC3 targeting elements, we sought to determine how hinges and transmembrane portions of varying structures and sizes affect CAR T-cell function. We generated multiple permutations of CAR T cells containing CD8, CD28, IgG4, and Fc domains. We show that engineered HN3 CAR T cells can be improved by 2 independent, synergistic changes in the hinge and transmembrane domains. The T cells expressing the HN3 CAR which contains the hinge region of IgG4 and the CD28 transmembrane domain (HN3-IgG4H-CD28TM) exhibited high cytotoxic activity and caused complete HCC tumor eradication in immunodeficient mice. HN3-IgG4H-CD28TM CAR T cells were enriched for cytotoxic-memory CD8+ T cells and NFAT signals, and reduced β catenin levels in HCC cells. CONCLUSION Our findings indicate that altering the hinge and transmembrane domains of a nanobody-based CAR targeting a distal GPC3 epitope, in contrast to a membrane proximal epitope, lead to robust T-cell signaling and induce swift and durable eradication of HCC tumors.
Collapse
Affiliation(s)
- Aarti Kolluri
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Dan Li
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nan Li
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
449
|
Sebagh M, Desterke C, Feray C, Hamelin J, Habib M, Samuel D, Rosmorduc O, Vibert E, Golse N. Indocyanine green fluorescence patterns of hepatocellular carcinoma correlate with pathological and molecular features. HPB (Oxford) 2023; 25:198-209. [PMID: 36411232 DOI: 10.1016/j.hpb.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Intraoperative Indocyanine Green Dye (ICG) routinely used in hepatobiliary surgery identifies different fluorescent patterns of hepatocellular carcinoma (HCC), a highly heterogeneous cancer. We aimed to correlate these patterns with gene mutations and extensive pathological features beyond the well-known tumor differentiation. METHODS Between February 2017 and December 2019, 21 HCC in 16 consecutive patients who underwent intraoperative ICG fluorescence imaging were included. Pathological review was performed by one pathologist blinded to fluorescence features. Random forest machine learning algorithm correlated pathological features of the tumor, peritumoral and non-tumoral liver, and gene mutations from a 28 gene-panel with rim and intra-lesion fluorescence. RESULTS Three HCC had negative intra-lesion and rim-like emission, 7 HCC had homogeneous pattern and 11 heterogeneous patterns in whom 3 with rim-like emission. Rim emission was associated with peritumoral vascular changes, lower differentiation and lower serum AFP level. Homogeneous intra-lesion fluorescence was associated with lower necrosis rate, thinner capsule, absence of peritumoral liver changes, and higher serum AFP level. Heterogeneous HCC without rim harbored lesser TP53 and ARID1A mutations. CONCLUSION Tumoral and peri-tumoral fluorescence classification of HCC yielded a possible intraoperative pathological and molecular characterization. These preliminary observations could lead to intraoperative refinement in surgical strategy.
Collapse
Affiliation(s)
- Mylène Sebagh
- AP-HP Hôpital Paul-Brousse, Laboratoire d'Anatomopathologie, Villejuif, F-94800, France; UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France.
| | - Christophe Desterke
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France
| | - Cyrille Feray
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France; AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| | - Jocelyne Hamelin
- AP-HP Hôpital Paul-Brousse, Plateforme de biologie moléculaire, Villejuif, F-94800, France
| | - Myriam Habib
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| | - Didier Samuel
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France; AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| | - Olivier Rosmorduc
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France; AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| | - Eric Vibert
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France; AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| | - Nicolas Golse
- UMR-S 1193, Inserm, Physiopathogénèse et traitement des maladies du Foie, FHU Hepatinov, Villejuif, F-94800, France; Université Paris-Saclay, Villejuif, F-94800, France; AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Chirurgie Hépato-Biliaire et Transplantation Hépatique, Villejuif, F-94800, France
| |
Collapse
|
450
|
Chang YS, Tu SJ, Chen HD, Hsu MH, Chen YC, Chao DS, Chung CC, Chou YP, Chang CM, Lee YT, Yen JC, Jeng LB, Chang JG. Integrated genomic analyses of hepatocellular carcinoma. Hepatol Int 2023; 17:97-111. [PMID: 36472800 DOI: 10.1007/s12072-022-10455-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genomic alterations play important roles in the development of cancer. We explored the impact of protein-coding genes and transcriptomic changes on clinical and molecular alterations in Taiwanese hepatocellular carcinoma (HCC) patients. METHODS We analyzed 147 whole-exome sequencing and 100 RNA sequencing datasets of HCC and compared them with The Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma cohort and develop a panel of 81 apoptosis-related genes for molecular classification. RESULTS TERT (50%), TP53 (25%), CTNNB1 (14%), ARID1A (12%), and KMT2C (11%) were the most common genetic alterations of cancer-related genes. ALDH2 and KMT2C mutated at much higher frequencies in our cohort than in TCGA, whereas CTNNB1 was found only in 14% of our Taiwanese patients. A high germline mutation rate of ALDH2 in the APOBEC mutational signature and herb drug-related aristolochic acid-associated signature was also observed. Groups A and B of HCC were identified when we used apoptosis-related genes for molecular classification. The latter group, which had poorer survival outcomes, had significantly more aDC, CD4+ Tem, macrophages M2, NKT, plasma cells, and Th1 cells, and less CD4+ memory T cells, CD8+ Tcm, cDC, iDC, and Th2 cells, as well as more inter-chromosome fusion genes. Metatranscriptomic analysis revealed 54 cases of HBV infection. Moreover, we found that the main target gene of HBV integration is ALB. CONCLUSIONS Unique genomic alterations were observed in our Taiwanese HCC patients. Molecular classification using apoptosis-related genes could lead to new therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hon Hsu
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Dy-San Chao
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Pao Chou
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Min Chang
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan. .,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan. .,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|