401
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
402
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
403
|
Zhang Y, Wang J, Zhang D, Lu Z, Man J. Effects of RO27-3225 on neurogenesis, PDGFRβ + cells and neuroinflammation after cerebral infarction. Int Immunopharmacol 2020; 81:106281. [PMID: 32058930 DOI: 10.1016/j.intimp.2020.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/01/2020] [Accepted: 02/02/2020] [Indexed: 12/01/2022]
Abstract
Cerebral infarction causes severe social and economic burdens to patients due to its high morbidity and mortality rates, and the available treatments are limited. RO27-3225 is a highly selective melanocortin receptor 4 agonist that alleviates damage in many nervous system diseases, such as cerebral hemorrhage, traumatic brain injury and chronic neurodegenerative diseases. However, the effect of RO27-3225 on cerebral infarction remains unclear. In this study, we used a mouse model of transient middle cerebral artery occlusion (tMCAO) and administered RO27-3225 or saline to the mice through intraperitoneal injection. RO27-3225 increased the number of Nestin+/BrdU+ cells and doublecortin (DCX)+/BrdU+ cells in the subventricular zone (SVZ) and the number of DCX+/BrdU+ cells in the peri-infarct area on day 7 after tMCAO. Furthermore, RO27-3225 decreased the number of activated microglia (Iba1+ cells with a specific morphology) and the expression levels of Iba1, TNFα, IL6, and iNOS proteins and increased the number of PDGFRβ+ cells in the peri-infarct region on day 3 after tMCAO. Finally, RO27-3225-treated mice exhibited significantly decreased infarct volumes, brain water contents, and neurological deficits after cerebral infarction. Thus, RO27-3225 can improve the outcomes following cerebral infarction, partially by regulating neurogenesis in the SVZ, PDGFRβ+ cell survival and neuroinflammation in the peri-infarct zone. Our research reveals that RO27-3225 is a potential new treatment for cerebral infarction.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianping Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiang Man
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
404
|
Hamanaka G, Kubo T, Ohtomo R, Takase H, Reyes-Bricio E, Oribe S, Osumi N, Lok J, Lo EH, Arai K. Microglial responses after phagocytosis: Escherichia coli bioparticles, but not cell debris or amyloid beta, induce matrix metalloproteinase-9 secretion in cultured rat primary microglial cells. Glia 2020; 68:1435-1444. [PMID: 32057146 DOI: 10.1002/glia.23791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.
Collapse
Affiliation(s)
- Gen Hamanaka
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomoya Kubo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hajime Takase
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Estefania Reyes-Bricio
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuntaro Oribe
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
405
|
Lee J, Kim DE, Griffin P, Sheehan PW, Kim D, Musiek ES, Yoon S. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell 2020; 19:e13078. [PMID: 31800167 PMCID: PMC6996949 DOI: 10.1111/acel.13078] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/30/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022] Open
Abstract
A promising new therapeutic target for the treatment of Alzheimer's disease (AD) is the circadian system. Although patients with AD are known to have abnormal circadian rhythms and suffer sleep disturbances, the role of the molecular clock in regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse microglia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary Aβ1-42 (fAβ1-42 ) than at CT12. BMAL1 directly drives transcription of REV-ERB proteins, which are implicated in microglial activation. Interestingly, pharmacological inhibition of REV-ERBs with the small molecule antagonist SR8278 or genetic knockdown of REV-ERBs-accelerated microglial uptake of fAβ1-42 and increased transcription of BMAL1. SR8278 also promoted microglia polarization toward a phagocytic M2-like phenotype with increased P2Y12 receptor expression. Finally, constitutive deletion of Rev-erbα in the 5XFAD model of AD decreased amyloid plaque number and size and prevented plaque-associated increases in disease-associated microglia markers including TREM2, CD45, and Clec7a. Altogether, our work suggests a novel strategy for controlling Aβ clearance and neuroinflammation by targeting REV-ERBs and provides new insights into the role of REV-ERBs in AD.
Collapse
MESH Headings
- ARNTL Transcription Factors/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Peptides/chemical synthesis
- Amyloid beta-Peptides/metabolism
- Animals
- CLOCK Proteins/metabolism
- Cell Line
- Circadian Clocks/genetics
- Disease Models, Animal
- Isoquinolines/pharmacology
- Macrophages/metabolism
- Mice
- Mice, Knockout
- Microglia/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Plaque, Amyloid/genetics
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/pathology
- RNA, Small Interfering
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2Y12/drug effects
- Receptors, Purinergic P2Y12/metabolism
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Synapses/genetics
- Synapses/metabolism
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Brain ScienceAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of NeurologyHope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Do Eon Kim
- Department of Brain ScienceAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Percy Griffin
- Department of NeurologyHope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Patrick W. Sheehan
- Department of NeurologyHope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Dong‐Hou Kim
- Department of Brain ScienceAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Erik S Musiek
- Department of NeurologyHope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Seung‐Yong Yoon
- Department of Brain ScienceAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
406
|
Dynamic Modelling of Interactions between Microglia and Endogenous Neural Stem Cells in the Brain during a Stroke. MATHEMATICS 2020. [DOI: 10.3390/math8010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we study the interactions between microglia and neural stem cells and the impact of these interactions on the brain cells during a stroke. Microglia cells, neural stem cells, the damage on brain cells from the stroke and the impacts these interactions have on living brain cells are considered in the design of mathematical models. The models consist of ordinary differential equations describing the effects of microglia on brain cells and the interactions between microglia and neural stem cells in the case of a stroke. Variables considered include: resident microglia, classically activated microglia, alternatively activated microglia, neural stem cells, tissue damage on cells in the brain, and the impacts these interactions have on living brain cells. The first model describes what happens in the brain at the stroke onset during the first three days without the generation of any neural stem cells. The second model studies the dynamic effect of microglia and neural stem cells on the brain cells following the generation of neural stem cells and potential recovery after this stage. We look at the stability and the instability of the models which are both studied analytically. The results show that the immune cells can help the brain by cleaning dead cells and stimulating the generation of neural stem cells; however, excessive activation may cause damage and affect the injured region. Microglia have beneficial and harmful functions after ischemic stroke. The microglia stimulate neural stem cells to generate new cells that substitute dead cells during the recovery stage but sometimes the endogenous neural stem cells are highly sensitive to inflammatory in the brain.
Collapse
|
407
|
Wu B, Song Q, Zhang Y, Wang C, Yang M, Zhang J, Han W, Jiang P. Antidepressant activity of ω-3 polyunsaturated fatty acids in ovariectomized rats: role of neuroinflammation and microglial polarization. Lipids Health Dis 2020; 19:4. [PMID: 31915015 PMCID: PMC6950787 DOI: 10.1186/s12944-020-1185-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Menopause predisposes individuals to affective disorders, such as depression, which is tightly related to neuroinflammation. While the neuroinflammatory condition has been demonstrated in ovariectomized (OVX) rodents, there is limited evidence concerning microglial polarization, a key process in brain immune activation, in menopause-related brain. METHODS Therefore, the present study aims to evaluate the polarized microglia in long-term OVX rats and we further explored whether supplementation of ω-3 polyunsaturated fatty acids (PUFA), the pleiotropic bioactive nutrient, is effective in the neurobehavioral changes caused by OVX. RESULTS Our data showed that OVX-induced anxiety and depression-like behaviors in rats, accompanied with increased neural apoptosis and microglial activation in the hippocampus. Additionally, OVX enhanced proinflammatory cytokines expression and suppressed the expression of anti-inflammatory cytokine, IL-10. Correspondingly, OVX reinforced NFκB signaling and shifted the microglia from immunoregulatory M2 phenotype to proinflammatory M1 phenotype. Meanwhile, daily supplementation with PUFA suppressed microglial M1 polarization and potentiated M2 polarization in OVX rats. In parallel, PUFA also exerted antidepressant and neuroprotective activities, accompanied with neuroimmune-modulating actions. CONCLUSION Collectively, the present study firstly demonstrated the disturbed microglial polarization in the OVX brain and provide novel evidence showing the association between the antidepressant actions of PUFA and the restraint neuroinflammatory progression.
Collapse
Affiliation(s)
- Bin Wu
- Department of Gynecology, Taian City Central Hospital, Taian, China
| | - Qingen Song
- Jinxiang People's Hospital, Jining Medical University, Jining, China
| | - Yongkang Zhang
- Jinxiang People's Hospital, Jining Medical University, Jining, China
| | - Changshui Wang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxiu Han
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China.
| |
Collapse
|
408
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
409
|
Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 2020; 10:74-90. [PMID: 31903107 PMCID: PMC6929610 DOI: 10.7150/thno.35841] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022] Open
Abstract
Microglial activation participates in white matter injury after cerebral hypoperfusion. However, the underlying mechanism is unclear. Here, we explore whether activated microglia aggravate white matter injury via complement C3-C3aR pathway after chronic cerebral hypoperfusion. Methods: Adult male Sprague-Dawley rats (n = 80) underwent bilateral common carotid artery occlusion for 7, 14, and 28 days. Cerebral vessel density and blood flow were examined by synchrotron radiation angiography and three-dimensional arterial spin labeling. Neurobehavioral assessments, CLARITY imaging, and immunohistochemistry were performed to evaluate activation of microglia and C3-C3aR pathway. Furthermore, C3aR knockout mice were used to establish the causal relationship of C3-C3aR signaling on microglia activation and white matter injury after hypoperfusion. Results: Cerebral vessel density and blood flow were reduced after hypoperfusion (p<0.05). Spatial learning and memory deficits and white matter injury were shown (p<0.05). These impairments were correlated with aberrant microglia activation and an increase in the number of reactive microglia adhering to and phagocytosed myelin in the hypoperfusion group (p<0.05), which were accompanied by the up-regulation of complement C3 and its receptors C3aR (p<0.05). Genetic deletion of C3ar1 significantly inhibited aberrant microglial activation and reversed white matter injury after hypoperfusion (p<0.05). Furthermore, the C3aR antagonist SB290157 decreased the number of microglia adhering to myelin (p<0.05), attenuated white matter injury and cognitive deficits in chronic hypoperfusion rats (p<0.05). Conclusions: Our results demonstrated that aberrant activated microglia aggravate white matter injury via C3-C3aR pathway during chronic hypoperfusion. These findings indicate C3aR plays a critical role in mediating neuroinflammation and white matter injury through aberrant microglia activation, which provides a novel therapeutic target for the small vessel disease and vascular dementia.
Collapse
|
410
|
Al-Kuraishy HM, Al-Gareeb AI, Naji MT, Al-Mamorry F. Role of vinpocetine in ischemic stroke and poststroke outcomes: A critical review. Brain Circ 2020; 6:1-10. [PMID: 32166194 PMCID: PMC7045535 DOI: 10.4103/bc.bc_46_19] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Vinpocetine (VPN) is a synthetic ethyl-ester derivative of the alkaloid apovincamine from Vinca minor leaves. VPN is a selective inhibitor of phosphodiesterase type 1 (PDE1) that has potential neurological effects through inhibition of voltage-gated sodium channel and reduction of neuronal calcium influx. VPN has noteworthy antioxidant, anti-inflammatory, and anti-apoptotic effects with inhibitory effect on glial and astrocyte cells during and following ischemic stroke (IS). VPN is effective as adjuvant therapy in the management of epilepsy; it reduces seizure frequency by 50% in a dose of 2 mg/kg/day. VPN improves psychomotor performances through modulation of brain monoamine pathway mainly on dopamine and serotonin, which play an integral role in attenuation of depressive symptoms. VPN recover cognitive functions and spatial memory through inhibition of hippocampal and cortical PDE1 with augmentation of cyclic adenosin monophosphate and cyclic guanosin monophosphate ratio, enhancement of cholinergic neurotransmission, and inhibition of neuronal inflammatory mediators. Therefore, VPN is an effective agent in the management of IS and plays an integral role in the prevention and attenuation of poststroke epilepsy, depression, and cognitive deficit through direct cAMP/cGMP-dependent pathway or indirectly through anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Marwa Thaier Naji
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Farah Al-Mamorry
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
411
|
Cirillo C, Brihmat N, Castel-Lacanal E, Le Friec A, Barbieux-Guillot M, Raposo N, Pariente J, Viguier A, Simonetta-Moreau M, Albucher JF, Olivot JM, Desmoulin F, Marque P, Chollet F, Loubinoux I. Post-stroke remodeling processes in animal models and humans. J Cereb Blood Flow Metab 2020; 40:3-22. [PMID: 31645178 PMCID: PMC6928555 DOI: 10.1177/0271678x19882788] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
After cerebral ischemia, events like neural plasticity and tissue reorganization intervene in lesioned and non-lesioned areas of the brain. These processes are tightly related to functional improvement and successful rehabilitation in patients. Plastic remodeling in the brain is associated with limited spontaneous functional recovery in patients. Improvement depends on the initial deficit, size, nature and localization of the infarction, together with the sex and age of the patient, all of them affecting the favorable outcome of reorganization and repair of damaged areas. A better understanding of cerebral plasticity is pivotal to design effective therapeutic strategies. Experimental models and clinical studies have fueled the current understanding of the cellular and molecular processes responsible for plastic remodeling. In this review, we describe the known mechanisms, in patients and animal models, underlying cerebral reorganization and contributing to functional recovery after ischemic stroke. We also discuss the manipulations and therapies that can stimulate neural plasticity. We finally explore a new topic in the field of ischemic stroke pathophysiology, namely the brain-gut axis.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Nabila Brihmat
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | | | - Nicolas Raposo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alain Viguier
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Marion Simonetta-Moreau
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-Marc Olivot
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Philippe Marque
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - François Chollet
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
412
|
Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F, La GY, Huang MJ, Zhou MW. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflammation 2019; 16:283. [PMID: 31888724 PMCID: PMC6936070 DOI: 10.1186/s12974-019-1658-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The prognosis of spinal cord injury (SCI) is closely related to secondary injury, which is dominated by neuroinflammation. There is evidence that α-synuclein aggregates after SCI and that inhibition of α-synuclein aggregation can improve the survival of neurons after SCI, but the mechanism is still unclear. This study was designed to investigate the effects of α-synuclein on neuroinflammation after SCI and to determine the underlying mechanisms. METHOD A T3 spinal cord contusion model was established in adult male Sprague-Dawley rats. An SNCA-shRNA-carrying lentivirus (LV-SNCA-shRNA) was injected into the injury site to block the expression of α-synuclein (forming the SCI+KD group), and the SCI and sham groups were injected with an empty vector. Basso-Beattie-Bresnahan (BBB) behavioural scores and footprint analysis were used to detect motor function. Inflammatory infiltration and myelin loss were measured in the spinal cord tissues of each group by haematoxylin-eosin (HE) and Luxol Fast Blue (LFB) staining, respectively. Immunohistochemistry, Western blot analysis, and RT-qPCR were used to analyse protein expression and transcription levels in the tissues. Immunofluorescence was used to determine the morphology and function of glial cells and the expression of matrix metalloproteinase-9 in the central canal of the spinal cord. Finally, peripheral serum cytokine levels were determined by enzyme-linked immunosorbent assay. RESULTS Compared with the SCI group, the SCI+KD group exhibited reduced inflammatory infiltration, preserved myelin, and functional recovery. Specifically, the early arrest of α-synuclein inhibited the pro-inflammatory factors IL-1β, TNF-α, and IL-2 and increased the expression of the anti-inflammatory factors IL-10, TGF-β, and IL-4. The neuroinflammatory response was regulated by reduced proliferation of Iba1+ microglia/macrophages and promotion of the shift of M1-polarized Iba1+/iNOS+ microglia/macrophages to M2-polarized Iba1+/Arg1+ microglia/macrophages after injury. In addition, compared with the SCI group, the SCI+KD group also exhibited a smaller microglia/astrocyte (Iba1/GFAP) immunostaining area in the central canal, lower MMP-9 expression, and improved cerebrospinal barrier function. CONCLUSION Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation, improves blood-cerebrospinal barrier function, promotes functional recovery, reduces microglial activation, and promotes the polarization of M1 microglia/macrophages to an M2 phenotype to confer a neuroprotective immune microenvironment in rats with SCI.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Fang Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Gao-Yan La
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Meng-Jie Huang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
413
|
Mahdavipour M, Hassanzadeh G, Seifali E, Mortezaee K, Aligholi H, Shekari F, Sarkoohi P, Zeraatpisheh Z, Nazari A, Movassaghi S, Akbari M. Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion. Cell Biochem Funct 2019; 38:373-383. [PMID: 31885106 DOI: 10.1002/cbf.3484] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Stroke imposes a long-term neurological disability with limited effective treatments available for neuronal recovery. Transplantation of neural stem cells (NSCs) is reported to improve functional outcomes in the animal models of brain ischemia. However, the use of cell therapy is accompanied by adverse effects, so research is growing to use cell-free extracts such as extracellular vesicles (EVs) for targeting brain diseases. In the current study, male Wistar albino rats (20 months old) were subjected to middle cerebral artery occlusion (MCAO). Then, EVs (30 μg) were injected at 2 hours after stroke onset via an intracerebroventricular (ICV) route. Measurements were done at day 7 post-MCAO. EVs administration reduced lesion volume and steadily improved spontaneous locomotor activity. EVs administration also reduced microgliosis (ionized calcium-binding adaptor molecule 1 (Iba1)+ cells) and apoptotic (terminal-deoxynucleotidyl transferase mediated nick end labelling [TUNEL]) positive cells and increased neuronal survival (neuronal nuclear (NeuN)+ cells) in the ischemic boundary zone (IBZ). However, it had no effect on neurogenesis within the sub-ventricular zone (SVZ) but decreased cellular migration toward the IBZ (doublecortin (DCX)+ cells). The results of this study showed neuroprotective and restorative mechanisms of NSC-EVs administration, which may offer new avenues for therapeutic intervention of brain ischemia. SIGNIFICANCE OF THE STUDY: Based on our results, EVs administration can effectively reduce microglial density and neuronal apoptosis, thereby steadily improves functional recovery after MCAO. These findings provide the beneficial effect of NSC-EVs as a new biological treatment for stroke.
Collapse
Affiliation(s)
- Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Seifali
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdoreza Nazari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shabnam Movassaghi
- Department of Anatomy, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
414
|
CCL11 Differentially Affects Post-Stroke Brain Injury and Neuroregeneration in Mice Depending on Age. Cells 2019; 9:cells9010066. [PMID: 31888056 PMCID: PMC7017112 DOI: 10.3390/cells9010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
CCL11 has recently been shown to differentially affect cell survival under various pathological conditions including stroke. Indeed, CCL11 promotes neuroregeneration in neonatal stroke mice. The impact of CCL11 on the adult ischemic brain, however, remains elusive. We therefore studied the effect of ectopic CCL11 on both adolescent (six-week) and adult (six-month) C57BL6 mice exposed to stroke. Intraperitoneal application of CCL11 significantly aggravated acute brain injury in adult mice but not in adolescent mice. Likewise, post-stroke neurological recovery after four weeks was significantly impaired in adult mice whilst CCL11 was present. On the contrary, CCL11 stimulated gliogenesis and neurogenesis in adolescent mice. Flow cytometry analysis of blood and brain samples revealed a modification of inflammation by CCL11 at subacute stages of the disease. In adolescent mice, CCL11 enhances microglial cell, B and T lymphocyte migration towards the brain, whereas only the number of B lymphocytes is increased in the adult brain. Finally, the CCL11 inhibitor SB297006 significantly reversed the aforementioned effects. Our study, for the first time, demonstrates CCL11 to be a key player in mediating secondary cell injury under stroke conditions. Interfering with this pathway, as shown for SB297006, might thus be an interesting approach for future stroke treatment paradigms.
Collapse
|
415
|
Zhang W, Zhang X, Zhang Y, Qu C, Zhou X, Zhang S. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H 1R or H 4R. J Neuroimmune Pharmacol 2019; 15:280-291. [PMID: 31863333 DOI: 10.1007/s11481-019-09887-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
Histamine is a major peripheral inflammatory mediator and a neurotransmitter in the central nervous system. We have reported that histamine induces microglia activation and releases proinflammatory factors in primary cultured microglia. Whether histamine has similar effects in vivo is unknown. In the present study, we aimed to investigate the role of histamine and its receptors in the release of inflammatory mediators and activation of microglia in rat brain. We site-directed injected histamine, histamine receptor agonists or histamine receptor antagonists in the rat lateral ventricle using stereotaxic techniques. Flow cytometry was employed to determine histamine receptor expression in rat microglia. Microglia activation was assessed by Iba1 immunohistochemistry. The levels of tumour necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-10 (IL-10) were measured with commercial enzyme-linked immunosorbent assay (ELISA) kits, TNF-α, IL-1β and IL-10 mRNA expressions were determined with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). We found that all four types of histamine receptors were expressed in rat brain microglia. Histamine was able to induce microglia activation and subsequent production of the inflammatory factors TNF-α, IL-1β and IL-10, and these effects were partially abolished by H1R and H4R antagonists. However, H2R and H3R antagonists significantly increased production of TNF-α and IL-1β, and decreased IL-10 levels. The H1R or H4R agonists stimulated the production of TNF-α and IL-1β, while the H2R or H3R agonists increased IL-10 release. Our results demonstrate that histamine induces microglia activation and the release of both proinflammatory and anti-inflammatory factors in rat brain, thus contributing to the development of inflammation in the brain. Graphical Abstract Histamine induces microglia activation and the release of both proinflammatory (TNF-α and IL-1β) and anti-inflammatory factors (IL-10) in rat brain, thus contributing to the development of inflammation in the brain.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaojun Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Qu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiqiao Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Shu Zhang
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
416
|
Song D, Zhang X, Chen J, Liu X, Xue J, Zhang L, Lan X. Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke. J Neuroinflammation 2019; 16:256. [PMID: 31810470 PMCID: PMC6896312 DOI: 10.1186/s12974-019-1660-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022] Open
Abstract
Background Ischemic stroke is a leading cause of disability worldwide and characteristically accompanied by downregulation of the Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling emerges to attenuate neuroinflammation after ischemic stroke; however, its effect on modulating microglial polarization is largely unknown. Here, we explored whether Wnt/β-catenin pathway activator TWS119 facilitated long-term neurological recovery via modulating microglia polarization after experimental stroke. Methods Ischemic stroke mice model was induced by permanent distal middle cerebral artery occlusion plus 1 h hypoxia. TWS119 was administrated from day 1 to 14 after stroke. Neurological deficits were monitored up to 21 days after stroke. Angiogenesis, neural plasticity, microglial polarization, and microglia-associated inflammatory cytokines were detected in the peri-infarct cortex at days 14 and 21 after stroke. Primary microglia and mouse brain microvascular endothelial cell lines were employed to explore the underlying mechanism in vitro. Results TWS119 mitigated neurological deficits at days 14 and 21 after experimental stroke, paralleled by acceleration on angiogenesis and neural plasticity in the peri-infarct cortex. Mechanistically, cerebral ischemia induced production of microglia-associated proinflammatory cytokines and priming of activated microglia toward pro-inflammatory polarization, whereas TWS119 ameliorated microglia-mediated neuroinflammatory status following ischemic stroke and promoted angiogenesis by modulating microglia to anti-inflammatory phenotype. The beneficial efficacy of TWS119 in microglial polarization was largely reversed by selective Wnt/β-catenin pathway blockade in vitro, suggesting that TWS119-enabled pro-inflammatory to anti-inflammatory phenotype switch of microglia was possibly mediated by Wnt/β-catenin signaling. Conclusions Wnt/β-catenin pathway activator TWS119 ameliorated neuroinflammatory microenvironment following chronic cerebral ischemia via modulating microglia towards anti-inflammatory phenotype, and facilitates neurological recovery in an anti-inflammatory phenotype polarization-dependent manner. Activation of Wnt/β-catenin pathway following ischemic stroke might be a potential restorative strategy targeting microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Department of Neurology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China. .,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xifa Lan
- Department of Neurology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| |
Collapse
|
417
|
Tao T, Liu GJ, Shi X, Zhou Y, Lu Y, Gao YY, Zhang XS, Wang H, Wu LY, Chen CL, Zhuang Z, Li W, Hang CH. DHEA Attenuates Microglial Activation via Induction of JMJD3 in Experimental Subarachnoid Haemorrhage. J Neuroinflammation 2019; 16:243. [PMID: 31779639 PMCID: PMC6883548 DOI: 10.1186/s12974-019-1641-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Microglia are resident immune cells in the central nervous system and central to the innate immune system. Excessive activation of microglia after subarachnoid haemorrhage (SAH) contributes greatly to early brain injury, which is responsible for poor outcomes. Dehydroepiandrosterone (DHEA), a steroid hormone enriched in the brain, has recently been found to regulate microglial activation. The purpose of this study was to address the role of DHEA in SAH. Methods We used in vivo models of endovascular perforation and in vitro models of haemoglobin exposure to illustrate the effects of DHEA on microglia in SAH. Results In experimental SAH mice, exogenous DHEA administration increased DHEA levels in the brain and modulated microglial activation. Ameliorated neuronal damage and improved neurological outcomes were also observed in the SAH mice pretreated with DHEA, suggesting neuronal protective effects of DHEA. In cultured microglia, DHEA elevated the mRNA and protein levels of Jumonji d3 (JMJD3, histone 3 demethylase) after haemoglobin exposure, downregulated the H3K27me3 level, and inhibited the transcription of proinflammatory genes. The devastating proinflammatory microglia-mediated effects on primary neurons were also attenuated by DHEA; however, specific inhibition of JMJD3 abolished the protective effects of DHEA. We next verified that DHEA-induced JMJD3 expression, at least in part, through the tropomyosin-related kinase A (TrkA)/Akt signalling pathway. Conclusions DHEA has a neuroprotective effect after SAH. Moreover, DHEA increases microglial JMJD3 expression to regulate proinflammatory/anti-inflammatory microglial activation after haemoglobin exposure, thereby suppressing inflammation.
Collapse
Affiliation(s)
- Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xuan Shi
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100032, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Chun-Lei Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China. .,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China. .,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
418
|
Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience 2019; 422:99-118. [PMID: 31726033 DOI: 10.1016/j.neuroscience.2019.10.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Microglia activation plays a key role in regulating inflammatory and immune reaction during cerebral ischemia and it exerts pro-inflammatory or anti-inflammatory effect depending on M1/M2 polarization phenotype. Cysteinyl leukotriene 2 receptor (CysLT2R) is a potent inflammatory mediator receptor, and involved in cerebral ischemic injury, but the mechanism of CysLT2R regulating inflammation and neuron damage remains unclear. Here, we found that LPS and CysLT2R agonist NMLTC4 significantly increased microglia proliferation and phagocytosis, up-regulated the mRNA expression of M1 polarization markers (IL-1β, TNF-α, IFN-γ, CD86 and iNOS), down-regulated the expression of M2 polarization markers (Arg-1, CD206, TGF-β, IL-10, Ym-1) and increased the release of IL-1β and TNF-α. CysLT2R selective antagonist HAMI3379 could antagonize these effects. IL-4 significantly up-regulated the mRNA expression of M2 polarization markers, and HAMI3379 further increased IL-4-induced up-regulation of M2 polarization markers expression. Additionally, LPS and NMLTC4 stimulated NF-κB p50 and p65 proteins expression, and promoted p50 transfer to the nucleus. Pre-treatment with HAMI3379 and NF-κB signaling inhibitor Bay 11-7082 could reverse the up-regulation of p50 and p65 proteins expression, and inhibited p50 transfer to the nucleus. The conditional medium of BV-2 cells contained HAMI3379 could inhibit SH-SY5Y cells apoptosis induced by LPS and NMLTC4. These results were further confirmed in primary microglia. The findings indicate that CysLT2R was involved in inflammation and neuronal damage by inducing the activation of microglia M1 polarization and NF-κB pathway, inhibiting microglia M1 polarization and promoting microglia polarization toward M2 phenotype which may exerts neuroprotective effects, and targeting CysLT2R may be a new therapeutic strategy against cerebral ischemia stroke.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Miaofa Ying
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Shenglong Gu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Wei Yin
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China
| | - Yanwei Li
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China.
| | - Sanhua Fang
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China.
| | - Mingxing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China.
| |
Collapse
|
419
|
Zhang D, Lu Z, Zhang Z, Man J, Guo R, Liu C, Wang J. A likely protective effect of dimethyl itaconate on cerebral ischemia/reperfusion injury. Int Immunopharmacol 2019; 77:105924. [PMID: 31678864 DOI: 10.1016/j.intimp.2019.105924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
As a membrane-permeable derivative of itaconate, dimethyl itaconate (DMI) was recently showed to limit inflammatory response of activated macrophages, and to decrease the generation of reactive oxygen species and reduce cardiac ischemia/reperfusion injury. However, the effect of DMI in the context of cerebral ischemia/reperfusion injury remains unclear. Here, we treated the transient middle cerebral artery occlusion (tMCAO) mice with DMI or saline at the beginning of occlusion, and allowed them to recover for 3 days. We found that DMI obviously decreased the neurologic deficit score. Further, DMI significantly inhibited the toxic conversion of the peri-infarct microglia, and decreased the protein level of interleukin 1β. The present findings suggest that DMI might be recognized as a promising candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhen Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiang Man
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ruiming Guo
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
420
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
421
|
Guan X, Wang Y, Kai G, Zhao S, Huang T, Li Y, Xu Y, Zhang L, Pang T. Cerebrolysin Ameliorates Focal Cerebral Ischemia Injury Through Neuroinflammatory Inhibition via CREB/PGC-1α Pathway. Front Pharmacol 2019; 10:1245. [PMID: 31695614 PMCID: PMC6818051 DOI: 10.3389/fphar.2019.01245] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is one of the important factors aggravating brain injury after ischemic stroke. We aimed to investigate the effects of cerebrolysin (CBL) on neuroinflammation in vivo and in vitro and the underlying mechanisms. The gene expressions of pro-inflammatory factors and anti-inflammatory factors were analyzed by real time PCR in rat transient middle cerebral artery occlusion (tMCAO) model, lipopolysaccharides-induced neuroinflammatory mice model and LPS-treated mouse primary microglia cells. The neuroprotective effects of CBL were evaluated by infarct size, Longa test and Rotarod test for long-term functional recovery in rats subjected to ischemia. The role of CREB/PGC-1α pathway in anti-neuroinflammatory effect of CBL was also determined by real time PCR and Western blotting. In the tMCAO model, administration of CBL at 3 h post-ischemia reduced infarct volume, promoted long-term functional recovery, decreased the gene expression of pro-inflammatory factors and increased the gene expression of anti-inflammatory factors. Correspondingly, in LPS-induced neuroinflammatory mice model, CBL treatment attenuated sickness behavior, decreased the gene expression of pro-inflammatory factors, and increased the gene expression of anti-inflammatory factors. In in vitro and in vivo experiments, CBL increased the protein expression levels of PGC-1α and phosphorylated CREB to play anti-inflammatory effect. Additionally, the application of the specific CREB inhibitor, 666-15 compound could effectively reverse the anti-inflammatory effect of CBL in primary mouse microglia cells and anti-ischemic brain injury of CBL in rats subjected to tMCAO. In conclusion, CBL ameliorated cerebral ischemia injury through reducing neuroinflammation partly via the activation of CREB/PGC-1α pathway and may play a therapeutic role as anti-neuroinflammatory agents in the brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunjie Wang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shunyi Zhao
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tingyu Huang
- Guangdong Long Fu Pharmaceutical Co., Ltd., Zhongshan, China
| | - Youzhen Li
- Guangdong Long Fu Pharmaceutical Co., Ltd., Zhongshan, China
| | - Yuan Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
422
|
Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, Guo W, Li X, Yue L, Wang B, Qu Y. Pterostilbene Attenuates Astrocytic Inflammation and Neuronal Oxidative Injury After Ischemia-Reperfusion by Inhibiting NF-κB Phosphorylation. Front Immunol 2019; 10:2408. [PMID: 31681297 PMCID: PMC6811521 DOI: 10.3389/fimmu.2019.02408] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocyte-mediated inflammation and oxidative stress elicit cerebral ischemia-reperfusion (IR) injury after stroke. Nuclear factor (NF)-κB activates astrocytes and generates pro-inflammatory factors. The purpose of the present study is to elucidate the effect of pterostilbene (PTE, a natural stilbene) on astrocytic inflammation and neuronal oxidative injury following cerebral ischemia-reperfusion injury. A middle cerebral artery occlusion-reperfusion (MCAO/R) mouse model and HT22/U251 co-culture model subjected to oxygen-glucose deprivation and re-introduction (OGD/R) were employed, with or without PTE treatment. The data showed that PTE delivery immediately after reperfusion, at 1 h after occlusion, decreased infarct volume, brain edema, and neuronal apoptosis and improved long-term neurological function. PTE decreased oxidation (i.e., production of reactive oxygen species, malondialdehyde) and inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and increased anti-oxidative enzyme activities (i.e., of superoxide dismutase, glutathione peroxidase), by inhibiting phosphorylation and nuclear translocation of NF-κB. In conclusion, PTE attenuated astrocyte-mediated inflammation and oxidative injury following IR via NF-κB inhibition. Overall, PTE is a promising neuroprotective agent.
Collapse
Affiliation(s)
- Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Luo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaogang Wang
- Department of Neurosurgery, The 960th Hospital, Jinan, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingyang Song
- Department of Nursing, The 960th Hospital, Jinan, China
| | - Xunyuan Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bodong Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, The 960th Hospital, Jinan, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
423
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
424
|
Tian X, Liu H, Xiang F, Xu L, Dong Z. β-Caryophyllene protects against ischemic stroke by promoting polarization of microglia toward M2 phenotype via the TLR4 pathway. Life Sci 2019; 237:116915. [PMID: 31610207 DOI: 10.1016/j.lfs.2019.116915] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023]
Abstract
AIMS The objective of the study was to determine whether β-caryophyllene (BCP) exerts a neuroprotective effect in cerebral ischemia-reperfusion (I/R) injury by inhibiting microglial activation and modulating their polarization via the TLR4 pathway. MAIN METHODS Wild-type (WT) and TLR4 knockout (KO) C57BL/6J mice were subjected to cerebral I/R injury and neurologic dysfunction, cerebral infarct volume, brain edema, microglia activation and polarization, and TLR4 expression were determined. In vitro, primary microglia were stimulated with LPS and IFN-γ or IL-4 to induce polarization of microglia toward M1 or M2 phenotypes. KEY FINDINGS BCP reduced cerebral infarct volume, brain edema, and neurologic deficits in WT mice after I/R. The optimal dose of BCP, 72 mg/kg body weight, inhibited microglial activation and reduced the secretion of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 by microglia of WT mice. BCP inhibited the level of TLR4 in WT mice, and partially reduced neurologic deficits, infarct volume, and brain edema in TLR4 KO mice. Importantly, BCP reduced the number of activated M1-type microglia and increased the number of M2-type microglia in the ipsilateral cortex of both WT and TLR4 KO mice. In vitro, BCP decreased the secretion of proinflammatory cytokines induced by LPS plus IFN-γ, downregulated the level of TLR4 protein, and polarized microglia towards the M2 phenotype. SIGNIFICANCES The decrease in TLR4 activity mediated, at least in part, the anti-inflammatory effects of BCP and its ability to shift microglia polarization from the M1 to M2 phenotype.
Collapse
Affiliation(s)
- Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, China
| | - Hailin Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, China; Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, 401121, China
| | - Fei Xiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, China
| | - Lu Xu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, District of Shapingba, Chongqing, 401331, China.
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
425
|
Microglial P2Y12 Receptor Regulates Seizure-Induced Neurogenesis and Immature Neuronal Projections. J Neurosci 2019; 39:9453-9464. [PMID: 31597724 DOI: 10.1523/jneurosci.0487-19.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
Seizures are common in humans with various etiologies ranging from congenital aberrations to acute injuries that alter the normal balance of brain excitation and inhibition. A notable consequence of seizures is the induction of aberrant neurogenesis and increased immature neuronal projections. However, regulatory mechanisms governing these features during epilepsy development are not fully understood. Recent studies show that microglia, the brain's resident immune cell, contribute to normal neurogenesis and regulate seizure phenotypes. However, the role of microglia in aberrant neurogenic seizure contexts has not been adequately investigated. To address this question, we coupled the intracerebroventricular kainic acid model with current pharmacogenetic approaches to eliminate microglia in male mice. We show that microglia promote seizure-induced neurogenesis and subsequent seizure-induced immature neuronal projections above and below the pyramidal neurons between the DG and the CA3 regions. Furthermore, we identify microglial P2Y12 receptors (P2Y12R) as a participant in this neurogenic process. Together, our results implicate microglial P2Y12R signaling in epileptogenesis and provide further evidence for targeting microglia in general and microglial P2Y12R in specific to ameliorate proepileptogenic processes.SIGNIFICANCE STATEMENT Epileptogenesis is a process by which the brain develops epilepsy. Several processes have been identified that confer the brain with such epileptic characteristics, including aberrant neurogenesis and increased immature neuronal projections. Understanding the mechanisms that promote such changes is critical in developing therapies to adequately restrain epileptogenesis. We investigated the role of purinergic P2Y12 receptors selectively expressed by microglia, the resident brain immune cells. We report, for the first time, that microglia in general and microglial P2Y12 receptors in specific promote both aberrant neurogenesis and increased immature neuronal projections. These results indicate that microglia enhance epileptogenesis by promoting these processes and suggest that targeting this immune axis could be a novel therapeutic strategy in the clinic.
Collapse
|
426
|
Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, Liu X, Fei L, Chen S, Wang M, Kuang F, Wang Y, Wu S. RIPK3/MLKL-Mediated Neuronal Necroptosis Modulates the M1/M2 Polarization of Microglia/Macrophages in the Ischemic Cortex. Cereb Cortex 2019; 28:2622-2635. [PMID: 29746630 PMCID: PMC5998990 DOI: 10.1093/cercor/bhy089] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/28/2022] Open
Abstract
Cell death and subsequent inflammation are 2 key pathological changes occurring in cerebral ischemia. Active microglia/macrophages play a double-edged role depending on the balance of their M1/M2 phenotypes. Necrosis is the predominant type of cell death following ischemia. However, how necrotic cells modulate the M1/M2 polarization of microglia/macrophages remains poorly investigated. Here, we reported that ischemia induces a rapid RIPK3/MLKL-mediated neuron-dominated necroptosis, a type of programmed necrosis. Ablating RIPK3 or MLKL could switch the activation of microglia/macrophages from M1 to the M2 type in the ischemic cortex. Conditioned medium of oxygen-glucose deprivation (OGD)-treated wild-type (WT) neurons induced M1 polarization, while that of RIPK3−/− neurons favored M2 polarization. OGD treatment induces proinflammatory IL-18 and TNFα in WT but not in RIPK3−/− neurons, which in turn upregulate anti-inflammatory IL-4 and IL-10. Furthermore, the expression of Myd88—a common downstream adaptor of toll-like receptors—is significantly upregulated in the microglia/macrophages of ischemic WT but not of RIPK3−/− or MLKL−/− cortices. Antagonizing the function of Myd88 could phenocopy the effects of RIPK3/MLKL-knockout on the polarization of microglia/macrophages and was neuroprotective. Our data revealed a novel role of necroptotic neurons in modulating the M1/M2 balance of microglia/macrophages in the ischemic cortex, possibly through Myd88 signaling.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China.,Department of Anatomy, Shaanxi Key Laboratory of Brain Disorders and Institute of Basic Medical Sciences, Xi'an Medical University, 1 Xin Wang Road, Xi'an, Shaanxi, China
| | - Youyi Zhao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China.,School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Li Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China.,Department of Anatomy, Shaanxi Key Laboratory of Brain Disorders and Institute of Basic Medical Sciences, Xi'an Medical University, 1 Xin Wang Road, Xi'an, Shaanxi, China
| | - Hong Fan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Chuchu Qi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Xinyu Liu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Lin Fei
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan Ta Western Road, Xi'an, Shaanxi, China
| | - Siwei Chen
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Mengmeng Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, Shaanxi, China
| |
Collapse
|
427
|
Kurisu K, Zheng Z, Kim JY, Shi J, Kanoke A, Liu J, Hsieh CL, Yenari MA. Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. J Cereb Blood Flow Metab 2019; 39:1906-1918. [PMID: 30523715 PMCID: PMC6775587 DOI: 10.1177/0271678x18817282] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is an innate immune receptor that promotes phagocytosis by myeloid cells such as microglia and macrophages. We previously showed that TREM2 deficiency worsened outcomes from experimental stroke and impeded phagocytosis. However, myeloid cells participating in stroke pathology include both brain resident microglia and circulating macrophages. We now clarify whether TREM2 on brain microglia or circulating macrophages contribute to its beneficial role in ischemic stroke by generating bone marrow (BM) chimeric mice. BM chimera mice from TREM2 knockout (KO) or wild type (Wt) mice were used as donor and recipient mice. Mice were subjected to experimental stroke, and neurological function and infarct volume were assessed. Mice with intact TREM2 in brain microglia showed better neurological recovery and reduced infarct volumes, compared with mice lacking microglial TREM2. Myeloid cell activation and numbers of phagocytes were decreased in mice lacking brain TREM2, compared with mice with intact brain TREM2. These results suggest that TREM2 expression is important for post-stroke recovery, and that TREM2 expression on brain resident microglia is more essential to this recovery, than that of circulating macrophages. These findings might suggest a new therapeutic target for cerebrovascular diseases.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhen Zheng
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jian Shi
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Atsushi Kanoke
- Department of Neurosurgery, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jialing Liu
- Department of Neurosurgery, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Christine L Hsieh
- Department of Medicine, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
428
|
Xiang B, Zhong P, Fang L, Wu X, Song Y, Yuan H. miR-183 inhibits microglia activation and expression of inflammatory factors in rats with cerebral ischemia reperfusion via NF-κB signaling pathway. Exp Ther Med 2019; 18:2540-2546. [PMID: 31572505 PMCID: PMC6755485 DOI: 10.3892/etm.2019.7827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke represents 87% of all strokes, and is the third leading cause of disability and mortality worldwide. The cause of ischemic stroke is the obstruction of blood flow through the artery that supplies oxygen-rich blood to the brain, with ischemia-reperfusion injury as its major cause. microRNAs (miRNA) are small non-coding RNAs, which serve important roles in the regulation of gene expression at the post-transcription level. The aim of the present study was to investigate the effect of miRNA-183 (miR-183) on microglia activation in rats with cerebral ischemia-reperfusion injury. To this end, a rat cerebral ischemia-reperfusion injury model was established. The results indicated that miR-183 expression was decreased by cerebral ischemia-reperfusion. In addition, treatment using miR-183 agomir significantly reduced the neurological function scores, percentage of cerebral infarction volume, and ionized calcium-binding adapter molecule-1 (IBA-1)-positive cells in the CA1 area of the hippocampus in rats subjected to cerebral ischemia-reperfusion injury, implicating a neuroprotective role for miR-183. MiR-183 agomir treatment also decreased the expression of pro-inflammatory-associated proteins interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Finally, the expression of the nuclear factor (NF)-κB p65 and IκBα was decreased and increased by miR-183 agomir treatment, respectively, indicating inhibition of the NF-κB signaling pathway. These observations suggest that miR-183 regulates the activation of microglia in rats with cerebral ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bo Xiang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Ping Zhong
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Lei Fang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Xianxian Wu
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Yuqiang Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haicheng Yuan
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
429
|
Wnt-3a alleviates neuroinflammation after ischemic stroke by modulating the responses of microglia/macrophages and astrocytes. Int Immunopharmacol 2019; 75:105760. [DOI: 10.1016/j.intimp.2019.105760] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
|
430
|
Wang L, Zhou Y, Yin J, Gan Y, Wang X, Wen D, Thomson AW, Hu X, Yang L, Stetler RA, Li P, Yu W. Cancer Exacerbates Ischemic Brain Injury Via Nrp1 (Neuropilin 1)-Mediated Accumulation of Regulatory T Cells Within the Tumor. Stroke 2019; 49:2733-2742. [PMID: 30355201 DOI: 10.1161/strokeaha.118.021948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and Purpose- Adoptive transfer of regulatory T cells (Tregs) protect against stroke; however, Treg-based therapy raises concerns in stroke patients with cancer because of the immunosuppressive function of Tregs. The purpose of this study was to investigate the role of Tregs in cerebral ischemic brain injury with concomitant cancer. Methods- To establish a cancer phenotype, MC38 colon cancer or B16 melanoma cells (5×105/mice) were injected subcutaneously into C57BL/6J mice 2 to 3 weeks before distal middle cerebral artery occlusion surgery. Infarct volume, neuroinflammation, and Tregs infiltration were measured by 2,3,5-triphenyltetrazolium chloride staining, immunofluorescence staining, real-time polymerase chain reaction, and flow cytometry. Mechanistically, Nrp1 (neuropilin-1) monoclonal antibody was used to block the Nrp1 effect on Tregs ex vivo before being transferred into recombination activating gene 1 (Rag1-/-) stroke mice, which are devoid of T and B cells, or a Nrp1 neutralization antibody was injected systemically into cancer-bearing wild-type mice after stroke. Results- Cancer-bearing mice with stroke exhibited augmented neuroinflammation and fewer Tregs in the brain, but more infiltration of Tregs to the tumor was apparent after distal middle cerebral artery occlusion. Depletion of Tregs increased infarct volume in stroke mice but did not further exacerbate brain injury in cancer-bearing stroke mice. Nrp1 blocking ex vivo or Nrp1 systemic neutralization attenuated ischemic brain injury and reversed accumulation of Tregs within tumor after stroke in cancer-bearing mice. Conclusions- Nrp1 signaling mediated accumulation of Tregs within tumor might play a critical role in exacerbating ischemic brain injury in cancer-bearing mice and may represent a promising immune modulatory target for the combined condition of cancer and stroke.
Collapse
Affiliation(s)
- Long Wang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.,Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China (L.W.)
| | - Yuxi Zhou
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Jiemin Yin
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute (Y.G.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xin Wang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Daxiang Wen
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute (A.W.T.), University of Pittsburgh School of Medicine, PA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery (X.H., R.A.S.), University of Pittsburgh School of Medicine, PA
| | - Liqun Yang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery (X.H., R.A.S.), University of Pittsburgh School of Medicine, PA
| | - Peiying Li
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Weifeng Yu
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
431
|
Lauro C, Chece G, Monaco L, Antonangeli F, Peruzzi G, Rinaldo S, Paone A, Cutruzzolà F, Limatola C. Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Front Cell Neurosci 2019; 13:414. [PMID: 31607865 PMCID: PMC6755341 DOI: 10.3389/fncel.2019.00414] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
In the CNS, the chemokine CX3CL1 (fractalkine) is expressed on neurons while its specific receptor CX3CR1 is expressed on microglia and macrophages. Microglia play an important role in health and disease through CX3CL1/CX3CR1 signaling, and in many neurodegenerative disorders, microglia dysregulation has been associated with neuro-inflammation. We have previously shown that CX3CL1 has neuroprotective effects against cerebral ischemia injury. Here, we investigated the involvement of CX3CL1 in the modulation of microglia phenotype and the underlying neuroprotective effect on ischemia injury. The expression profiles of anti- and pro-inflammatory genes showed that CX3CL1 markedly inhibited microglial activation both in vitro and in vivo after permanent middle cerebral artery occlusion (pMCAO), accompanied by an increase in the expression of anti-inflammatory genes. Moreover, CX3CL1 induces a metabolic switch in microglial cells with an increase in the expression of genes related to the oxidative pathway and a reduction in those related to the glycolytic pathway, which is the metabolic state associated to the pro-inflammatory phenotype for energy production. The data reported in this paper suggest that CX3CL1 protects against cerebral ischemia modulating the activation state of microglia and its metabolism in order to restrain inflammation and organize a neuroprotective response against the ischemic insult.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| |
Collapse
|
432
|
Wang H, Liao S, Li H, Chen Y, Yu J. Long Non-coding RNA TUG1 Sponges Mir-145a-5p to Regulate Microglial Polarization After Oxygen-Glucose Deprivation. Front Mol Neurosci 2019; 12:215. [PMID: 31551710 PMCID: PMC6748346 DOI: 10.3389/fnmol.2019.00215] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Microglia plays a critical role in neuroinflammation after ischemic stroke by releasing diverse inflammatory cytokines. Long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is widely expressed in adult brain and has been reported to participate in multiple biological processes associated with nervous system diseases. However, the role of TUG1 in microglial activation remains unidentified. BV-2 microglial cells were cultured in vitro and TUG1 siRNA was used to knock down its RNA level. Microglial cells were subjected to oxygen-glucose deprivation (OGD) for 4 h following TUG1 siRNA or scramble siRNA transient transfection. After 24 h reoxygenation, TUG1 level and microglial M1/M2 phenotype, as well as releasing inflammatory cytokines and their role to viability of SH-SY5Y neuroblastoma cells were determined by quantitative real-time PCR (qRT-PCR), ELISA, immunofluorescence and western blot. In addition, miR-145a-5p, a putative microRNA to bind with TUG1 by bioinformatics analysis, was simultaneously examined, then the interaction of TUG1 with miR-145a-5p and the potential involvement of NF-κB pathway were further evaluated by RNA-RNA pull-down assay and western blot. The cellular level of TUG1 was transiently up-regulated in microglial cells 24 h after OGD treatment, with an inverse correlation to downregulated miR-145a-5p. TUG1 knockdown drove microglial M1-like to M2-like phenotypic transformation with reduced production of pro-inflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6) and incremental release of anti-inflammatory cytokine (interleukin-10, IL-10), as a result, promoted the survival of SH-SY5Y cells. Meanwhile, TUG1 knockdown prevented OGD-induced activation of NF-κB pathway as well, represented by decreased ratios of p-p65/p65 and p-IκBα/IκBα proteins. Furthermore, we found that TUG1 could physically bind to miR-145a-5p while miR-145a-5p inhibitor abolished the protective effects of TUG1 knockdown through activation of NF-κB pathway, suggesting a negative interaction between TUG1 and miR-145a-5p. Our study demonstrated that lncRNA TUG1, sponging miR-145a-5p with negative interaction, could regulate microglial polarization and production of inflammatory cytokines at a relatively early stage after OGD insult, where NF-κB pathway might be involved, possibly providing a promising therapeutic target against inflammatory injury.
Collapse
Affiliation(s)
- Haoyue Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songjie Liao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongjie Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yicong Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Yu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
433
|
Revuelta M, Elicegui A, Moreno-Cugnon L, Bührer C, Matheu A, Schmitz T. Ischemic stroke in neonatal and adult astrocytes. Mech Ageing Dev 2019; 183:111147. [PMID: 31493435 DOI: 10.1016/j.mad.2019.111147] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
The objective of this paper is to review current information regarding astrocytes function after a stroke in neonatal and adult brain. Based on the current literature, there are some molecular differences related to blood brain barrier (BBB) homeostasis disruption, inflammation and reactive oxygen species (ROS) mediated injury between the immature and mature brain after an ischemic event. In particular, astrocytes, the main glial cells in brain, play a different role in neonatal and adult brain after stroke, as time course of glial activation is strongly age dependent. Moreover, the present review provides further insight into the therapeutic approaches of using neonatal and adult astrocytes after stroke. More research will be needed in order to translate them into an effective treatment against stroke, the second main cause of death and disability worldwide.
Collapse
Affiliation(s)
- Miren Revuelta
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany; Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Elicegui
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko 3, 48013, Bilbao, Spain; CIBERfes, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
434
|
Li S, Lu X, Shao Q, Chen Z, Huang Q, Jiao Z, Huang X, Yue M, Peng J, Zhou X, Chao D, Zhao H, Ji J, Ji Y, Ji Q. Early Histone Deacetylase Inhibition Mitigates Ischemia/Reperfusion Brain Injury by Reducing Microglia Activation and Modulating Their Phenotype. Front Neurol 2019; 10:893. [PMID: 31481925 PMCID: PMC6710990 DOI: 10.3389/fneur.2019.00893] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are a promising therapeutic intervention for stroke. The involvement of the anti-inflammatory effects of HDACi in their neuroprotection has been reported, but the underlying mechanisms are still uncertain. Given the post-stroke inflammation is a time-dependent process, starting with acute and intense inflammation, and followed by a prolonged and mild one, we proposed whether target the early inflammatory response could achieve the neuroprotection of HDACi? To test this hypothesis, a single dose of suberoylanilide hydroxamic acid (SAHA) (50 mg/kg), a pan HDACi, was intraperitoneally (i.p.) injected immediately or 12 h after ischemia onset in a transient middle cerebral artery occlusion (tMCAO) mouse model. Compared with delayed injection, immediate SAHA treatment provided more protection, evidenced by smaller infarction volume, and a better outcome. This protection was accompanied by suppression of pro-inflammatory cytokines and reduction of activated microglia in the early stage of post-stroke inflammation. Moreover, SAHA treatment suppressed M1 cytokine expression (IL-6, TNF-α, and iNOS) while promoted the transcription of M2 cytokines (Arg-1 and IL-10) in LPS-challenged mouse microglia, and enhanced CD206 (M2 marker) but decreased CD86 (M1 markers) levels in microglia isolated from the ipsilateral hemisphere of MCAO mice. Collectively, our data suggested that the protection of SAHA on ischemic brain injury was closely associated with its inhibition on the early inflammatory response, and this inhibition was related to its reducing microglia activation and priming the activated microglia toward a more protective phenotype.
Collapse
Affiliation(s)
- Shuyuan Li
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Xiaoshuang Lu
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Zixin Chen
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Qiong Huang
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Zinan Jiao
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Xiaodi Huang
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Maosong Yue
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Jingwen Peng
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Zhou
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Dachong Chao
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Heng Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuhua Ji
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
435
|
Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu X, Wen Z, Xie Y, Li J, Li R, Lv Q, Liu Q, Dai Q, Liu X, Xu G. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 2019; 16:168. [PMID: 31426811 PMCID: PMC6699078 DOI: 10.1186/s12974-019-1556-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia. Methods We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice. Results After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed. Conclusions The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Roud, Shanghai, 20025, China
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiushi Lv
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiliang Dai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
436
|
Lam PK, Wang KKW, Chin DWC, Tong CSW, Wang Y, Lo KKY, Lai PBS, Ma H, Zheng VZY, Poon WS, Wong GKC. Topically applied adipose-derived mesenchymal stem cell treatment in experimental focal cerebral ischemia. J Clin Neurosci 2019; 71:226-233. [PMID: 31431402 DOI: 10.1016/j.jocn.2019.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
In this study, the neuro-modulation effect of topical mesenchymal stem cells (MSCs) was tested in a rodent middle carotid artery occlusion (MCAO) model. Twenty-four hours after MCAO, craniotomy was made and 0.8 × 106 GFP-MSCs were topically applied to the exposed parietal cortex. The MSCs were fixed in position by a thin layer of fibrin glue (N = 30). In the control group, saline were topically applied to the ipsilateral parietal cortex (N = 30). Three days after topical application, few GFP-positive cells were found in the ischemic penumbra. They expressed GFAP and NeuN. Topical MSCs triggered microglial activation, astrocytosis and cellular proliferation at day 3. The recovery of neurological functions were significantly enhanced as determined in Rotarod test and Morris Water Maze test with smaller infarct volume. PCR array showed that expressions of ten genes of neurogenesis were altered in the penumbra region (fold change > 1.25, p < 0.05) in MSCs group: Apoe, Ascl1, Efnb1, Mef2c, Nog, A100a6 and B2m were up-regulated; Pax2, Pax3 and Th were down-regulated. In conclusion, topical application provided a direct and effective transplant method for the delivery of MSCs to the surface of ipsilateral cerebral cortex and the topical MSCs could improve the neurological function from cerebral ischemia resulting from a major cerebral artery occlusion in a rodent experimental model.
Collapse
Affiliation(s)
- Ping Kuen Lam
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kevin Ka Wang Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Don Wai Ching Chin
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Cindy See Wai Tong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yixiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kin Ki Yan Lo
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Paul Bo San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Hui Ma
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vera Zhi Yuan Zheng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Wai Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - George Kwok Chu Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
437
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
438
|
Huang L, Wu S, Li H, Dang Z, Wu Y. Hypoxic preconditioning relieved ischemic cerebral injury by promoting immunomodulation and microglia polarization after middle cerebral artery occlusion in rats. Brain Res 2019; 1723:146388. [PMID: 31421131 DOI: 10.1016/j.brainres.2019.146388] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study was designed to investigate whether immunomodulation and Microglia polarization is involved in the anti-inflammatory and neuroprotective effect induced by hypoxic preconditioning (HPC) in the middle cerebral artery occlusion (MCAO) brain injury model. METHODS Longa method, (neurological disability status scale) NDSS method and TTC staining were used to evaluate the degree of cerebral infarction injury under different treatments (Sham, HPC, MCAO and co-treatment with HPC and MCAO). Western blot was used to detect expression profiles of apoptosis and related factors of neurological function. Flow cytometry was performed to analyze changes in the ratio of helper T cells, toxic T cells and NK cells in peripheral immune cells. And immunohistochemistry was used to examine the changes in microglial morphology. ELISA was used to evaluate the levels of nerve growth factors and neurogenesis conditions. Finally, RT-PCR was determined to analyze the transformation of microglia phenotype after HPC and MCAO treatment. RESULTS MCAO dramatically induced local formation of cerebral infarction. HPC relieved MCAO-induced cerebral infarction and increased rat cognition. HPC affected activation of microglia without significantly affecting in peripheral immune cell populations. After HPC co-treatment with MCAO, the M1 phenotype of microglia was changed and there was a transformation to M2. CONCLUSION The treatment of HPC remarkably affected the polarization of microglia cells in MCAO rats, and reduced the cerebral nerve injury and played a protective role in MCAO model.
Collapse
Affiliation(s)
- Lu Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Loint Research Key Lab for High Altitude Medicine), Xining, China; Qinghai Provincial People's Hospital, Xining, China
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China.
| | - Hao Li
- Qinghai Provincial People's Hospital, Xining, China
| | - Zhancui Dang
- Qinghai University Medical College, Xining, China
| | - Yue Wu
- Qinghai University, Qinghai, China
| |
Collapse
|
439
|
Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model. Antioxidants (Basel) 2019; 8:antiox8080273. [PMID: 31382635 PMCID: PMC6721128 DOI: 10.3390/antiox8080273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia is a devastating disease with a high incidence of death and disability; however, effective therapeutics remain limited. The transcriptional factor Nrf2 has been shown to play a pivotal role in the endogenous defense against brain oxidative stress and inflammation, and therefore represents a promising target for stroke intervention. However, the long-term effects of Nrf2 and the standardized Korean red ginseng (ginseng), a potent Nrf2 natural inducer, on permanent cerebral ischemic damage have not yet been reported. Wildtype (WT) and Nrf2-/- adult mice were pretreated with either vehicle or ginseng, and were subjected to permanent distal middle cerebral artery occlusion (pdMCAO). The infarct volume, the reactive astrocytes and microglia, and the water regulatory protein aquaporin 4 (AQP4) were examined at 28 days after stroke. When compared with the WT matched controls, the Nrf2 disruption significantly enlarged the infarct volume (40.4 ± 10.1%) and exacerbated the progression of reactive gliosis and AQP4 protein levels after pdMCAO. In contrast, ginseng significantly reduced the infarct volume and attenuated the reactive gliosis and AQP4 in the ischemic WT mice (47.3 ± 6.9%), but not in the Nrf2-/- mice (25.5 ± 5.6%). In conclusion, Nrf2 plays an important role in the long-term recovery of permanent cerebral ischemic damage and the neuroprotection of ginseng.
Collapse
|
440
|
Shinozaki Y, Danjo Y, Koizumi S. Microglial ROCK is essential for chronic methylmercury‐induced neurodegeneration. J Neurochem 2019; 151:64-78. [DOI: 10.1111/jnc.14817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| |
Collapse
|
441
|
Sun X, Wang Z, Wu Q, Jin S, Yao J, Cheng H. LncRNA RMST activates TAK1‐mediated NF‐κB signaling and promotes activation of microglial cells via competitively binding with hnRNPK. IUBMB Life 2019; 71:1785-1793. [PMID: 31329361 DOI: 10.1002/iub.2125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiu‐Lan Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University; Jiangsu Key Laboratory of Neurodegeneration; Department of PharmacologyNanjing Medical University Nanjing Jiangsu China
| | - Zhao‐Lu Wang
- Department of NeurologyFirst Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Qian Wu
- Department of NeurologyFirst Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Shan‐Quan Jin
- Department of NeurologyFirst Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Juan Yao
- Department of NeurologyFirst Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Hong Cheng
- Department of NeurologyFirst Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
442
|
Gervois P, Lambrichts I. The Emerging Role of Triggering Receptor Expressed on Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Front Immunol 2019; 10:1668. [PMID: 31379859 PMCID: PMC6650572 DOI: 10.3389/fimmu.2019.01668] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/03/2019] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second most common cause of death and permanent disability. It is characterized by loss of neural tissue in which inflammation plays a crucial role in both the acute contribution to ischemic damage as in the late-stage impact on post-ischemic tissue regeneration. Microglia play a key role in the inflammatory stroke microenvironment as they can adapt a disease-promoting pro-inflammatory- or pro-regenerative phenotype thereby contributing to the exacerbation or alleviation of ischemic damage, respectively. Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor which in the central nervous system is mainly expressed on microglia. This receptor has been shown to play an essential role in microglial phagocytosis and function but its contribution in stroke pathobiology remains unclear. TREM2 was shown to be activated by nucleotides and lipid mediators, key factors that are secreted in the extracellular stroke environment by apoptotic neurons and cell/myelin debris. These factors in turn stimulate TREM2 signaling which mediates microglial migration toward- and phagocytosis of myelin debris and apoptotic cells. Moreover, microglial TREM2 appears to counteract the toll-like receptor response, thereby decreasing the production of pro-inflammatory cytokines. Finally, TREM2 is involved in microglial migration, survival, and is suggested to directly stimulate pro-regenerative phenotype shift. Therefore, this receptor is an attractive target for microglial modulation in the treatment of ischemic stroke and it provides additional information on microglial effector functions. This short review aims to elaborate on these TREM2-mediated microglial functions in the pathobiology and resolving of ischemic stroke.
Collapse
Affiliation(s)
- Pascal Gervois
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
443
|
Chen C, Chu SF, Ai QD, Zhang Z, Guan FF, Wang SS, Dong YX, Zhu J, Jian WX, Chen NH. CKLF1 Aggravates Focal Cerebral Ischemia Injury at Early Stage Partly by Modulating Microglia/Macrophage Toward M1 Polarization Through CCR4. Cell Mol Neurobiol 2019; 39:651-669. [PMID: 30982091 DOI: 10.1007/s10571-019-00669-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
CKLF1 is a chemokine with increased expression in ischemic brain, and targeting CKLF1 has shown therapeutic effects in cerebral ischemia model. Microglia/macrophage polarization is a mechanism involved in poststroke injury expansion. Considering the quick and obvious response of CKLF1 and expeditious evolution of stroke lesions, we focused on the effects of CKLF1 on microglial/macrophage polarization at early stage of ischemic stroke (IS). The present study is to investigate the CKLF1-mediated expression of microglia/macrophage phenotypes in vitro and in vivo, discussing the involved pathway. Primary microglia culture was used in vitro, and mice transient middle cerebral artery occlusion (MCAO) model was adopted to mimic IS. CKLF1 was added to the primary microglia for 24 h, and we found that CKLF1 modulated primary microglia skew toward M1 phenotype. In mice transient IS model, CKLF1 was stereotactically microinjected to the lateral ventricle of ischemic hemisphere. CKLF1 aggravated ischemic injury, accompanied by promoting microglia/macrophage toward M1 phenotypic polarization. Increased expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines were observed in mice subjected to cerebral ischemia and administrated with CKLF1. CKLF1-/- mice were used to confirm the effects of CKLF1. CKLF1-/- mice showed lighter cerebral damage and decreased M1 phenotype of microglia/macrophage compared with the WT control subjected to cerebral ischemia. Moreover, NF-κB activation enhancement was detected in CKLF1 treatment group. Our results demonstrated that CKLF1 is an important mediator that skewing microglia/macrophage toward M1 phenotype at early stage of cerebral ischemic injury, which further deteriorates followed inflammatory response, contributing to early expansion of cerebral ischemia injury. Targeting CKLF1 may be a novel way for IS therapy.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi-Di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, NHFPC, Peking Union Medicine College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jie Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100050, China
| | - Wen-Xuan Jian
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China.
| |
Collapse
|
444
|
Affiliation(s)
- Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
445
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019; 10:1360. [PMID: 31258534 PMCID: PMC6587666 DOI: 10.3389/fimmu.2019.01360] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
446
|
Collmann FM, Pijnenburg R, Hamzei-Taj S, Minassian A, Folz-Donahue K, Kukat C, Aswendt M, Hoehn M. Individual in vivo Profiles of Microglia Polarization After Stroke, Represented by the Genes iNOS and Ym1. Front Immunol 2019; 10:1236. [PMID: 31214190 PMCID: PMC6558167 DOI: 10.3389/fimmu.2019.01236] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
Microglia are the brain-innate immune cells which actively surveil their environment and mediate multiple aspects of neuroinflammation, due to their ability to acquire diverse activation states and phenotypes. Simplified, M1-like microglia are defined as pro-inflammatory cells, while the alternative M2-like cells promote neuroprotection. The modulation of microglia polarization is an appealing neurotherapeutic strategy for stroke and other brain lesions, as well as neurodegenerative diseases. However, the activation profile and change of phenotype during experimental stroke is not well understood. With a combined magnetic resonance imaging (MRI) and optical imaging approach and genetic targeting of two key genes of the M1- and M2-like phenotypes, iNOS and Ym1, we were able to monitor in vivo the dynamic adaption of the microglia phenotype in response to experimental stroke.
Collapse
Affiliation(s)
- Franziska M Collmann
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Rory Pijnenburg
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Somayyeh Hamzei-Taj
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anuka Minassian
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Aswendt
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR, Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Radiology Department, Leiden University Medical Center, Leiden, Netherlands.,PERCUROS, Enschede, Netherlands
| |
Collapse
|
447
|
Liu J, Nolte K, Brook G, Liebenstund L, Weinandy A, Höllig A, Veldeman M, Willuweit A, Langen KJ, Rossaint R, Coburn M. Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care 2019; 23:198. [PMID: 31159847 PMCID: PMC6547472 DOI: 10.1186/s13054-019-2493-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent years, argon has been shown to exert neuroprotective effects in an array of models. However, the mechanisms by which argon exerts its neuroprotective characteristics remain unclear. Accumulating evidence imply that argon may exert neuroprotective effects via modulating the activation and polarization of microglia/macrophages after ischemic stroke. In the present study, we analyzed the underlying neuroprotective effects of delayed argon application until 7 days after reperfusion and explored the potential mechanisms. METHODS Twenty-one male Wistar rats underwent transient middle cerebral artery occlusion or sham surgery randomly for 2 h using the endoluminal thread model. Three hours after transient middle cerebral artery occlusion induction and 1 h after reperfusion, animals received either 50% vol Argon/50% vol O2 or 50% vol N2/50% vol O2 for 1 h. The primary outcome was the 6-point neuroscore from 24 h to d7 after reperfusion. Histological analyses including infarct volume, survival of neurons (NeuN) at the ischemic boundary zone, white matter integrity (Luxol Fast Blue), microglia/macrophage activation (Iba1), and polarization (Iba1/Arginase1 double staining) on d7 were conducted as well. Sample size calculation was performed using nQuery Advisor + nTerim 4.0. Independent t test, one-way ANOVA and repeated measures ANOVA were performed, respectively, for statistical analysis (SPSS 23.0). RESULTS The 6-point neuroscore from 24 h to d7 after reperfusion showed that tMCAO Ar group displayed significantly improved neurological performance compared to tMCAO N2 group (p = 0.026). The relative numbers of NeuN-positive cells in the ROIs of tMCAO Ar group significantly increased compared to tMCAO N2 group (p = 0.010 for cortex and p = 0.011 for subcortex). Argon significantly suppressed the microglia/macrophage activation as revealed by Iba1 staining (p = 0.0076) and promoted the M2 microglia/macrophage polarization as revealed by Iba1/Arginase 1 double staining (p = 0.000095). CONCLUSIONS Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion significantly alleviated neurological deficit within the first week and preserved the neurons at the ischemic boundary zone 7 days after stroke. Moreover, argon reduced the excessive microglia/macrophage activation and promoted the switch of microglia/macrophage polarization towards the anti-inflammatory M2 phenotype. Studies making efforts to further elucidate the protective mechanisms and to benefit the translational application are of great value.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Gary Brook
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Lisa Liebenstund
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Anke Höllig
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| |
Collapse
|
448
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
449
|
Li C, Bian Y, Feng Y, Tang F, Wang L, Hoi MPM, Ma D, Zhao C, Lee SMY. Neuroprotective Effects of BHDPC, a Novel Neuroprotectant, on Experimental Stroke by Modulating Microglia Polarization. ACS Chem Neurosci 2019; 10:2434-2449. [PMID: 30839193 DOI: 10.1021/acschemneuro.8b00713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study mainly investigated the therapeutic effects of BHDPC on ischemic stroke and its underlying mechanisms. In vivo, the transient middle cerebral artery occlusion (MCAO) was used to induce ischemic model. In vitro, oxygen and glucose deprivation/reperfusion (OGD/R)-induced ischemic stroke in BV-2 microglia and primary neurons, and bEnd.3 mouse cerebral microvascular endothelial cells (ECs) were also used. First, we found that BHDPC exerts considerable neuroprotection against MCAO-induced ischemic injury to mice via alleviating neurological deficits and brain infarcts, inhibiting neuronal cell loss and apoptosis, and attenuating blood-brain barrier disruption and tight junction protein changes. Next, we observed that BHDPC significantly reduced microglial M1 activation but enhanced M2 polarization in MCAO-induced ischemic brain. Further experiments in vitro indicated that BHDPC suppressed microglial activation but promoted M2 microglial polarization in OGD/R-induced BV-2 microglia. In addition, conditioned medium (CM) experiments showed that CM from BHDPC-treated BV-2 microglia provided protections against OGD/R-induced ischemic damage in primary neurons and bEnd.3 ECs. Moreover, we found that BHDPC actions on microglial inflammation were associated with the inactivation of NF-κB signaling. Interestingly, we also found that BHDPC enhanced phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The pharmacological inhibition or gene knockdown of PKA/CREB signaling diminished BHDPC-promoted microglial M2 polarization. In summary, BHDPC conferred neuroprotection against ischemic injury in experimental stroke models. Modulating microglial activation and polarization contributes to BHDPC-mediated neuroprotective actions, which in part were mediated by nuclear factor kappa B and PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Chuwen Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 510182, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dan Ma
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
450
|
Leardini-Tristao M, Charles AL, Lejay A, Pizzimenti M, Meyer A, Estato V, Tibiriçá E, Andres E, Geny B. Beneficial Effect of Exercise on Cognitive Function during Peripheral Arterial Disease: Potential Involvement of Myokines and Microglial Anti-Inflammatory Phenotype Enhancement. J Clin Med 2019; 8:jcm8050653. [PMID: 31083472 PMCID: PMC6571759 DOI: 10.3390/jcm8050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Peripheral arterial disease (PAD), leading to intermittent claudication, critical ischemia with rest pain, and/or tissue damage, is a public health issue associated with significant morbidity and mortality. Little is known about the link between PAD, cognitive function, and whether exercise might reduce cognitive dysfunction in PAD patients, as previously observed concerning both quality of life and prognosis. This review highlights the fact that patients suffering from PAD often demonstrate cognitive dysfunction characterized by reduced performance in nonverbal reasoning, reduced verbal fluency, and decreased information processing speed and a greater risk for progression toward dementia. Further, the data presented support that physical exercise, likely through myokine secretion and microglial anti-inflammatory phenotype enhancement, might participate in the cognition protection in common clinical settings.
Collapse
Affiliation(s)
- Marina Leardini-Tristao
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, 21040-360, Rio de Janeiro, Brazil.
| | - Anne-Laure Charles
- Université de Strasbourg, Fédération de médecine translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'accueil 3072, 11 Rue Humann, 67000 Strasbourg, France.
| | - Anne Lejay
- Université de Strasbourg, Fédération de médecine translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'accueil 3072, 11 Rue Humann, 67000 Strasbourg, France.
- Service de Chirurgie Cardiovasculaire, Pôle de Pathologie Cardiaque, Hôpitaux Universitaires, CHRU Strasbourg, 67000 CEDEX, France.
| | - Mégane Pizzimenti
- Université de Strasbourg, Fédération de médecine translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'accueil 3072, 11 Rue Humann, 67000 Strasbourg, France.
| | - Alain Meyer
- Université de Strasbourg, Fédération de médecine translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'accueil 3072, 11 Rue Humann, 67000 Strasbourg, France.
- Service de Physiologie et d'explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, 21040-360, Rio de Janeiro, Brazil.
| | - Eduardo Tibiriçá
- Instituto Nacional de Cardiologia, Ministério da Saúde, Rua das lanjeiras 374, 22240-006, Rio de Janeiro 22240-006, Brazil.
| | - Emmanuel Andres
- Service de Médecine Interne, Diabète et Maladies Métaboliques, Pôle M.I.R.N.E.D., Hôpitaux Universitaires, CHRU Strasbourg, 67000 CEDEX, France.
| | - Bernard Geny
- Université de Strasbourg, Fédération de médecine translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'accueil 3072, 11 Rue Humann, 67000 Strasbourg, France.
- Service de Physiologie et d'explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| |
Collapse
|