401
|
Dupré L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C, Roncarolo MG. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 2002; 17:157-66. [PMID: 12196287 DOI: 10.1016/s1074-7613(02)00360-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunological synapse assembly relies on the clustering of lipid rafts and is required for optimal T cell activation. We demonstrate that the Wiskott-Aldrich syndrome protein (WASP) is recruited to lipid rafts immediately after TCR and CD28 triggering and is required for the movements of lipid rafts. T cells from Wiskott-Aldrich syndrome (WAS) patients, lacking WASP, proliferate poorly after TCR/CD28 activation and have impaired capacities to cluster the lipid raft marker GM1 and to upregulate GM1 cell surface expression. T cell proliferation and lipid raft clustering are restored by retroviral transfer of the WASP gene. These results demonstrate that WASP plays a central role in the movements of lipid rafts and identify a potential mechanism underlying the T cell defect affecting WAS patients.
Collapse
Affiliation(s)
- Loïc Dupré
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
402
|
Abstract
Adhesive interactions play important roles in coordinating T-cell migration and activation, specifically in the formation of the immunological synapse (IS), a specialized cell-cell junction. Recent demonstrations show several molecules implicated in T-cell signaling, including Vav, ADAP, and Rap-1, have major roles in integrin regulation and place adhesion molecules at center stage in addressing the question: what are the signals involved in the formation of the IS and full T-cell activation? This review focuses on the role of integrins as an essential system for both physical adhesion and signaling in T-cell activation. The role of integrins appears to be quite distinct from classical costimulation and has been largely overlooked due to the ubiquitous use of serum in lymphocyte functional assays. Each major signal transduction pathway has branches leading to the nucleus and others that feed back on cytoskeletal and membrane regulation at the IS.
Collapse
Affiliation(s)
- Tasha N Sims
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
403
|
Montoya MC, Sancho D, Vicente-Manzanares M, Sánchez-Madrid F. Cell adhesion and polarity during immune interactions. Immunol Rev 2002; 186:68-82. [PMID: 12234363 DOI: 10.1034/j.1600-065x.2002.18607.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intercellular interactions are critical for a coordinated function of different cell types involved in the immune response. Here we review the cellular and molecular events occurring during cell-cell immune contacts. Cognate naïve CD4+ T lymphocyte-dendritic cell (DC) and primed T cell-antigen-presenting B lymphocyte interactions are discussed. The engagement of cytotoxic T lymphocytes (CTL) or natural killer cells (NK) with their targets is analyzed and compared to the process of T cell-antigen-presenting cell (APC) conjugate formation. The immunological synapse, a complex cluster of molecules organized at the contact area of cell conjugates, exhibits common features but shows some differences depending on cell types involved. Cellular interactions occur in sequential stages that involve dramatic changes in cell polarity and dynamic redistribution of cell membrane receptors. The role of membrane microdomains, adaptor molecules and the cytoskeleton in the regulation of the molecular reorganization at cell-cell contacts is also discussed.
Collapse
Affiliation(s)
- María C Montoya
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
404
|
Abstract
The T-cell cytoskeleton is intimately involved in determining the efficiency and fidelity of the immune response. During T-cell interactions with antigen-presenting cells (APCs), dynamic remodeling of the actin cytoskeleton is particularly important for stabilizing long-lived integrin-dependent adhesive interactions. In addition, actin remodeling is important for facilitating the sustained signaling required for full T-cell activation. Although the relationship between T-cell signaling and cytoskeletal remodeling is complex, new molecular genetic tools are making it possible to investigate individual molecular interactions in the context of bona fide conjugate formation. We describe here the progress from our laboratory toward defining the pathways required for actin remodeling during conjugate formation. Our studies show that engagement of T-cell receptor (TCR) and leukocyte functional antigen-1 (LFA-1) leads to distinct effects on the remodeling of individual cytoskeletal elements. Downstream of TCR, we find that p56Lck (Lck) plays a critical role in integrin-dependent adhesion independent of its ability to activate zeta-associated protein of 70 kDa (ZAP-70). TCR engagement also results in the assembly of a signaling complex that facilitates the activation of Wiskott-Aldrich syndrome protein (WASP) by colocalization with Cdc42-GTP. These events, together with other parallel actin regulatory pathways, induce localized actin polymerization at the site of APC binding.
Collapse
Affiliation(s)
- Judy L Cannon
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
405
|
Morford LA, Forrest K, Logan B, Overstreet LK, Goebel J, Brooks WH, Roszman TL. Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells. Biochem Biophys Res Commun 2002; 295:540-6. [PMID: 12150984 DOI: 10.1016/s0006-291x(02)00676-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calpain, a calcium-dependent cysteine protease, is known to associate with the T-cell plasma membrane and subsequently cleave a number of cytoskeletal-associated proteins. In this study, we report the novel observation that calpain II, but not calpain I, associates with membrane lipid rafts on human peripheral blood T-cells and Jurkat cells. Raft-associated calpain activity is enhanced with exogenous calcium and inhibited with calpeptin, a specific inhibitor of calpain activity. In addition, we demonstrate that calpain cleaves the cytoskeletal-associated protein, talin, during the first 30-min after cell stimulation. We propose that lipid raft associated-calpain II could function in early TCR signaling to facilitate immune synapse formation through cytoskeletal remodeling mechanisms. Hence, we demonstrate that the positioning of calpain II within T-cell lipid rafts strategically places it in close proximity to known calpain substrates that are cleaved during Ag-specific T-cell signaling and immune synapse formation.
Collapse
Affiliation(s)
- Lorri A Morford
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
406
|
Bromley SK, Dustin ML. Stimulation of naïve T-cell adhesion and immunological synapse formation by chemokine-dependent and -independent mechanisms. Immunology 2002; 106:289-98. [PMID: 12100716 PMCID: PMC1782736 DOI: 10.1046/j.1365-2567.2002.01441.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines adsorbed to the cell surface play an important role in the initial interactions of T cells with endothelial cells, and may also have a role in T-cell interactions with dendritic cells. Therefore, we examined the effect of surface-adsorbed chemokines on the interaction of naïve murine splenic T cells with supported bilayers containing intercellular adhesion molecule (ICAM)-1, or with bone marrow-derived cultured dendritic cells in the presence and absence of relevant MHC-peptide complexes. Naïve T cells formed immunological synapses, defined as a ring of lymphocyte function associated (LFA)-1-ICAM-1 interactions surrounding a central cluster of MHC-peptide complexes, on supported planar bilayers containing ICAM-1 and relevant MHC-peptide complexes. Chemokines stimulated an increase in the percentage of naïve cells that adhered to ICAM-1, but did not increase the average number of LFA-1-ICAM-1 interactions in the contact area. In contrast, relevant MHC-peptide complexes resulted in a small increase in the proportion of interacting T cells, but stimulated an 8-fold increase in the number of LFA-1-ICAM-1 interactions in each contact formed. Naïve T cells displayed a significant basal adhesion to bone marrow dendritic cells that was further increased when relevant chemokines were adsorbed to the dendritic cell surface. However, basal and antigen-stimulated T-cell adhesion to dendritic cells was not sensitive to pertussis toxin. Thus, there are chemokine-independent mechanisms that initiate adhesion between T cells and dendritic cells.
Collapse
Affiliation(s)
- Shannon K Bromley
- Graduate Program in Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
407
|
Abstract
Experiments with cell lines have unveiled the implication of the Rho/Rac family of GTPases in cytoskeletal organization, mitogenesis, and cell migration. However, there have not been adequate animal models to investigate the role of these proteins in more physiological settings. This scenario has changed recently in the case of the T-cell lineage after the generation of animal models for Rho/Rac family members, their regulators, and effectors. These studies have revealed the implication of these GTPases on multiple regulatory layers of T-cells, including the coordination of cytoskeletal change, activation of kinase cascades, stimulation of calcium fluxes, and the induction of gene expression. These pathways affect the transition of different T-cell maturation stages, the positive/negative selection of thymocytes, T-cell responses to antigens, and the homeostasis of peripheral T-lymphocytes. Moreover, these animals have revealed interesting cross-talks between Rho/Rac pathways and other signal transduction routes that participate in lymphocyte responses.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, University of Salamanca-CSIC. 37007 Salamanca, Spain.
| |
Collapse
|
408
|
Affiliation(s)
- Daniel M Davis
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| |
Collapse
|
409
|
Sancho D, Montoya MC, Monjas A, Gordón-Alonso M, Katagiri T, Gil D, Tejedor R, Alarcón B, Sánchez-Madrid F. TCR engagement induces proline-rich tyrosine kinase-2 (Pyk2) translocation to the T cell-APC interface independently of Pyk2 activity and in an immunoreceptor tyrosine-based activation motif-mediated fashion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:292-300. [PMID: 12077257 DOI: 10.4049/jimmunol.169.1.292] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The relocation of kinases in T lymphocytes during their cognate interaction with APCs is essential for lymphocyte activation. We found that the proline-rich tyrosine kinase-2 (Pyk2) is rapidly translocated to the T cell-APC contact area upon T cell-specific recognition of superantigen-pulsed APCs. Stimulation with anti-CD3-coated latex microspheres was sufficient for Pyk2 reorientation, and the coengagement of CD28 boosted Pyk2 redistribution. Nevertheless, Pyk2 translocation did not result in its recruitment to lipid rafts. Two results support that Pyk2 translocation was independent of its kinase activity. First, Lck activity was required for TCR-induced Pyk2 translocation, but not for TCR-induced Pyk2 activation. Second, a kinase-dead Pyk2 mutant was equally translocated upon TCR triggering. In addition, Lck activity alone was insufficient to induce Pyk2 reorientation and activation, requiring the presence of at least one intact immunoreceptor tyrosine-based activation motif (ITAM). Despite the dependence on functional Lck and on phosphorylated ITAM for Pyk2 translocation, the ITAM-binding tyrosine kinase zeta-associated protein 70 (ZAP-70) was not essential. All these data suggest that, by translocating to the vicinity of the immune synapse, Pyk2 could play an essential role in T cell activation and polarized secretion of cytokines.
Collapse
Affiliation(s)
- David Sancho
- Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Gil D, Schamel WWA, Montoya M, Sánchez-Madrid F, Alarcón B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 2002; 109:901-12. [PMID: 12110186 DOI: 10.1016/s0092-8674(02)00799-7] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
How membrane receptors initiate signal transduction upon ligand binding is a matter of intense scrutiny. The T cell receptor complex (TCR-CD3) is composed of TCR alpha/beta ligand binding subunits bound to the CD3 subunits responsible for signal transduction. Although it has long been speculated that TCR-CD3 may undergo a conformational change, confirmation is still lacking. We present strong evidence that ligand engagement of TCR-CD3 induces a conformational change that exposes a proline-rich sequence in CD3 epsilon and results in recruitment of the adaptor protein Nck. This occurs earlier than and independently of tyrosine kinase activation. Finally, by interfering with Nck-CD3 epsilon association in vivo, we demonstrate that TCR-CD3 recruitment of Nck is critical for maturation of the immune synapse and for T cell activation.
Collapse
Affiliation(s)
- Diana Gil
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 20849, Spain
| | | | | | | | | |
Collapse
|
411
|
Espinosa E, Tabiasco J, Hudrisier D, Fournié JJ. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6336-43. [PMID: 12055250 DOI: 10.4049/jimmunol.168.12.6336] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B, alpha beta T, and NK lymphocytes establish immunological synapses (IS) with their targets to enable recognition. Transfer of target cell-derived Ags together with proximal molecules onto the effector cell appears also to occur through synapses. Little is known about the molecular basis of this transfer, but it is assumed to result from Ag receptor internalization. Because human gamma delta T cells recognize soluble nonpeptidic phosphoantigens as well as tumor cells such as Daudi, it is unknown whether they establish IS with, and extract molecules from, target cells. Using flow cytometry and confocal microscopy, we show in this work that Ag-stimulated human V gamma 9/V delta 2 T cells conjugate to, and perform molecular transfer from, various tumor cell targets. The molecular transfer appears to be linked to IS establishment, evolves in a dose-dependent manner in the presence of either soluble or cellular Ag, and requires gamma delta TCR ligation, Src family kinase signaling, and participation of the actin cytoskeleton. Although CD45 exclusion characterized the IS performed by gamma delta T cells, no obvious capping of the gamma delta TCR was detected. The synaptic transfer mediated by gamma delta T cells involved target molecules unrelated to the cognate Ag and occurred independently of MHC class I expression by target cells. From these observations, we conclude that despite the particular features of gamma delta T cell activation, both synapse formation and molecular transfer of determinants belonging to target cell characterize gamma delta T cell recognition of Ags.
Collapse
Affiliation(s)
- Eric Espinosa
- Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | | | | | | |
Collapse
|
412
|
Tuosto L, Marinari B, Piccolella E. CD4-Lck through TCR and in the absence of Vav exchange factor induces Bax increase and mitochondrial damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6106-12. [PMID: 12055221 DOI: 10.4049/jimmunol.168.12.6106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we aimed to demonstrate that CD4 may represent a critical turning point that governs the apoptotic and survival programs in T cells, without modifying the physical association with the TCR-CD3 complex. To address this issue, we have explored the possibility that the activation of CD4 may transduce apoptotic signals unless signaling effectors neutralize them. Our data show that in Jurkat T cells CD4 engagement by Leu3a mAb results in a rapid and strong increase of Lck kinase activity, subsequent alterations of mitochondrial membrane potential, and apoptosis. Critical parameters are coassociation of CD4/Lck with TCR/CD3 and up-regulation of the proapoptotic protein Bax. Indeed, Leu3a-mediated Lck activation failed to induce apoptotic features in Jurkat cells either defective for TCR/CD3 or overexpressing the antiapoptotic protein Bcl-2. Furthermore, we demonstrate that Leu3a treatment of Jurkat cells overexpressing Vav results in the inhibition of mitochondrial damage and apoptosis; this rescue effect is accompanied with a significant decrease of Bax expression observed in apoptotic cells. Our evidence that the activation of Lck activates in T cells apoptotic pathways which are counteracted by Vav, a signaling molecule that cooperates with CD28 to boost TCR signals, suggests a novel role for costimulation in protecting T cells from CD4-mediated cell death.
Collapse
Affiliation(s)
- Loretta Tuosto
- Department of Cellular and Developmental Biology, La Sapienza University, Rome, Italy
| | | | | |
Collapse
|
413
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
414
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
415
|
Hailman E, Burack WR, Shaw AS, Dustin ML, Allen PM. Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 2002; 16:839-48. [PMID: 12121665 DOI: 10.1016/s1074-7613(02)00326-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The immunological synapse formed during mature T cell activation consists of a central cluster of TCR and MHC molecules surrounded by a ring of LFA-1 and ICAM-1. We examined synapse formation in thymocytes undergoing activation in a lipid bilayer system by following the movement of fluorescent MHC and ICAM-1 molecules. Immature CD4(+)CD8(+) thymocytes formed a decentralized synapse with multiple foci of MHC accumulation corresponding to areas of exclusion of ICAM-1. The MHC clusters and ICAM-1 holes were mobile and transient and correlated with active and sustained signaling, as shown by staining with antibodies against phosphotyrosine and activated Lck. Our findings show that signaling in immature thymocytes can result from a novel, multifocal pattern of receptor accumulation.
Collapse
Affiliation(s)
- Eric Hailman
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
416
|
Bauer B, Baier G. Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Mol Immunol 2002; 38:1087-99. [PMID: 12044776 DOI: 10.1016/s0161-5890(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell biological responses appear to involve the complex interaction of T-cell surface receptors, intracellular signaling molecules and the cytoskeleton. Both the serine/threonine protein kinase families protein kinase C (PKC) and protein kinase B or RAC-PK (AKT/PKB) have been implicated in signal transmission leading to activation, differentiation as well as cellular survival of T-lymphocytes. The PKC gene family consists of nine diverse isotypes (PKC alpha, beta, gamma, delta, epsilon, xi, eta, theta; and iota), the AKT/PKB gene family includes three kinases (AKT1/PKB alpha, AKT2/PKB beta, AKT3/PKB gamma). Here, we attempt to summarize the regulation as well as downstream signaling pathways of PKC and AKT/PKB isotypes, that may act additive in TCR/CD28 induced proliferation and survival of peripheral CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Birgit Bauer
- Institute for Medical Biology and Human Genetics, University of Innsbruck, Schoepfstr. 41, A-6020 Innsbruck, Austria
| | | |
Collapse
|
417
|
Darlington PJ, Baroja ML, Chau TA, Siu E, Ling V, Carreno BM, Madrenas J. Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J Exp Med 2002; 195:1337-47. [PMID: 12021313 PMCID: PMC2193751 DOI: 10.1084/jem.20011868] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
T cell activation through the T cell receptor (TCR) involves partitioning of receptors into discrete membrane compartments known as lipid rafts, and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Compartmentalization of negative regulators of T cell activation such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is unknown. Recent crystal structures of B7-ligated CTLA-4 suggest that it may form lattices within the IS which could explain the mechanism of action of this molecule. Here, we show that after T cell stimulation, CTLA-4 coclusters with the TCR and the lipid raft ganglioside GM1 within the IS. Using subcellular fractionation, we show that most lipid raft-associated CTLA-4 is on the T cell surface. Such compartmentalization is dependent on the cytoplasmic tail of CTLA-4 and can be forced with a glycosylphosphatidylinositol-anchor in CTLA-4. The level of CTLA-4 within lipid rafts increases under conditions of APC-dependent TCR-CTLA-4 coligation and T cell inactivation. However, raft localization, although necessary for inhibition of T cell activation, is not sufficient for CTLA-4-mediated negative signaling. These data demonstrate that CTLA-4 within lipid rafts migrates to the IS where it can potentially form lattice structures and inhibit T cell activation.
Collapse
Affiliation(s)
- Peter J Darlington
- The Biotherapeutics and Transplantation and Immunobiology Groups, The John P. Robarts Research Institute, and The Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
418
|
Abstract
Using specific cell surface receptors lymphocytes continuously sample their environment. Maturation of the immune system and initiation of a specific immune response rely on an array of extracellular cues that elicit complex intracellular biochemical signals. Essential molecules involved in signal transduction from immunoreceptors have emerged. After immunoreceptor engagement a core signaling complex is assembled comprising cytoplasmic immunoreceptor chains, kinases of the Src and ZAP70 families and various cytoplasmic and transmembrane adaptor molecules. Further effectors nucleate onto this complex evoking the characteristic responses of lymphocyte activation. Successful maturation of T cells into effector cells relies on the presence of a persistent stimulus presented in an appropriate extracellular environment. Encounter of MHC presented antigenic peptides and their cognate T cell receptors (TCRs) results in the formation of a nanometer intercellular gap between T cells and antigen presenting cells, which is now commonly referred to as the immunological synapse. The synapse is believed to sustain persistent TCR engagement. Its formation requires massive changes in T cell cytoskeletal architecture which essentially relies on signals provided by costimulatory molecules. The well orchestrated interplay between TCR and costimulatory signals decides about successful immune response and tolerance induction or immune failure and autoimmunity.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max-Planck-Institute for Physiological and Clinical Research, WG. Kerckhoff-Jnstitute, Bad Nauheim, Germany.
| | | | | |
Collapse
|
419
|
Tordjman R, Lepelletier Y, Lemarchandel V, Cambot M, Gaulard P, Hermine O, Roméo PH. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 2002; 3:477-82. [PMID: 11953749 DOI: 10.1038/ni789] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The initiation of a primary immune response requires contact between dendritic cells (DCs) and resting T cells. However, little is known about the proteins that mediate this initial contact. We show here that neuropilin-1, a receptor involved in axon guidance, was expressed by human DCs and resting T cells both in vitro and in vivo. The initial contact between DCs and resting T cells led to neuropilin-1 polarization on T cells. DCs and resting T cells specifically bound soluble neuropilin-1, and resting T cells formed clusters with neuropilin-1-transfected COS-7 cells in a neuropilin-1-dependent manner. Functionally, preincubation of DCs or resting T cells with blocking neuropilin-1 antibodies inhibited DC-induced proliferation of resting T cells. These data suggest that neuropilin-1 mediates interactions between DCs and T cells that are essential for initiation of the primary immune response and show parallels between the nervous and immune systems.
Collapse
Affiliation(s)
- Rafaèle Tordjman
- Institut Cochin, Departement d'Hematologie, INSERM U567, CNRS UMR 8104, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
420
|
Nel AE. T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J Allergy Clin Immunol 2002; 109:758-70. [PMID: 11994696 DOI: 10.1067/mai.2002.124259] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Part 1 of this review will highlight the basic components and signaling pathways by which the T-cell antigen receptor (TCR) activates mature extrathymic T cells. TCR signaling commences with an early wave of protein tyrosine kinase activation, which is mediated by the Src kinases Lck and Fyn, the 70-kd zeta-associated protein kinase, and members of the Tec kinase family. This early wave of protein tyrosine phosphorylation leads to the activation of downstream signaling pathways, including an increase in intracellular free calcium, protein kinase C, nuclear factor kappaB and Ras-mitogen-activated protein kinase activation. These pathways activate transcription factors, such as activator protein 1, nuclear factor of activated T cells, and Rel proteins, which ultimately lead to the expression of genes that control cellular proliferation, differentiation, anergy, or apoptosis. This review also describes how costimulatory receptors assist in signal transduction and assembly of macromolecular complexes at the TCR contact site with the antigen-presenting cell, also known as the immune synapse. These basic concepts of TCR signal transduction will be used in part 2 to explain how T-cell function can be altered by therapeutic targeting of TCR signaling components, as well as to explain modification of TCR signaling during T(H)1/T(H)2 differentiation, tolerance, and immune senescence.
Collapse
Affiliation(s)
- Andre E Nel
- Division of Clinical Immunology/Allergy, Department of Medicine, UCLA School of Medicine, University of California, Los Angeles 90095-1680, USA
| |
Collapse
|
421
|
Cottin V, Doan JES, Riches DWH. Restricted localization of the TNF receptor CD120a to lipid rafts: a novel role for the death domain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4095-102. [PMID: 11937569 DOI: 10.4049/jimmunol.168.8.4095] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TNF-alpha receptor, CD120a, has recently been shown to be localized to both plasma membrane lipid rafts and to the trans Golgi complex. Through a combination of both confocal microscopy and sucrose density gradient ultracentrifugation, we show that amino acid sequences located within the death domain (DD) of CD120a are both necessary and sufficient to promote the appropriate localization of the receptor to lipid rafts. Deletion of the DD (CD120a.Delta321-425) prevented the receptor from being targeted to lipid rafts and resulted in a uniform plasma membrane localization. A similar loss of raft localization was also observed following pairwise deletion of the six alpha-helices that comprise the DD. In all situations, the loss of the ability of CD120a to become localized to lipid rafts following mutagenesis was paralleled by a failure of the receptor to initiate apoptosis. Furthermore, introduction of the lpr mutation into CD120a (CD120a.L351N) also resulted in both a loss in the ability of the receptor to signal apoptosis and to be appropriately localized to rafts. In contrast to CD120a, CD120b, which lacks a DD, is mainly expressed in the bulk plasma membrane and to a lesser extent in lipid rafts, but is absent from the Golgi complex. However, a chimeric receptor in which the DD of CD120a was fused to the cytoplasmic domain of CD120b was predominantly localized to lipid rafts. Collectively, these findings suggest that in addition to its role in CD120a signaling, an appropriately folded and functionally active DD is required for the localization of the receptor to lipid rafts.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis/physiology
- Genetic Vectors/immunology
- Genetic Vectors/metabolism
- Genetic Vectors/physiology
- HeLa Cells
- Humans
- Membrane Microdomains/genetics
- Membrane Microdomains/metabolism
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Proteins/genetics
- Proteins/physiology
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction/genetics
- Signal Transduction/immunology
- TNF Receptor-Associated Factor 1
- Transfection
Collapse
Affiliation(s)
- Vincent Cottin
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
422
|
Réthi B, Detre C, Gogolák P, Kolonics A, Magócsi M, Rajnavölgyi E. Flow cytometry used for the analysis of calcium signaling induced by antigen-specific T-cell activation. CYTOMETRY 2002; 47:207-16. [PMID: 11933010 DOI: 10.1002/cyto.10086] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In this study, the effect of antigen-presenting cells (APC), peptide concentration, and CD28 costimulation on calcium signaling, induced by antigen-specific T-cell activation, was studied by flow cytometry. METHODS We used two experimental approaches, which differed in their time scale and in the duration of the T cell-APC interaction, to measure the increase of intracellular free calcium levels ([Ca(2+)](i)) in activated T cells: (1) Fluo-3-loaded T cells were activated by cocentrifugation with peptide-loaded APC and the kinetics of fluorescence intensity changes was monitored continuously and (2) peptide-loaded APC and T cells were mixed, cocultured, and the fluorescence intensity was measured at various time intervals. RESULTS The calcium signal of T cells was dependent on the APC as demonstrated by the ratio of cells exhibiting high versus low fluorescence intensity and by the magnitude of the calcium signal in the activated population. Short-term interaction of T cells with less potent APC or with efficient APC in the presence of low antigen concentration resulted in decreased calcium signaling. CD28-mediated costimulation enhanced the magnitude and sustained the increase of intracellular calcium levels. In line with the strong and sustained calcium signals, the activation of the calcium-dependent transcription factors NF-AT, AP-1, and NF-kappaB was induced. CONCLUSIONS Flow cytometric methods, feasible for the rapid and flexible analysis of calcium signaling upon antigen-specific T-cell activation, were established. Kinetics of the increase of mean fluorescence intensity reflected the calcium response of the total cell population whereas statistical analysis of fluorescence intensity at selected time points provided information on the activation state of single cells.
Collapse
Affiliation(s)
- Bence Réthi
- Department of Immunology, Eötvös L. University, Göd, Hungary.
| | | | | | | | | | | |
Collapse
|
423
|
Berg LP, James MJ, Alvarez-Iglesias M, Glennie S, Lechler RI, Marelli-Berg FM. Functional consequences of noncognate interactions between CD4+ memory T lymphocytes and the endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3227-34. [PMID: 11907076 DOI: 10.4049/jimmunol.168.7.3227] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recruitment of Ag-specific T cells to sites of inflammation is a crucial step in immune surveillance. Although the molecular interactions controlling T cell extravasation are relatively well characterized, the effects of these events on T cell function are still poorly understood. Using an in vitro model of transendothelial migration of human CD4(+) memory T cells, we have investigated the molecular and functional changes induced in T cells that come into contact with the endothelium. First, we show that transendothelial migration is precluded by signals that lead to T cell division. In addition, activation of the transcription factor AP-1, without induction of NF-kappaB, is observed in T cells after noncognate interactions with endothelial cells (EC), a pattern of transcriptional regulation different from that observed in dividing T cells. Up-regulation of certain adhesion (CD11a, CD49d), activation (CD69), and costimulatory (CD86) receptors accompany these transcriptional events. Most importantly, recently migrated T cells display a faster rate of migration when reseeded onto an EC monolayer. Finally, T cells become hyperresponsive to antigenic challenge after noncognate interactions with the endothelium. These effects appear not to be due to the selection of preactivated T lymphocytes, because they occur also in clonal T cell populations and appear to be mediated by alpha(L)beta(2) integrin-CD54 interactions. We conclude that CD4(+) memory T cell extravasation is accompanied by phenotypic and functional changes induced by the interactions with the EC, which favor tissue infiltration by T cells and their further activation once they reach the antigenic site.
Collapse
Affiliation(s)
- Lutz-Peter Berg
- Department of Immunology and Histopathology, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
424
|
Richie LI, Ebert PJR, Wu LC, Krummel MF, Owen JJT, Davis MM. Imaging synapse formation during thymocyte selection: inability of CD3zeta to form a stable central accumulation during negative selection. Immunity 2002; 16:595-606. [PMID: 11970882 DOI: 10.1016/s1074-7613(02)00299-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TCR signaling can result in cell fates ranging from activation to tolerance to apoptosis. Organization of molecules in an "immunological synapse" between mature T cells and APCs correlates with the strength of TCR signaling. To investigate synapse formation during thymic selection, we have established a reaggregate system in which molecular recruitment of GFP fusion proteins to thymocyte:stromal cell interfaces can be visualized in real time. We demonstrate that negative selection is associated with efficient conjugate formation and rapid recruitment of p56(lck) and CD3zeta to an immunological synapse. Interestingly, CD3zeta-GFP does not accumulate at the center of the synapse, as in mature T cells, but at the periphery across a wide range of ligand densities. This implicates differences in synapse geometry in initiation of alternate signals downstream of the TCR.
Collapse
Affiliation(s)
- Lauren I Richie
- Program in Immunology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
425
|
Tiroch K, Stockmeyer B, Frank C, Valerius T. Intracellular domains of target antigens influence their capacity to trigger antibody-dependent cell-mediated cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3275-82. [PMID: 11907082 DOI: 10.4049/jimmunol.168.7.3275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab-mediated signaling in tumor cells and Ab-dependent cell-mediated cytotoxicity (ADCC) are both considered as relevant effector mechanisms for Abs in tumor therapy. To address potential interactions between these two mechanisms, we generated HER-2/neu- and CD19-derived chimeric target Ags, which were expressed in experimental tumor target cells. HER-2/neu-directed Abs were documented to mediate effective ADCC with both mononuclear cells (MNCs) and polymorphonuclear granulocytes (PMNs), whereas Abs against CD19 were effective only with MNCs and not with PMNs. We generated cDNA encoding HER-2/CD19 or CD19/HER-2 (extracellular/intracellular) chimeric fusion proteins by combining cDNA encoding extracellular domains of HER-2/neu or CD19 with intracellular domains of CD19 or HER-2/neu, respectively. After transfecting wild-type HER-2/neu or chimeric HER-2/CD19 into Raji Burkitt's lymphoma cells and wild-type CD19 or chimeric CD19/HER-2 into SK-BR-3 breast cancer cells, target cell lines were selected for high membrane expression of transfected Ags. We then investigated the efficacy of tumor cell lysis by PMNs or MNCs with CD19- or HER-2/neu-directed Ab constructs. MNCs triggered effective ADCC against target cells expressing wild-type or chimeric target Ag. As expected, PMNs killed wild-type HER-2/neu-transfected, but not wild-type CD19-transfected target cells. Interestingly, however, PMNs were also effective against chimeric CD19/HER-2-transfected, but not HER-2/CD19-transfected target cells. In conclusion, these results demonstrate that intracellular domains of target Ags contribute substantially to effective Ab-mediated tumor cell killing by PMNs.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Antigens, CD19/physiology
- Cell Death/genetics
- Cell Death/immunology
- Cytotoxicity Tests, Immunologic
- Dose-Response Relationship, Immunologic
- Humans
- Intracellular Fluid/immunology
- Leukocytes, Mononuclear/immunology
- Lymphocyte Activation/genetics
- Mice
- Neutrophils/immunology
- Protein Structure, Tertiary/physiology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Klaus Tiroch
- Division of Hematology/Oncology, Department of Medicine III, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
426
|
WIPped into shape. Nat Rev Immunol 2002. [DOI: 10.1038/nri783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
427
|
Hudrisier D, Bongrand P. Intercellular transfer of antigen-presenting cell determinants onto T cells: molecular mechanisms and biological significance. FASEB J 2002; 16:477-86. [PMID: 11919150 DOI: 10.1096/fj.01-0933rev] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Upon physiological stimulation, receptors with tyrosine kinase activity (RTK) are rapidly internalized together with their soluble ligands. T cell activation is the consequence of recognition by the T cell receptor (TCR) of specific peptide-major histocompatibility protein complexes (peptide-MHC) present at the membrane of antigen-presenting cells (APC). The TCR belongs to the RTK family and is known to be endocytosed upon ligand recognition. It differs from most other RTK in that its ligand, the peptide-MHC complex, is membrane bound and the TCR-ligand interaction is quite weak. Recent experiments have shown that the TCR ligand becomes internalized by T cells upon stimulation. Here we review current knowledge on the molecular mechanisms by which the membrane-bound MHC molecules can be transferred onto T cells, and propose hypotheses on the role this phenomenon could play in physio-pathological situations involving T cells.
Collapse
Affiliation(s)
- Denis Hudrisier
- INSERM U 395, CHU Purpan and Paul Sabatier University, BP3028 31024 Toulouse Cedex 3, France.
| | | |
Collapse
|
428
|
Higgs HN, Pollard TD. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 2002; 70:649-76. [PMID: 11395419 DOI: 10.1146/annurev.biochem.70.1.649] [Citation(s) in RCA: 545] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin filament assembly and turnover drive many forms of cellular motility, particularly extension of the leading edge of locomoting cells and rocketing of pathogenic microorganisms through host cell cytoplasm. De novo nucleation of actin filaments appears to be required for these movements. A complex of seven proteins called Arp2/3 complex is the best characterized cellular initiator of actin filament nucleation. Arp2/3 complex is intrinsically inactive, relying on nucleation promoting factors for activation. WASp/Scar family proteins are prominent cellular nucleation promoting factors. They bring together an actin monomer and Arp2/3 complex in solution or on the side of an existing actin filament to initiate a new filament that grows in the barbed end direction. WASp and N-WASP are intrinsically autoinhibited, and their activity is regulated by Rho-family GTPases such as Cdc42, membrane polyphosphoinositides, WIP/verprolin, and SH3 domain proteins. These interactions provide a final common pathway for many signaling inputs to regulate actin polymerization. Microorganisms either activate Arp2/3 complex directly or usurp N-WASP to initiate actin polymerization.
Collapse
Affiliation(s)
- H N Higgs
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
429
|
Svensson C, Silverstone AE, Lai ZW, Lundberg K. Dioxin-induced adseverin expression in the mouse thymus is strictly regulated and dependent on the aryl hydrocarbon receptor. Biochem Biophys Res Commun 2002; 291:1194-200. [PMID: 11883943 DOI: 10.1006/bbrc.2002.6582] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ligand for the ubiquitous, intracellular aryl hydrocarbon receptor (AhR), up-regulates the actin-modulating protein adseverin in mouse lymphoid tissues, a response that may be correlated to the immunotoxicity of TCDD. Here, by using chimeric mice with TCDD-responsive (AhR(+/+)) hematopoietic cells and TCDD-unresponsive (AhR(minus sign/minus sign)) thymic stroma, or the reverse, we show that TCDD-induced expression of adseverin in thymus is dependent on AhR expression in hematopoietic cells but not in stroma. The use of fetal thymic organ cultures also indicates that TCDD-induced expression of adseverin is confined to the thymocytes. The thymic stroma showed no induction of adseverin expression after TCDD exposure, although TCDD clearly activated the AhR in these cells, as indicated by the induction of CYP1A1. Adseverin was not induced in the thymus of normal adult C57BL/6 mice exposed to beta-estradiol or dexamethasone, two other agents, which also cause thymic atrophy. This further supports that adseverin induction is a specific gene regulatory effect by TCDD on thymocytes.
Collapse
Affiliation(s)
- Camilla Svensson
- Department of Pharmaceutical Biosciences, Division of Toxicology, P.O. Box 594, Uppsala University, E-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
430
|
Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 2002; 12:379-82. [PMID: 11882288 DOI: 10.1016/s0960-9822(02)00661-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton. In the context of stable adhesion, cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis. Here actin polymerization has been proposed to drive cell surfaces together, although F-actin reorganization also occurs as cell contacts mature. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.
Collapse
Affiliation(s)
- Eva M Kovacs
- Department of Physiology and Pharmacology, School of Biomedical Science, 4072, Brisbane, Australia
| | | | | | | | | |
Collapse
|
431
|
Abstract
Integrin activity on cells such as T lymphocytes is tightly controlled. Here we demonstrate a key role for lipid rafts in regulating integrin function. Without stimulation integrin LFA-1 is excluded from lipid rafts, but following activation LFA-1 is mobilised to the lipid raft compartment. An LFA-1 construct from which the I domain has been deleted mimics activated integrin and is constitutively found in lipid rafts. This correlation between integrin activation and raft localisation extends to a second integrin,α4β1, and the clustering of α4β1 is also raft dependent. Both LFA-1 and α4β1-mediated adhesion is dependent upon intact lipid rafts providing proof of the functional relevance of the lipid raft localisation. Finally we find that non-raft integrins are excluded from the rafts by cytoskeletal constraints. The presence of integrin in lipid rafts under stimulating conditions that activate these receptors strongly indicates that the rafts have a key role in positively regulating integrin activity.
Collapse
Affiliation(s)
- Birgit Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK
| | | |
Collapse
|
432
|
Krawczyk C, Oliveira-dos-Santos A, Sasaki T, Griffiths E, Ohashi PS, Snapper S, Alt F, Penninger JM. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 2002; 16:331-43. [PMID: 11911819 DOI: 10.1016/s1074-7613(02)00291-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integrin-mediated adhesion is essential for the formation of stable contacts between T cells and antigen-presenting cells (APCs). We show that Vav1 controls integrin-mediated adhesion of thymocytes and T cells to ECM proteins and ICAM1 following TCR stimulation. In a peptide-specific system, Vav1 is required for T cell adhesion to peptide-loaded APCs. Intriguingly, TCR-induced cell adhesion and aggregation of integrins occurs independent of WASP. Whereas LFA-1 and actin caps colocalize in wasp(-/-) T cells in response to TCR stimulation, loss of WASP uncouples TCR caps from actin patches. Our data reveal a novel role for Vav1 and WASP in the regulation of TCR-induced integrin clustering and cell adhesion and show that integrin and TCR clustering are controlled by distinct pathways.
Collapse
Affiliation(s)
- Connie Krawczyk
- Amgen Institute, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
433
|
Zhang J, Shi F, Badour K, Deng Y, McGavin MKH, Siminovitch KA. WASp verprolin homology, cofilin homology, and acidic region domain-mediated actin polymerization is required for T cell development. Proc Natl Acad Sci U S A 2002; 99:2240-5. [PMID: 11842211 PMCID: PMC122349 DOI: 10.1073/pnas.042686099] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Accepted: 12/19/2001] [Indexed: 01/28/2023] Open
Abstract
All members of the Wiskott-Aldrich syndrome protein (WASp) family contain a carboxyl-terminal verprolin homology, cofilin homology, and acidic region (VCA) domain that binds and activates the Arp2/3 complex, thereby linking these proteins to the induction of actin polymerization. Although the VCA domain imbues WASp and other WASp family members with the capacity to modulate cytoskeletal organization, little is known about the impact of this domain activity on lymphoid cell function. Here we demonstrate that T cell-restricted expression of VCA domain-deleted WASp (WASpdeltaVCA) in WAS(-/-) mice engenders a severe early block in T lymphopoiesis associated with impaired T cell antigen receptor alphabeta expression and a consequent failure to generate single-positive CD4(+) and CD8(+) T cells. These latter defects, which are not observed in WAS(-/-) mice, are associated with impaired induction of cellular actin polymerization and a failure in the terminal differentiation of double-negative thymocytes. These findings indicate that WASp family proteins play an essential role in modulating the signaling events required for early thymocyte development and reveal their capacity to subserve this role to depend on VCA domain-mediated actin polymerization.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Toronto, ON, Canada M5G 1X5
| | | | | | | | | | | |
Collapse
|
434
|
Antón IM, de la Fuente MA, Sims TN, Freeman S, Ramesh N, Hartwig JH, Dustin ML, Geha RS. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 2002; 16:193-204. [PMID: 11869681 DOI: 10.1016/s1074-7613(02)00268-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
WIP stabilizes actin filaments and is important for filopodium formation. To define the role of WIP in immunity, we generated WIP-deficient mice. WIP(minus sign/minus sign) mice have normal lymphocyte development, but their T cells fail to proliferate, secrete IL-2, increase their F-actin content, polarize and extend protrusions following T cell receptor ligation, and are deficient in conjugate formation with superantigen-presenting B cells and anti-CD3 bilayers. In contrast, WIP-deficient B lymphocytes have enhanced proliferation and CD69 expression following B cell receptor ligation and mount normal antibody responses to T-independent antigens. Both WIP-deficient T and B cells show a profound defect in their subcortical actin filament networks. These results suggest that WIP is important for immunologic synapse formation and T cell activation.
Collapse
Affiliation(s)
- Inés M Antón
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Leid JG, Speer CA, Jutila MA. Ultrastructural examination of cytoskeletal linkage of L-selectin and comparison of L-selectin cytoskeletal association to that of other human and bovine lymphocyte surface antigens. Cell Immunol 2002; 215:219-31. [PMID: 12202158 DOI: 10.1016/s0008-8749(02)00022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
L-selectin is constitutively expressed on most leukocytes and is responsible for the initial events in cell trafficking termed tethering and rolling. Recently, L-selectin has been shown to associate with the actin-based cytoskeleton under a variety of conditions. In an effort to better understand L-selectin cytoskeletal association and the ultrastructural nature of the cytoskeleton itself, we provide a comparison of the cytoskeletal association of various human and bovine surface proteins in relation to L-selectin. Electron microscopic examination of the cytoskeleton provided further data on the ultrastructure of freshly isolated peripheral lymphocytes as well as demonstrated L-selectin localization to the periphery of the cytoskeleton following low dose detergent treatment of the cell. Clusters of colloidal-gold-stained L-selectin were found on the surface of the detergent-treated lymphocytes, even though these particles completely lacked microvilli. By flow cytometry, we have defined three distinct patterns of cytoskeletal association; constitutive, inductive, and mAb crosslink-induced, and assigned human and bovine CD2, CD3, CD4, CD5, CD8, CD18, CD19, CD44, CD45RA, CD45RO, alphabeta TCR, gammadelta TCR, E-selectin ligands, and L-selectin surface antigens to one of these respective patterns. SDS-PAGE analyses confirmed most of the flow cytometry results. Depending upon its conformation, L-selectin fell into the inductive or mAb crosslink-induced pattern of association, similar to E-selectin ligand(s). Our data provide additional insight into the functional role of L-selectin and the cytoskeleton in immunological events.
Collapse
Affiliation(s)
- Jeff G Leid
- Veterinary Molecular Biology, Montana State University, Bozeman 59717, USA.
| | | | | |
Collapse
|
436
|
Katagiri K, Hattori M, Minato N, Kinashi T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol Cell Biol 2002; 22:1001-15. [PMID: 11809793 PMCID: PMC134636 DOI: 10.1128/mcb.22.4.1001-1015.2002] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of T cells by antigen requires adhesive interactions with antigen-presenting cells (APC) in which leukocyte function-associated antigen 1 (LFA-1) and intercellular adhesion molecules (ICAMs) are important. However, it is not well understood what signaling molecules regulate this process and how the modulation of adhesive events influences T-cell activation. Here we show that Rap1 is activated in T cells in an antigen-dependent manner and accumulated at the contact site of T-cell and antigen-loaded APC. Inhibition of Rap1 activation by a dominant-negative Rap1 or SPA-1, a Rap1 GTPase-activating protein, abrogates LFA-1-ICAM-1-mediated adhesive interactions with antigen-pulsed APC and the subsequent T-cell-receptor triggering and interleukin-2 production. Conversely, augmented antigen-dependent Rap1 activation by the expression of wild-type Rap1 enhances these responses but culminates in apoptosis by Fas and FasL. Thus, Rap1 functions as a key regulator of T-cell and APC interactions and modulates T-cell responses from productive activation to activation-induced cell death by regulating the strength of adhesive interactions. Moreover, constitutive Rap1 activation rendered T cells unresponsive with accumulation of p27(Kip1). Our study indicates that the activation state of Rap1 has a decisive effect on the T-cell response to antigen.
Collapse
Affiliation(s)
- Koko Katagiri
- Department of Molecular Immunology and Allergy, Graduate School of Medicine, Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masakazu Hattori
- Department of Molecular Immunology and Allergy, Graduate School of Medicine, Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nagahiro Minato
- Department of Molecular Immunology and Allergy, Graduate School of Medicine, Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuo Kinashi
- Department of Molecular Immunology and Allergy, Graduate School of Medicine, Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Corresponding author. Mailing address: Department of Molecular Immunology and Allergy, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan. Phone: 81-75-771-8159. Fax: 81-75-771-8184. E-mail:
| |
Collapse
|
437
|
Hammer JA, Wu XS. Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol 2002; 14:69-75. [PMID: 11792547 DOI: 10.1016/s0955-0674(01)00296-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rab GTPases and their effectors regulate membrane traffic by determining, along with cognate SNAREs, the specificity of transport vesicle docking and fusion steps. Recent studies have also implicated Rabs in the movement of these transport vesicles from their site of formation to their site of fusion, and several Rabs have been linked to specific microtubule- or actin-based motor proteins. Analyses of Rab and motor protein mutants, coupled with advanced imaging techniques, have led to the suggestion that certain Rabs function as essential components of the vesicle receptor for specific motor proteins.
Collapse
Affiliation(s)
- John A Hammer
- Laboratory of Cell Biology, Building 50, Room 2523, National Institutes of Health, , Bethesda, MD 20892-8017, USA.
| | | |
Collapse
|
438
|
Renfranz PJ, Beckerle MC. Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol 2002; 14:88-103. [PMID: 11792550 DOI: 10.1016/s0955-0674(01)00299-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actin filament assembly is a tightly regulated process that functions in many aspects of cell physiology. Members of the Ena/VASP (Drosophila Enabled/vasodilator-stimulated phosphoprotein) family are key players in regulating actin filament assembly, in many cases through their association with binding partners that display a particular proline-rich motif, FPPPP. Ena/VASP proteins interact with these partners via the highly conserved Ena/VASP homology 1 (EVH1) domain. The diverse array of binding partners for EVH1 domains, including cytoskeletal proteins such as zyxin, transmembrane guidance receptors such as Roundabout, and the T-cell signaling protein Fyb/SLAP, shows that these interactions are likely to be important in a number of cellular processes that require regulated actin filament assembly.
Collapse
Affiliation(s)
- Patricia J Renfranz
- Department of Biology and Huntsman Cancer Institute, 2000 East Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | |
Collapse
|
439
|
Dustin ML, Bromley SK, Davis MM, Zhu C. Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol 2002; 17:133-57. [PMID: 11687486 DOI: 10.1146/annurev.cellbio.17.1.133] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in the immune and nervous systems communicate through informational synapses. The two-dimensional chemistry underlying the process of synapse formation is beginning to be explored using fluorescence imaging and mechanical techniques. Early analysis of two-dimensional kinetic rates (k(on) and k(off)) and equilibrium constants (K(d)) provides a number of biological insights. First, there are two regimes for adhesion-one disordered with slow k(on) and the other self-ordered with 10(4)-fold faster k(on). Despite huge variation in two-dimensional k(on), the two-dimensional k(off) is like k(off) in solution, and two-dimensional k(off) is more closely related to intrinsic properties of the interaction than the two-dimensional k(on). Thus difference in k(off) can be used to set signaling thresholds. Early signaling complexes are compartmentalized to generate synergistic signaling domains. Immune antigen receptor components have a role in neural synapse editing. This suggests significant parallels in informational synapse formation based on common two-dimensional chemistry and signaling strategies.
Collapse
Affiliation(s)
- M L Dustin
- Skirball Institute of Molecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
440
|
Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, Bloch W, Peters T, Schwarz T, Sunderkötter C, Scharffetter-Kochanek K. β2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest 2002. [DOI: 10.1172/jci0211703] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
441
|
Hyduk SJ, Cybulsky MI. Alpha 4 integrin signaling activates phosphatidylinositol 3-kinase and stimulates T cell adhesion to intercellular adhesion molecule-1 to a similar extent as CD3, but induces a distinct rearrangement of the actin cytoskeleton. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:696-704. [PMID: 11777963 DOI: 10.4049/jimmunol.168.2.696] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.
Collapse
Affiliation(s)
- Sharon J Hyduk
- Toronto General Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
442
|
Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, Bloch W, Peters T, Schwarz T, Sunderkötter C, Scharffetter-Kochanek K. Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest 2002; 109:183-92. [PMID: 11805130 PMCID: PMC150832 DOI: 10.1172/jci11703] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Beta2 integrins are of critical importance for leukocyte extravasation through vascular endothelia and for T cell activation. To elucidate the role of beta2 integrins in T cell-mediated immune responses, allergic contact dermatitis (ACD), irritant dermatitis, and delayed-type hypersensitivity (DTH) were assessed in mice lacking the beta2 integrin subunit, CD18. ACD and DTH responses, but not edema formation, were severely suppressed in CD18(-/-) mice. Extravasation of CD18(-/-) T cells into eczematous skin lesions was greatly impaired, whereas migration of Langerhans cell precursors and dendritic cells was normal in CD18(-/-) mice. CD18(-/-)lymph nodes (LNs) contained an abnormal population of CD3(-)CD44(high) lymphocytes and showed evidence of widespread T cell activation. T cells from regional LNs of sensitized CD18(-/-) mice proliferated in response to hapten challenge, and subcutaneous injection of sensitized syngeneic LN cells directly into ears of hapten-challenged naive recipients restored the defective ACD in CD18(-/-) mice, suggesting that CD18 is not required for priming of naive T cells but is indispensable for T cell extravasation. Thus, a dysfunction of T cells, in addition to granulocytes, may contribute to the pathophysiology of leukocyte adhesion deficiency type I, which arises from mutations in the human CD18 gene.
Collapse
Affiliation(s)
- Stephan Grabbe
- Department of Dermatology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Dustin ML. Membrane domains and the immunological synapse: keeping T cells resting and ready. J Clin Invest 2002. [DOI: 10.1172/jci0214842] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
444
|
Abstract
The two-signal model of T-cell activation is still valid after 30 years. The recent understanding of the first signal intricacy and its tight relationship with the second signal have thrown decisive light on T-cell activation processes and the complex molecular events that occur on the surface and within the T cell. Furthermore, the recognition of numerous accessory pathways that, in addition to the CD28 and CD40 pathways, operate to manage antigen-presenting cell T cell cooperation in view of lymphocyte activation, disclose the exquisite and numerous regulatory events that compose the second signal.
Collapse
Affiliation(s)
- Alain Bernard
- INSERM Unite 343 and Laboratoire d'Immunologie, Hôpital de l'Archet, 06202 Nice, France.
| | | | | |
Collapse
|
445
|
Dustin ML. Membrane domains and the immunological synapse: keeping T cells resting and ready. J Clin Invest 2002; 109:155-60. [PMID: 11805125 PMCID: PMC150844 DOI: 10.1172/jci14842] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michael L Dustin
- Department of Pathology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.
| |
Collapse
|
446
|
Cope AP. Studies of T-cell activation in chronic inflammation. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S197-211. [PMID: 12110140 PMCID: PMC3240133 DOI: 10.1186/ar557] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Accepted: 01/21/2002] [Indexed: 11/10/2022]
Abstract
The strong association between specific alleles encoded within the MHC class II region and the development of rheumatoid arthritis (RA) has provided the best evidence to date that CD4+ T cells play a role in the pathogenesis of this chronic inflammatory disease. However, the unusual phenotype of synovial T cells, including their profound proliferative hyporesponsiveness to TCR ligation, has challenged the notion that T-cell effector responses are driven by cognate cartilage antigens in inflamed synovial joints. The hierarchy of T-cell dysfunction from peripheral blood to inflamed joint suggests that these defects are acquired through prolonged exposure to proinflammatory cytokines such as tumour necrosis factor (TNF)-alpha. Indeed, there are now compelling data to suggest that chronic cytokine activation may contribute substantially to the phenotype and effector function of synovial T cells. Studies reveal that chronic exposure of T cells to TNF uncouples TCR signal transduction pathways by impairing the assembly and stability of the TCR/CD3 complex at the cell surface. Despite this membrane-proximal effect, TNF selectively uncouples downstream signalling pathways, as is shown by the dramatic suppression of calcium signalling responses, while Ras/ERK activation is spared. On the basis of these data, it is proposed that T-cell survival and effector responses are driven by antigen-independent, cytokine-dependent mechanisms, and that therapeutic strategies that seek to restore T-cell homeostasis rather than further depress T-cell function should be explored in the future.
Collapse
Affiliation(s)
- Andrew P Cope
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
447
|
Affiliation(s)
- David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
448
|
Tanaka Y, Altman A. T cell signaling: Protein kinase Cθ the immunological synapse and characterization of SLAT a novel T helper 2-specific adapter protein. Allergol Int 2002. [DOI: 10.1046/j.1440-1592.2002.00261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
449
|
Dustin ML. The immunological synapse. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S119-25. [PMID: 12110130 PMCID: PMC3240135 DOI: 10.1186/ar559] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Accepted: 12/11/2001] [Indexed: 01/04/2023]
Abstract
T-cell activation requires interaction of T-cell antigen receptors with proteins of the major histocompatibility complex (antigen). This interaction takes place in a specialized cell-cell junction referred to as an immunological synapse. The immunological synapse contains at least two functional domains: a central cluster of engaged antigen receptors and a surrounding ring of adhesion molecules. The segregation of the T-cell antigen receptor (TCR) and adhesion molecules is based on size, with the TCR interaction spanning 15 nm and the lymphocyte-function-associated antigen-1 (LFA-1) interaction spanning 30-40 nm between the two cells. Therefore, the synapse is not an empty gap, but a space populated by both adhesion and signaling molecules. This chapter considers four aspects of the immunological synapse: the role of migration and stop signals, the role of the cytoskeleton, the role of self-antigenic complexes, and the role of second signals.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, New York University School of Medicine, Skirball Institute for Biomolecular Medicine, New York 10016, USA.
| |
Collapse
|
450
|
Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Taskén K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 2002; 14:1-9. [PMID: 11747983 DOI: 10.1016/s0898-6568(01)00214-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase A (PKA) is a serine/threonine kinase that regulates a number of cellular processes important for immune activation and control. Modulation of signal transduction by PKA is a complex and diverse process, and differential isozyme expression, holoenzyme composition and subcellular localization contribute specificity to the PKA signalling pathway. In lymphocytes, phosphorylation by PKA has been demonstrated to regulate antigen receptor-induced signalling both by altering protein-protein interactions and by changing the enzymatic activity of target proteins. PKA substrates involved in immune activation include transcription factors, members of the MAP kinase pathway and phospholipases. The ability of PKA type I to regulate activation of signalling components important for formation of the immunological synapse, demonstrates that the cAMP signalling pathway can directly modulate proximal events in lymphocyte activation. Furthermore, the recent discovery that PKA regulates Src kinases through modulation of Csk, supports the notion that PKA is involved in the fine-tuning of immune receptor signalling in lipid rafts.
Collapse
Affiliation(s)
- Knut Martin Torgersen
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|