401
|
Kubo KI. Increased densities of white matter neurons as a cross-disease feature of neuropsychiatric disorders. Psychiatry Clin Neurosci 2020; 74:166-175. [PMID: 31788900 DOI: 10.1111/pcn.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
While neurons of the human cerebral cortex are mainly distributed in the gray matter, the white matter (WM) also contains some excitatory and inhibitory neurons, so-called WM neurons. Studies on the cytoarchitectural alterations in the brains of patients with neuropsychiatric disorders have repeatedly reported increased densities of the WM neurons in a proportion of patients with schizophrenia and autism spectrum disorder. Although some studies have demonstrated increased densities of superficial WM neurons, others have demonstrated increased densities of deep WM neurons and increased WM neuron densities can be considered as one of the cross-disease features of neuropsychiatric disorders. Nevertheless, what actually causes the increase in the densities of the WM neurons still remains under debate, and several hypothetical mechanisms have been proposed. The WM neurons in normal brains are considered as remnants of the subplate neurons, which represent a transient cytoarchitectural zone present during development of the mammalian neocortex; it has been suggested that increased densities of the WM neurons could result from inappropriate apoptosis of the subplate neurons in the brains of patients with neuropsychiatric disorders. On the other hand, recent experimental studies have demonstrated that genetic and environmental factors that enhance the risk of development of neuropsychiatric disorders could cause altered distribution of neurons in the WM. To understand the pathophysiology underlying the increased densities of the WM neurons, it is important to investigate the cellular characteristics of the WM neurons in the brains of both normal subjects and patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
402
|
Drobinin V, Van Gestel H, Zwicker A, MacKenzie L, Cumby J, Patterson VC, Vallis EH, Campbell N, Hajek T, Helmick CA, Schmidt MH, Alda M, Bowen CV, Uher R. Psychotic symptoms are associated with lower cortical folding in youth at risk for mental illness. J Psychiatry Neurosci 2020; 45:125-133. [PMID: 31674733 PMCID: PMC7828904 DOI: 10.1503/jpn.180144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cortical folding is essential for healthy brain development. Previous studies have found regional reductions in cortical folding in adult patients with psychotic illness. It is unknown whether these neuroanatomical markers are present in youth with subclinical psychotic symptoms. METHODS We collected MRIs and examined the local gyrification index in a sample of 110 youth (mean age ± standard deviation 14.0 ± 3.7 yr; range 9–25 yr) with a family history of severe mental illness: 48 with psychotic symptoms and 62 without. Images were processed using the Human Connectome Pipeline and FreeSurfer. We tested for group differences in local gyrification index using mixed-effects generalized linear models controlling for age, sex and familial clustering. Sensitivity analysis further controlled for intracranial volume, IQ, and stimulant and cannabis use. RESULTS Youth with psychotic symptoms displayed an overall trend toward lower cortical folding across all brain regions. After adjusting for multiple comparisons and confounders, regional reductions were localized to the frontal and occipital lobes. Specifically, the medial (B = –0.42, pFDR = 0.04) and lateral (B = –0.39, pFDR = 0.04) orbitofrontal cortices as well as the cuneus (B = –0.47, pFDR = 0.03) and the pericalcarine (B = –0.45, pFDR = 0.03) and lingual (B = –0.38, pFDR = 0.04) gyri. LIMITATIONS Inference about developmental trajectories was limited by the cross-sectional data. CONCLUSION Psychotic symptoms in youth are associated with cortical folding deficits, even in the absence of psychotic illness. The current study helps clarify the neurodevelopmental basis of psychosis at an early stage, before medication, drug use and other confounds have had a persistent effect on the brain.
Collapse
Affiliation(s)
- Vladislav Drobinin
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Holly Van Gestel
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Alyson Zwicker
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Lynn MacKenzie
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Jill Cumby
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Victoria C. Patterson
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Emily Howes Vallis
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Niamh Campbell
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Tomas Hajek
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Carl A. Helmick
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Matthias H. Schmidt
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Martin Alda
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Chris V. Bowen
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| | - Rudolf Uher
- From the Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada (Drobinin, Schmidt, Uher); the Nova Scotia Health Authority, Halifax, NS (Drobinin, van Gestel, Zwicker, MacKenzie, Cumby, Patterson, Vallis, Campbell, Helmick, Alda, Bowen, Uher); the Department of Pathology, Dalhousie University, Halifax, NS (Zwicker, Uher); the Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS (MacKenzie, Patterson, Uher); the Department of Psychiatry, Dalhousie University, Halifax, NS (Vallis, Helmick, Alda, Uher); the Department of Medicine, Dalhousie University, Halifax, NS (Campbell); and the Department of Diagnostic Radiology, Dalhousie University, Halifax, NS (Bowen)
| |
Collapse
|
403
|
Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 2020; 7:272-281. [PMID: 31704113 PMCID: PMC7267935 DOI: 10.1016/s2215-0366(19)30302-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The cellular neurobiology of schizophrenia remains poorly understood. We discuss neuroimaging studies, pathological findings, and experimental work supporting the idea that glial cells might contribute to the development of schizophrenia. Experimental studies suggest that abnormalities in the differentiation competence of glial progenitor cells lead to failure in the morphological and functional maturation of oligodendrocytes and astrocytes. We propose that immune activation of microglial cells during development, superimposed upon genetic risk factors, could contribute to defective differentiation competence of glial progenitor cells. The resulting hypomyelination and disrupted white matter integrity might contribute to transmission desynchronisation and dysconnectivity, whereas the failure of astrocytic differentiation results in abnormal glial coverage and support of synapses. The delayed and deficient maturation of astrocytes might, in parallel, lead to disruption of glutamatergic, potassium, and neuromodulatory homoeostasis, resulting in dysregulated synaptic transmission. By highlighting a role for glial cells in schizophrenia, these studies potentially point to new mechanisms for disease modification.
Collapse
Affiliation(s)
- Andrea G Dietz
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
404
|
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 2020; 25:351-367. [PMID: 31772305 PMCID: PMC6974435 DOI: 10.1038/s41380-019-0609-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Microglia have been recently shown to manifest a very interesting phenotypical heterogeneity across different regions in the mammalian central nervous system (CNS). However, the underlying mechanism and functional meaning of this phenomenon are currently unclear. Baseline diversities of adult microglia in their cell number, cellular and subcellular structures, molecular signature as well as relevant functions have been discovered. But recent transcriptomic studies using bulk RNAseq and single-cell RNAseq have produced conflicting results on region-specific signatures of microglia. It is highly speculative whether such spatial heterogeneity contributes to varying sensitivities of individual microglia to the same physiological and pathological signals in different CNS regions, and hence underlie their functional relevance for CNS disease development. This review aims to thoroughly summarize up-to-date knowledge on this specific topic and provide some insights on the potential underlying mechanisms, starting from microgliogenesis. Understanding regional heterogeneity of microglia in the context of their diverse neighboring neurons and other glia may provide an important clue for future development of innovative therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yun-Long Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Li Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China.
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
405
|
Zhao W, Guo S, Linli Z, Yang AC, Lin CP, Tsai SJ. Functional, Anatomical, and Morphological Networks Highlight the Role of Basal Ganglia-Thalamus-Cortex Circuits in Schizophrenia. Schizophr Bull 2020; 46:422-431. [PMID: 31206161 PMCID: PMC7442374 DOI: 10.1093/schbul/sbz062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evidence from electrophysiological, functional, and structural research suggests that abnormal brain connectivity plays an important role in the pathophysiology of schizophrenia. However, most previous studies have focused on single modalities only, each of which is associated with its own limitations. Multimodal combinations can more effectively utilize various information, but previous multimodal research mostly focuses on extracting local features, rather than carrying out research based on network perspective. This study included 135 patients with schizophrenia and 148 sex- and age-matched healthy controls. Functional magnetic resonance imaging, diffusion tensor imaging, and structural magnetic resonance imaging data were used to construct the functional, anatomical, and morphological networks of each participant, respectively. These networks were used in combination with machine learning to identify more consistent biomarkers of brain connectivity and explore the relationships between different modalities. We found that although each modality had divergent connectivity biomarkers, the convergent pattern was that all were mostly located within the basal ganglia-thalamus-cortex circuit. Furthermore, using the biomarkers of these 3 modalities as a feature yielded the highest classification accuracy (91.75%, relative to a single modality), suggesting that the combination of multiple modalities could be effectively utilized to obtain complementary information regarding different mode networks; furthermore, this information could help distinguish patients. These findings provide direct evidence for the disconnection hypothesis of schizophrenia, suggesting that abnormalities in the basal ganglia-thalamus-cortex circuit can be used as a biomarker of schizophrenia.
Collapse
Affiliation(s)
- Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, P. R. China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, P. R. China,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, P. R. China,To whom correspondence should be addressed; School of Mathematics and Statistics, Hunan Normal University, Changsha, P. R. China; tel: +86-13107019688, e-mail:
| | - Zeqiang Linli
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, P. R. China
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
406
|
Reay WR, Cairns MJ. The role of the retinoids in schizophrenia: genomic and clinical perspectives. Mol Psychiatry 2020; 25:706-718. [PMID: 31666680 PMCID: PMC7156347 DOI: 10.1038/s41380-019-0566-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Signalling by retinoid compounds is vital for embryonic development, with particular importance for neurogenesis in the human brain. Retinoids, metabolites of vitamin A, exert influence over the expression of thousands of transcripts genome wide, and thus, act as master regulators of many important biological processes. A significant body of evidence in the literature now supports dysregulation of the retinoid system as being involved in the aetiology of schizophrenia. This includes mechanistic insights from large-scale genomic, transcriptomic and, proteomic studies, which implicate disruption of disparate aspects of retinoid biology such as transport, metabolism, and signalling. As a result, retinoids may present a valuable clinical opportunity in schizophrenia via novel pharmacotherapies and dietary intervention. Further work, however, is required to expand on the largely observational data collected thus far and confirm causality. This review will highlight the fundamentals of retinoid biology and examine the evidence for retinoid dysregulation in schizophrenia.
Collapse
Affiliation(s)
- William R. Reay
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| | - Murray J. Cairns
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| |
Collapse
|
407
|
Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 2020; 25:2130-2143. [PMID: 30171211 PMCID: PMC7473838 DOI: 10.1038/s41380-018-0228-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.
Collapse
|
408
|
White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry 2020; 25:1511-1525. [PMID: 31471575 PMCID: PMC7055351 DOI: 10.1038/s41380-019-0477-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/15/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.
Collapse
|
409
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Salokangas RKR, Koutsouleris N, Hietala J, Tuominen L. Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis. Schizophr Res 2020; 215:284-292. [PMID: 31744752 DOI: 10.1016/j.schres.2019.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Structural and functional abnormalities of the amygdala in schizophrenia have been well documented. Post-mortem studies suggest that the lateral nucleus is particularly affected in schizophrenia. It is not known whether the amygdala subnuclei are differently affected at the time of the first-episode psychosis or already at high-risk state. 75 first-episode psychosis patients (FEP), 45 clinical high-risk patients (CHR) and 76 population controls participated in this cross-sectional case-control study. Participants underwent T1-weighted 3T MRI scans, from which the amygdala was segmented using a newly developed automated algorithm. Because early adverse events increase risk for psychosis and affect the amygdala, we also tested whether experiences of childhood maltreatment associate with the putative amygdala subnuclei abnormalities. Compared to the population controls, FEP had smaller volumes of the lateral, and basal nuclei. In CHR, only the lateral nucleus was significantly smaller compared to the control subjects. Experience of childhood maltreatment was inversely associated with lateral nucleus volumes in FEP but not in CHR. These results show that the lateral and basal nuclei of the amygdala are already affected in FEP. These volumetric changes may reflect specific cellular abnormalities that have been observed in post-mortem studies in schizophrenia in the same subnuclei. Decreased volume of the lateral nucleus in CHR suggest that a smaller lateral nucleus could serve as a potential biomarker for psychosis risk. Finally, we found that the lateral nucleus volumes in FEP may be sensitive to the effects of childhood maltreatment.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Maija Walta
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Raimo K R Salokangas
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Nussbaumstr. 7, D-80336, Munich, Germany
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Lauri Tuominen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; University of Ottawa Institute of Mental Health Research, Ottawa, ON, K1Z 8N3, Canada
| |
Collapse
|
410
|
Ruan H, Luo Q, Palaniyappan L, Lu W, Huang CC, Zac Lo CY, Yang AC, Liu ME, Tsai SJ, Lin CP, Feng J. Topographic diversity of structural connectivity in schizophrenia. Schizophr Res 2020; 215:181-189. [PMID: 31706787 DOI: 10.1016/j.schres.2019.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
The neurobiological heterogeneity of schizophrenia is widely accepted, but it is unclear how mechanistic differences converge to produce the observed phenotype. Establishing a pathophysiological model that accounts for both neurobiological heterogeneity and phenotypic similarity is essential to inform stratified treatment approaches. In this cross-sectional diffusion tensor imaging study, we recruited 77 healthy controls, and 70 patients with DSM-IV diagnosis of schizophrenia. We first confirmed the heterogeneity in structural connectivity by showing a reduced between-individual similarity of the structural connectivity in patients compared to healthy controls. Second, at a system level, we found the diversity of the topographic distribution of the strength of structural connectivity was significantly reduced in patients (P = 7.21 × 10-7, T142 = 5.19 [95% CI: 3.37-7.52], Cohen's d = 0.91), and this affected 65 of the 90 brain regions examined (False Discovery Rate <5%). Third, when topographic diversity was used as a discriminant feature to train a model for classifying patients from controls, it significantly improved the accuracy on an independent sample (T99 = 5.54; P < 0.001). These findings suggest a highly individualized pattern of structural dysconnectivity underlies the heterogeneity of schizophrenia, but these disruptions likely converge on an emergent common pathway to generate the clinical phenotype of the disorder.
Collapse
Affiliation(s)
- Hongtao Ruan
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Lena Palaniyappan
- Departments of Psychiatry &Medical Biophysics, University of Western Ontario, London, Canada; Robarts Research Institute & Lawson Health Research Institute, London, Canada
| | - Wenlian Lu
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jianfeng Feng
- School of Mathematical Sciences, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Shanghai Center for Mathematical Sciences, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
411
|
Joo SW, Yoon W, Jo YT, Kim H, Kim Y, Lee J. Aberrant Executive Control and Auditory Networks in Recent-Onset Schizophrenia. Neuropsychiatr Dis Treat 2020; 16:1561-1570. [PMID: 32606708 PMCID: PMC7319504 DOI: 10.2147/ndt.s254208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Despite a large number of resting-state functional MRI (rsfMRI) studies in schizophrenia, current evidence on the abnormalities of functional connectivity (FC) of resting-state networks shows high variability, and the findings on recent-onset schizophrenia are insufficient compared to those on chronic schizophrenia. PATIENTS AND METHODS We performed a rsfMRI in 46 patients with recent-onset schizophrenia and 22 healthy controls. Group independent component brainmap and dual regression were performed for voxel-wise comparisons between the groups. Correlation of the symptom severity, cognitive function, duration of illness, and a total antipsychotics dose with FC was evaluated with Spearman's rho correlation. RESULTS The patient group had areas with a significantly decreased FC compared to that of the control group in which it existed in the left supplementary motor cortex and supramarginal gyrus (the executive control network) and the right postcentral gyrus (the auditory network). The patient group had a significant correlation of the total antipsychotics dose with the FC of the cluster in the left supplementary motor cortex in the executive control network. CONCLUSION Patients with recent-onset schizophrenia have decreased FC of the executive control and auditory networks compared to healthy controls.
Collapse
Affiliation(s)
- Sung Woo Joo
- Medical Corps, Republic of Korea Navy 1st Fleet, Donghae, Republic of Korea
| | - Woon Yoon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Tak Jo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harin Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yangsik Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
412
|
White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol Psychiatry 2020; 25:883-895. [PMID: 31780770 PMCID: PMC7156346 DOI: 10.1038/s41380-019-0553-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/20/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Identifying both the commonalities and differences in brain structures among psychiatric disorders is important for understanding the pathophysiology. Recently, the ENIGMA-Schizophrenia DTI Working Group performed a large-scale meta-analysis and reported widespread white matter microstructural alterations in schizophrenia; however, no similar cross-disorder study has been carried out to date. Here, we conducted mega-analyses comparing white matter microstructural differences between healthy comparison subjects (HCS; N = 1506) and patients with schizophrenia (N = 696), bipolar disorder (N = 211), autism spectrum disorder (N = 126), or major depressive disorder (N = 398; total N = 2937 from 12 sites). In comparison with HCS, we found that schizophrenia, bipolar disorder, and autism spectrum disorder share similar white matter microstructural differences in the body of the corpus callosum; schizophrenia and bipolar disorder featured comparable changes in the limbic system, such as the fornix and cingulum. By comparison, alterations in tracts connecting neocortical areas, such as the uncinate fasciculus, were observed only in schizophrenia. No significant difference was found in major depressive disorder. In a direct comparison between schizophrenia and bipolar disorder, there were no significant differences. Significant differences between schizophrenia/bipolar disorder and major depressive disorder were found in the limbic system, which were similar to the differences in schizophrenia and bipolar disorder relative to HCS. While schizophrenia and bipolar disorder may have similar pathological characteristics, the biological characteristics of major depressive disorder may be close to those of HCS. Our findings provide insights into nosology and encourage further investigations of shared and unique pathophysiology of psychiatric disorders.
Collapse
|
413
|
Gurholt TP, Haukvik UK, Lonning V, Jönsson EG, Pasternak O, Agartz I. Microstructural White Matter and Links With Subcortical Structures in Chronic Schizophrenia: A Free-Water Imaging Approach. Front Psychiatry 2020; 11:56. [PMID: 32180735 PMCID: PMC7057718 DOI: 10.3389/fpsyt.2020.00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe mental disorder with often a chronic course. Neuroimaging studies report brain abnormalities in both white and gray matter structures. However, the relationship between microstructural white matter differences and volumetric subcortical structures is not known. We investigated 30 long-term treated patients with schizophrenia and schizoaffective disorder (mean age 51.1 ± 7.9 years, mean illness duration 27.6 ± 8.0 years) and 42 healthy controls (mean age 54.1 ± 9.1 years) using 3 T diffusion and structural magnetic resonance imaging. The free-water imaging method was used to model the diffusion signal, and subcortical volumes were obtained from FreeSurfer. We applied multiple linear regression to investigate associations between (i) patient status and regional white matter microstructure, (ii) medication dose or clinical symptoms on white matter microstructure in patients, and (iii) for interactions between subcortical volumes and diagnosis on microstructural white matter regions showing significant patient-control differences. The patients had significantly decreased free-water corrected fractional anisotropy (FAt), explained by decreased axial diffusivity and increased radial diffusivity (RDt) bilaterally in the anterior corona radiata (ACR) and the left anterior limb of the internal capsule (ALIC) compared to controls. In the fornix, the patients had significantly increased RDt. In patients, positive symptoms were associated with localized increased free-water and negative symptoms with localized decreased FAt and increased RDt. There were significant interactions between patient status and several subcortical structures on white matter microstructure and the free-water compartment for left ACR and fornix, and limited to the free-water compartment for right ACR and left ALIC. The Cohen's d effect sizes were medium to large (0.61 to 1.20, absolute values). The results suggest a specific pattern of frontal white matter axonal degeneration and demyelination and fornix demyelination that is attenuated in the presence of larger structures of the limbic system in patients with chronic schizophrenia and schizoaffective disorder. Findings warrant replication in larger samples.
Collapse
Affiliation(s)
- Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Lonning
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
414
|
Hammans C, Neugebauer K, Kumar V, Mevissen L, Sternkopf MA, Novakovic A, Wensing T, Habel U, Abel T, Nickl-Jockschat T. BDNF Serum Levels are Associated With White Matter Microstructure in Schizophrenia - A Pilot Study. Front Psychiatry 2020; 11:31. [PMID: 32153434 PMCID: PMC7046752 DOI: 10.3389/fpsyt.2020.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia. As BDNF regulates axonal and dendritic growth, altered BDNF levels in schizophrenia patients might underlie changes in structural connectivity that have been identified by magnetic resonance imaging (MRI). We investigated a possible correlation between BDNF serum levels, fiber tract architecture, and regional grey matter volumes in 19 schizophrenia patients and a gender- and age-matched control group. Two patients had to be excluded due to abnormalities in their MRI scans. Serum samples were obtained to determine BDNF levels, and T1- as well as diffusion-weighted sequences were acquired. We, then, investigated correlations between BDNF serum levels with neuroimaging parameters, using Voxel-based Morphometry (VBM) and Tract-based Spatial Statistics (TBSS). We found a significant negative correlation between BDNF serum levels and FA values in the right inferior fronto-occipital fasciculus and the right superior longitudinal fasciculus. These regions also showed a decrease in AD values in schizophrenia patients. Grey matter volumes were reduced in patients but there was no correlation between regional grey matter volumes and BDNF. The right superior longitudinal fasciculus has been repeatedly identified to exhibit microstructural changes in schizophrenia patients. Our findings of a negative correlation between BDNF and FA values in patients might indicate that BDNF is upregulated to compensate decreased structural connectivity as it induces neural plasticity and shows increased levels in damaged tissue. These findings of our pilot study are encouraging leads for future research in larger samples.
Collapse
Affiliation(s)
- Christine Hammans
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Kristina Neugebauer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Vinod Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany.,Department of High-field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Lea Mevissen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie A Sternkopf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Ted Abel
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Jülich-Aachen Research Alliance, Jülich, Germany.,Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
415
|
Abstract
OBJECTIVE Schizophrenia is associated with excess medical mortality: patients have an average life expectancy one to two decades shorter than the general population. This study investigates the relationship between aberrant hippocampal resting-state functional connectivity in schizophrenia and cumulative subclinical effects of chronic stress on metabolic, cardiovascular, and immune function using the allostatic load index. METHODS Cumulative stress was estimated using allostatic load total score (range, 0-13) in 46 patients with schizophrenia and 31 controls matched for age and sex (patients: age = 36.1 [13.7] years, sex = 32/14 male/female; controls: age = 35.5 [14.1], sex = 21/10 male/female). Hippocampal functional connectivity was assessed using resting-state functional magnetic resonance imaging; hippocampal structural connectivity was assessed using fornix fractional anisotropy. Linear regression analysis was used a) to test the hypothesis that aberrant hippocampal resting-state functional connectivity in schizophrenia (identified in analysis of schizophrenia - control differences) is associated with elevated allostatic load scores in patients and b) to determine the association between fornix fractional anisotropy with allostatic load. RESULTS In patients, higher allostatic load was significantly associated with reduced resting functional connectivity between the left hippocampus and right cingulate cortex and left precentral gyrus, but higher connectivity between the right hippocampus and left cerebellum lobe VI (corrected p values <. 05). In controls, reductions in both hippocampal structural connectivity and hippocampal-cingulate functional connectivity were associated with higher allostatic load scores. CONCLUSIONS These findings support basic neuroscience evidence that cumulative stress and hippocampal function are closely connected and suggest that abnormal hippocampal functional communication in schizophrenia may be related to elevated multisystem subclinical medical issues in patients as indexed by allostatic load.
Collapse
|
416
|
Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic Resonance Imaging-Based Connectomics in First-Episode Schizophrenia: From Preclinical Study to Clinical Translation. Front Psychiatry 2020; 11:565056. [PMID: 33061921 PMCID: PMC7518111 DOI: 10.3389/fpsyt.2020.565056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jin-Bo Jiang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ning-Yu An
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qun Yang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
417
|
Cui Y, Dong J, Yang Y, Yu H, Li W, Liu Y, Si J, Xie S, Sui J, Lv L, Jiang T. White matter microstructural differences across major depressive disorder, bipolar disorder and schizophrenia: A tract-based spatial statistics study. J Affect Disord 2020; 260:281-286. [PMID: 31521864 DOI: 10.1016/j.jad.2019.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND White matter abnormalities have been implicated in mental disorders including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ); however, the shared and distinct white matter integrity across mental disorders is still unclear. METHODS A total of 290 participants (MDD = 85, BD = 42, SZ = 68, and healthy controls = 95) were included in the present study. Tract-based spatial statistics were performed to measure fractional anisotropy (FA) and characterize shared and distinguishing white matter changes across mental disorders. RESULTS We found that decreased FA converged across MDD, BD and SZ in the body and genu of the corpus callosum, bilateral anterior and posterior corona radiata, and right superior corona radiata. By contrast, diagnosis-specific effect was only found in MDD in the anterior portion of anterior corona radiata. LIMITATIONS The small and imbalanced sample size, and possible confounding effects of medication. CONCLUSIONS Our findings suggest that abnormally reduced white matter integrity in the interhemispheric and thalamocortical circuit could be consistently involved in the pathogenesis of MDD, BD and SZ.
Collapse
Affiliation(s)
- Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jiahao Dong
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Hongyan Yu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Yang Liu
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Sangma Xie
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jing Sui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
418
|
Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Lepage M, Evans AC. Structural Associations of Cortical Contrast and Thickness in First Episode Psychosis. Cereb Cortex 2019; 29:5009-5021. [PMID: 30844050 PMCID: PMC6918925 DOI: 10.1093/cercor/bhz040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 01/22/2023] Open
Abstract
There is growing evidence that psychosis is characterized by brain network abnormalities. Analyzing morphological abnormalities with T1-weighted structural MRI may be limited in discovering the extent of deviations in cortical associations. We assess whether structural associations of either cortical white-gray contrast (WGC) or cortical thickness (CT) allow for a better understanding of brain structural relationships in first episode of psychosis (FEP) patients. Principal component and structural covariance analyses were applied to WGC and CT derived from T1-weighted MRI for 116 patients and 88 controls, to explore sets of brain regions that showed group differences, and associations with symptom severity and cognitive ability in patients. We focused on 2 principal components: one encompassed primary somatomotor regions, which showed trend-like group differences in WGC, and the second included heteromodal cortices. Patients' component scores were related to general psychopathology for WGC, but not CT. Structural covariance analyses with WGC revealed group differences in pairwise correlations across widespread brain regions, mirroring areas derived from PCA. More group differences were uncovered with WGC compared with CT. WGC holds potential as a proxy measure of myelin from commonly acquired T1-weighted MRI and may be sensitive in detecting systems-level aberrations in early psychosis, and relationships with clinical/cognitive profiles.
Collapse
Affiliation(s)
- Carolina Makowski
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Department of Psychiatry, McGill University, Verdun, Canada
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Claude Lepage
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| |
Collapse
|
419
|
Haigh SM, Eack SM, Keller T, Minshew NJ, Behrmann M. White matter structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia 2019; 135:107233. [PMID: 31655160 PMCID: PMC6884694 DOI: 10.1016/j.neuropsychologia.2019.107233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Schizophrenia and autism share many behavioral and neurological similarities, including altered white matter tract structure. However, because schizophrenia and autism are rarely compared directly, it is difficult to establish whether white matter abnormalities are disorder-specific or are common across these disorders that share some symptomatology. METHODS In the current study, we compared white matter water diffusion using tensor imaging in 25 adults with autism, 15 adults with schizophrenia, all with IQ scores above 88, and 19 neurotypical adults. RESULTS Although the three groups evinced no statistically significant differences in measures of fractional anisotropy (FA), the schizophrenia group showed significantly greater mean diffusivity (MD; Cohen's d > 0.77), due to greater radial diffusivity (RD; Cohen's d > 0.92), compared to both the autism and control groups. This effect was evident across the brain rather than specific to a particular tract. CONCLUSIONS The greater MD and RD in schizophrenia appears to be diagnosis-specific. The altered diffusion may reflect subtle abnormalities in myelination, which could be a potential mechanism underlying the widespread behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA; Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, USA.
| | - Shaun M Eack
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; School of Social Work, University of Pittsburgh, USA
| | - Timothy Keller
- Department of Psychology, Carnegie Mellon University, USA
| | - Nancy J Minshew
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA
| |
Collapse
|
420
|
Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology 2019; 44:2285-2293. [PMID: 31434102 PMCID: PMC6898371 DOI: 10.1038/s41386-019-0485-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R2 = 0.041, Pcorr < 0.001) and cingulum (right: R2 = 0.041, left: R2 = 0.040, Pcorr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Collapse
|
421
|
Raabe FJ, Slapakova L, Rossner MJ, Cantuti-Castelvetri L, Simons M, Falkai PG, Schmitt A. Oligodendrocytes as A New Therapeutic Target in Schizophrenia: From Histopathological Findings to Neuron-Oligodendrocyte Interaction. Cells 2019; 8:cells8121496. [PMID: 31771166 PMCID: PMC6952785 DOI: 10.3390/cells8121496] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Imaging and postmortem studies have revealed disturbed oligodendroglia-related processes in patients with schizophrenia and provided much evidence for disturbed myelination, irregular gene expression, and altered numbers of oligodendrocytes in the brains of schizophrenia patients. Oligodendrocyte deficits in schizophrenia might be a result of failed maturation and disturbed regeneration and may underlie the cognitive deficits of the disease, which are strongly associated with impaired long-term outcome. Cognition depends on the coordinated activity of neurons and interneurons and intact connectivity. Oligodendrocyte precursors form a synaptic network with parvalbuminergic interneurons, and disturbed crosstalk between these cells may be a cellular basis of pathology in schizophrenia. However, very little is known about the exact axon-glial cellular and molecular processes that may be disturbed in schizophrenia. Until now, investigations were restricted to peripheral tissues, such as blood, correlative imaging studies, genetics, and molecular and histological analyses of postmortem brain samples. The advent of human-induced pluripotent stem cells (hiPSCs) will enable functional analysis in patient-derived living cells and holds great potential for understanding the molecular mechanisms of disturbed oligodendroglial function in schizophrenia. Targeting such mechanisms may contribute to new treatment strategies for previously treatment-resistant cognitive symptoms.
Collapse
Affiliation(s)
- Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany; (F.J.R.); (L.S.); (P.G.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstr, 2-10, 80804 Munich, Germany
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Lenka Slapakova
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany; (F.J.R.); (L.S.); (P.G.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstr, 2-10, 80804 Munich, Germany
| | - Moritz J. Rossner
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Ludovico Cantuti-Castelvetri
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377 Munich, Germany; (L.C.-C.); (M.S.)
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377 Munich, Germany; (L.C.-C.); (M.S.)
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany
| | - Peter G. Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany; (F.J.R.); (L.S.); (P.G.F.)
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany; (F.J.R.); (L.S.); (P.G.F.)
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany;
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, 05453-010 São Paulo, Brazil
- Correspondence: ; Tel.: +49-(0)89-4400-52761; Fax: +49-(0)89-4400-55530
| |
Collapse
|
422
|
Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin N Am 2019; 30:73-83. [PMID: 31759574 DOI: 10.1016/j.nic.2019.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Schizophrenia is a chronic psychotic disorder with a lifetime prevalence of about 1%. Onset is typically in adolescence or early adulthood; characteristic symptoms include positive symptoms, negative symptoms, and impairments in cognition. Neuroimaging studies have shown substantive evidence of brain structural, functional, and neurochemical alterations that are more pronounced in the association cortex and subcortical regions. These abnormalities are not sufficiently specific to be of diagnostic value, but there may be a role for imaging techniques to provide predictions of outcome. Incorporating multimodal imaging datasets using machine learning approaches may offer better diagnostic and predictive value in schizophrenia.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA.
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA; University Medical Center Utrecht Brain Center, Heidelberglaan 100, Postbus 85500, 3508 GA, Utrecht, the Netherlands
| | - Synthia Guimond
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, Suite 279, 3811 O'Hara St, Pittsburgh, PA 15213, USA; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Paulo Lizano
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
423
|
Matsuda Y, Makinodan M, Morimoto T, Kishimoto T. Neural changes following cognitive remediation therapy for schizophrenia. Psychiatry Clin Neurosci 2019; 73:676-684. [PMID: 31278805 DOI: 10.1111/pcn.12912] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/15/2023]
Abstract
Patients with schizophrenia experience cognitive impairments that relate to poorer social functioning even after amelioration of positive symptoms. Pharmacological treatment and cognitive remediation are the two important therapeutic approaches for cognitive impairment in schizophrenia. Cognitive remediation therapy (CRT) for schizophrenia improves cognitive functioning and induces neuroplasticity, but different approaches and durations of CRT and different neuroimaging devices have led to varying results in meta-analyses. The objective of this review was to explore the impact of CRT on neurobiology. Several studies have provided evidence of increased activation in the frontal brain regions, such as the prefrontal cortex, anterior cingulate cortex, and parietal and occipital regions during working memory or executive function tasks after CRT. Two studies have shown alterations in resting-state connectivity between the prefrontal cortex and temporal regions. Two studies have reported that CRT induces changes in gray matter volume in the hippocampus. Further, one study observed that patients who had received CRT had elevated fractional anisotropy in the basal ganglia. We conclude that neuroimaging studies assessing CRT in patients with schizophrenia showed functional, structural, and connectivity changes that were positively correlated with cognitive improvements despite heterogeneous CRT approaches. Future studies that combine multiple modalities are required to address the differences, effects of intrinsic motivation, and pharmacological augmentation of CRT. Further understanding of the biological basis might lead to predictions of the CRT response in patients with schizophrenia and contribute to identification of schizophrenia patients for future interventions.
Collapse
Affiliation(s)
- Yasuhiro Matsuda
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Tsubasa Morimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
424
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
425
|
Cui LB, Wei Y, Xi YB, Griffa A, De Lange SC, Kahn RS, Yin H, Van den Heuvel MP. Connectome-Based Patterns of First-Episode Medication-Naïve Patients With Schizophrenia. Schizophr Bull 2019; 45:1291-1299. [PMID: 30926985 PMCID: PMC6811827 DOI: 10.1093/schbul/sbz014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging evidence indicates that a disruption in brain network organization may play an important role in the pathophysiology of schizophrenia. The neuroimaging fingerprint reflecting the pathophysiology of first-episode schizophrenia remains to be identified. Here, we aimed at characterizing the connectome organization of first-episode medication-naïve patients with schizophrenia. A cross-sectional structural and functional neuroimaging study using two independent samples (principal dataset including 42 medication-naïve, previously untreated patients and 48 healthy controls; replication dataset including 39 first-episode patients [10 untreated patients] and 66 healthy controls) was performed. Brain network architecture was assessed by means of white matter fiber integrity measures derived from diffusion-weighted imaging (DWI) and by means of structural-functional (SC-FC) coupling measured by combining DWI and resting-state functional magnetic resonance imaging. Connectome rich club organization was found to be significantly disrupted in medication-naïve patients as compared with healthy controls (P = .012, uncorrected), with rich club connection strength (P = .032, uncorrected) and SC-FC coupling (P < .001, corrected for false discovery rate) decreased in patients. Similar results were found in the replication dataset. Our findings suggest that a disruption of rich club organization and functional dynamics may reflect an early feature of schizophrenia pathophysiology. These findings add to our understanding of the neuropathological mechanisms of schizophrenia and provide new insights into the early stages of the disorder.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Yongbin Wei
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Alessandra Griffa
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Siemon C De Lange
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Martijn P Van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
426
|
Bracht T, Viher PV, Stegmayer K, Strik W, Federspiel A, Wiest R, Walther S. Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity. NEUROIMAGE-CLINICAL 2019; 24:102044. [PMID: 31678911 PMCID: PMC6978276 DOI: 10.1016/j.nicl.2019.102044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Increased FA of bilateral slMFB can be found in delusional SSD-patients. Findings are supported by a psychopathological model of paranoia and grandiosity. Findings are in line with a model of underlying network physiology (slMFB).
In many cases delusions in schizophrenia spectrum disorders (SSD) are driven by strong emotions such as feelings of paranoia or grandiosity. We refer to these extreme emotional experiences as psychotic affectivity. We hypothesized that increased structural connectivity of the supero-lateral medial forebrain bundle (slMFB), a major tract of the reward system, is associated with delusional psychotic affectivity. Forty-six patients with SSD and 44 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. The slMFB and a comparison tract (corticospinal tract) were reconstructed using diffusion tensor imaging (DTI)-based tractography. Fractional anisotropy (FA) was sampled across the tracts. We used a mixed-model analyses of variance controlling for age and gender to compare FA of bilateral slMFB between SSD-patients and HC. Correlations of FA of bilateral slMFB and the PANSS-positive item delusions were calculated. In addition, FA was compared between three clinically homogeneous SSD-subgroups in terms of psychotic affectivity (severe, mild and no PA, sPA, mPA, nPA) and HC. FA of the slMFB did not differ between all SSD-patients and HC. In SSD-patients there was a positive correlation between delusions and FA in bilateral slMFB. Likewise, SSD-subgroups of psychotic affectivity and HC differed significantly in FA of the slMFB. Results were driven by higher FA in the right slMFB in sPA as compared to nPA and to HC. There was no significant effect for the comparison tract. In conclusion, increased structural connectivity of the slMFB may underlie delusional experiences of paranoia and grandiosity in SSD.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Petra V Viher
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
427
|
Ji E, Guevara P, Guevara M, Grigis A, Labra N, Sarrazin S, Hamdani N, Bellivier F, Delavest M, Leboyer M, Tamouza R, Poupon C, Mangin JF, Houenou J. Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:1367-1378. [PMID: 30953566 PMCID: PMC6811818 DOI: 10.1093/schbul/sbz015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are often conceptualized as "disconnection syndromes," with substantial evidence of abnormalities in deep white matter tracts, forming the substrates of long-range connectivity, seen in both disorders. However, the study of superficial white matter (SWM) U-shaped short-range tracts remained challenging until recently, although findings from postmortem studies suggest they are likely integral components of SZ and BD neuropathology. This diffusion weighted imaging (DWI) study aimed to investigate SWM microstructure in vivo in both SZ and BD for the first time. We performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls using BrainVISA and Connectomist 2.0. Segmentation and labeling of SWM tracts were performed using a novel, comprehensive U-fiber atlas. Analysis of covariances yielded significant generalized fractional anisotropy (gFA) differences for 17 SWM bundles in frontal, parietal, and temporal cortices. Post hoc analyses showed gFA reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). We also found increased gFA in SZ patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), supporting functional hyperconnectivity of this network evidenced in SZ. We thus illustrate that short U-fibers are vulnerable to the pathological processes in major psychiatric illnesses, encouraging improved understanding of their anatomy and function.
Collapse
Affiliation(s)
- Ellen Ji
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,To whom correspondence should be addressed; INSERM U955, Hôpitaux Universitaires Mondor, 40 rue de Mesly, Créteil 94010, France; tel: +33-1-49-81-30-51, fax: +33-1-49-81-30-59, e-mail:
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Samuel Sarrazin
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France
| | - Nora Hamdani
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Frank Bellivier
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marine Delavest
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marion Leboyer
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Ryad Tamouza
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | | | | | - Josselin Houenou
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| |
Collapse
|
428
|
A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder. Neuropsychopharmacology 2019; 44:1932-1939. [PMID: 31153156 PMCID: PMC6785103 DOI: 10.1038/s41386-019-0427-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Diffusion tensor imaging (DTI) studies show widespread white matter abnormalities in schizophrenia, but it is difficult to directly relate these parameters to biological processes. Neurite orientation dispersion and density imaging (NODDI) is geared toward biophysical characterization of white matter microstructure, but only few studies have leveraged this technique to study white matter alterations. We recruited 42 schizophrenia patients (30 antipsychotic-naïve and 12 currently untreated) and 42 matched controls in this prospective study. We assessed the orientation dispersion index (ODI) and extracellular free water (FW) using single-shell DTI data before and after a 6-week trial of risperidone. Longitudinal data were available for 27 patients. Voxelwise analyses showed significantly increased ODI in the posterior limb of the internal capsule in unmedicated patients (242 voxels; x = -24; y = 6; z = 6; p < 0.01; α < 0.04), but no alterations in FW. Whole brain measures did not reveal alterations in ODI but a 6.3% trend-level increase in FW in unmedicated SZ (t = -1.873; p = 0.07). Baseline ODI was negatively correlated with subsequent response to antipsychotic treatment (r = -0.38; p = 0.049). Here, we demonstrated altered fiber complexity in medication-naïve and unmedicated patients with a schizophrenia spectrum illness. Lesser whole brain fiber uniformity was predictive of poor response to treatment, suggesting this measure may be a clinically relevant biomarker. Interestingly, we found no significant changes in NODDI indices after short-term treatment with risperidone. Our data show that biophysical diffusion models have promise for the in vivo evaluation of brain microstructure in this devastating neuropsychiatric syndrome.
Collapse
|
429
|
Kochunov P, Huang J, Chen S, Li Y, Tan S, Fan F, Feng W, Wang Y, Rowland LM, Savransky A, Du X, Chiappelli J, Chen S, Jahanshad N, Thompson PM, Ryan MC, Adhikari B, Sampath H, Cui Y, Wang Z, Yang F, Tan Y, Hong LE. White Matter in Schizophrenia Treatment Resistance. Am J Psychiatry 2019; 176:829-838. [PMID: 31352812 PMCID: PMC6773514 DOI: 10.1176/appi.ajp.2019.18101212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Failure of antipsychotic medications to resolve symptoms in patients with schizophrenia creates a clinical challenge that is known as treatment resistance. The causes of treatment resistance are unknown, but it is associated with earlier age at onset and more severe cognitive deficits. The authors tested the hypothesis that white matter deficits that are involved in both neurodevelopment and severity of cognitive deficits in schizophrenia are associated with a higher risk of treatment resistance. METHODS The study sample (N=122; mean age, 38.2 years) included schizophrenia patients at treatment initiation (N=45), patients whose symptoms were treatment responsive (N=40), and patients whose symptoms were treatment resistant (N=37), as well as healthy control subjects (N=78; mean age, 39.2 years). White matter regional vulnerability index (RVI) was tested as a predictor of treatment resistance and cognitive deficits. Higher RVI is indicative of better agreement between diffusion tensor imaging fractional anisotropy across the brain in an individual and the pattern identified by the largest-to-date meta-analysis of white matter deficits in schizophrenia. RESULTS Patients with treatment-resistant symptoms showed the highest white matter RVI (mean=0.38 [SD=0.2]), which was significantly higher than the RVI among patients with treatment-responsive symptoms (mean=0.30 [SD=0.02]). At the onset of treatment, schizophrenia patients showed significantly higher RVI than healthy control subjects (mean=0.18 [SD=0.03] and mean=0.13 [SD=0.02], respectively). RVIs were significantly correlated with performance on processing speed and negative symptoms. CONCLUSIONS Schizophrenia affects white matter microstructure in specific regional patterns. Susceptibility to white matter regional deficits is associated with an increased likelihood of treatment resistance. Developments to overcome schizophrenia treatment resistance should consider white matter as an important target.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Corresponding Authors: Dr. Kochunov (), Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA, Phone: (410) 402-6110, Fax: (410) 402-6778; Dr. Tan (), Beijing Huilongguan Hospital, Peking University, Huilongguan Clinical Medical School, Beijing, P. R. China, Phone: (800) 010-83024532, Fax: (800) 010-83020156
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Song Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Yanli Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Wei Feng
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Yunhui Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya Savransky
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Meghann C. Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P.R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, P. R. China,Corresponding Authors: Dr. Kochunov (), Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA, Phone: (410) 402-6110, Fax: (410) 402-6778; Dr. Tan (), Beijing Huilongguan Hospital, Peking University, Huilongguan Clinical Medical School, Beijing, P. R. China, Phone: (800) 010-83024532, Fax: (800) 010-83020156
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
430
|
Periyasamy S, John S, Padmavati R, Rajendren P, Thirunavukkarasu P, Gratten J, Vinkhuyzen A, McRae A, Holliday EG, Nyholt DR, Nancarrow D, Bakshi A, Hemani G, Nertney D, Smith H, Filippich C, Patel K, Fowdar J, McLean D, Tirupati S, Nagasundaram A, Gundugurti PR, Selvaraj K, Jegadeesan J, Jorde LB, Wray NR, Brown MA, Suetani R, Giacomotto J, Thara R, Mowry BJ. Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry 2019; 76:1026-1034. [PMID: 31268507 PMCID: PMC6613304 DOI: 10.1001/jamapsychiatry.2019.1335] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Importance Genome-wide association studies (GWASs) in European populations have identified more than 100 schizophrenia-associated loci. A schizophrenia GWAS in a unique Indian population offers novel findings. Objective To discover and functionally evaluate genetic loci for schizophrenia in a GWAS of a unique Indian population. Design, Setting, and Participants This GWAS included a sample of affected individuals, family members, and unrelated cases and controls. Three thousand ninety-two individuals were recruited and diagnostically ascertained via medical records, hospitals, clinics, and clinical networks in Chennai and surrounding regions. Affected participants fulfilled DSM-IV diagnostic criteria for schizophrenia. Unrelated control participants had no personal or family history of psychotic disorder. Recruitment, genotyping, and analysis occurred in consecutive phases beginning January 1, 2001. Recruitment was completed on February 28, 2018, and genotyping and analysis are ongoing. Main Outcomes and Measures Associations of single-nucleotide polymorphisms and gene expression with schizophrenia. Results The study population included 1321 participants with schizophrenia, 885 family controls, and 886 unrelated controls. Among participants with schizophrenia, mean (SD) age was 39.1 (11.4) years, and 52.7% were male. This sample demonstrated uniform ethnicity, a degree of inbreeding, and negligible rates of substance abuse. A novel genome-wide significant association was observed between schizophrenia and a chromosome 8q24.3 locus (rs10866912, allele A; odds ratio [OR], 1.27 [95% CI, 1.17-1.38]; P = 4.35 × 10-8) that attracted support in the schizophrenia Psychiatric Genomics Consortium 2 data (rs10866912, allele A; OR, 1.04 [95% CI, 1.02-1.06]; P = 7.56 × 10-4). This locus has undergone natural selection, with the risk allele A declining in frequency from India (approximately 72%) to Europe (approximately 43%). rs10866912 directly modifies the abundance of the nicotinate phosphoribosyltransferase gene (NAPRT1) transcript in brain cortex (normalized effect size, 0.79; 95% CI, 0.6-1.0; P = 5.8 × 10-13). NAPRT1 encodes a key enzyme for niacin metabolism. In Indian lymphoblastoid cell lines, (risk) allele A of rs10866912 was associated with NAPRT1 downregulation (AA: 0.74, n = 21; CC: 1.56, n = 17; P = .004). Preliminary zebrafish data further suggest that partial loss of function of NAPRT1 leads to abnormal brain development. Conclusions and Relevance Bioinformatic analyses and cellular and zebrafish gene expression studies implicate NAPRT1 as a novel susceptibility gene. Given this gene's role in niacin metabolism and the evidence for niacin deficiency provoking schizophrenialike symptoms in neuropsychiatric diseases such as pellagra and Hartnup disease, these results suggest that the rs10866912 genotype and niacin status may have implications for schizophrenia susceptibility and treatment.
Collapse
Affiliation(s)
- Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Sujit John
- Schizophrenia Research Foundation, Chennai, India
| | | | | | | | - Jacob Gratten
- Mater Research Institute and University of Queensland, Translational Research Institute, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Anna Vinkhuyzen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Allan McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | - Andrew Bakshi
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Gibran Hemani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Deborah Nertney
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Heather Smith
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Cheryl Filippich
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Kalpana Patel
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Javed Fowdar
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Duncan McLean
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Srinivasan Tirupati
- Psychiatric Rehabilitation Service, Hunter New England Mental Health, Newcastle, Australia
| | | | | | | | | | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Rachel Suetani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | | | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| |
Collapse
|
431
|
The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev 2019; 104:141-157. [DOI: 10.1016/j.neubiorev.2019.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
432
|
Domínguez-Iturza N, Lo AC, Shah D, Armendáriz M, Vannelli A, Mercaldo V, Trusel M, Li KW, Gastaldo D, Santos AR, Callaerts-Vegh Z, D'Hooge R, Mameli M, Van der Linden A, Smit AB, Achsel T, Bagni C. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat Commun 2019; 10:3454. [PMID: 31371726 PMCID: PMC6672001 DOI: 10.1038/s41467-019-11203-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Disha Shah
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
- Department of Neuroscience KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Marcelo Armendáriz
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium
| | - Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Valentina Mercaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Massimo Trusel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ana Rita Santos
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
- VIB Discovery Sciences, Bioincubator, 3001, Heverlee, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Manuel Mameli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Annemie Van der Linden
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
433
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
434
|
Using proton magnetic resonance spectroscopic imaging to study glutamatergic alterations in patients with schizophrenia: A systematic review. Schizophr Res 2019; 210:13-20. [PMID: 31272905 DOI: 10.1016/j.schres.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
The glutamate hypothesis of schizophrenia posits aberrant glutamatergic activity in patients with schizophrenia. Levels of glutamate and glutamine can be detected and quantified in vivo by proton magnetic resonance spectroscopy. A related technique, proton magnetic resonance spectroscopic imaging (1H-MRSI), is particularly useful as it simultaneously collects multiple spectra, across multiple voxels, from a single acquisition. The primary aim of this study was to review and discuss the use of 1H-MRSI to measure levels of glutamate and glutamine in patients with schizophrenia. Additionally, the advantages and disadvantages of using 1H-MRSI to examine schizophrenia pathophysiology are discussed. A literature search was conducted through Ovid. English language studies utilizing 1H-MRSI to measure glutamate and glutamine in patients with schizophrenia were identified. Six studies met the inclusion criteria. The included studies provide inconclusive support for glutamatergic elevations within frontal brain regions in patients with schizophrenia. The key benefit of employing 1H-MRSI to examine schizophrenia pathophysiology appears to be its broader spatial coverage. Future 1H-MRSI studies utilizing large sample sizes and longitudinal study designs are necessitated to further our understanding of glutamatergic alterations in patients with schizophrenia.
Collapse
|
435
|
Palaniyappan L, Al-Radaideh A, Mougin O, Das T, Gowland P, Liddle PF. Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol Med 2019; 49:1890-1896. [PMID: 30229713 DOI: 10.1017/s0033291718002647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The structural integrity of the anterior cingulum has been repeatedly observed to be abnormal in patients with schizophrenia. More recently, aberrant myelination of frontal fasciculi, especially, cingulum has been proposed to underlie delayed corollary discharges that can affect sense of agency and contribute to delusions of control (Schneiderian delusions). Using the magnetization transfer phenomenon at an ultra-high field 7T MRI, we investigated the putative myelin content of cingulum bundle in patients with schizophrenia. METHODS Seventeen clinically stable patients with schizophrenia and 20 controls were recruited for this 7T MRI study. We used a region-of-interest method and extracted magnetization transfer ratio (MTR) from left and right dorsal cingulum bundles and estimated patients v. controls differences. We also related the cingulum MTR values to the severity of Schneiderian delusions. RESULTS Patients had a significant reduction in the MTR, indicating reduced myelin content, in the cingulum bundle (right cingulum Hedges' g = 0.91; left cingulum g = 0.03). The reduced MTR of left cingulum was associated with higher severity of Schneiderian delusions (τ = -0.45, p = 0.026) but no such relationship was seen for the right cingulum MTR (τ = -0.136, p = 0.50) among patients. The association between the left cingulum MTR and Schneiderian delusions was not explained by the presence of other delusions, hallucinations, disorganization or negative symptoms. CONCLUSIONS Dysmyelination of the cingulum bundle is seen in a subgroup of patients with schizophrenia and may be involved in the mechanism of Schneiderian delusions.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Allied Health Sciences,The Hashemite University,Zarqa,Jordan
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Tushar Das
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Peter F Liddle
- Translational Neuroimaging for Mental Health, Division of Psychiatry and Applied Psychology,University of Nottingham,Nottingham,UK
| |
Collapse
|
436
|
Fan F, Tan Y, Wang Z, Yang F, Fan H, Xiang H, Guo H, Hong LE, Tan S, Zuo XN. Functional fractionation of default mode network in first episode schizophrenia. Schizophr Res 2019; 210:115-121. [PMID: 31296414 DOI: 10.1016/j.schres.2019.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 11/18/2022]
Abstract
A disruption in the connectivity between brain regions may underlie the core pathology in schizophrenia. One of the most consistent observations in human functional imaging is a network of brain regions referred to as the default network (DMN) that contains core subsystem, the dorsomedial prefrontal cortex (dMPFC) subsystem and the medial temporal lobe (MTL) subsystem, with differential contributions. The goal of this study was to examine abnormalities of different DMN subsystems in first episode schizophrenia and associations between these abnormalities and individual psychopathology. We recruited 203 patients and 131 healthy controls. A seed-based resting-state functional connectivity (RSFC) analysis on the 2D surface was conducted. Individual DMN functional connectivity matrices were then obtained by calculating spatial correlations between pairs of RSFC maps, characterizing the functional fractionation of the DMN. Patients showed patterns similar to controls but markedly reduced strength of DMN fractionation, with the degree centrality of the MTL subsystem significantly reduced, including the posterior inferior parietal lobule (pIPL), parahippocampal cortex (PHC) and lateral temporal cortex (LTC). Patients also exhibited hypo-connectivity within the MTL subsystem and between the MTL and dMPFC subsystems. Clinical symptoms were negatively correlated with degree centrality of LTC, pIPL and PHC in patients. Hyper-fractionation of different DMN components implied that communication and coordination throughout the dissociated components of the DMN are functionally over-segregated in schizophrenia. The associations between the hyper-fractionation with clinical symptoms suggest a role of the high fractionation in the DMN in the abnormal neuropathology observed in schizophrenia.
Collapse
Affiliation(s)
- Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China; State Key Laboratory of Cognitive Neuroscience and Learning & International Data Group/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hong Xiang
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Hua Guo
- Zhumadian Psychiatry Hospital, Henan Province, China
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| | - Xi-Nian Zuo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Beijing, China; Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Beijing, China; Lifespan Connectomics and Behavior Team, Institute of Psychology, Beijing, China; Key Laboratory for Brain and Education Sciences, Guangxi Teachers Education University, Nanning, Guangxi, China; Center for Longevity Research, Guangxi Teachers Education University, Nanning, Guangxi, China.
| |
Collapse
|
437
|
Vergara VM, Damaraju E, Turner JA, Pearlson G, Belger A, Mathalon DH, Potkin SG, Preda A, Vaidya JG, van Erp TGM, McEwen S, Calhoun VD. Altered Domain Functional Network Connectivity Strength and Randomness in Schizophrenia. Front Psychiatry 2019; 10:499. [PMID: 31396111 PMCID: PMC6664085 DOI: 10.3389/fpsyt.2019.00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Functional connectivity is one of the most widely used tools for investigating brain changes due to schizophrenia. Previous studies have identified abnormal functional connectivity in schizophrenia patients at the resting state brain network level. This study tests the existence of functional connectivity effects at whole brain and domain levels. Domain level refers to the integration of data from several brain networks grouped by their functional relationship. Data integration provides more consistent and accurate information compared to an individual brain network. This work considers two domain level measures: functional connectivity strength and randomness. The first measure is simply an average of connectivities within the domain. The second measure assesses the unpredictability and lack of pattern of functional connectivity within the domain. Domains with less random connectivity have higher chance of exhibiting a biologically meaningful connectivity pattern. Consistent with prior observations, individuals with schizophrenia showed aberrant domain connectivity strength between subcortical, cerebellar, and sensorial brain areas. Compared to healthy volunteers, functional connectivity between cognitive and default mode domains showed less randomness, while connectivity between default mode-sensorial areas showed more randomness in schizophrenia patients. These differences in connectivity patterns suggest deleterious rewiring trade-offs among important brain networks.
Collapse
Affiliation(s)
- Victor M. Vergara
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- 2The Mind Research Network, Albuquerque, NM, United States
- Psychology Department Georgia State University, Atlanta, GA, United States
| | - Eswar Damaraju
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jessica A. Turner
- Psychology Department Georgia State University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Olin Neuropsychiatry Research Center, Institute of Living, HHC, Hartford, CT, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jatin G. Vaidya
- Department of Psychiatry, University of Iowa, IA, United States
| | - Theo G. M. van Erp
- Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Sarah McEwen
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- 2The Mind Research Network, Albuquerque, NM, United States
- Psychology Department Georgia State University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
438
|
Wang D, Yao Q, Yu M, Xiao C, Fan L, Lin X, Zhu D, Tian M, Shi J. Topological Disruption of Structural Brain Networks in Patients With Cognitive Impairment Following Cerebellar Infarction. Front Neurol 2019; 10:759. [PMID: 31379713 PMCID: PMC6659410 DOI: 10.3389/fneur.2019.00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebellar lesions can lead to a series of cognitive and emotional disorders by influencing cerebral activity via cerebro-cerebellar loops. To explore changes in cognitive function and structural brain networks in patients with posterior cerebellar infarction, we conducted the current study using diffusion-weighted MRI (32 cerebellar infarction patients, 29 controls). Moreover, a series of neuropsychological tests were used to assess the subject's cognitive performance. We found cognitive impairment following cerebellar infarction involving multiple cognitive domains, including memory, executive functions, visuospatial abilities, processing speed and language functions, and brain topological abnormalities, including changes in clustering coefficients, shortest path lengths, global efficiency, local efficiencies, betweenness centrality and nodal efficiencies. Our results indicated that measures of local efficiency, mainly in the precuneus, cingulate gyrus and frontal-temporal cortex, were significantly reduced with posterior cerebellar infarction. At the same time, The correlation analysis suggested thatthe abnormal alterations in the right PCG, bilateral DCG, right PCUN may play a core role in the cognitive impairment following cerebellar infarctions. The differences in topological features of the structural brain networks within the cerebro-cerebellar circuits may provide a new approach to explore the pathophysiological mechanisms of cognitive impairment following cerebellar infarction.
Collapse
Affiliation(s)
- Duohao Wang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Yu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Fan
- Department of Neurology, Taizhou People's Hospital, Taizhou, China
| | - Xingjian Lin
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Minjie Tian
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
439
|
Adhikari BM, Hong LE, Sampath H, Chiappelli J, Jahanshad N, Thompson PM, Rowland LM, Calhoun VD, Du X, Chen S, Kochunov P. Functional network connectivity impairments and core cognitive deficits in schizophrenia. Hum Brain Mapp 2019; 40:4593-4605. [PMID: 31313441 DOI: 10.1002/hbm.24723] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cognitive deficits contribute to functional disability in patients with schizophrenia and may be related to altered functional networks that serve cognition. We evaluated the integrity of major functional networks and assessed their role in supporting two cognitive functions affected in schizophrenia: processing speed (PS) and working memory (WM). Resting-state functional magnetic resonance imaging (rsfMRI) data, N = 261 patients and 327 controls, were aggregated from three independent cohorts and evaluated using Enhancing NeuroImaging Genetics through Meta Analysis rsfMRI analysis pipeline. Meta- and mega-analyses were used to evaluate patient-control differences in functional connectivity (FC) measures. Canonical correlation analysis was used to study the association between cognitive deficits and FC measures. Patients showed consistent patterns of cognitive and resting-state FC (rsFC) deficits across three cohorts. Patient-control differences in rsFC calculated using seed-based and dual-regression approaches were consistent (Cohen's d: 0.31 ± 0.09 and 0.29 ± 0.08, p < 10-4 ). RsFC measures explained 12-17% of the individual variations in PS and WM in the full sample and in patients and controls separately, with the strongest correlations found in salience, auditory, somatosensory, and default-mode networks. The pattern of association between rsFC (within-network) and PS (r = .45, p = .07) and WM (r = .36, p = .16), and rsFC (between-network) and PS (r = .52, p = 8.4 × 10-3 ) and WM (r = .47, p = .02), derived from multiple networks was related to effect size of patient-control differences in the functional networks. No association was detected between rsFC and current medication dose or psychosis ratings. Patients demonstrated significant reduction in several FC networks that may partially underlie some of the core neurocognitive deficits in schizophrenia. The strength of connectivity-cognition relationships in different networks was strongly associated with network's vulnerability to schizophrenia.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of USC, Marina del Rey, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of USC, Marina del Rey, California
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
440
|
Phalen H, Coffman BA, Ghuman A, Sejdić E, Salisbury DF. Non-negative Matrix Factorization Reveals Resting-State Cortical Alpha Network Abnormalities in the First-Episode Schizophrenia Spectrum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:961-970. [PMID: 31451387 DOI: 10.1016/j.bpsc.2019.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Little is known about neural oscillatory dynamics in first-episode psychosis. Pathophysiology of functional connectivity can be measured through network activity of alpha oscillations, reflecting long-range communication between distal brain regions. METHODS Resting magnetoencephalographic activity was collected from 31 individuals with first-episode schizophrenia spectrum psychosis and 22 healthy control individuals. Activity was projected to the realistic cortical surface, based on structural magnetic resonance imaging. The first principal component of activity in 40 Brodmann areas per hemisphere was Hilbert transformed within the alpha range. Non-negative matrix factorization was applied to single-trial alpha phase-locking values from all subjects to determine alpha networks. Within networks, energy and entropy were compared. RESULTS Four cortical alpha networks were pathological in individuals with first-episode schizophrenia spectrum psychosis. The networks involved the bilateral anterior and posterior cingulate; left auditory, medial temporal, and cingulate cortex; right inferior frontal gyrus and widespread areas; and right posterior parietal cortex and widespread areas. Energy and entropy were associated with the Positive and Negative Syndrome Scale total and thought disorder factors for the first three networks. In addition, the left posterior temporal network was associated with positive and negative factors, and the right inferior frontal network was associated with the positive factor. CONCLUSIONS Machine learning network analysis of resting alpha-band neural activity identified several aberrant networks in individuals with first-episode schizophrenia spectrum psychosis, including the left temporal, right inferior frontal, right posterior parietal, and bilateral cingulate cortices. Abnormal long-range alpha communication is evident at the first presentation for psychosis and may provide clues about mechanisms of dysconnectivity in psychosis and novel targets for noninvasive brain stimulation.
Collapse
Affiliation(s)
- Henry Phalen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Avniel Ghuman
- Laboratory of Cognitive Neurodynamics, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
441
|
Wannan CMJ, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM, Weickert TW, Weickert CS, Everall I, McGorry P, Velakoulis D, Wood SJ, Bartholomeusz CF, Pantelis C, Zalesky A. Evidence for Network-Based Cortical Thickness Reductions in Schizophrenia. Am J Psychiatry 2019; 176:552-563. [PMID: 31164006 DOI: 10.1176/appi.ajp.2019.18040380] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cortical thickness reductions in schizophrenia are irregularly distributed across multiple loci. The authors hypothesized that cortical connectivity networks would explain the distribution of cortical thickness reductions across the cortex, and, specifically, that cortico-cortical connectivity between loci with these reductions would be exceptionally strong and form an interconnected network. This hypothesis was tested in three cross-sectional schizophrenia cohorts: first-episode psychosis, chronic schizophrenia, and treatment-resistant schizophrenia. METHODS Structural brain images were acquired for 70 patients with first-episode psychosis, 153 patients with chronic schizophrenia, and 47 patients with treatment-resistant schizophrenia and in matching healthy control groups (N=57, N=168, and N=54, respectively). Cortical thickness was compared between the patient and respective control groups at 148 regions spanning the cortex. Structural connectivity strength between pairs of cortical regions was quantified with structural covariance analysis. Connectivity strength between regions with cortical thickness reductions was compared with connectivity strength between 5,000 sets of randomly chosen regions to establish whether regions with reductions were interconnected more strongly than would be expected by chance. RESULTS Significant (false discovery rate corrected) and widespread cortical thickness reductions were found in the chronic schizophrenia (79 regions) and treatment-resistant schizophrenia (106 regions) groups, with more circumscribed reductions in the first-episode psychosis group (34 regions). Cortical thickness reductions with the largest effect sizes were found in frontal, temporal, cingulate, and insular regions. In all cohorts, both the patient and healthy control groups showed significantly increased structural covariance between regions with cortical thickness reductions compared with randomly selected regions. CONCLUSIONS Brain network architecture can explain the irregular topographic distribution of cortical thickness reductions in schizophrenia. This finding, replicated in three distinct schizophrenia cohorts, suggests that the effect is robust and independent of illness stage.
Collapse
Affiliation(s)
- Cassandra M J Wannan
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Vanessa L Cropley
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - M Mallar Chakravarty
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Chad Bousman
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Eleni P Ganella
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Jason M Bruggemann
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Thomas W Weickert
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Cynthia Shannon Weickert
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Ian Everall
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Patrick McGorry
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Dennis Velakoulis
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Stephen J Wood
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Cali F Bartholomeusz
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Christos Pantelis
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| | - Andrew Zalesky
- The Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia (Wannan, Cropley, Bousman, Ganella, T.W. Weickert, C.S. Weickert, McGorry, Velakoulis, Bartholomeusz, Pantelis, Zalesky); Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia (Wannan, Ganella, McGorry, Wood, Bartholomeusz); the Cooperative Research Centre for Mental Health, Victoria, Australia (Wannan, Bousman, Ganella, Everall, Pantelis); North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia (Wannan, Ganella, Everall, Pantelis); Faculty of Health, Arts, and Design, the Brain and Psychological Sciences Research Centre, Swinburne University, Victoria, Australia (Cropley); the Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia (Bousman, Everall, Pantelis); the Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Carlton South, Victoria, Australia (Everall, Pantelis); the Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia (Everall, Pantelis, Zalesky); Alberta Children's Hospital Research Institute, University of Calgary, Alberta (Bousman); Hotchkiss Brain Institute, University of Calgary, Alberta (Bousman); the Departments of Medical Genetics, Psychiatry, and Physiology and Pharmacology, University of Calgary, Alberta (Bousman); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal (Chakravarty); the Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal (Chakravarty); the School of Psychiatry, University of New South Wales, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); Neuroscience Research Australia, Sydney, Australia (Bruggemann, T.W. Weickert, C.S. Weickert); the Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia (T.W. Weickert, C.S. Weickert); the School of Psychology, University of Birmingham, Edgbaston, U.K. (Wood); the Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, N.Y. (T.W. Weickert, C.S. Weickert); and the Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Everall)
| |
Collapse
|
442
|
Kochunov P, Thompson PM, Hong LE. Toward High Reproducibility and Accountable Heterogeneity in Schizophrenia Research. JAMA Psychiatry 2019; 76:680-681. [PMID: 30969327 PMCID: PMC6757339 DOI: 10.1001/jamapsychiatry.2019.0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California Keck School of Medicine, Los Angeles
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
443
|
Faria AV, Crawford J, Ye C, Hsu J, Kenkare A, Scheretlen D, Sawa A. Relationship between neuropsychological behavior and brain white matter in first-episode psychosis. Schizophr Res 2019; 208:49-54. [PMID: 30987924 PMCID: PMC6544495 DOI: 10.1016/j.schres.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/14/2023]
Abstract
We addressed the relationship between white matter architecture, represented by MRI fractional anisotropy (FA), and cognition in individuals with first-episode psychosis (FEP) by applying for a new methodology that allows whole brain parcellation of core and peripheral white matter in a biologically meaningful fashion. Regionally specific correlations were found in FEP between three specific domains of cognition (processing speed, attention/working memory, and executive functioning) and FA at the deep (cerebral peduncles, sagittal striatum, uncinate, internal/external capsule, cingulum) and peripheral white matter (adjacent to inferior temporal, angular, supramarginal, insula, occipital, rectus gyrus).
Collapse
Affiliation(s)
- Andreia V. Faria
- Department of Radiology, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA;,Correspondence to: Andreia V. Faria, M.D.,PhD.,
Associate Professor, Magnetic Resonance Research Division, Department of
Radiology, The Johns Hopkins University School of Medicine., 217B Traylor Bldg.,
720 Rutland Ave., Baltimore, MD 21205., Phone: (410) 4109554215, Fax: (410)
614-1948,
| | - Jeffrey Crawford
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - Chenfei Ye
- Department of Electronics and Information, Harbin Institute
of Technology Shenzhen Graduate School, Guangdong, China, 518055
| | - John Hsu
- Department of Radiology, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA
| | - Anshel Kenkare
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - David Scheretlen
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA;,Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA;,Department of Neuroscience, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA;,Department of Mental Health, The Johns Hopkins University
Bloomberg School of Public Health Baltimore, MD, USA
| |
Collapse
|
444
|
Di Biase MA, Cropley VL, Cocchi L, Fornito A, Calamante F, Ganella EP, Pantelis C, Zalesky A. Linking Cortical and Connectional Pathology in Schizophrenia. Schizophr Bull 2019; 45:911-923. [PMID: 30215783 PMCID: PMC6581130 DOI: 10.1093/schbul/sby121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Schizophrenia is associated with cortical thickness (CT) deficits and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relationship between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map CT and fractional anisotropy in regionally adjacent infracortical white matter at various cortical depths. We found a robust and reproducible relationship between thickness and anisotropy deficits, which were inversely correlated across cortical regions (r = -.5, P < .0001): the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 y: r = -.3, P = .005) and middle life (30 y: r = -.4, P = .004, 40 y: r = -.3, P = .04), but not beyond 50 years (P > .05). Frontal pathology contributed most to this pattern, with cortical thinning in patients compared to controls at all ages (P < .05); in contrast to initially elevated frontal white matter anisotropy in patients at 30 years, followed by rapid white matter decline with age (rate of annual decline; patients: 0.0012, controls 0.0006, P < .001). Our findings point to pathological dependencies between gray and white matter in a large sample of schizophrenia patients. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.
Collapse
Affiliation(s)
- Maria Angelique Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, The University of Melbourne, Parkville, Australia,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Brigham & Women’s Hospital, Harvard Medical School, 1249 Boylston Street, 3rd Floor, Boston, MA 02215, US; tel: 617-525-6105, fax: 617-525-6170, e-mail:
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexander Fornito
- Brain and Mental Health Research Hub, Monash University, Clayton, Australia
| | - Fernando Calamante
- Sydney Imaging and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Eleni P Ganella
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia,North Western Mental Health, Melbourne Health, Parkville, Australia,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Australia
| |
Collapse
|
445
|
Pudas J, Björnholm L, Nikkinen J, Veijola J. Cerebellar white matter in young adults with a familial risk for psychosis. Psychiatry Res Neuroimaging 2019; 287:41-48. [PMID: 30952031 DOI: 10.1016/j.pscychresns.2019.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Juho Pudas
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland.
| | - Lassi Björnholm
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Juha Nikkinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Radiotherapy, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Juha Veijola
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| |
Collapse
|
446
|
|
447
|
Kim MJ, Elliott ML, d'Arbeloff TC, Knodt AR, Radtke SR, Brigidi BD, Hariri AR. Microstructural integrity of white matter moderates an association between childhood adversity and adult trait anger. Aggress Behav 2019; 45:310-318. [PMID: 30699245 DOI: 10.1002/ab.21820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 01/31/2023]
Abstract
Amongst a number of negative life sequelae associated with childhood adversity is the later expression of a higher dispositional tendency to experience anger and frustration to a wide range of situations (i.e., trait anger). We recently reported that an association between childhood adversity and trait anger is moderated by individual differences in both threat-related amygdala activity and executive control-related dorsolateral prefrontal cortex (dlPFC) activity, wherein individuals with relatively low amygdala and high dlPFC activity do not express higher trait anger even when having experienced childhood adversity. Here, we examine possible structural correlates of this functional dynamic using diffusion magnetic resonance imaging data from 647 young adult men and women volunteers. Specifically, we tested whether the degree of white matter microstructural integrity as indexed by fractional anisotropy modulated the association between childhood adversity and trait anger. Our analyses revealed that higher microstructural integrity of multiple pathways was associated with an attenuated link between childhood adversity and adult trait anger. Amongst these pathways was the uncinate fasciculus (UF; ΔR 2 = 0.01), which not only provides a major anatomical link between the amygdala and prefrontal cortex but also is associated with individual differences in regulating negative emotion through top-down cognitive reappraisal. These findings suggest that higher microstructural integrity of distributed white matter pathways including but not limited to the UF may represent an anatomical foundation serving to buffer against the expression of childhood adversity as later trait anger, which is itself associated with multiple negative health outcomes.
Collapse
Affiliation(s)
- M. Justin Kim
- Department of Psychology University of Hawaii at Manoa Honolulu Hawaii
| | - Maxwell L. Elliott
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| | - Tracy C. d'Arbeloff
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| | - Annchen R. Knodt
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| | - Spenser R. Radtke
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| | - Bartholomew D. Brigidi
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University Durham North Carolina
| |
Collapse
|
448
|
Fan F, Xiang H, Tan S, Yang F, Fan H, Guo H, Kochunov P, Wang Z, Hong LE, Tan Y. Subcortical structures and cognitive dysfunction in first episode schizophrenia. Psychiatry Res Neuroimaging 2019; 286:69-75. [PMID: 30921760 PMCID: PMC6475899 DOI: 10.1016/j.pscychresns.2019.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with widespread cortical and subcortical abnormalities. Studies examining cognitive deficits in schizophrenia have historically focused on cortical deficits; however, many subcortical areas also support cognition. We sought to determine whether deficits in subcortical gray matter are linked to neurocognitive dysfunction in patients with first-episode schizophrenia. This study included 170 patients with first-episode schizophrenia and 88 healthy controls. Clinical symptoms, neurocognitive function, and structural images were assessed. Subcortical volumes were recorded. Patients had significant deficits in all cognitive domains, including processing speed, attention, memory, executive function and social cognition. Patients also demonstrated significantly smaller volumes in the amygdala, hippocampus, thalamus, and total cortical gray matter than did controls after Bonferroni correction for multiple comparisons. Reasoning/problem solving was significantly and positively correlated with the volume of the amygdala and nucleus accumbens in patients. Positive symptoms of psychosis were positively correlated with the volume of the amygdala and nucleus accumbens. In addition, the dose of antipsychotic medication was positively correlated with the volume of the amygdala, nucleus accumbens, caudate, putamen, and pallidum. In conclusion, schizophrenia is associated with profound cognitive deficits. Our findings suggest that subcortical structures contribute to specific domains of cognitive dysfunction in first-episode schizophrenia.
Collapse
Affiliation(s)
- Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China; State Key Laboratory of Cognitive Neuroscience and Learning & International Data Group/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hong Xiang
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hua Guo
- Zhumadian Psychiatry Hospital, Henan Province, China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| |
Collapse
|
449
|
Vornholt E, Luo D, Qiu W, McMichael GO, Liu Y, Gillespie N, Ma C, Vladimirov VI. Postmortem brain tissue as an underutilized resource to study the molecular pathology of neuropsychiatric disorders across different ethnic populations. Neurosci Biobehav Rev 2019; 102:195-207. [PMID: 31028758 DOI: 10.1016/j.neubiorev.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
In recent years, large scale meta-analysis of genome-wide association studies (GWAS) have reliably identified genetic polymorphisms associated with neuropsychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD). However, the majority of disease-associated single nucleotide polymorphisms (SNPs) appear within functionally ambiguous non-coding genomic regions. Recently, increased emphasis has been placed on identifying the functional relevance of disease-associated variants via correlating risk polymorphisms with gene expression levels in etiologically relevant tissues. For neuropsychiatric disorders, the etiologically relevant tissue is brain, which requires robust postmortem sample sizes from varying genetic backgrounds. While small sample sizes are of decreasing concern, postmortem brain databases are composed almost exclusively of Caucasian samples, which significantly limits study design and result interpretation. In this review, we highlight the importance of gene expression and expression quantitative loci (eQTL) studies in clinically relevant postmortem tissue while addressing the current limitations of existing postmortem brain databases. Finally, we introduce future collaborations to develop postmortem brain databases for neuropsychiatric disorders from Chinese and Asian subpopulations.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Biotech One, Suite 100, Richmond, VA 23219, USA.
| | - Dan Luo
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wenying Qiu
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005, China
| | - Gowon O McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Biotech One, Suite 100, Richmond, VA 23219, USA
| | - Yangyang Liu
- School of Education, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Biotech One, Suite 100, Richmond, VA 23219, USA; Department Psychiatry, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA 23298, USA
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005, China; Joint Laboratory of Anesthesia and Pain, Peking Union Medical College. Beijing, 100730, China.
| | - Vladimir I Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Biotech One, Suite 100, Richmond, VA 23219, USA; Department Psychiatry, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA 23298, USA; Center for Biomarker Research, Virginia Commonwealth University, Richmond, 410 North 12th Street, Richmond, VA 23298, USA; Department of Physiology & Biophysics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, USA; Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 300, 3rd Floor, Baltimore, MD 21205, USA.
| |
Collapse
|
450
|
van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Clark VP, Mueller BA, de Zwarte SMC, Ophoff RA, van Haren NEM, Andreassen OA, Gurholt TP, Gruber O, Kraemer B, Richter A, Calhoun VD, Crespo-Facorro B, Roiz-Santiañez R, Tordesillas-Gutiérrez D, Loughland C, Catts S, Fullerton JM, Green MJ, Henskens F, Jablensky A, Mowry BJ, Pantelis C, Quidé Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Weickert CS, Weickert TW, Hong E, Kochunov P, Gur RE, Gur RC, Ford JM, Macciardi F, Mathalon DH, Potkin SG, Preda A, Fan F, Ehrlich S, King MD, De Haan L, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, Pomarol-Clotet E, Kelly S, Ciufolini S, Radua J, Murray R, Marques TR, Simmons A, Borgwardt S, Schönborn-Harrisberger F, Riecher-Rössler A, Smieskova R, Alpert KI, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Yun JY, Cannon DM, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Karolinska Schizophrenia Project (KaSP), Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, McIntosh AM, Whalley HC, Knöchel C, et alvan Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Clark VP, Mueller BA, de Zwarte SMC, Ophoff RA, van Haren NEM, Andreassen OA, Gurholt TP, Gruber O, Kraemer B, Richter A, Calhoun VD, Crespo-Facorro B, Roiz-Santiañez R, Tordesillas-Gutiérrez D, Loughland C, Catts S, Fullerton JM, Green MJ, Henskens F, Jablensky A, Mowry BJ, Pantelis C, Quidé Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Weickert CS, Weickert TW, Hong E, Kochunov P, Gur RE, Gur RC, Ford JM, Macciardi F, Mathalon DH, Potkin SG, Preda A, Fan F, Ehrlich S, King MD, De Haan L, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, Pomarol-Clotet E, Kelly S, Ciufolini S, Radua J, Murray R, Marques TR, Simmons A, Borgwardt S, Schönborn-Harrisberger F, Riecher-Rössler A, Smieskova R, Alpert KI, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Yun JY, Cannon DM, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Karolinska Schizophrenia Project (KaSP), Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, McIntosh AM, Whalley HC, Knöchel C, Oertel-Knöchel V, Howells FM, Stein DJ, Temmingh HS, Uhlmann A, Lopez-Jaramillo C, Dima D, Faskowitz JI, Gutman BA, Jahanshad N, Thompson PM, Turner JA. Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process? Biol Psychiatry 2019; 85:e35-e39. [PMID: 30470561 PMCID: PMC7041557 DOI: 10.1016/j.biopsych.2018.10.003] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Theo GM van Erp
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA,Corresponding Author: Theo G.M. van Erp, Clinical
Translational Neuroscience Laboratory, Department of Psychiatry and Human
Behavior, School of Medicine, University of California Irvine, 5251 California
Avenue, Suite 240, Irvine, CA 92617, voice: (949) 824-3331,
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit and
Bristol Medical School, Population Health Sciences, University of Bristol, United
Kingdom
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA,
USA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental
Health, Melbourne, VIC, Australia,Centre for Youth Mental Health, The University of
Melbourne, Melbourne, VIC, Australia,Department of Psychiatry and Amsterdam Neuroscience, VU
University Medical Center, Amsterdam, The Netherlands
| | - Wenhao Jiang
- Department of Psychology, Georgia State University,
Atlanta, GA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Nailin Yao
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for
Physiological Sciences, Okazaki, Aichi, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental
Development, United Graduate School of Child Development, Osaka University, Suita,
Osaka, Japan,Department of Psychiatry, Osaka University Graduate
School of Medicine, Suita, Osaka, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate school of
Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate
School of Medicine, Suita, Osaka, Japan
| | - Vincent P Clark
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota,
Minneapolis, MN, USA
| | - Sonja MC de Zwarte
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A Ophoff
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands,University of California Los Angeles Center for
Neurobehavioral Genetics, Los Angeles, CA, USA
| | - Neeltje EM van Haren
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands,Department of child and adolescent
psychiatry/psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine,
University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction,
Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine,
University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet
Hospital, Oslo, Norway
| | - Oliver Gruber
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Bernd Kraemer
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Anja Richter
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Vince D Calhoun
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain
| | - Diana Tordesillas-Gutiérrez
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain,Neuroimaging Unit.Technological Facilities, Valdecilla
Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain Dresden, Dresden,
Germany
| | - Carmel Loughland
- Hunter Medical Research Institute, Newcastle, NSW,
Australia,Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia,Hunter New England Local Health District, Newcastle,
NSW, Australia
| | | | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW,
Australia,School of Medical Sciences, University of New South
Wales, Sydney, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Frans Henskens
- Priority Research Center for Health Behaviour, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia,School of Medicine and Public Health, The University of
Newcastle, Newcastle, NSW, Australia
| | | | - Bryan J Mowry
- Queensland Brain Institute, The University of Queensland,
Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, The
University of Queensland, Brisbane, QLD, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne
& Melbourne Health, Melbourne, VIC, Australia,Florey Institute of Neuroscience and Mental Health,
University of Melbourne, VIC, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Ulrich Schall
- Priority Research Centres for Brain & Mental Health
and Grow Up Well, The University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Melbourne,
VIC, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia,Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Gavin Cooper
- Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Elliot Hong
- Maryland Psychiatric Research Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA
| | - Judith M Ford
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA,
USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA,
USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Fengmei Fan
- Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing, China
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and
Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany, Dresden,
Germany,Massachusetts General Hospital/ Harvard Medical School,
Athinoula A. Martinos Center for Biomedical Imaging, Psychiatric Neuroimaging
Research Program
| | | | - Lieuwe De Haan
- Department of psychiatry, Academic Medical Center,
University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Vrije Universiteit Medical
Center, Amsterdam, The Netherlands
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi
e Ricerche “Enrico Fermi”, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy
| | - Pietro de Rossi
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Dipartimento di Neuroscienze, Salute Mentale e Organi di
Senso (NESMOS) Department, Faculty of Medicine and Psychology, University
“Sapienza” of Rome, Rome, Italy,Department of Neurology and Psychiatry, Sapienza
University of Rome, Rome, Italy
| | - Mariangela Iorio
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi
e Ricerche “Enrico Fermi”, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Beth K. and Stuart C. Yudofsky Division of
Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor
College of Medicine, Houston, Tx USA
| | - Edith Pomarol-Clotet
- Fundación para la Investigación y Docencia
Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation,
Barcelona, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Barcelona, Spain
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Laboratory, Brigham and
Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Joaquim Radua
- Department of Clinical Neuroscience, Centre for
Psychiatric Research, Karolinska Institutet, Stockholm, Sweden,Fundación para la Investigación y Docencia
Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation,
Barcelona, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Barcelona, Spain,Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom,Institut d'Investigacions Biomediques August Pi i
Sunyer (IDIBAPS), Barcelona, Spain
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Andrew Simmons
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | | | | | | | | | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and
Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Aurora Bonvino
- Istituto Di Ricovero e Cura a Carattere Scientifico Casa
Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annabella Di Giorgio
- Istituto Di Ricovero e Cura a Carattere Scientifico Casa
Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emma Neilson
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom
| | | | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of
Korea,Yeongeon Student Support Center, Seoul National
University College of Medicine, Seoul, Republic of Korea
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG),
Clinical Neuroimaging Laboratory, National Centre for Biomedical Engineering Galway
Neuroscience Centre, College of Medicine Nursing and Health Sciences, National
University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | | | - Tolibjohn Akhadov
- Children's Clinical and Research Institute of
Emergency Surgery and Trauma, Moscow, Russia
| | | | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm
County Council, Stockholm, Sweden
| | - Lena Flyckt
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm
County Council, Stockholm, Sweden
| | | | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Cyril Hoschl
- National Institute of Mental Health, Klecany, Czech
Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech
Republic,MR Unit, Department of Diagnostic and Interventional
Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech
Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech
Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech
Republic,Institute of Computer Science, Czech Academy of
Sciences, Prague, Czech Republic,Faculty of Electrical Engineering, Czech Technical
University in Prague, Prague, Czech Republic
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom,Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt,
Frankfurt, Germany
| | - Viola Oertel-Knöchel
- Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt,
Frankfurt, Germany
| | - Fleur M Howells
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa
| | - Dan J Stein
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa,Medical Research Council Unit on Risk & Resilience
in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town,
South Africa
| | - Henk S Temmingh
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa
| | - Anne Uhlmann
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa,MRC Unit on Risk & Resilience in Mental Disorders,
Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry,
Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Danai Dima
- Department of Psychology, City, University of London,
London, United Kingdom,Department of Neuroimaging, IOPPN, King's College
London, London, United Kingdom
| | - Joshua I Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Boris A Gutman
- Department of Biomedical Engineering, Illinois Institute
of Technology, Chicago, Illinois
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Jessica A Turner
- Mind Research Network, Albuquerque, NM, USA,Imaging Genetics and Neuroinformatics Lab, Department of
Psychology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|