401
|
Aptamer-based optical manipulation of protein subcellular localization in cells. Nat Commun 2020; 11:1347. [PMID: 32165631 PMCID: PMC7067792 DOI: 10.1038/s41467-020-15113-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-dominant cellular processes cannot be fully decoded without precise manipulation of their activity and localization in living cells. Advances in optogenetics have allowed spatiotemporal control over cellular proteins with molecular specificity; however, these methods require recombinant expression of fusion proteins, possibly leading to conflicting results. Instead of modifying proteins of interest, in this work, we focus on design of a tunable recognition unit and develop an aptamer-based near-infrared (NIR) light-responsive nanoplatform for manipulating the subcellular localization of specific proteins in their native states. Our results demonstrate that this nanoplatform allows photocontrol over the cytoplasmic-nuclear shuttling behavior of the target RelA protein (a member of the NF-κβ family), enabling regulation of RelA-related signaling pathways. With a modular design, this aptamer-based nanoplatform can be readily extended for the manipulation of different proteins (e.g., lysozyme and p53), holding great potential to develop a variety of label-free protein photoregulation strategies for studying complex biological events. Optogenetic manipulation of protein localisation in cells involves the creation of fusions that can influence activity. Here the authors develop a near-infrared light-responsive aptamer-based system to regulate the nuclear-cytoplasmic shuttling of NF-κB subunit RelA.
Collapse
|
402
|
Zhao S, Shi C, Hu H, Li Z, Xiao G, Yang Q, Sun P, Cheng L, Niu W, Bi J, Yue Z. ISFET and Dex-AgNPs based portable sensor for reusable and real-time determinations of concanavalin A and glucose on smartphone. Biosens Bioelectron 2020; 151:111962. [PMID: 31999575 DOI: 10.1016/j.bios.2019.111962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
In this paper, a portable real-time sensing device was built for Concanavalin A (Con A) and glucose detection using a smartphone. The ion-sensitive field-effect transistor (ISFET) functioning at a low working point was selected as a small-size, low-power transducer, and dextran-capped silver nanoparticles (Dex-AgNPs) served as sensitive nanoprobes on the ISFET gate. Using the affinity between Con A and carbohydrates, Con A can be captured, and thus directly detected by the ISFET/Dex-AgNPs unit; then glucose can be determined indirectly by removing Con A from the ISFET/Dex-AgNPs/Con A unit via competition with dextran. The mechanism of this competition does less harm to the sensor, allows the reusability of the sensing device, and overcomes the Debye screening of the FET device in saline solutions. Powered by a button cell, the handheld device attains excellent Con A (0.16 ng mL-1) and glucose (10 nM) detection limit, and can practically be used for at least 20 days.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Cong Shi
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Hongyang Hu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China
| | - Zhengping Li
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Gang Xiao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Qiaochun Yang
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Peng Sun
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Linyang Cheng
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Wencheng Niu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Jinshun Bi
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China.
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, PR China.
| |
Collapse
|
403
|
High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis. Sci Rep 2020; 10:3772. [PMID: 32111933 PMCID: PMC7048782 DOI: 10.1038/s41598-020-60715-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, ultrasensitive and precise detection of a representative brain hormone, dopamine (DA), was demonstrated using functional conducting polymer nanotubes modified with aptamers. A high-performance aptasensor was composed of interdigitated microelectrodes (IMEs), carboxylated polypyrrole nanotubes (CPNTs) and DA-specific aptamers. The biosensors were constructed by sequential conjugation of CPNTs and aptamer molecules on the IMEs, and the substrate was integrated into a liquid-ion gating system surrounded by pH 7.4 buffer as an electrolyte. To confirm DA exocytosis based on aptasensors, DA sensitivity and selectivity were monitored using liquid-ion gated field-effect transistors (FETs). The minimum detection level (MDL; 100 pM) of the aptasensors was determined, and their MDL was optimized by controlling the diameter of the CPNTs owing to their different capacities for aptamer introduction. The MDL of CPNT aptasensors is sufficient for discriminating between healthy and unhealthy individuals because the total DA concentration in the blood of normal person is generally determined to be ca. 0.5 to 6.2 ng/mL (3.9 to 40.5 nM) by high-performance liquid chromatography (HPLC) (this information was obtained from a guidebook “Evidence-Based Medicine 2018 SCL “ which was published by Seoul Clinical Laboratory). The CPNTs with the smaller diameters (CPNT2: ca. 120 nm) showed 100 times higher sensitivity and selectivity than the wider CPNTs (CPNT1: ca. 200 nm). Moreover, the aptasensors based on CPNTs had excellent DA discrimination in the presence of various neurotransmitters. Based on the excellent sensing properties of these aptasensors, the DA levels of exogeneous DA samples that were prepared from PC12 cells by a DA release assay were successfully measured by DA kits, and the aptasensor sensing properties were compared to those of standard DA reagents. Finally, the real-time response values to the various exogeneous DA release levels were similar to those of a standard DA aptasensor. Therefore, CPNT-based aptasensors provide efficient and rapid DA screening for neuron-mediated genetic diseases such as Parkinson’s disease.
Collapse
|
404
|
Zhang Y, Hu Y, Deng S, Yuan Z, Li C, Lu Y, He Q, Zhou M, Deng R. Engineering Multivalence Aptamer Probes for Amplified and Label-Free Detection of Antibiotics in Aquatic Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2554-2561. [PMID: 32027503 DOI: 10.1021/acs.jafc.0c00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive use of antibiotics in aquatic products is a serious problem for food safety and human health, and on-site detection of antibiotics is highly demanded. Herein, we proposed multivalence aptamer probes, allowing sensitive, label-free, and homogeneous detection of antibiotics in different aquatic products. Compared to commonly used aptamers, multivalence aptamer probes can provide multiple binding sites and a higher affinity for target molecules, and the iterative binding on different binding sites contributes to an amplified recognition effect, sharply increasing the response and sensitivity of aptamer probes. The 2-valence aptamer probes conferred a limit of detection of 0.097 nM for kanamycin detection, where it is estimated that their sensitivity is enhanced 12 times compared to 1-valence aptamer probes. Meanwhile, multivalence aptamer probes allowed us to specifically identify kanamycin among other antibiotics. It could detect kanamycin residual in aquatic products including river eel and puffer fish, as well as tap water with high precision. A multivalence design strategy of aptamer probes would significantly improve the detection performance of aptamers, facilitating the translation of aptamer for food safety control.
Collapse
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Yun Hu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Zilan Yuan
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Chenghui Li
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
405
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
406
|
Dalirirad S, Steckl AJ. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem 2020; 596:113637. [PMID: 32087129 DOI: 10.1016/j.ab.2020.113637] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022]
Abstract
A lateral flow assay using DNA aptamer-based sensing for the detection of dopamine in urine is reported. Dopamine duplex aptamers (hybridized sensor with capture probe) are conjugated to 40-nm Au nanoparticles (AuNPs) with 20T linkers. The detection method is based on the dissociation of the duplex aptamer in the presence of dopamine, with the sensor part undergoing conformational changes and being released from the capture part. Hybridization between the complementary DNA in the test line and the conjugated AuNP-capture DNA produces a red band, whose intensity is related to the dopamine concentration. The minimum detectable concentration obtained by ImageJ analysis was <10 ng/mL (65.2 nM), while the visual limit of detection is estimated to be ~50 ng/mL (normal range of dopamine in urine of 52-480 ng/mL or 0.3-3.13 μM). No cross reactivity to other stress biomarkers in urine was confirmed. These results indicate that this robust and user-friendly point-of-care biosensor has significant potential for providing a cost-effective alternative for dopamine detection in urine.
Collapse
Affiliation(s)
- Shima Dalirirad
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, OH, 45255-0030, USA; Department of Physics, University of Cincinnati, Cincinnati, OH, 45255-0030, USA
| | - Andrew J Steckl
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, OH, 45255-0030, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45255-0030, USA.
| |
Collapse
|
407
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
408
|
Zheng W, Zeng L, Chen Y. Bioorthogonal Reactions Amplify Magnetic Nanoparticles Binding and Assembly for Ultrasensitive Magnetic Resonance Sensing. Anal Chem 2020; 92:2787-2793. [PMID: 31934754 DOI: 10.1021/acs.analchem.9b05097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Conventional transverse relaxation time (T2)-mediated magnetic resonance sensors (MRS) that utilizing the target-induces state change of magnetic nanoparticles (MNPs) mainly suffer from low sensitivity. Recent T2-MRS that based on target-induced amount change of MNPs can achieve a higher sensitivity, but these sensors can hardly accommodate small molecules. We herein develop an ultrasensitive T2-MRS that enable the detection of small molecules based on cascade bioorthogonal reactions (BRs)-realized MNPs binding and assembly. Benefiting from rapid and highly selective cascade BRs, a single small molecule target can not only increase MNPs binding but also assembly MNPs, which greatly amplifies T2 signal for sensing based on both the state and amount change of MNPs for the first time. Our strategy is capable of sensing chlorpyrifos with a liner range of 0.1 ng/mL to 1000 ng/mL. We justify the practicability of our assay by detecting chlorpyrifos in apple and cabbage samples, whose accuracy is higher than that of enzyme linked immunosorbent assay. Our assay provides a cascade BRs-mediated MRS that can greatly broaden the use of T2-based MRS for ultrasensitive sensing trace small molecules in complex samples.
Collapse
Affiliation(s)
- Wenshu Zheng
- National Center for NanoScience and Technology , 11 Beiyitiao , ZhongGuanCun , Beijing 100190 , China
| | - Lingwen Zeng
- School of Food Science and Engineering , Foshan University , Foshan 528000 , China.,Institute of Environment and Safety , Wuhan Academy of Agricultural Science , Wuhan 430207 , P. R. China
| | - Yiping Chen
- School of Food Science and Engineering , Foshan University , Foshan 528000 , China.,College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , Hubei China
| |
Collapse
|
409
|
Bhattacharyya IM, Shalev G. Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications. ACS Sens 2020; 5:154-161. [PMID: 31878773 DOI: 10.1021/acssensors.9b01939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosensors based on field-effect devices (bioFETs) offer numerous advantages over current technologies and therefore have attracted immense research over the decades. However, short Debye screening length in highly ionic physiological solutions remains the main obstacle for bioFET realization. This challenge becomes considerably more acute at the electrolyte-oxide interface of the sensing area due to high ion concentration induced by the charged amphoteric sites, which prohibits any attempt to employ the field-effect mechanism to "sense" any charged biomolecules. In this work, we present an electrostatic approach by which the double layer (DL) excess ion concentration is removed, thus forcing the DL ion concentration to match the bulk concentration, which subsequently forces bulk screening length at the DL, thereby "exposing" target biomolecules to the underlying bioFET. To this end, we employ local tunable surface electric fields, introduced to the DL using surface passivated-metal electrodes. We examine numerically and analytically the effect of these electric fields on the DL ion distribution. We also numerically demonstrate the feasibility of the proposed approach for a fully depleted silicon-on-insulator based bioFET and show how the threshold voltage shift induced by the presence of target molecules increases by almost two orders of magnitude upon the removal of the surface excess ion population.
Collapse
|
410
|
Cheung KM, Stemer DM, Zhao C, Young TD, Belling JN, Andrews AM, Weiss PS. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. ACS MATERIALS LETTERS 2020; 2:76-83. [PMID: 32405626 PMCID: PMC7220117 DOI: 10.1021/acsmaterialslett.9b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional molecules for applications ranging from biomolecule patterning to transistor fabrication. A hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of precise features over large areas on all surfaces investigated. We use patterned monolayers as chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL on two different metal surfaces using the same PDMS stamp. By expanding the scope of the surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide range of substrates, as well as to produce supported metal monolayers, both with broad applications in surface and materials science.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dominik M. Stemer
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D. Young
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jason N. Belling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
411
|
Park S, Kim M, Kim D, Kang SH, Lee KH, Jeong Y. Interfacial charge regulation of protein blocking layers in transistor biosensor for direct measurement in serum. Biosens Bioelectron 2020; 147:111737. [DOI: 10.1016/j.bios.2019.111737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023]
|
412
|
Kirmani AR, Roe EF, Stafford CM, Richter LJ. Role of the electronically-active amorphous state in low-temperature processed In 2O 3 thin-film transistors. MATERIALS ADVANCES 2020; 1:10.1039/d0ma00072h. [PMID: 38711924 PMCID: PMC11070975 DOI: 10.1039/d0ma00072h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Metal oxide (MO) thin-film transistors (TFTs) are expected to enable low-cost flexible and printed electronics, given their excellent charge transport, low processing temperatures and solution processability. However, achieving adequate mobility when processed scalably at low temperatures compatible with plastic electronics is a challenge. Here, we explore process-structure-transport relationships in blade-coated indium oxide (In2O3) TFTs via both sol-gel and combustion chemistries. We find that the sol-gel chemistry enables n-type TFTs when annealed at 200 °C to 225 °C with noticeable electron mobility ((3.4 ± 1.3) cm2V-1s-1) yet minimal In2O3 crystallinity and surprisingly low levels of the metal-oxygen-metal (M-O-M) lattice content (≈46 %). Increased annealing temperatures result in the appearance of nanocrystalline domains and an increase in M-O-M content to ≈70 %, without any further increase in mobility. An actetylacetone combustion-assisted ink lowers the external thermal budget required for In2O3 crystallization but bypasses the electronically-active amorphous state and underperforms the sol-gel ink at low temperatures. Grain boundary formation and nanocrystalline inclusions in these films due to rapid combustion-assisted crystallization are suggested to be the likely origin behind the significantly compromised charge transport at low-temperatures. Overall, this study emphasizes the need to understand the complex interplay between local order (nanocrystallinity) and connectivity (grain boundary, amorphous phases) when optimizing low-temperature processed MO thin films.
Collapse
Affiliation(s)
- Ahmad R Kirmani
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
| | - Emily F Roe
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
| |
Collapse
|
413
|
Dorfman KD, Adrahtas DZ, Thomas MS, Frisbie CD. Microfluidic opportunities in printed electrolyte-gated transistor biosensors. BIOMICROFLUIDICS 2020; 14:011301. [PMID: 32002104 PMCID: PMC6984978 DOI: 10.1063/1.5131365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Printed electrolyte-gated transistors (EGTs) are an emerging biosensor platform that leverage the facile fabrication engendered by printed electronics with the low voltage operation enabled by ion gel dielectrics. The resulting label-free, nonoptical sensors have high gain and provide sensing operations that can be challenging for conventional chemical field effect transistor architectures. After providing an overview of EGT device fabrication and operation, we highlight opportunities for microfluidic enhancement of EGT sensor performance via multiplexing, sample preconcentration, and improved transport to the sensor surface.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Demetra Z Adrahtas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Mathew S Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
414
|
Cheung KM, Yang KA, Nakatsuka N, Zhao C, Ye M, Jung ME, Yang H, Weiss PS, Stojanović MN, Andrews AM. Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sens 2019; 4:3308-3317. [PMID: 31631652 PMCID: PMC6957227 DOI: 10.1021/acssensors.9b01963] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determination of the amino acid phenylalanine is important for lifelong disease management in patients with phenylketonuria, a genetic disorder in which phenylalanine accumulates and persists at levels that alter brain development and cause permanent neurological damage and cognitive dysfunction. Recent approaches for treating phenylketonuria focus on injectable medications that efficiently break down phenylalanine but sometimes result in detrimentally low phenylalanine levels. We have identified new DNA aptamers for phenylalanine in two formats, initially as fluorescent sensors and then, incorporated with field-effect transistors (FETs). Aptamer-FET sensors detected phenylalanine over a wide range of concentrations (fM to mM). para-Chlorophenylalanine, which inhibits the enzyme that converts phenylalanine to tyrosine, was used to induce hyperphenylalaninemia during brain development in mice. Aptamer-FET sensors were specific for phenylalanine versus para-chlorophenylalanine and differentiated changes in mouse serum phenylalanine at levels expected in patients. Aptamer-FETs can be used to investigate models of hyperphenylalanemia in the presence of structurally related enzyme inhibitors, as well as naturally occurring amino acids. Nucleic acid-based receptors that discriminate phenylalanine analogs, some that differ by a single substituent, indicate a refined ability to identify aptamers with binding pockets tailored for high affinity and specificity. Aptamers of this type integrated into FETs enable rapid, electronic, label-free phenylalanine sensing.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mao Ye
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Milan N. Stojanović
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
415
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
416
|
Jeong S, Yang D, Beyene AG, Del Bonis-O’Donnell JT, Gest AMM, Navarro N, Sun X, Landry MP. High-throughput evolution of near-infrared serotonin nanosensors. SCIENCE ADVANCES 2019; 5:eaay3771. [PMID: 31897432 PMCID: PMC6920020 DOI: 10.1126/sciadv.aay3771] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 05/11/2023]
Abstract
Imaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers. We demonstrate evolution of molecular recognition toward neuromodulator serotonin generated from large libraries of ~6.9 × 1010 unique ssDNA sequences conjugated to SWCNTs. This probe is reversible and produces a ~200% fluorescence enhancement upon exposure to serotonin with a K d = 6.3 μM, and shows selective responsivity over serotonin analogs, metabolites, and receptor-targeting drugs. Furthermore, this probe remains responsive and reversible upon repeat exposure to exogenous serotonin in the extracellular space of acute brain slices. Our results suggest that evolution of nanosensors could be generically implemented to develop other neuromodulator probes with synthetic molecular recognition.
Collapse
Affiliation(s)
- Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Abraham G. Beyene
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Anneliese M. M. Gest
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole Navarro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
417
|
Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal Chem 2019; 91:15335-15344. [PMID: 31714748 PMCID: PMC10184572 DOI: 10.1021/acs.analchem.9b03853] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been almost 30 years since the invention of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology and the description of the first aptamers. In retrospect over the past 30 years, advances in aptamer development and application have demonstrated that aptamers are potentially useful reagents that can be employed in diverse areas within analytical chemistry, biotechnology, biomedicine, and molecular biology. While often touted as artificial antibodies with an ability to be selected for any target, aptamer development, unfortunately, lags behind development of analytical methodologies that employ aptamers, hindering deeper integration into the application of analytical tool development. This perspective covers recent advances in SELEX methodology for improving efficiency of the SELEX procedure and enhancing affinity and specificity of the selected aptamers, what we view as a critical barrier in the future role of aptamers in analytical chemistry. We discuss postselection modifications that can be used for enhancing performance of the selected aptamers in an analytical device by including understanding intermolecular interaction forces in the binding domain. While highlighting promising properties of aptamers that enable several analytical advances, we provide discussion on the challenges of penetration of aptamers in the analytical field.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Israel Belmonte
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Kiana S Sykes
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yi Xiao
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ryan J White
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States.,Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
418
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019; 58:17399-17405. [PMID: 31568601 PMCID: PMC6938695 DOI: 10.1002/anie.201910772] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Indexed: 12/18/2022]
Abstract
An accurate, rapid, and cost-effective biosensor for the quantification of disease biomarkers is vital for the development of early-diagnostic point-of-care systems. The recent discovery of the trans-cleavage property of CRISPR type V effectors makes CRISPR a potential high-accuracy bio-recognition tool. Herein, a CRISPR-Cas12a (cpf1) based electrochemical biosensor (E-CRISPR) is reported, which is more cost-effective and portable than optical-transduction-based biosensors. Through optimizing the in vitro trans-cleavage activity of Cas12a, E-CRIPSR was used to detect viral nucleic acids, including human papillomavirus 16 (HPV-16) and parvovirus B19 (PB-19), with a picomolar sensitivity. An aptamer-based E-CRISPR cascade was further designed for the detection of transforming growth factor β1 (TGF-β1) protein in clinical samples. As demonstrated, E-CRISPR could enable the development of portable, accurate, and cost-effective point-of-care diagnostic systems.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Liu Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Jean F Welter
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| |
Collapse
|
419
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910772] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Liu Wang
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Yan Li
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
420
|
A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214719] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotransmitters as electrochemical signaling molecules are essential for proper brain function and their dysfunction is involved in several mental disorders. Therefore, the accurate detection and monitoring of these substances are crucial in brain studies. Neurotransmitters are present in the nervous system at very low concentrations, and they mixed with many other biochemical molecules and minerals, thus making their selective detection and measurement difficult. Although numerous techniques to do so have been proposed in the literature, neurotransmitter monitoring in the brain is still a challenge and the subject of ongoing research. This article reviews the current advances and trends in neurotransmitters detection techniques, including in vivo sampling and imaging techniques, electrochemical and nano-object sensing techniques for in vitro and in vivo detection, as well as spectrometric, analytical and derivatization-based methods mainly used for in vitro research. The document analyzes the strengths and weaknesses of each method, with the aim to offer selection guidelines for neuro-engineering research.
Collapse
|
421
|
Scida K, Plaxco KW, Jamieson BG. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Transl Res 2019; 213:50-66. [PMID: 31361988 DOI: 10.1016/j.trsl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies. In this review, we briefly summarize the advancements made over the past 10 years to decode the brain's neurochemistry and neuropharmacology in situ, at the site of interest in the brain, with special focus on what we consider game-changing emerging technologies (eg, genetically encoded indicators and electrochemical aptamer-based sensors) and the challenges these must overcome before chronic, in situ chemosensing measurements become routine.
Collapse
Affiliation(s)
- Karen Scida
- Diagnostic Biochips, Inc., Glen Burnie, Maryland
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | | |
Collapse
|
422
|
Dauphin-Ducharme P, Yang K, Arroyo-Currás N, Ploense KL, Zhang Y, Gerson J, Kurnik M, Kippin TE, Stojanovic MN, Plaxco KW. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sens 2019; 4:2832-2837. [PMID: 31556293 PMCID: PMC6886665 DOI: 10.1021/acssensors.9b01616] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The electrochemical aptamer-based (E-AB) sensing platform appears to be a convenient (rapid, single-step, and calibration-free) and modular approach to measure concentrations of specific molecules (irrespective of their chemical reactivity) directly in blood and even in situ in the living body. Given these attributes, the platform may thus provide significant opportunities to render therapeutic drug monitoring (the clinical practice in which dosing is adjusted in response to plasma drug measurements) as frequent and convenient as the measurement of blood sugar has become for diabetics. The ability to measure arbitrary molecules in the body in real time could even enable closed-loop feedback control over plasma drug levels in a manner analogous to the recently commercialized controlled blood sugar systems. As initial exploration of this, we describe here the selection of an aptamer against vancomycin, a narrow therapeutic window antibiotic for which therapeutic monitoring is a critical part of the standard of care, and its adaptation into an electrochemical aptamer-based (E-AB) sensor. Using this sensor, we then demonstrate: (i) rapid (seconds) and convenient (single-step and calibration-free) measurement of plasma vancomycin in finger-prick-scale samples of whole blood, (ii) high-precision measurement of subject-specific vancomycin pharmacokinetics (in a rat animal model), and (iii) high-precision, closed-loop feedback control over plasma levels of the drug (in a rat animal model). The ability to not only track (with continuous-glucose-monitor-like measurement frequency and convenience) but also actively control plasma drug levels provides an unprecedented route toward improving therapeutic drug monitoring and, more generally, the personalized, high-precision delivery of pharmacological interventions.
Collapse
Affiliation(s)
- Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kyungae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kyle L. Ploense
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Yameng Zhang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Milan N. Stojanovic
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
423
|
Alkhamis O, Canoura J, Yu H, Liu Y, Xiao Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. Trends Analyt Chem 2019; 121. [PMID: 32863483 DOI: 10.1016/j.trac.2019.115699] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aptamers are nucleic acid-based affinity reagents that have gained widespread attention as biorecognition elements for the detection of targets such as ions, small molecules, and proteins. Over the past three decades, the field of aptamer-based sensing has grown considerably. However, the advancement of aptamer-based small-molecule detection has fallen short of the high demand for such sensors in applications such as diagnostics, environmental monitoring, and forensics. This is due to two challenges: the complexity of developing generalized sensing platforms and the poor sensitivities of assays targeting small molecules. This paper will review new approaches for the streamlined development of high-performance aptamer-based sensors for small-molecule detection. We here provide historical context, explore the current state-of-the art, and offer future directions-with emphasis placed on new aptamer engineering methods, the use of cooperative binding, and label-free approaches using fully-folded, high-affinity aptamers for small-molecule sensing.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, USA, 33199
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, USA, 33199
| | - Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, USA, 33199
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, USA, 33199
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, USA, 33199
| |
Collapse
|
424
|
Yang H, Zhao W, Deng S, Zhang K, Zhao Z, Deng R, He Q, Li J. Intrinsic Conformation-Induced Fluorescence Resonance Energy Transfer Aptasensor. ACS APPLIED BIO MATERIALS 2019; 3:2553-2559. [DOI: 10.1021/acsabm.9b00738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenyue Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
425
|
Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. SENSORS 2019; 19:s19194214. [PMID: 31569330 PMCID: PMC6806101 DOI: 10.3390/s19194214] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
During recent years, field-effect transistor biosensors (Bio-FET) for biomedical applications have experienced a robust development with evolutions in FET characteristics as well as modification of bio-receptor structures. This review initially provides contemplation on this progress by analyzing and summarizing remarkable studies on two aforementioned aspects. The former includes fabricating unprecedented nanostructures and employing novel materials for FET transducers whereas the latter primarily synthesizes compact molecules as bio-probes (antibody fragments and aptamers). Afterwards, a future perspective on research of FET-biosensors is also predicted depending on current situations as well as its great demand in clinical trials of disease diagnosis. From these points of view, FET-biosensors with infinite advantages are expected to continuously advance as one of the most promising tools for biomedical applications.
Collapse
|
426
|
Chen X, Hao S, Zong B, Liu C, Mao S. Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS 2 field-effect transistors. Biosens Bioelectron 2019; 145:111711. [PMID: 31563801 DOI: 10.1016/j.bios.2019.111711] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022]
Abstract
Although aptamer has been demonstrated as an important probe for antibiotic determination, the selective sensing of different antibiotics is still a challenge due to their structure similarities and wide folding degrees of aptamer. Herein, a field-effect transistor using MoS2 nanosheet as the channel and an aptamer DNA (APT) with its configuration shaped by a complementary strand DNA (CS) is employed for kanamycin (KAN) determination. This probe structure contributes to an enhanced selectivity and reliability with reduced device-to-device variations. This MoS2/APT/CS sensor shows time-dependent performance in antibiotic sensing. Prolonged detection time (20 s-300 s) leads to an enhanced sensitivity (1.85-4.43 M-1) and a lower limit of detection (1.06-0.66 nM), while a shorter detection time leads to a broader linear working range. A new sensing mechanism relying on charge release from probe is proposed, which is based on the "replacement reaction" between KAN and APT-CS. This sensor exhibits an extremely high selectivity (selectivity coefficient of 12.8) to kanamycin over other antibiotics including streptomycin, tobramycin, amoxicillin, ciprofloxacin and chloramphenicol. This work demonstrates the merits of probe engineering in label-free antibiotic detection with FET sensor, which presents significant promises in sensitive and selective chemical and biological sensing.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Sibei Hao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengbin Liu
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
427
|
Dai X, Vo R, Hsu HH, Deng P, Zhang Y, Jiang X. Modularized Field-Effect Transistor Biosensors. NANO LETTERS 2019; 19:6658-6664. [PMID: 31424950 DOI: 10.1021/acs.nanolett.9b02939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Field-effect transistors (FETs), when functionalized with proper biorecognition elements (such as antibodies or enzymes), represent a unique platform for real-time, specific, label-free transduction of biochemical signals. However, direct immobilization of biorecognition molecules on FETs imposes limitations on reprogrammability, sensor regeneration, and robust device handling. Here we demonstrate a modularized design of FET biosensors with separate biorecognition and transducer modules, which are capable of reversible assembly and disassembly. In particular, hydrogel "stamps" immobilizing bioreceptors have been chosen to build biorecognition modules to reliably interface with FET transducers structurally and functionally. Successful detection of penicillin down to 0.25 mM has been achieved with a penicillinase-encoded hydrogel module, demonstrating effective signal transduction across the hybrid interface. Moreover, sequential integration of urease- and penicillinase-encoded modules on the same FET device allows us to reprogram the sensing modality without cross-contamination. In addition to independent bioreceptor encoding, the modular design also fosters sophisticated control of sensing kinetics by modulating the physiochemical microenvironment in the biorecognition modules. Specifically, the distinction in hydrogel porosity between polyethylene glycol and gelatin enables controlled access and detection of larger molecules, such as poly-l-lysine (MW 150-300 kDa), only through the gelatin module. Biorecognition modules with standardized interface designs have also been exploited to comply with additive mass fabrication by 3D printing, demonstrating potential for low cost, ease of storage, multiplexing, and great customizability for personalized biosensor production. This generic concept presents a unique integration strategy for modularized bioelectronics and could broadly impact hybrid device development.
Collapse
Affiliation(s)
- Xiaochuan Dai
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Richard Vo
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Huan-Hsuan Hsu
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Pu Deng
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Yixin Zhang
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Xiaocheng Jiang
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
428
|
Dinarvand M, Neubert E, Meyer D, Selvaggio G, Mann FA, Erpenbeck L, Kruss S. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors. NANO LETTERS 2019; 19:6604-6611. [PMID: 31418577 DOI: 10.1021/acs.nanolett.9b02865] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serotonin is an important neurotransmitter involved in various functions of the nervous, blood, and immune system. In general, detection of small biomolecules such as serotonin in real time with high spatial and temporal resolution remains challenging with conventional sensors and methods. In this work, we designed a near-infrared (nIR) fluorescent nanosensor (NIRSer) based on fluorescent single-walled carbon nanotubes (SWCNTs) to image the release of serotonin from human blood platelets in real time. The nanosensor consists of a nonbleaching SWCNT backbone, which is fluorescent in the beneficial nIR tissue transparency window (800-1700 nm) and a serotonin binding DNA aptamer. The fluorescence of the NIRSer sensor (995 nm emission wavelength for (6,5)-SWCNTs) increases in response to serotonin by a factor up to 1.8. It detects serotonin reversibly with a dissociation constant of 301 nM ± 138 nM and a dynamic linear range in the physiologically relevant region from 100 nM to 1 μM. As a proof of principle, we detected serotonin release patterns from activated platelets on the single-cell level. Imaging of the nanosensors around and under the platelets enabled us to locate hot spots of serotonin release and quantify the time delay (≈ 21-30 s) between stimulation and release in a population of platelets, highlighting the spatiotemporal resolution of this nanosensor approach. In summary, we report a nIR fluorescent nanosensor for the neurotransmitter serotonin and show its potential for imaging of chemical communication between cells.
Collapse
Affiliation(s)
- Meshkat Dinarvand
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Elsa Neubert
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
- Department of Dermatology, Venereology, and Allergology , University Medical Center , Göttingen 37075 , Germany
| | - Daniel Meyer
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Gabriele Selvaggio
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Florian A Mann
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology, and Allergology , University Medical Center , Göttingen 37075 , Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| |
Collapse
|
429
|
Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, Gao H, Liu D, Deng R, Li J. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb) 2019; 55:10096-10099. [PMID: 31380872 DOI: 10.1039/c9cc05036a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a transcription aptasensor by using a light-up RNA aptamer. It allows for sensitive, label-free and culture-free detection of intact foodborne pathogens, and no separation, purification or enrichment processes are involved.
Collapse
Affiliation(s)
- Lele Sheng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Fermi level-tuned optics of graphene for attocoulomb-scale quantification of electron transfer at single gold nanoparticles. Nat Commun 2019; 10:3849. [PMID: 31451698 PMCID: PMC6710286 DOI: 10.1038/s41467-019-11816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
Measurement of electron transfer at single-molecule level is normally restricted by the detection limit of faraday current, currently in a picoampere to nanoampere range. Here we demonstrate a unique graphene-based electrochemical microscopy technique to make an advance in the detection limit. The optical signal of electron transfer arises from the Fermi level-tuned Rayleigh scattering of graphene, which is further enhanced by immobilized gold nanostars. Owing to the specific response to surface charged carriers, graphene-based electrochemical microscopy enables an attoampere-scale detection limit of faraday current at multiple individual gold nanoelectrodes simultaneously. Using the graphene-based electrochemical microscopy, we show the capability to quantitatively measure the attocoulomb-scale electron transfer in cytochrome c adsorbed at a single nanoelectrode. We anticipate the graphene-based electrochemical microscopy to be a potential electrochemical tool for in situ study of biological electron transfer process in organelles, for example the mitochondrial electron transfer, in consideration of the anti-interference ability to chemicals and organisms.
Collapse
|
431
|
Hwang SI, Franconi NG, Rothfuss MA, Bocan KN, Bian L, White DL, Burkert SC, Euler RW, Sopher BJ, Vinay ML, Sejdic E, Star A. Tetrahydrocannabinol Detection Using Semiconductor-Enriched Single-Walled Carbon Nanotube Chemiresistors. ACS Sens 2019; 4:2084-2093. [PMID: 31321969 DOI: 10.1021/acssensors.9b00762] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Semiconductor-enriched single-walled carbon nanotubes (s-SWCNTs) have potential for application as a chemiresistor for the detection of breath compounds, including tetrahydrocannabinol (THC), the main psychoactive compound found in the marijuana plant. Herein we show that chemiresistor devices fabricated from s-SWCNT ink using dielectrophoresis can be incorporated into a hand-held breathalyzer with sensitivity toward THC generated from a bubbler containing analytical standard in ethanol and a heated sample evaporator that releases compounds from steel wool. The steel wool was used to capture THC from exhaled marijuana smoke. The generation of the THC from the bubbler and heated breath sample chamber was confirmed using ultraviolet-visible absorption spectroscopy and mass spectrometry, respectively. Enhanced selectivity toward THC over more volatile breath components such as CO2, water, ethanol, methanol, and acetone was achieved by delaying the sensor reading to allow for the desorption of these compounds from the chemiresistor surface. Additionally, machine learning algorithms were utilized to improve the selective detection of THC with better accuracy at increasing quantities of THC delivered to the chemiresistor.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Long Bian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Raymond W. Euler
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brett J. Sopher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
432
|
Huang M, Song J, Huang P, Chen X, Wang W, Zhu Z, Song Y, Yang C. Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. Anal Chem 2019; 91:10879-10886. [PMID: 31347355 DOI: 10.1021/acs.analchem.9b02697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An enthalpy-driven ligand is an ideal probe for practical applications because of the formation of abundant specific bonds between the ligand and target, compared to an entropy-driven ligand with a similar Gibbs free energy change. However, there has been a lack of direct discovery strategy for identifying enthalpy-driven ligands. In this work, a molecular crowding SELEX (systematic evolution of ligands by exponential enrichment) strategy for discovering enthalpy-driven aptamers was developed to improve the affinity and selectivity of aptamers in complex samples. Three aptamer sequences were successfully evolved against a tumor biomarker protein, and all proved to be enthalpy-driven by thermodynamics analysis, establishing the feasibility of molecular crowding SELEX for effective discovery of enthalpy-driven aptamers. Further comparison of aptamers evolved from conventional SELEX in buffer and molecular crowding SELEX (SYL-H2C) revealed much higher affinity of SYL-H2C. With its improved thermodynamic properties, the enthalpy-driven SYL-H2C aptamer was able to detect circulating tumor cells in real cancer patient blood samples with excellent detection accuracy (10/10). The proposed molecular crowding screening strategy offers a promising direction for discovering robust binding probes for a great variety of biomedical applications.
Collapse
Affiliation(s)
- Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Peifeng Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China.,Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , 361005 , China.,Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , 200127 , China
| |
Collapse
|
433
|
Sakata T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS OMEGA 2019; 4:11852-11862. [PMID: 31460295 PMCID: PMC6682067 DOI: 10.1021/acsomega.9b01629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 05/22/2023]
Abstract
In this paper, recent works on biologically coupled gate field-effect transistor (bio-FET) sensors are introduced and compared to provide a perspective. Most biological phenomena are closely related to behaviors of ions and biomolecules. This is why biosensing devices for detecting ionic and biomolecular charges contribute to the direct analysis of biological phenomena in a label-free and enzyme-free manner. Potentiometric biosensors such as bio-FET sensors, which allow the direct detection of these charges on the basis of the field effect, meet this requirement and have been developed as simple devices for in vitro diagnostics (IVD). A variety of biological ionic behaviors generated by biomolecular recognition events and cellular activities are being targeted for clinical diagnostics as well as the study of neuroscience using the bio-FET sensors. To realize these applications, bioelectrical interfaces should be formed between the electrolyte solution and the gate electrode by modifying artificially synthesized and biomimetic membranes, resulting in the selective detection of targets based on intrinsic molecular charges. Various types of semiconducting materials, not only inorganic semiconductors but also organic semiconductors, can be selected for use in bio-FET sensors, depending on the application field. In addition, a semiconductor integrated circuit device is ideal for the massively parallel detection of multiple samples. Thus, platforms based on bio-FET sensors are suitable for use in simple and miniaturized electrical circuit systems for IVD to enable the prevention and early detection of diseases.
Collapse
|
434
|
Yang W, Yu H, Alkhamis O, Liu Y, Canoura J, Fu F, Xiao Y. In vitro isolation of class-specific oligonucleotide-based small-molecule receptors. Nucleic Acids Res 2019; 47:e71. [PMID: 30926988 PMCID: PMC6614805 DOI: 10.1093/nar/gkz224] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 03/21/2019] [Indexed: 01/18/2023] Open
Abstract
Class-specific bioreceptors are highly desirable for recognizing structurally similar small molecules, but the generation of such affinity elements has proven challenging. We here develop a novel 'parallel-and-serial' selection strategy for isolating class-specific oligonucleotide-based receptors (aptamers) in vitro. This strategy first entails parallel selection to selectively enrich cross-reactive binding sequences, followed by serial selection that enriches aptamers binding to a designated target family. As a demonstration, we isolate a class-specific DNA aptamer against a family of designer drugs known as synthetic cathinones. The aptamer binds to 12 diverse synthetic cathinones with nanomolar affinity and does not respond to 11 structurally similar non-target compounds, some of which differ from the cathinone targets by a single atom. This is the first account of an aptamer exhibiting a combination of broad target cross-reactivity, high affinity and remarkable specificity. Leveraging the qualities of this aptamer, instantaneous colorimetric detection of synthetic cathinones at nanomolar concentrations in biological samples is achieved. Our findings significantly expand the binding capabilities of aptamers as class-specific bioreceptors and further demonstrate the power of rationally designed selection strategies for isolating customized aptamers with desired binding profiles. We believe that our aptamer isolation approach can be broadly applied to isolate class-specific aptamers for various small molecule families.
Collapse
Affiliation(s)
- Weijuan Yang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
- Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
| | - Fengfu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA
| |
Collapse
|
435
|
Ono T, Kanai Y, Inoue K, Watanabe Y, Nakakita SI, Kawahara T, Suzuki Y, Matsumoto K. Electrical Biosensing at Physiological Ionic Strength Using Graphene Field-Effect Transistor in Femtoliter Microdroplet. NANO LETTERS 2019; 19:4004-4009. [PMID: 31141379 DOI: 10.1021/acs.nanolett.9b01335] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene has strong potential for electrical biosensing owing to its two-dimensional nature and high carrier mobility which transduce the direct contact of a detection target with a graphene channel to a large conductivity change in a graphene field-effect transistor (G-FET). However, the measurable range from the graphene surface is highly restricted by Debye screening, whose characteristic length is less than 1 nm at physiological ionic strength. Here, we demonstrated electrical biosensing utilizing the enzymatic products of the target. We achieved quantitative measurements of a target based on the site-binding model and real-time measurement of the enzyme kinetics in femtoliter microdroplets. The combination of a G-FET and microfluidics, named a "lab-on-a-graphene-FET", detected the enzyme urease with high sensitivity in the zeptomole range in 100 mM sodium phosphate buffer. Also, the lab-on-a-graphene-FET detected the gastric cancer pathogen Helicobacter pylori captured at a distance greater than the Debye screening length from the G-FET.
Collapse
Affiliation(s)
- Takao Ono
- Department of Semiconductor Electronics, The Institute of Scientific and Industrial Research , Osaka University , Ibaraki Osaka 567-0047 , Japan
| | - Yasushi Kanai
- Department of Semiconductor Electronics, The Institute of Scientific and Industrial Research , Osaka University , Ibaraki Osaka 567-0047 , Japan
| | - Koichi Inoue
- Department of Semiconductor Electronics, The Institute of Scientific and Industrial Research , Osaka University , Ibaraki Osaka 567-0047 , Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto 602-8566 , Japan
| | - Shin-Ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center , Kagawa University , Miki-cho , Kagawa 761-0793 , Japan
| | | | | | - Kazuhiko Matsumoto
- Department of Semiconductor Electronics, The Institute of Scientific and Industrial Research , Osaka University , Ibaraki Osaka 567-0047 , Japan
| |
Collapse
|
436
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
437
|
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. NANOSCALE ADVANCES 2019; 1:2123-2138. [PMID: 36131986 PMCID: PMC9418768 DOI: 10.1039/c9na00153k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Nanomaterials have been exploited extensively to fabricate various biosensors for clinical diagnostics and food & environmental monitoring. These materials in conjugation with highly specific aptamers (next-gen antibody mimics) have enhanced the selectivity, sensitivity and rapidness of the developed aptasensors for numerous targets ranging from small molecules such as heavy metal ions to complex matrices containing large entities like cells. In this review, we highlight the recent advancements in nanomaterial based aptasensors from the past five years also including the basics of conventionally used detection methodologies that paved the way for futuristic sensing techniques. The aptasensors have been categorised based upon these detection techniques and their modifications viz., colorimetric, fluorometric, Raman spectroscopy, electro-chemiluminescence, voltammetric, impedimetric and mechanical force-based sensing of a multitude of targets are discussed in detail. The bio-interaction of these numerous nanomaterials with the aptameric component and that of the complete aptasensor with the target have been studied in great depth. This review thus acts as a compendium for nanomaterial based aptasensors and their applications in the field of clinical and environmental diagnosis.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology Mohali 160062 India
| | - Munish Shorie
- Institute of Nano Science and Technology Mohali 160062 India
| |
Collapse
|
438
|
Wang D, Li X, Jiang Y, Jiang Y, Ma W, Yu P, Mao L. Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chem Neurosci 2019; 10:2576-2583. [PMID: 30883085 DOI: 10.1021/acschemneuro.9b00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a promising therapeutic treatment, ischemic postconditioning has recently received considerable attention. Although the neuroprotection effect of postconditioning has been observed, a reliable approach that can evaluate the neuroprotective efficiency of postconditioning treatment during the acute period after ischemia remains to be developed. This study investigates the dynamics of cortex ascorbic acid during the acute period of cerebral ischemia before and after ischemic postconditioning with an online electrochemical system (OECS). The cerebral ischemia/reperfusion injury and the neuronal functional outcome are evaluated with triphenyltetrazolium chloride staining, immunohistochemistry, and electrophysiological recording techniques. Electrochemical recording results show that cortex ascorbic acid sharply increases 10 min after middle cerebral artery occlusion and then reaches a plateau. After direct reperfusion following ischemia (i.e., without ischemic postconditioning), the cortex ascorbic acid further increases and then starts to decrease slowly at a time point of about 40 min after reperfusion. In striking contrast, the cortex ascorbic acid drops and recovers to its basal level after ischemic postconditioning followed by reperfusion. With the recovery of cortex ascorbic acid, ischemic postconditioning concomitantly promotes the recovery of neural function and reduces the oxidative damage. These results demonstrate that our OECS for monitoring cortex ascorbic acid can be used as a platform for evaluating the neuroprotective efficiency of ischemic postconditioning in the acute phase of cerebral ischemia, which is of great importance for screening proper postconditioning parameters for preventing ischemic damages.
Collapse
Affiliation(s)
- Dalei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
439
|
Rollo S, Rani D, Leturcq R, Olthuis W, Pascual García C. High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing. NANO LETTERS 2019; 19:2879-2887. [PMID: 31014066 DOI: 10.1021/acs.nanolett.8b04988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of next generation medicines demands more sensitive and reliable label-free sensing able to cope with increasing needs of multiplexing and shorter times to results. Field effect transistor-based biosensors emerge as one of the main possible technologies to cover the existing gap. The general trend for the sensors has been miniaturization with the expectation of improving sensitivity and response time but presenting issues with reproducibility and noise level. Here we propose a Fin-Field Effect Transistor (FinFET) with a high height to width aspect ratio for electrochemical biosensing solving the issue of nanosensors in terms of reproducibility and noise, while keeping the fast response time. We fabricated different devices and characterized their performance with their response to the pH changes that fitted to a Nernst-Poisson model. The experimental data were compared with simulations of devices with different aspect ratio, establishing an advantage in linearity and lower device resistance to provide higher current signals for the FinFETs with higher aspect ratio. In addition, these FinFETs promise the optimization of reliability and efficiency in terms of limits of detection for which the interplay of the size and geometry of the sensor with the diffusion of the analytes plays a pivotal role.
Collapse
Affiliation(s)
- Serena Rollo
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
- BIOS Lab on Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7522 , The Netherlands
| | - Dipti Rani
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| | - Renaud Leturcq
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| | - Wouter Olthuis
- BIOS Lab on Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7522 , The Netherlands
| | - César Pascual García
- Materials Research and Technology Department , Luxembourg Institute of Science and Technology (LIST) , Belvaux L-4422 , Luxembourg
| |
Collapse
|
440
|
Bai L, Elósegui CG, Li W, Yu P, Fei J, Mao L. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Front Chem 2019; 7:313. [PMID: 31134185 PMCID: PMC6514146 DOI: 10.3389/fchem.2019.00313] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Organic electrochemical transistors (OECTs) are recently developed high-efficient transducers not only for electrochemical biosensor but also for cell electrophysiological recording due to the separation of gate electrode from the transistor device. The efficient integration of OECTs with electrochemical gate electrode makes the as-prepared sensors with improved performance, such as sensitivity, limit of detection, and selectivity. We herein reviewed the recent progress of OECTs-based biosensors and cell electrophysiology recording, mainly focusing on the principle and chemical design of gate electrode and the channel. First, the configuration, work principle, semiconductor of OECT are briefly introduced. Then different kinds of sensing modes are reviewed, especially for the biosensing and electrophysiological recording. Finally, the challenges and opportunities of this research field are discussed.
Collapse
Affiliation(s)
- Liming Bai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
| | - Cristina García Elósegui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
441
|
Haustein N, Gutiérrez-Sanz Ó, Tarasov A. Analytical Model To Describe the Effect of Polyethylene Glycol on Ionic Screening of Analyte Charges in Transistor-Based Immunosensing. ACS Sens 2019; 4:874-882. [PMID: 30839200 DOI: 10.1021/acssensors.8b01515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, the co-immobilization of polyethylene glycol has improved sensor responses of transistor-based immunosensing by approximately three times. However, there is currently no analytical model available to explain this empirical effect. The key parameters thought to affect the potential are the receptor density, the capacitance, the analyte charge, and the dissociation constant. Based on our experimental data, only the analyte charge can account for the signal enhancement. To capture the effect of PEG on the analyte charge, we introduce a prefactor, the detectable charge qdet, which represents the portion of analyte charges effectively detected by the sensor. This parameter can quantitatively describe the PEG-induced signal enhancement and can be used to recommend the choice of PEG size for immuno-field-effect transistors. Additionally, we include the competition between electrolyte ions and the analyte for binding to the recognition molecule to more accurately describe the concentration-dependent sensor responses than the traditional Langmuir binding model does.
Collapse
|
442
|
Park S, Jackman JA, Xu X, Weiss PS, Cho NJ. Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13984-13990. [PMID: 30855935 DOI: 10.1021/acsami.9b01724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The function of biological nanoparticles, such as membrane-enveloped viral particles, is often enhanced when the particles form higher-order supramolecular assemblies. While there is intense interest in developing biomimetic platforms that recapitulate these collective properties, existing platforms are limited to mimicking individual virus particles. Here, we present a micropatterning strategy to print linker molecules selectively onto bioinert surfaces, thereby enabling controlled tethering of biomimetic viral particle clusters across defined geometric patterns. By controlling the linker concentration, it is possible to tune the density of tethered particles within clusters while enhancing the signal intensity of encapsulated fluorescent markers. Time-resolved tracking of pore formation and membrane lysis revealed that an antiviral peptide can disturb clusters of the membrane-enclosed particles akin to the targeting of individual viral particles. This platform is broadly useful for evaluating the performance of membrane-active antiviral drug candidates, whereas the micropatterning strategy can be applied to a wide range of biological nanoparticles and other macromolecular entities.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
| | | | - Xiaobin Xu
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- School of Materials Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
443
|
Lee T, Ahn JH, Choi J, Lee Y, Kim JM, Park C, Jang H, Kim TH, Lee MH. Development of the Troponin Detection System Based on the Nanostructure. MICROMACHINES 2019; 10:mi10030203. [PMID: 30909423 PMCID: PMC6470505 DOI: 10.3390/mi10030203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 12/23/2022]
Abstract
During the last 30 years, the World Health Organization (WHO) reported a gradual increase in the number of patients with cardiovascular disease (CVD), not only in developed but also in developing countries. In particular, acute myocardial infarction (AMI) is one of the severe CVDs because of the high death rate, damage to the body, and various complications. During these harmful effects, rapid diagnosis of AMI is key for saving patients with CVD in an emergency. The prompt diagnosis and proper treatment of patients with AMI are important to increase the survival rate of these patients. To treat patients with AMI quickly, detection of a CVD biomarker at an ultra-low concentration is essential. Cardiac troponins (cTNs), cardiac myoglobin (cMB), and creatine kinase MB are typical biomarkers for AMI detection. An increase in the levels of those biomarkers in blood implies damage to cardiomyocytes and thus is related to AMI progression. In particular, cTNs are regarded as a gold standard biomarker for AMI diagnosis. The conventional TN detection system for detection of AMI requires long measurement time and is labor-intensive and tedious. Therefore, the demand for sensitive and selective TN detection techniques is increasing at present. To meet this demand, several approaches and methods have been applied to develop a TN detection system based on a nanostructure. In the present review, the authors reviewed recent advances in TN biosensors with a focus on four detection systems: (1) An electrochemical (EC) TN nanobiosensor, (2) field effect transistor (FET)-based TN nanobiosensor, (3) surface plasmon resonance (SPR)-based TN nanobiosensor and (4) surface enhanced Raman spectroscopy (SERS)-based TN nanobiosensor.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jinha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, Korea.
| | - Yeonju Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jin-Myung Kim
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| |
Collapse
|
444
|
Jeon SJ, Choi C, Ju JM, Lee S, Park JH, Kim JH. Tuning the response selectivity of graphene oxide fluorescence by organometallic complexation for neurotransmitter detection. NANOSCALE 2019; 11:5254-5264. [PMID: 30864583 DOI: 10.1039/c9nr00643e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is of great interest to design nanomaterial biosensors that can selectively detect target molecules without the use of fragile and expensive antibodies. Here, we report a chemical approach to modulate the response selectivity of graphene oxide (GO) fluorescence for neurotransmitters, in order to design an optical biosensor for the selective detection of dopamine without using antibodies. To this end, GO was functionalized with six different amino acids, followed by the immobilization of seven metal ions, resulting in the production of forty-two different GO nanohybrids (denoted GO-AA-MI derivatives). The fluorescence response of GO-AA-MI derivatives to dopamine, norepinephrine, and epinephrine was modulated by varying the type of amino acids and metal ions introduced. Tyrosine-modified GO with Fe2+ ions (GO-Y-Fe) exhibited selective quenching of its fluorescence in the presence of dopamine whereas lysine-modified GO with Au3+ ions (GO-K-Au) showed a selective increase in fluorescence upon addition of norepinephrine. The GO-Y-Fe sensor developed was able to differentiate dopamine from similar structures of norepinephrine and epinephrine, as well as abundant interferents such as ascorbic acid and uric acid, without the use of antibodies. In addition, the GO-Y-Fe sensor successfully detected dopamine secreted from living neuron cells in a rapid and simple manner.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
445
|
Liu J, Chen X, Wang Q, Xiao M, Zhong D, Sun W, Zhang G, Zhang Z. Ultrasensitive Monolayer MoS 2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. NANO LETTERS 2019; 19:1437-1444. [PMID: 30757905 DOI: 10.1021/acs.nanolett.8b03818] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Field-effect transistor (FET) biosensors based on low-dimensional materials present the advantages of low cost, high speed, small size, and excellent compatibility with integrated circuits (ICs). In this work, we fabricated highly sensitive FET-based DNA biosensors based on chemical vapor deposition (CVD)-grown monolayer MoS2 films in batches and explored their application in noninvasive prenatal testing (NIPT) for trisomy 21 syndrome. Specifically, MoS2 was functionalized with gold nanoparticles (Au NPs) of an optimized size and at an ideal density, and then, probe DNAs for the specific capture of target DNAs were immobilized on the nanoparticles. The fabricated FET biosensors are able to reliably detect target DNA fragments (chromosome 21 or 13) with a detection limit below 100 aM, a high response up to 240%, and a high specificity, which satisfy the requirement for the screening of Down syndrome. In addition, a real-time test was conducted to show that the biosensor clearly responds to the target DNA at concentrations as low as 1 fM. Our approach shows the potential for detecting the over-expression of chromosome 21 in the peripheral blood of pregnant women and achieving Down syndrome screening.
Collapse
Affiliation(s)
- Jingxia Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics , Peking University , Beijing 100871 , China
| | - Xihua Chen
- National Research Institute for Family Planning of China , Beijing 100081 , China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics , Peking University , Beijing 100871 , China
| | - Donglai Zhong
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics , Peking University , Beijing 100871 , China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics , Peking University , Beijing 100871 , China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics , Peking University , Beijing 100871 , China
| |
Collapse
|
446
|
Zhu H, Zhang F, Wang H, Lu Z, Chen HY, Li J, Tao N. Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS NANO 2019; 13:2298-2306. [PMID: 30636406 DOI: 10.1021/acsnano.8b09010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mapping local surface charge distribution is critical to the understanding of various surface processes and also allows the detection of molecules binding to the surface. We show here that the optical absorption of monolayer MoS2 is highly sensitive to charge and demonstrate optical imaging of local surface charge distribution with this atomically thin material. We validate the imaging principle and perform charge sensitivity calibration with an electrochemical gate. We further show that binding of charged molecules to the atomically thin material leads to a large change in the image contrast, allowing determination of the charge of the adsorbed molecules. This capability opens possibilities for characterizing impurities and defects in two-dimensional materials and for label-free optical detection and charge analysis of molecules.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhixing Lu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
447
|
Bueno R, Marciello M, Moreno M, Sánchez-Sánchez C, Martinez JI, Martinez L, Prats-Alfonso E, Guimerà-Brunet A, Garrido JA, Villa R, Mompean F, García-Hernandez M, Huttel Y, Morales MD, Briones C, López MF, Ellis GJ, Vázquez L, Martín-Gago JA. Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces. ACS OMEGA 2019; 4:3287-3297. [PMID: 31008418 PMCID: PMC6469579 DOI: 10.1021/acsomega.8b03152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.
Collapse
Affiliation(s)
- Rebeca Bueno
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Marzia Marciello
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Nanobiotechnology
for Life Sciences Group, Department of Chemistry in Pharmaceutical
Sciences, Faculty of Pharmacy, Complutense
University (UCM), Plaza
Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Miguel Moreno
- Laboratory
of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Carlos Sánchez-Sánchez
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - José I. Martinez
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Lidia Martinez
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Elisabet Prats-Alfonso
- Instituto
de Microelectrónica de Barcelona IMB-CNM (CSIC) Esfera UAB, Bellaterra, 08193 Barcelona, Spain
- Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Anton Guimerà-Brunet
- Instituto
de Microelectrónica de Barcelona IMB-CNM (CSIC) Esfera UAB, Bellaterra, 08193 Barcelona, Spain
- Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jose A. Garrido
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona
Institute of Science and Technology Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Rosa Villa
- Instituto
de Microelectrónica de Barcelona IMB-CNM (CSIC) Esfera UAB, Bellaterra, 08193 Barcelona, Spain
- Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Federico Mompean
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernandez
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Yves Huttel
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María del
Puerto Morales
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Carlos Briones
- Laboratory
of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain
| | - María F. López
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Gary J. Ellis
- Polymer
Physics Group, Institute of Polymer Science
and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Luis Vázquez
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - José A. Martín-Gago
- Materials
Science Factory, Institute of Materials
Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- E-mail:
| |
Collapse
|
448
|
Xia X, Wang Y, Yang H, Dong Y, Zhang K, Lu Y, Deng R, He Q. Enzyme-free amplified and ultrafast detection of aflatoxin B 1 using dual-terminal proximity aptamer probes. Food Chem 2019; 283:32-38. [PMID: 30722878 DOI: 10.1016/j.foodchem.2018.12.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023]
Abstract
Aptamer probes provide an opportunity for achieving rapid and on-site detection of food contaminants. Herein, we proposed a general design strategy for aptamer probes enabling enzyme-free amplified, ultrafast and one-test tube homogeneous detection of aflatoxin B1 (AFB1). The key feature of the aptamer probe is designed with dual-terminal proximity structures, allowing the binding of one molecule to light up two fluorophores, leading to enzyme-free amplification and a remarkable improvement of signal to background ratio and sensitivity for AFB1 detection. This aptamer probe could accommodate quick response to AFB1, and the detection process could be finished within 1 min, ranking one of the quickest assays for AFB1. AFB1 detection of broad bean paste and peanut oil conferred satisfactory recoveries ranging from 90.3% to 114.8%. Contributed to the generality and simplicity of the design strategy, this structure-switching probe could potentially act as a general platform of on-site detection for food safety.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yuxi Wang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 61004, China
| | - Hao Yang
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunhao Lu
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China.
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| |
Collapse
|
449
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
450
|
Jahan M, Uline MJ. Quantifying Mg 2+ Binding to ssDNA Oligomers: A Self-Consistent Field Theory Study at Varying Ionic Strengths and Grafting Densities. Polymers (Basel) 2018; 10:polym10121403. [PMID: 30961328 PMCID: PMC6401855 DOI: 10.3390/polym10121403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
The performance of aptamer-based biosensors is crucially impacted by their interactions with physiological metal ions, which can alter their structures and chemical properties. Therefore, elucidating the nature of these interactions carries the utmost importance in the robust design of highly efficient biosensors. We investigated Mg2+ binding to varying sequences of polymers to capture the effects of ionic strength and grafting density on ion binding and molecular reorganization of the polymer layer. The polymers are modeled as ssDNA aptamers using a self-consistent field theory, which accounts for non-covalent ion binding by integrating experimentally-derived binding constants. Our model captures the typical polyelectrolyte behavior of chain collapse with increased ionic strength for the ssDNA chains at low grafting density and exhibits the well-known re-entrant phenomena of stretched chains with increased ionic strength at high grafting density. The binding results suggest that electrostatic attraction between the monomers and Mg2+ plays the dominant role in defining the ion cloud around the ssDNA chains and generates a nearly-uniform ion distribution along the chains containing varying monomer sequences. These findings are in qualitative agreement with recent experimental results for Mg2+ binding to surface-bound ssDNA.
Collapse
Affiliation(s)
- Merina Jahan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | - Mark J Uline
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|