401
|
Kumar S, Saini RV, Mahindroo N. Recent advances in cancer immunology and immunology-based anticancer therapies. Biomed Pharmacother 2017; 96:1491-1500. [PMID: 29198747 DOI: 10.1016/j.biopha.2017.11.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapies offer promise for cure of cancer with specificity and minimal toxicity. Recent developments in cancer immunology have led to the better understanding of role of immune regulatory mechanisms in cancer. There is rapid progress in this field in the last few years. Several clinical studies report the efficacy of immunotherapies for treating cancer. The immunology-based anticancer therapies have shown better safety profiles in clinic as compared to other chemotherapeutic agents, thus increasing interest in this area. This review summarizes recent advances in cancer immunology and discusses tumor microenvironment and immunology-based anticancer therapies, including vaccines and therapies targeting immune checkpoints.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Reena Vohra Saini
- School of Biotechnology, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
402
|
Dai L, Xu W, Li H, Frank JA, He C, Zhang Z, Chen G. Effects of hexavalent chromium on mouse splenic T lymphocytes. Toxicol In Vitro 2017; 45:166-171. [DOI: 10.1016/j.tiv.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
|
403
|
Zhao Y, Song Q, Yin Y, Wu T, Hu X, Gao X, Li G, Tan S, Zhang Z. Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J Control Release 2017; 269:322-336. [PMID: 29174440 DOI: 10.1016/j.jconrel.2017.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023]
Abstract
The efficacy of immunotherapy was demonstrated to be compromised by reduced immunogenicity of tumor cells and enhanced suppressive properties of the tumor microenvironment in cancer treatment. There is growing evidence that low-dose chemotherapy can modulate the immune system to improve the anti-tumor effects of immunotherapy through multiple mechanisms, including the enhancement of tumor immunogenicity and reversal of the immunosuppressive tumor microenvironment. Here, we fabricated thermosponge nanoparticles (TSNs) for the co-delivery of chemotherapeutic drug paclitaxel (PTX) and immunostimulant interleukin-2 (IL-2) to explore the synergistic anti-tumor effects of chemotherapy and immunotherapy. The distinct temperature-responsive swelling/deswelling character facilitated the effective post-entrapment of cytokine IL-2 in nanoparticles by a facile non-solvent mild incubation method with unaffected bioactivity and favorable pharmacokinetics. PTX and IL-2 co-loaded TSNs exhibited significant inhibition on tumor growth and metastasis, and prolonged overall survival for tumor-bearing mice compared with the corresponding monotherapies. The synergistic effect was evidenced from the remodeled tumor microenvironment in which low-dose chemotherapeutics disrupted the immunosuppressive tumor microenvironment and enhanced tumor immunogenicity, and immunostimulant cytokine promoted the anti-tumor immune response of immune effector cells. The immunochemotherapy mediated by this thermosponge nanoplatform may provide a promising treatment strategy against cancer.
Collapse
Affiliation(s)
- Yongdan Zhao
- Tongji School of Pharmacy, China; Shanxi Medical University, China
| | | | | | | | | | | | - Gao Li
- Tongji School of Pharmacy, China
| | | | - Zhiping Zhang
- Tongji School of Pharmacy, China; National Engineering Research Center for Nanomedicine, China; Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
404
|
Swaim CD, Scott AF, Canadeo LA, Huibregtse JM. Extracellular ISG15 Signals Cytokine Secretion through the LFA-1 Integrin Receptor. Mol Cell 2017; 68:581-590.e5. [PMID: 29100055 DOI: 10.1016/j.molcel.2017.10.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
ISG15 is a ubiquitin-like protein that functions in innate immunity both as an intracellular protein modifier and as an extracellular signaling molecule that stimulates IFN-γ secretion. The extracellular function, important for resistance to mycobacterial disease, has remained biochemically uncharacterized. We have established an NK-92 cell-based assay for IFN-γ release, identified residues critical for ISG15 signaling, and identified the cell surface receptor as LFA-1 (CD11a/CD18; αLβ2 integrin). LFA-1 inhibition blocked IFN-γ secretion, splenocytes from CD11a-/- mice did not respond to ISG15, and ISG15 bound directly to the αI domain of CD11a in vitro. ISG15 also enhanced secretion of IL-10, indicating a broader role for ISG15 in cytokine signaling. ISG15 engagement of LFA-1 led to the activation of SRC family kinases (SFKs) and SFK inhibition blocked cytokine secretion. These findings establish the molecular basis of the extracellular function of ISG15 and the initial outside-in signaling events that drive ISG15-dependent cytokine secretion.
Collapse
Affiliation(s)
- Caleb D Swaim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ariella F Scott
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
405
|
Choi SH, Stuckey DW, Pignatta S, Reinshagen C, Khalsa JK, Roozendaal N, Martinez-Quintanilla J, Tamura K, Keles E, Shah K. Tumor Resection Recruits Effector T Cells and Boosts Therapeutic Efficacy of Encapsulated Stem Cells Expressing IFNβ in Glioblastomas. Clin Cancer Res 2017; 23:7047-7058. [PMID: 28912136 PMCID: PMC6818096 DOI: 10.1158/1078-0432.ccr-17-0077] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/18/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Purpose: Despite tumor resection being the first-line clinical care for glioblastoma (GBM) patients, nearly all preclinical immune therapy models intend to treat established GBM. Characterizing cytoreductive surgery-induced immune response combined with the administration of immune cytokines has the potential of offering a new treatment paradigm of immune therapy for GBMs.Experimental Design: We developed syngeneic orthotopic mouse GBM models of tumor resection and characterized the immune response of intact and resected tumors. We also created a highly secretable variant of immune cytokine IFNβ to enhance its release from engineered mouse mesenchymal stem cells (MSC-IFNβ) and assessed whether surgical resection of intracranial GBM tumor significantly enhanced the antitumor efficacy of targeted on-site delivery of encapsulated MSC-IFNβ.Results: We show that tumor debulking results in substantial reduction of myeloid-derived suppressor cells (MDSC) and simultaneous recruitment of CD4/CD8 T cells. This immune response significantly enhanced the antitumor efficacy of locally delivered encapsulated MSC-IFNβ via enhanced selective postsurgical infiltration of CD8 T cells and directly induced cell-cycle arrest in tumor cells, resulting in increased survival of mice. Utilizing encapsulated human MSC-IFNβ in resected orthotopic tumor xenografts of patient-derived GBM, we further show that IFNβ induces cell-cycle arrest followed by apoptosis, resulting in increased survival in immunocompromised mice despite their absence of an intact immune system.Conclusions: This study demonstrates the importance of syngeneic tumor resection models in developing cancer immunotherapies and emphasizes the translational potential of local delivery of immunotherapeutic agents in treating cancer. Clin Cancer Res; 23(22); 7047-58. ©2017 AACR.
Collapse
Affiliation(s)
- Sung Hugh Choi
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel W Stuckey
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Clemens Reinshagen
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jasneet Kaur Khalsa
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicolaas Roozendaal
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordi Martinez-Quintanilla
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kaoru Tamura
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erhan Keles
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
406
|
Immunotherapy as an Option for Cancer Treatment. Arch Immunol Ther Exp (Warsz) 2017; 66:89-96. [PMID: 29026920 DOI: 10.1007/s00005-017-0491-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
The progress in melanoma immunotherapy highlights the importance of immunotherapy for cancer treatment. Although the concept of immunotherapy emerged in the beginning of the twentieth century, the end of the century signaled the start of modern immunotherapy, which has recently allowed a staggering progress in the field of cancer immunotherapy. Currently, there is a wide variety of immunotherapeutic approaches and critical improvements are continually being made. Among different immunotherapeutic strategies, therapies based on the blockade of immune checkpoint molecules have shown unparalleled efficacy in late-stage cancer patients. Pre-clinical research using ex vivo and in vivo approaches demonstrates the promise of numerous novel strategies for the immunotherapy of cancer.
Collapse
|
407
|
Jantová S, Paulovičová E, Paulovičová L, Janošková M, Pánik M, Milata V. Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate. Immunobiology 2017; 223:81-93. [PMID: 29030009 DOI: 10.1016/j.imbio.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/12/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
The present study examined the cytotoxicity, anti-cancer reactivity, and immunomodulatory properties of new synthetically prepared fluoroquinolone derivative 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (6FN) in vitro. The cytotoxicity/toxicity studies (concentrations in the range 1-100μM) are focused on the cervical cancer cells HeLa, murine melanoma cancer cells B16, non-cancer fibroblast NIH-3T3 cells and reconstructed human epidermis tissues EpiDerm™. The significant growth inhibition of cancer cells HeLa and B16 was detected. The cytotoxicity was mediated via apoptosis-associated with activation of caspase-9 and -3. After 72h of treatment, the two highest 6FN concentrations (100 and 50μM) induced toxic effect on epidermis tissue EpiDerm™, even the structural changes in tissue were observed with concentration of 100μM. The effective induction of RAW 264.7 macrophages cell-release of pro- and anti-inflammatory TH1, TH2 and TH17 cytokines, with anti-cancer and/or anti-infection activities, respectively, has been revealed even following low-dose exposition.
Collapse
Affiliation(s)
- Soňa Jantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - Ema Paulovičová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Lucia Paulovičová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Janošková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - Miroslav Pánik
- Institute of Management, Slovak University of Technology, Bratislava, Slovak Republic
| | - Viktor Milata
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| |
Collapse
|
408
|
Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJB, Noguchi M, Hirata N, Suizu F, Yamada T, Kudo M, Sakuragi N. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017; 8:13509-13520. [PMID: 28088786 PMCID: PMC5355116 DOI: 10.18632/oncotarget.14586] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
EZH2 inhibition and reactivation of tumor suppressor microRNAs (miRNAs) represent attractive anti-cancer therapeutic strategies. We found that EZH2-suppressed let 7b and miR-361, two likely tumor suppressors, inhibited endometrial cancer (EC) cell proliferation and invasion, and abrogated cancer stem cell-like properties. In EC cells, EZH2 induced and functioned together with YY1 to epigenetically suppress miR-361, which upregulated Twist, a direct target of miR-361. Treating EC cells with GSK343, a specific EZH2 inhibitor, mimicked the effects of siRNA-mediated EZH2 knockdown, upregulating miR-361 and downregulating Twist expression. Combining GSK343 with 5 AZA-2′-deoxycytidine synergistically suppressed cell proliferation and invasion in vitro, and decreased tumor size and weight in EC cell xenografted mice. Quantitative real-time PCR analysis of 24 primary EC tissues showed that lower let-7b and miR-361 levels were associated with worse patient outcomes. These results were validated in a larger EC patient dataset from The Cancer Genome Atlas. Our findings suggest that EZH2 drives EC progression by regulating miR-361/Twist signaling, and support EZH2 inhibition as a promising anti-EC therapeutic strategy.
Collapse
Affiliation(s)
- Kei Ihira
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yosuke Konno
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Takahiro Yamada
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Noriaki Sakuragi
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan.,Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| |
Collapse
|
409
|
Grimaldi AM, Incoronato M, Salvatore M, Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 2017; 12:2349-2365. [PMID: 28868980 DOI: 10.2217/nnm-2017-0208] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although recent successes in clinical trials are strengthening research focused on cancer immunology, the poor immunogenicity and off-target side effects of immunotherapeutics remain major challenges in translating these promising approaches to clinically feasible therapies in the treatment of a large range of tumors. Nanotechnology offers target-based approaches, which have shown significant improvements in the rapidly advancing field of cancer immunotherapy. Here, we first discuss the chemical and physical features of nanoparticulate systems that can be tuned to address the anticancer immune response, and then review recent, key examples of the exploited strategies, ranging from nanovaccines to NPs revising the tumor immunosuppressive microenvironment, up to immunotherapeutic multimodal NPs. Finally, the paper concludes by identifying the promising and outstanding challenges the field of emerging nanotechnologies is facing for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- IRCCS SDN, Via Gianturco 113, 80143, Naples, Italy.,Department of Motor Sciences & Healthiness, University of Naples Parthenope, via Medina 40, 80133, Naples, Italy
| |
Collapse
|
410
|
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection. Biomed Microdevices 2017; 18:93. [PMID: 27628061 DOI: 10.1007/s10544-016-0117-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Collapse
|
411
|
Green DS, Young HA, Valencia JC. Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem 2017; 292:13925-13933. [PMID: 28652404 PMCID: PMC5572907 DOI: 10.1074/jbc.r116.774745] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon γ (IFNγ) is a pleiotropic protein secreted by immune cells. IFNγ signals through the IFNγ receptor, a protein complex that mediates downstream signaling events. Studies into IFNγ signaling have provided insight into the general concepts of receptor signaling, receptor internalization, regulation of distinct signaling pathways, and transcriptional regulation. Although IFNγ is the central mediator of the adaptive immune response to pathogens, it has been shown to be involved in several non-infectious physiological processes. This review will provide an introduction into IFNγ signaling biology and the functional roles of IFNγ in the autoimmune response.
Collapse
Affiliation(s)
- Daniel S Green
- From the Women's Malignancy Branch, Translational Genomics Section, Center for Cancer, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201.
| | - Julio C Valencia
- Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201.
| |
Collapse
|
412
|
Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H, Singh S, Agrewala JN. Bolstering Immunity through Pattern Recognition Receptors: A Unique Approach to Control Tuberculosis. Front Immunol 2017; 8:906. [PMID: 28824632 PMCID: PMC5539433 DOI: 10.3389/fimmu.2017.00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The global control of tuberculosis (TB) presents a continuous health challenge to mankind. Despite having effective drugs, TB still has a devastating impact on human health. Contributing reasons include the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the AIDS-pandemic, and the absence of effective vaccines against the disease. Indeed, alternative and effective methods of TB treatment and control are urgently needed. One such approach may be to more effectively engage the immune system; particularly the frontline pattern recognition receptor (PRR) systems of the host, which sense pathogen-associated molecular patterns (PAMPs) of Mtb. It is well known that 95% of individuals infected with Mtb in latent form remain healthy throughout their life. Therefore, we propose that clues can be found to control the remainder by successfully manipulating the innate immune mechanisms, particularly of nasal and mucosal cavities. This article highlights the importance of signaling through PRRs in restricting Mtb entry and subsequently preventing its infection. Furthermore, we discuss whether this unique therapy employing PRRs in combination with drugs can help in reducing the dose and duration of current TB regimen.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
413
|
Abstract
While many decades of scientific research studies have gone into harnessing the power of the immune system to fight cancer, only recently have cancer immunotherapeutic approaches begun to show robust clinical responses in patients with a variety of cancers. These treatments are adding to the current arsenal of cancer treatments; surgery, radiation and chemotherapy, and increasing the therapeutic options for cancer patients. Despite these advances, issues associated with these therapies include that not all patients respond to these therapies, and some patients who respond experience varying degrees of toxicities. One of the major issues affecting immunotherapy is the inability to evaluate trafficking of activated T-cells into sites of tumor. The current diagnostic imaging based on conventional anatomic imaging, which is the mainstay to monitor response to cytotoxic chemotherapy or radiation, is not adequate to assess initial response to immunotherapy or disease evolution. Patients’ prognosis by histological analysis has limited use in regards to immunotherapy. Thus, there is a crucial need for noninvasive biomarkers for screening patients that show long term response to therapy. Here, we provide a brief account of emerging molecular magnetic resonance imaging biomarkers that have potential to exploit the metabolism and metabolic products of activated T cells.
Collapse
|
414
|
Abstract
Background Immunotherapy consists of activating the patient’s immune system to fight cancer and has the great potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged to harness the immune system against tumors, from the administration of immunomodulatory agents that activate immune cells, to therapeutic vaccines or infusion of previously activated cancer-specific T cells. However, despite great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy. Some of these limitations include: systemic toxicity, weak immune cellular responses or persistence over time and most ultimately costly and time-consuming procedures. Main body Synthetic and natural biomaterials hold great potential to address these hurdles providing biocompatible systems capable of targeted local delivery, co-delivery, and controlled and/or sustained release. In this review we discuss some of the bioengineered solutions and approaches developed so far and how biomaterials can be further implemented to help and shape the future of cancer immunotherapy. Conclusion The bioengineering strategies here presented constitute a powerful toolkit to develop safe and successful novel cancer immunotherapies.
Collapse
|
415
|
Svetlovska D, Miskovska V, Cholujova D, Gronesova P, Cingelova S, Chovanec M, Sycova-Mila Z, Obertova J, Palacka P, Rajec J, Kalavska K, Usakova V, Luha J, Ondrus D, Spanik S, Mardiak J, Mego M. Plasma Cytokines Correlated With Disease Characteristics, Progression-Free Survival, and Overall Survival in Testicular Germ-Cell Tumor Patients. Clin Genitourin Cancer 2017; 15:411-416.e2. [DOI: 10.1016/j.clgc.2017.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/23/2022]
|
416
|
Shao S, Risch E, Burner D, Lu L, Minev B, Ma W. IFNγ enhances cytotoxic efficiency of the cytotoxic T lymphocytes against human glioma cells. Int Immunopharmacol 2017; 47:159-165. [PMID: 28410529 DOI: 10.1016/j.intimp.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) are a key player in cancer immunotherapies, and MHC class I molecules on the cell surface are crucial for cellular recognition. However, the aberrant expression of MHC class I molecules is frequently found in various malignancies. IFNγ has dual functions in cancer progression, and its effect on tumor immunity is controversial. To investigate whether IFNγ can enhance cytotoxic efficiency of the tumor antigen-specific CTLs, we generated the CTLs using modified human dendritic cells as antigen presenting cells, then studied the activities of CTLs on human leukocyte antigen (HLA)-A2 positive glioma cells treated with, or without IFNγ. The results from both ELISpot and cytotoxicity assays demonstrated that the CTLs recognized and eliminated the HLA-A2 positive glioma cells treated with IFNγ more effectively when compared to the glioma cells deprived of IFNγ treatment. In addition, in vitro experiments showed that the levels of MHC class I molecules were upregulated in all of the HLA-A2 positive glioma cells. Using the publicly accessed TCGA data of low-grade glioma, we found significantly positive associations between IFNγ and both MHC class I molecules and CD8+ T cell activation score (p<0.0001). Furthermore, we found a significantly reduced risk of death in the glioma patients with high T cell activation score in comparison to those with low score (p=0.022). These findings suggest that a clinical application of IFNγ treatment may have potential benefits.
Collapse
Affiliation(s)
- Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Eric Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520, USA
| | - Danielle Burner
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520, USA
| | - Boris Minev
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; StemImmune Inc., San Diego, CA 92122, USA.
| | - Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Institute for Cancer Biology and Stem Cell Research, Huzhou University, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
417
|
Timperi E, Focaccetti C, Gallerano D, Panetta M, Spada S, Gallo E, Visca P, Venuta F, Diso D, Prelaj A, Longo F, Facciolo F, Nisticò P, Barnaba V. IL-18 receptor marks functional CD8 + T cells in non-small cell lung cancer. Oncoimmunology 2017; 6:e1328337. [PMID: 28811967 DOI: 10.1080/2162402x.2017.1328337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
IL-18 is an inflammasome-related cytokine, member of the IL-1 family, produced by a wide range of cells in response to signals by several pathogen- or damage-associated molecular patterns. It can be highly represented in tumor patients, but its relevance in human cancer development is not clear. In this study, we provide evidence that IL-18 is principally expressed in tumor cells and, in concert with other conventional Th1 cell-driven cytokines, has a pivotal role in establishing a pro-inflammatory milieu in the tumor microenvironment of human non-small cell lung cancer (NSCLC). Interestingly, the analysis of tumor-infiltrating CD8+ T cell populations showed that (i) the relative IL-18 receptor (IL-18R) is significantly more expressed by the minority of cells with a functional phenotype (T-bet+Eomes+), than by the majority of those with the dysfunctional phenotype T-bet-Eomes+ generally resident within tumors; (ii) as a consequence, the former are significantly more responsive than the latter to IL-18 stimulus in terms of IFNγ production ex vivo; (iii) PD-1 expression does not discriminate these two populations. These data indicate that IL-18R may represent a biomarker of the minority of functional tumor-infiltrating CD8+ T cells in adenocarcinoma NSCLC patients. In addition, our results lead to envisage the possible therapeutic usage of IL-18 in NSCLC, even in combination with other checkpoint inhibitor approaches.
Collapse
Affiliation(s)
- Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Chiara Focaccetti
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Daniela Gallerano
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Mariangela Panetta
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Sheila Spada
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Enzo Gallo
- Unità di Anatomia Patologica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Paolo Visca
- Unità di Anatomia Patologica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Federico Venuta
- Dipartimento di Chirurgia Generale e Specialità Chirurgiche Paride Stefanini, Chirurgia Toracica, "Sapienza" Università di Roma, Rome, Italy
| | - Daniele Diso
- Dipartimento di Chirurgia Generale e Specialità Chirurgiche Paride Stefanini, Chirurgia Toracica, "Sapienza" Università di Roma, Rome, Italy
| | - Arsela Prelaj
- Dipartimento di Medicina Molecolare Oncologica, "Sapienza" Università di Roma, Rome, Italy
| | - Flavia Longo
- Dipartimento di Medicina Molecolare Oncologica, "Sapienza" Università di Roma, Rome, Italy
| | - Francesco Facciolo
- Unità di Chirurgia Toracica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Paola Nisticò
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy.,Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Rome, Italy.,Istituto Italiano di Tecnologia, CLNS@sapienza, Rome, Italy
| |
Collapse
|
418
|
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017; 256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense.
Collapse
Affiliation(s)
| | | | - Yuling Bao
- Tongji School of Pharmacy, PR China; Department of Pharmacy, Tongji Hospital, PR China
| | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
419
|
Nazeam JA, Gad HA, Esmat A, El-Hefnawy HM, Singab ANB. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity. J Med Food 2017; 20:491-501. [PMID: 28414560 DOI: 10.1089/jmf.2016.0148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Different polysaccharides were isolated from the leaves of Aloe arborescens using the gradient power of hydrogen followed by antitumor and immunomodulatory assay. The total polysaccharide content of different fractions, water-soluble polysaccharide (WAP), acid-soluble polysaccharide (ACP), and alkaline-soluble polysaccharide (ALP), was estimated using a phenol-sulfuric acid spectrophotometric method. WAP possessed a higher content of mannose and glucose than either ACP or ALP. In vitro antitumor activity was investigated in three different cancer cell lines, and in vitro immunomodulatory potential was assessed through phagocytosis and lymphocyte transformation assay. The results showed that WAP and ALP exhibited the most significant cytotoxicity against HepG2 human liver cancer cells, with IC50 values of 26.14 and 21.46 μg/mL, respectively. In contrast, ALP was able to enhance lymphocyte transformation, whereas WAP had the most potent phagocytic activity. Molecular weight, total sugar and uronic acid content, Fourier transform-infrared analysis, and linkage type of bioactive polysaccharides were investigated. These findings revealed that the potential antitumor activity of the natural agents WAP and ALP was through an immunomodulation mechanism, which verifies the use of the plant as adjuvant supplement for cancer patients suffering immunosuppression during chemotherapy.
Collapse
Affiliation(s)
- Jilan A Nazeam
- 1 Pharmacognosy Department, Faculty of Pharmacy, October 6th University , 6th of October City, Egypt
| | - Haidy A Gad
- 2 Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University , Cairo, Egypt
| | - Ahmed Esmat
- 3 Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-Shams University , Cairo, Egypt
| | - Hala M El-Hefnawy
- 4 Pharmacognosy Department, Faculty of Pharmacy, Cairo University , Giza, Egypt
| | - Abdel-Naser B Singab
- 2 Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University , Cairo, Egypt
| |
Collapse
|
420
|
Salivary IL-8, IL-6 and TNF-α as Potential Diagnostic Biomarkers for Oral Cancer. Diagnostics (Basel) 2017; 7:diagnostics7020021. [PMID: 28397778 PMCID: PMC5489941 DOI: 10.3390/diagnostics7020021] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
Saliva has been useful as a liquid biopsy for the diagnosis of various oral or systemic diseases, and oral squamous cell carcinoma (OSCC) is no exception. While its early detection and prevention is important, salivary cytokines expression, specifically of Interleukin-8 (IL-8), Interleukin-6 (IL-6) and Tumor necrosis factor (TNF-α), does contribute to the pathogenesis of cancer and these cytokines serve as potential biomarkers. Their excessive production plays a role in cancer progression and establishment of angiogenesis. However, other inflammatory or immunological conditions may affect the levels of cytokines in saliva. This article reviews the expression of levels of specific cytokines i.e., IL-8, IL-6 and TNF-α, their signaling pathways in the development of oral cancer, and how they are essential for the diagnosis of OSCC and updates related to it. Apart from serum, the saliva-based test can be a cost-effective tool in the follow-up and diagnosis of OSCC. Moreover, large-scale investigations are still needed for the validation of salivary cytokines.
Collapse
|
421
|
Garg SM, Vakili MR, Molavi O, Lavasanifar A. Self-Associating Poly(ethylene oxide)-block-poly(α-carboxyl-ε-caprolactone) Drug Conjugates for the Delivery of STAT3 Inhibitor JSI-124: Potential Application in Cancer Immunotherapy. Mol Pharm 2017; 14:2570-2584. [PMID: 28221800 DOI: 10.1021/acs.molpharmaceut.6b01119] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Constitutive activation of signal transducer and activator of transcription 3 (STAT3) in tumor cells and tumor associated dendritic cells (DCs) plays a major role in the progression of cancer. JSI-124 (cucurbitacin I) is a potent inhibitor of STAT3; however, its poor solubility and nonspecificity limit its effectiveness in cancer immunotherapy. In order to achieve a nanocarrier for solubilization and passive targeting of JSI-124 to tumor cells and tumor associated DCs, the drug was chemically conjugated to pendent COOH groups of self-associating poly(ethylene oxide)-block-poly(α-carboxylate-ε-caprolactone) (PEO-b-PCCL). Developed PEO-b-P(CL-JSI-124) conjugates self-assembled to polymeric micelles of 40 nm size range with negligible drug release under physiological mimicking conditions. The conjugation of JSI-124 to PEO-b-PCCL was confirmed by 1H NMR, thin layer chromatography (TLC), and HPLC with a conjugation of 8.9% w/w of the polymer. As expected, JSI-124 nanoconjugates showed lower potency in p-STAT3 inhibition and direct anticancer activity in B16-F10 melanoma cells. Interestingly, JSI-124 nanoconjugates were more powerful than free drug in reducing the level of p-STAT3 in tumor exposed bone marrow derived dendritic cells (BMDCs). The JSI-124 nanoconjugates were also significantly more active than free drug in reversing the immunosuppressive effect of B16-F10 tumor and led to significantly better phenotypical and functional stimulation of tumor exposed immature BMDCs in the presence of immune adjuvants like LPS and CpG. Our findings points to great promise for PEO-b-P(CL-JSI-124) micelles for modulation of immunosuppressive microenvironment in melanoma tumors, implicating application of this strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Shyam M Garg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada
| | - Ommoleila Molavi
- Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada.,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
422
|
Vyas M, Müller R, Pogge von Strandmann E. Antigen Loss Variants: Catching Hold of Escaping Foes. Front Immunol 2017; 8:175. [PMID: 28286501 PMCID: PMC5323381 DOI: 10.3389/fimmu.2017.00175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
423
|
Abstract
Immuno-oncology (I/O) research has intensified significantly in recent years due to the breakthrough development and the regulatory approval of several immune checkpoint inhibitors, leading to the rapid expansion of the new discovery of novel I/O therapies, new checkpoint inhibitors and beyond. However, many I/O questions remain unanswered, including why only certain subsets of patients respond to these treatments, who the responders would be, and how to expand patient response (the conversion of non-responders or maximizing response in partial responders). All of these require relevant I/O experimental systems, particularly relevant preclinical animal models. Compared to other oncology drug discovery, e.g. cytotoxic and targeted drugs, a lack of relevant animal models is a major obstacle in I/O drug discovery, and an urgent and unmet need. Despite the obvious importance, and the fact that much I/O research has been performed using many different animal models, there are few comprehensive and introductory reviews on this topic. This article attempts to review the efforts in development of a variety of such models, as well as their applications and limitations for readers new to the field, particularly those in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qi-Xiang Li
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Gerold Feuer
- HuMurine Technologies, Inc., 2700 Stockton Blvd, Rm. 1403, Sacramento, CA 95817, USA
| | - Xuesong Ouyang
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA
| | - Xiaoyu An
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
424
|
Young MRI. Redirecting the focus of cancer immunotherapy to premalignant conditions. Cancer Lett 2017; 391:83-88. [PMID: 28130162 PMCID: PMC5925415 DOI: 10.1016/j.canlet.2017.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
Much progress has been made in introducing immunological treatment approaches for cancer, with lessons learned from both the successes and failures of immunotherapy. Among the challenges of immunotherapeutic approaches for cancer are the multitudes of mechanisms by which cancers are known to subvert the immune defenses. This has led to the incorporation into the immunotherapeutic arsenal strategies by which to overcome the cancer’s immunological blockades. What has been only superficially explored is the immunological milieu of premalignant lesions and the possibility of immunological approaches for the treatment of premalignant lesions so as to prevent secondary premalignant lesions and their progression to cancer. This review discusses the immunological environment associated with premalignant lesions, and the possible missed opportunity of utilizing immunological treatment strategies in the less hostile environment of premalignant lesions as compared to the immune subversive cancer environment.
Collapse
Affiliation(s)
- M Rita I Young
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
425
|
Farber SH, Elsamadicy AA, Atik AF, Suryadevara CM, Chongsathidkiet P, Fecci PE, Sampson JH. The Safety of available immunotherapy for the treatment of glioblastoma. Expert Opin Drug Saf 2017; 16:277-287. [PMID: 27989218 DOI: 10.1080/14740338.2017.1273898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Current standard of care involves maximal surgical resection combined with adjuvant chemoradiation. Growing support exists for a role of immunotherapy in treating these tumors with the goal of targeted cytotoxicity. Here we review data on the safety for current immunotherapies being tested in GBM. Areas covered: Safety data from published clinical trials, including ongoing clinical trials were reviewed. Immunotherapeutic classes currently under investigation in GBM include various vaccination strategies, adoptive T cell immunotherapy, immune checkpoint blockade, monoclonal antibodies, and cytokine therapies. Trials include children, adolescents, and adults with either primary or recurrent GBM. Expert opinion: Based on the reviewed clinical trials, the current immunotherapies targeting GBM are safe and well-tolerated with minimal toxicities which should be noted. However, the gains in patient survival have been modest. A safe and well-tolerated combinatory immunotherapeutic approach may be essential for optimal efficacy towards GBM.
Collapse
Affiliation(s)
- S Harrison Farber
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Aladine A Elsamadicy
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Ahmet Fatih Atik
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Carter M Suryadevara
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Pakawat Chongsathidkiet
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Peter E Fecci
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
426
|
Ashrafi S, Shapouri R, Mahdavi M. Immunological consequences of immunization with tumor lysate vaccine and propranolol as an adjuvant: A study on cytokine profiles in breast tumor microenvironment. Immunol Lett 2017; 181:63-70. [DOI: 10.1016/j.imlet.2016.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 01/30/2023]
|
427
|
Novel Therapies and Future Directions in Treatment of Musculoskeletal Sarcomas. Sarcoma 2017. [DOI: 10.1007/978-3-319-43121-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
428
|
Capitalizing on Cancer Specific Replication: Oncolytic Viruses as a Versatile Platform for the Enhancement of Cancer Immunotherapy Strategies. Biomedicines 2016; 4:biomedicines4030021. [PMID: 28536388 PMCID: PMC5344262 DOI: 10.3390/biomedicines4030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being obtained in the last 5 years. It is becoming increasingly apparent that these two approaches are not mutually exclusive and that much of the therapeutic benefit obtained from the use of oncolytic viruses (OVs) is in fact the result of their immunotherapeutic function. Indeed, OVs have been shown to recruit and activate an antitumor immune response and much of the current work in this field centers around increasing this activity through strategies such as engineering genes for immunomodulators into OV backbones. Because of their broad immunostimulatory functions, OVs can also be rationally combined with a variety of other immunotherapeutic approaches including cancer vaccination strategies, adoptive cell transfer and checkpoint blockade. Therefore, while they are important therapeutics in their own right, the true power of OVs may lie in their ability to enhance the effectiveness of a wide range of immunotherapies.
Collapse
|
429
|
Dey P, Chaudhuri TK. Immunomodulatory activity of Nerium indicum through inhibition of nitric oxide and cyclooxygenase activity and modulation of TH1/TH2 cytokine balance in murine splenic lymphocytes. Cytotechnology 2016; 68:749-761. [PMID: 25680696 PMCID: PMC4960125 DOI: 10.1007/s10616-014-9826-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
Nerium indicum is a medicinal plant which is used in the treatment of wide range of illness in different ethnopharmacological practices. We have studied the immunomodulatory activity of the 70 % hydro-methanolic extract of N. indicum leaves (NILE) by studying plaque forming cell assay, haemagglutination titre, cell proliferation assay, inhibition of nitric oxide expression and cyclooxygenase activity, estimation of IL-2, IFN-γ, IL-4, IL-10, TNF-α and IgM levels. Furthermore, we have characterized NILE with Fourier Transform Infra-red (FTIR) spectroscopy. The results displayed that NILE possessed potent immunomodulatory activity by up-regulating IL-2, IFN-γ, IL-10 expression and down-regulating IL-4, TNF-α expression in vitro. NILE also stimulated the in vivo expression of immunoglobulin level in mouse. FTIR analysis revealed phytocompounds of diverse chemical nature present in NILE. Thus, the potent immunomodulatory activity of N. indicum may have serious implications in the treatment of inflammatory diseases in the future.
Collapse
Affiliation(s)
- Priyankar Dey
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri, 734013 West Bengal India
| | - Tapas Kumar Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri, 734013 West Bengal India
| |
Collapse
|
430
|
Ayeka PA, Bian Y, Mwitari PG, Chu X, Zhang Y, Uzayisenga R, Otachi EO. Immunomodulatory and anticancer potential of Gan cao (Glycyrrhiza uralensis Fisch.) polysaccharides by CT-26 colon carcinoma cell growth inhibition and cytokine IL-7 upregulation in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:206. [PMID: 27401917 PMCID: PMC4940688 DOI: 10.1186/s12906-016-1171-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chinese licorice, (Glycyrrhiza uralensis Fisch.) is one of the commonly prescribed herbs in Traditional Chinese Medicine (TCM). Gancao, as commonly known in China, is associated with immune-modulating and anti-tumor potential though the mechanism of action is not well known. In this study, we investigated the in vitro immunomodulatory and antitumor potential of Glycyrrhiza uralensis polysaccharides fractions of high molecular weight (fraction A), low molecular weight (fraction B) and crude extract (fraction C). METHODS Cell proliferation and cytotoxicity was investigated using Cell Counting kit 8 (CCK-8) on Intestinal epithelial cell line (IEC-6) and Colon carcinoma cell line (CT-26). IL-7 gene expression relative to GAPDH was analysed using Real time PCR. The stimulation and viability of T lymphocytes was determined by Trypan blue exclusion assay. RESULTS G.uralensis polysaccharides did not inhibit proliferation of IEC-6 cells even at high concentration. The ED50 was found to be 100 μg/ml. On the other hand, the polysaccharides inhibited the proliferation of cancer cells (CT-26) at a concentration of ≤50 μg/ml. Within 72 h of treatment with the polysaccharides, expression of IL-7 gene was up-regulated over 2 times. It was also noted that, IEC-6 cells secrete IL-7 cytokine into media when treated with G.uralensis polysaccharides. The secreted IL-7 stimulated proliferation of freshly isolated T lymphocytes within 6 h. The effect of the polysaccharides were found to be molecular weight depended, with low molecular weight having a profound effect compared to high molecular weight and total crude extract. CONCLUSION Our findings indicate that G.uralensis polysaccharides especially those of low molecular weight have a potential as anticancer agents. Of great importance, is the ability of the polysaccharides to up-regulate anticancer cytokine IL-7, which is important in proliferation and maturation of immune cells and it is associated with better prognosis in cancer. Therefore, immunomodulation is a possible mode of action of the polysaccharides in cancer therapy.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- Department of Biological Sciences, Faculty of Science, Egerton University, PO BOX 536-20115, Egerton, Kenya
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China.
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Peter Githaiga Mwitari
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Xiaoqian Chu
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Rosette Uzayisenga
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- School of Pharmacy, Mount Kenya University/Kigali campus, P.O BOX 5826, Kigali, Rwanda
| | - Elick Onyango Otachi
- Department of Biological Sciences, Faculty of Science, Egerton University, PO BOX 536-20115, Egerton, Kenya
| |
Collapse
|
431
|
Biopharmaceuticals and gene vectors opening new avenues in cancer immune therapy. Ther Deliv 2016; 7:419-22. [DOI: 10.4155/tde-2016-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
432
|
Mahasa KJ, Ouifki R, Eladdadi A, Pillis LD. Mathematical model of tumor-immune surveillance. J Theor Biol 2016; 404:312-330. [PMID: 27317864 DOI: 10.1016/j.jtbi.2016.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022]
Abstract
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa.
| | - Rachid Ouifki
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
| | | | | |
Collapse
|
433
|
Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells. Biomed Pharmacother 2016; 82:555-60. [PMID: 27470396 DOI: 10.1016/j.biopha.2016.05.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
Cancer remains a high incidence and mortality disease, causing around 8.2 million of deaths in the last year. Current chemotherapy needs to be expanded, making research for new drugs a necessary task. Immune system modulation is an emerging concept in cancer cell proliferation control. In fact, there are a number of mechanisms underlying the role immune system plays in tumor cells. In this work, we describe the structural design, synthesis, antitumor and immunomodulatory potential of 31 new 1,3-thiazole and thiosemicarbazone compounds. Cisplatin was used as anticancer drug control. Cytotoxicity against J774A.1 macrophages and antitumor activity against HT-29 and Jurkat cells was determined. These 1,3-thiazole and thiosemicarbazone compounds not only exhibited cytotoxicity in cancer cells, but were able to cause irreversible cancer cell damage by inducing necrosis and apoptosis. In addition, these compounds, especially pyridyl-thiazoles compounds, regulated immune factors such as interleukin 10 and tumor necrosis factor, possible by directing immune system in favor of modulating cancer cell proliferation. By examining their pharmacological activity, we were able to identify new potent and selective anticancer compounds.
Collapse
|
434
|
Gray MJ, Gong J, Hatch MMS, Nguyen V, Hughes CCW, Hutchins JT, Freimark BD. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res 2016; 18:50. [PMID: 27169467 PMCID: PMC4864933 DOI: 10.1186/s13058-016-0708-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background The purpose of this study was to investigate the potential of antibody-directed immunotherapy targeting the aminophospholipid phosphatidylserine, which promotes immunosuppression when exposed in the tumor microenvironment, alone and in combination with antibody treatment towards the T-cell checkpoint inhibitor PD-1 in breast carcinomas, including triple-negative breast cancers. Methods Immune-competent mice bearing syngeneic EMT-6 or E0771 tumors were subjected to treatments comprising of a phosphatidylserine-targeting and an anti-PD-1 antibody either as single or combinational treatments. Anti-tumor effects were determined by tumor growth inhibition and changes in overall survival accompanying each treatment. The generation of a tumor-specific immune response in animals undergoing complete tumor regression was assessed by secondary tumor cell challenge and splenocyte-produced IFNγ in the presence or absence of irradiated tumor cells. Changes in the presence of tumor-infiltrating lymphocytes were assessed by flow cytometry, while mRNA-based immune profiling was determined using NanoString PanCancer Immune Profiling Panel analysis. Results Treatment by a phosphatidylserine-targeting antibody inhibits in-vivo growth and significantly enhances the anti-tumor activity of antibody-mediated PD-1 therapy, including providing a distinct survival advantage over treatment by either single agent. Animals in which complete tumor regression occurred with combination treatments were resistant to secondary tumor challenge and presented heightened expression levels of splenocyte-produced IFNγ. Combinational treatment by a phosphatidylserine-targeting antibody with anti-PD-1 therapy increased the number of tumor-infiltrating lymphocytes more than that observed with single-arm therapies. Finally, immunoprofiling analysis revealed that the combination of anti-phosphatidylserine targeting antibody and anti-PD-1 therapy enhanced tumor-infiltrating lymphocytes, and increased expression of pro-immunosurveillance-associated cytokines while significantly decreasing expression of pro-tumorigenic cytokines that were induced by single anti-PD-1 therapy. Conclusions Our data suggest that antibody therapy targeting phosphatidylserine-associated immunosuppression, which has activity as a single agent, can significantly enhance immunotherapies targeting the PD-1 pathway in murine breast neoplasms, including triple-negative breast cancers.
Collapse
Affiliation(s)
- Michael J Gray
- Department of Preclinical Research, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA.
| | - Jian Gong
- Department of Preclinical Research, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Michaela M S Hatch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Van Nguyen
- Department of Preclinical Research, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Jeff T Hutchins
- Department of Preclinical Research, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Bruce D Freimark
- Department of Preclinical Research, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| |
Collapse
|
435
|
Deo VK, Kato T, Park EY. Virus-Like Particles Displaying Recombinant Short-Chain Fragment Region and Interleukin 2 for Targeting Colon Cancer Tumors and Attracting Macrophages. J Pharm Sci 2016; 105:1614-1622. [DOI: 10.1016/j.xphs.2016.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
436
|
Lin HC, Lin JY. Immune Cell-Conditioned Media Suppress Prostate Cancer PC-3 Cell Growth Correlating With Decreased Proinflammatory/Anti-inflammatory Cytokine Ratios in the Media Using 5 Selected Crude Polysaccharides. Integr Cancer Ther 2016; 15:NP13-NP25. [PMID: 27130724 PMCID: PMC5739154 DOI: 10.1177/1534735415627923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022] Open
Abstract
Five different crude polysaccharides from guava seed (GSPS), bitter buckwheat (BBPS), common buckwheat (CBPS), red Formosa lambsquarters (RFLPS), and yellow Formosa lambsquarters (YFLPS) were isolated to treat human prostate cancer PC-3 cells via direct action or tumor immunotherapy. The splenocyte- and macrophage-conditioned media (SCM and MCM) were prepared using individual selected polysaccharides, and then SCM or MCM was further collected to treat PC-3 cells. The relationship between PC-3 cell growth and Th1/Th2 cytokines in SCM as well as proinflammatory/anti-inflammatory cytokine secretion profiles in MCM were delineated. The results showed that all 5 selected polysaccharides did not significantly inhibit PC-3 cell growth via direct action. However, SCM or MCM cultured in the absence or presence of 5 selected polysaccharides significantly (P < .05) inhibited PC-3 cell growth. MCM cultured with 5 polysaccharides dose dependently enhanced their inhibitory effects on the viabilities of PC-3 cells than those cultured without polysaccharides. There was a significant (P < .05) negative correlation between PC-3 cell viabilities and (interleukin [IL]-6 + tumor necrosis factor [TNF]-α)/IL-10 level ratios in the corresponding MCM, implying that macrophages suppress PC-3 cell growth through decreasing secretion ratios of proinflammatory/anti-inflammatory cytokines in a tumor microenvironment.
Collapse
Affiliation(s)
| | - Jin-Yuarn Lin
- National Chung Hsing University, Taiwan, Republic of China
| |
Collapse
|
437
|
Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells. Immunol Cell Biol 2016; 94:673-9. [PMID: 27089941 DOI: 10.1038/icb.2016.38] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo.
Collapse
|
438
|
Madhumathi J, Sridevi S, Verma RS. Novel TNF-related Apoptotic-inducing Ligand-based Immunotoxin for Therapeutic Targeting of CD25 Positive Leukemia. Target Oncol 2016; 11:535-47. [DOI: 10.1007/s11523-016-0424-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
439
|
Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 2016; 15:235-47. [PMID: 26965203 DOI: 10.1038/nrd.2015.35] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the regulatory approval of ipilimumab in 2011, the field of cancer immunotherapy has been experiencing a renaissance. This success is based on progress in both preclinical and clinical science, including the development of new methods of investigation. Immuno-oncology has become a sub-specialty within oncology owing to its unique science and its potential for substantial and long-term clinical benefit. Immunotherapy agents do not directly attack the tumour but instead mobilize the immune system - this can be achieved through various approaches that utilize adaptive or innate immunity. Therefore, immuno-oncology drug development encompasses a broad range of agents, including antibodies, peptides, proteins, small molecules, adjuvants, cytokines, oncolytic viruses, bi-specific molecules and cellular therapies. This Perspective summarizes the recent history of cancer immunotherapy, including the factors that led to its success, provides an overview of novel drug-development considerations, summarizes three generations of immunotherapies that have been developed since 2011 and, thus, illustrates the breadth of opportunities these new generations of immunotherapies represent.
Collapse
Affiliation(s)
- Axel Hoos
- Oncology Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA
| |
Collapse
|
440
|
Nakhlé J, Pierron V, Bauchet AL, Plas P, Thiongane A, Meyer-Losic F, Schmidlin F. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology 2016; 5:e1145333. [PMID: 27471612 PMCID: PMC4955379 DOI: 10.1080/2162402x.2016.1145333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/16/2016] [Indexed: 01/25/2023] Open
Abstract
The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an "inflamed" milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa.
Collapse
Affiliation(s)
- Jessica Nakhlé
- IPSEN Innovation, Global Drug Discovery department , Les Ulis, France
| | - Valérie Pierron
- IPSEN Innovation, Global Drug Discovery department , Les Ulis, France
| | | | - Pascale Plas
- IPSEN Innovation, Global Drug Discovery department , Les Ulis, France
| | - Amath Thiongane
- IPSEN Innovation, Global Drug Discovery department , Les Ulis, France
| | | | - Fabien Schmidlin
- IPSEN Innovation, Global Drug Discovery department , Les Ulis, France
| |
Collapse
|
441
|
Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, Park NH, Cho HR, Kwon B. Intratumorally Establishing Type 2 Innate Lymphoid Cells Blocks Tumor Growth. THE JOURNAL OF IMMUNOLOGY 2016; 196:2410-23. [PMID: 26829987 DOI: 10.4049/jimmunol.1501730] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
A long-standing question in the field of tumor immunotherapy is how Th2 cytokines block tumor growth. Their antitumor effects are particularly prominent when they are secreted continuously in tumors, suggesting that Th2 cytokines may create a tumor microenvironment unfavorable for tumor growth independently of adaptive immunity. In this study, we show that local production of IL-33 establishes a high number of type 2 innate lymphoid cells (ILC2s) with potent antitumor activity. IL-33 promotes secretion of a massive amount of CXCR2 ligands from ILC2s but creates a tumor microenvironment where tumor cells express CXCR2 through a dysfunctional angiogenesis/hypoxia/reactive oxygen species axis. These two signaling events converge to reinforce tumor cell-specific apoptosis through CXCR2. Our results identify a previously unrecognized antitumor therapeutic pathway wherein ILC2s play a central role.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Wonyoung Kim
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - U J Moon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyun J Kim
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Jeong-Im Sin
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Neung H Park
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; Department of Internal Medicine, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; and
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; Department of Surgery, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan 682-714, Republic of Korea; School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea;
| |
Collapse
|
442
|
Ahmed KK, Geary SM, Salem AK. Development and Evaluation of Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine. J Pharm Sci 2016; 105:1173-9. [PMID: 26886334 DOI: 10.1016/j.xphs.2015.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022]
Abstract
Immune adjuvants are important components of current and prospective cancer vaccines. In this study, we aimed at evaluating the use of a synthetic lipid A derivative, pentaerythritol lipid A (PET lipid A), loaded into poly(lactic-co-glycolic acid) particles, as a potential cancer vaccine adjuvant. Poly(lactic-co-glycolic acid) particles (size range: 250-600 nm) were successfully formulated to include PET lipid A and/or the model tumor antigen, chicken ovalbumin (OVA). It was shown that particulated PET lipid A had a distinct advantage at promoting secretion of the immune potentiating cytokine, IL-12p70, and upregulating key costimulatory surface proteins, CD86 and CD40, in murine dendritic cells in vitro. In a murine tumor model, involving prophylactic vaccination with various permutations of soluble versus particulated formulations of OVA with or without PET lipid A, modest benefit was observed in terms of OVA-specific cell-mediated immune responses when PET lipid A was delivered in particles. These findings translated into a corresponding trend toward increased survival of mice challenged with OVA-expressing tumor cells (E.G7). In terms of translation of safe adjuvants into the clinic, these results promote the concept of delivering toll-like receptor-4 agonists in particles because doing so improves their adjuvant properties, while decreasing the chances of adverse effects due to off-target uptake by nonphagocytic cells.
Collapse
Affiliation(s)
- Kawther K Ahmed
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
443
|
Tarazona R, Duran E, Solana R. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy. Front Immunol 2016; 6:649. [PMID: 26779186 PMCID: PMC4703774 DOI: 10.3389/fimmu.2015.00649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.
Collapse
Affiliation(s)
- Raquel Tarazona
- Immunology Unit, University of Extremadura , Caceres , Spain
| | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary Medicine, University of Extremadura , Caceres , Spain
| | - Rafael Solana
- Immunology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| |
Collapse
|
444
|
Mikirova N, Riordan N, Casciari J. Modulation of Cytokines in Cancer Patients by Intravenous Ascorbate Therapy. Med Sci Monit 2016; 22:14-25. [PMID: 26724916 PMCID: PMC4756791 DOI: 10.12659/msm.895368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cytokines play an important role in tumor angiogenesis and inflammation. There is evidence in the literature that high doses of ascorbate can reduce inflammatory cytokine levels in cancer patients. The objective of this study was to investigate the effect of treatment by intravenous vitamin C (IVC) on cytokines and tumor markers. MATERIAL/METHODS With the availability of protein array kits allowing assessment of many cytokines in a single sample, we measured 174 cytokines and additional 54 proteins and tumor markers in 12 cancer patients before and after a series of IVC treatments. RESULTS Presented results show for our 12 patients the effect of treatment resulted in normalization of many cytokine levels. Cytokines that were most consistently elevated prior to treatments included M-CSF-R, Leptin, EGF, FGF-6, TNF-α, β, TARC, MCP-1,4, MIP, IL-4, 10, IL-4, and TGF-β. Cytokine levels tended to decrease during the course of treatment. These include mitogens (EGF, Fit-3 ligand, HGF, IGF-1, IL-21R) and chemo-attractants (CTAC, Eotaxin, E-selectin, Lymphotactin, MIP-1, MCP-1, TARC, SDF-1), as well as inflammation and angiogenesis factors (FGF-6, IL-1β, TGF-1). CONCLUSIONS We are able to show that average z-scores for several inflammatory and angiogenesis promoting cytokines are positive, indicating that they are higher than averages for healthy controls, and that their levels decreased over the course of treatment. In addition, serum concentrations of tumor markers decreased during the time period of IVC treatment and there were reductions in cMyc and Ras, 2 proteins implicated in being upregulated in cancer.
Collapse
Affiliation(s)
- Nina Mikirova
- Bio-Communication Research Institute, Riordan Clinic, Wichita, KS, U.S.A
| | | | | |
Collapse
|
445
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
446
|
Abstract
Recent exciting progress in cancer immunotherapy has ushered in a new era of cancer treatment. Immunotherapy can elicit unprecedented durable responses in advanced cancer patients that are much greater than conventional chemotherapy. However, such responses only occur in a relatively small fraction of patients. A positive response to immunotherapy usually relies on dynamic interactions between tumor cells and immunomodulators inside the tumor microenvironment (TME). Depending on the context of these interactions, the TME may play important roles to either dampen or enhance immune responses. Understanding the interactions between immunotherapy and the TME is not only critical to dissect the mechanisms of action but also important to provide new approaches in improving the efficiency of current immunotherapies. In this review, we will highlight recent work on how the TME can influence the efficacy of immunotherapy as well as how manipulating the TME can improve current immunotherapy regimens in some cases.
Collapse
Affiliation(s)
- Haidong Tang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jian Qiao
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
447
|
Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. Am Soc Clin Oncol Educ Book 2016; 35:298-308. [PMID: 27249709 DOI: 10.1200/edbk_156572] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent success of immunotherapy strategies such as immune checkpoint blockade in several malignancies has established the role of immunotherapy in the treatment of cancer. Cancers use multiple mechanisms to co-opt the host-tumor immune interactions, leading to immune evasion. Our understanding of the host-tumor interactions has evolved over the past few years and led to various promising new therapeutic strategies. This article will focus on the basic principles of immunotherapy, novel pathways/agents, and combinatorial immunotherapies.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Kurt Schalper
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| |
Collapse
|
448
|
|
449
|
Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM. Nanoparticulate immunotherapy for cancer. J Control Release 2015; 219:167-180. [DOI: 10.1016/j.jconrel.2015.09.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
450
|
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, on behalf of the CheckMate 025 investigators.. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 2015; 373:1803-13. [PMID: 26406148 PMCID: PMC5719487 DOI: 10.1056/nejmoa1510665] [Citation(s) in RCA: 4561] [Impact Index Per Article: 456.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, was associated with encouraging overall survival in uncontrolled studies involving previously treated patients with advanced renal-cell carcinoma. This randomized, open-label, phase 3 study compared nivolumab with everolimus in patients with renal-cell carcinoma who had received previous treatment. METHODS A total of 821 patients with advanced clear-cell renal-cell carcinoma for which they had received previous treatment with one or two regimens of antiangiogenic therapy were randomly assigned (in a 1:1 ratio) to receive 3 mg of nivolumab per kilogram of body weight intravenously every 2 weeks or a 10-mg everolimus tablet orally once daily. The primary end point was overall survival. The secondary end points included the objective response rate and safety. RESULTS The median overall survival was 25.0 months (95% confidence interval [CI], 21.8 to not estimable) with nivolumab and 19.6 months (95% CI, 17.6 to 23.1) with everolimus. The hazard ratio for death with nivolumab versus everolimus was 0.73 (98.5% CI, 0.57 to 0.93; P=0.002), which met the prespecified criterion for superiority (P≤0.0148). The objective response rate was greater with nivolumab than with everolimus (25% vs. 5%; odds ratio, 5.98 [95% CI, 3.68 to 9.72]; P<0.001). The median progression-free survival was 4.6 months (95% CI, 3.7 to 5.4) with nivolumab and 4.4 months (95% CI, 3.7 to 5.5) with everolimus (hazard ratio, 0.88; 95% CI, 0.75 to 1.03; P=0.11). Grade 3 or 4 treatment-related adverse events occurred in 19% of the patients receiving nivolumab and in 37% of the patients receiving everolimus; the most common event with nivolumab was fatigue (in 2% of the patients), and the most common event with everolimus was anemia (in 8%). CONCLUSIONS Among patients with previously treated advanced renal-cell carcinoma, overall survival was longer and fewer grade 3 or 4 adverse events occurred with nivolumab than with everolimus. (Funded by Bristol-Myers Squibb; CheckMate 025 ClinicalTrials.gov number, NCT01668784.).
Collapse
Affiliation(s)
| | | | | | | | - Hans J. Hammers
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | - Scott S. Tykodi
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | - Toni K. Choueiri
- Dana-Farber Cancer Institute Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Howard Gurney
- Westmead Hospital and Macquarie University, Sydney, Australia
| | | | - Petri Bono
- Helsinki University Central Hospital, Helsinki, Finland, and University of Helsinki, Helsinki, Finland
| | - John Wagstaff
- South West Wales Cancer Institute and Swansea University College of Medicine, Swansea, UK
| | - Thomas C. Gauler
- University Hospital Essen of University of Duisburg-Essen, Germany
| | | | | | - Fabio A. Schutz
- Hospital Sao Jose, Beneficencia Portuguesa de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alain Ravaud
- Bordeaux University Hospital, Hôpital Saint André, Bordeaux, France
| | | | - Li-An Xu
- Bristol-Myers Squibb, Hopewell, NJ
| | | | | | | |
Collapse
|