1
|
Nunes A, Singh S, Khayachi A, Stern S, Trappenberg T, Alda M. The Impact of Electrophysiological Diversity on Pattern Completion in Lithium Nonresponsive Bipolar Disorder: A Computational Modeling Approach. Brain Behav 2025; 15:e70209. [PMID: 39832133 PMCID: PMC11745123 DOI: 10.1002/brb3.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3. METHODS We simulated pattern completion tasks using a computational model of the CA3 with different degrees of pyramidal cell excitability variance. Since pyramidal cell excitability variance naturally leads to a mix of hyperexcitability and hypoexcitability, we also examined what fraction (hyper- vs. hypoexcitable) was predominantly responsible for pattern completion errors in our model. RESULTS Pyramidal cell excitability variance impaired pattern completion (linear model β = -2.00, SE = 0.03, p < 0.001). The effect was invariant to all other parameter settings in the model. Excitability variance, specifically hyperexcitability, increased the number of spuriously active neurons, increasing false alarm rates and producing pattern completion deficits. Excessive inhibition also induces pattern completion deficits by limiting the number of correctly active neurons during pattern retrieval. CONCLUSIONS Excitability variance in CA3 pyramidal cell-like neurons observed in lithium nonresponders may predict pattern completion deficits in these patients. These cognitive deficits may not be fully corrected by medications that minimize excitability. Future studies should test our predictions by examining behavioral correlates of pattern completion in lithium-responsive and -nonresponsive BD patients.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Selena Singh
- Department of Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonOntarioCanada
| | - Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | | | - Martin Alda
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
4
|
Hartmann J, Bajaj T, Otten J, Klengel C, Ebert T, Gellner AK, Junglas E, Hafner K, Anderzhanova EA, Tang F, Missig G, Rexrode L, Trussell DT, Li KX, Pöhlmann ML, Mackert S, Geiger TM, Heinz DE, Lardenoije R, Dedic N, McCullough KM, Próchnicki T, Rhomberg T, Martinelli S, Payton A, Robinson AC, Stein V, Latz E, Carlezon WA, Hausch F, Schmidt MV, Murgatroyd C, Berretta S, Klengel T, Pantazopoulos H, Ressler KJ, Gassen NC. SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration. Nat Commun 2024; 15:2635. [PMID: 38528004 PMCID: PMC10963788 DOI: 10.1038/s41467-024-46953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Joy Otten
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Ellen Junglas
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Elmira A Anderzhanova
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Fiona Tang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Galen Missig
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel T Trussell
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Katelyn X Li
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Max L Pöhlmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sarah Mackert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Roy Lardenoije
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nina Dedic
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Kenneth M McCullough
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Rhomberg
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Antony Payton
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), 10117, Berlin, Germany
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany.
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
5
|
Ou AH, Rosenthal SB, Adli M, Akiyama K, Akula N, Alda M, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bauer M, Baune BT, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Cervantes P, Chen GB, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cousins DA, Cruceanu C, Czerski PM, Dantas CR, Dayer A, Del Zompo M, Degenhardt F, DePaulo JR, Étain B, Falkai P, Fellendorf FT, Ferensztajn-Rochowiak E, Forstner AJ, Frisén L, Frye MA, Fullerton JM, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Gruber O, Hashimoto R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hofmann A, Hou L, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kittel-Schneider S, König B, Kuo PH, Kusumi I, Lackner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Jaramillo CAL, MacQueen G, Maj M, Manchia M, Marie-Claire C, Martinsson L, Mattheisen M, McCarthy MJ, McElroy SL, McMahon FJ, Mitchell PB, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, Ösby U, Ozaki N, Papiol S, Perlis RH, Pisanu C, Potash JB, Pfennig A, Reich-Erkelenz D, Reif A, Reininghaus EZ, Rietschel M, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulze TG, Schweizer BW, Seemüller F, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Tighe SK, Tortorella A, Turecki G, Vieta E, Volkert J, Witt S, Wray NR, Wright A, Young LT, Zandi PP, Kelsoe JR. Lithium response in bipolar disorder is associated with focal adhesion and PI3K-Akt networks: a multi-omics replication study. Transl Psychiatry 2024; 14:109. [PMID: 38395906 PMCID: PMC10891068 DOI: 10.1038/s41398-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
Collapse
Affiliation(s)
- Anna H Ou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Center for Psychiatry, Psychotherapy and Psychosomatic Medicine, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Azmeraw T Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Department of Evolutive Biology, Ecology and Environmental Sciences, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER de Salud Mental, ISCIII, Madrid, Barcelona, Catalonia, Spain
| | - Jean-Michel Aubry
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Frank Bellivier
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Antonio Benabarre
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Guo-Bo Chen
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - David A Cousins
- Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Clarissa R Dantas
- Department of Psychiatry, University of Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Dayer
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Maria Del Zompo
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Bruno Étain
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Peter Falkai
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frederike Tabea Fellendorf
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Louise Frisén
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Child and Adolescent Psychiatry Research Center, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sébastien Gard
- Pôle de Psychiatrie Générale Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, ON, Canada
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | | | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy-Laxou-Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nina Lackner
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier-Henri Mondor, Pôle de Psychiatrie, Créteil, France
| | - Susan G Leckband
- Department of Pharmacy, VA San Diego Healthcare System, La Jolla, CA, USA
| | | | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Mario Maj
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - Mirko Manchia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope, University of Cincinnati, Mason, OH, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, CIBER de Salud Mental, ISCIII, Madrid, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Urban Ösby
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Thomas G Schulze
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Florian Seemüller
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | | | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Sarah K Tighe
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- University of Iowa Carver College of Medicine and University of Iowa College of Public Health, VA Quality Scholars Program, Iowa City VA Hospital, Iowa City, IA, USA
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Julia Volkert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Naomi R Wray
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD, Australia
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - L Trevor Young
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
6
|
Niemsiri V, Rosenthal SB, Nievergelt CM, Maihofer AX, Marchetto MC, Santos R, Shekhtman T, Alliey-Rodriguez N, Anand A, Balaraman Y, Berrettini WH, Bertram H, Burdick KE, Calabrese JR, Calkin CV, Conroy C, Coryell WH, DeModena A, Eyler LT, Feeder S, Fisher C, Frazier N, Frye MA, Gao K, Garnham J, Gershon ES, Goes FS, Goto T, Harrington GJ, Jakobsen P, Kamali M, Kelly M, Leckband SG, Lohoff FW, McCarthy MJ, McInnis MG, Craig D, Millett CE, Mondimore F, Morken G, Nurnberger JI, Donovan CO, Øedegaard KJ, Ryan K, Schinagle M, Shilling PD, Slaney C, Stapp EK, Stautland A, Tarwater B, Zandi PP, Alda M, Fisch KM, Gage FH, Kelsoe JR. Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis. Mol Psychiatry 2024; 29:6-19. [PMID: 36991131 PMCID: PMC11078741 DOI: 10.1038/s41380-022-01909-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 03/31/2023]
Abstract
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
Collapse
Grants
- R01 MH095741 NIMH NIH HHS
- UL1 TR001442 NCATS NIH HHS
- U19 MH106434 NIMH NIH HHS
- U01 MH092758 NIMH NIH HHS
- T32 MH018399 NIMH NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- Department of Veterans Affairs | Veterans Affairs San Diego Healthcare System (VA San Diego Healthcare System)
- The Halifax group (MA, CVC, JG, CO, and CS) is supported by grants from Canadian Institutes of Health Research (#166098), ERA PerMed project PLOT-BD, Research Nova Scotia, Genome Atlantic, Nova Scotia Health Authority and Dalhousie Medical Research Foundation (Lindsay Family Fund).
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U19MH106434, part of the National Cooperative Reprogrammed Cell Research Groups (NCRCRG) to Study Mental Illness. AHA-Allen Initiative in Brain Health and Cognitive Impairment Award (19PABH134610000). The JPB Foundation, Bob and Mary Jane Engman, Annette C Merle-Smith, R01 MH095741, and Lynn and Edward Streim.
Collapse
Affiliation(s)
- Vipavee Niemsiri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | | | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- University of Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1261266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, Northwestern University, Chicago, IL, USA
| | - Amit Anand
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yokesh Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Calabrese
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Cynthia V Calkin
- Department of Psychiatry and Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Carla Conroy
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anna DeModena
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Feeder
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Carrie Fisher
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Frazier
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Frye
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Keming Gao
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Toyomi Goto
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Petter Jakobsen
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Masoud Kamali
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Marisa Kelly
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Susan G Leckband
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Caitlin E Millett
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gunnar Morken
- Division of Mental Health Care, St Olavs University Hospital, and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ketil J Øedegaard
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Kelly Ryan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martha Schinagle
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Emma K Stapp
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea Stautland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bruce Tarwater
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Stanisavljević Ilić A, Đorđević S, Inta D, Borgwardt S, Filipović D. Olanzapine Effects on Parvalbumin/GAD67 Cell Numbers in Layers/Subregions of Dorsal Hippocampus of Chronically Socially Isolated Rats. Int J Mol Sci 2023; 24:17181. [PMID: 38139008 PMCID: PMC10743576 DOI: 10.3390/ijms242417181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Depression is linked to changes in GABAergic inhibitory neurons, especially parvalbumin (PV) interneurons, which are susceptible to redox dysregulation. Olanzapine (Olz) is an atypical antipsychotic whose mode of action remains unclear. We determined the effect of Olz on PV-positive (+) and glutamate decarboxylase 67 (GAD67) + cell numbers in the layers of dorsal hippocampus (dHIPP) cornu ammonis (CA1-CA3) and dentate gyrus (DG) subregions in rats exposed to chronic social isolation (CSIS), which is an animal model of depression. Antioxidative enzymes and proinflammatory cytokine levels were also examined. CSIS decreased the PV+ cell numbers in the Stratum Oriens (SO) and Stratum Pyramidale (SP) of dCA1 and dDG. It increased interleukin-6 (IL-6), suppressor of cytokine signaling 3 (SOCS3), and copper-zinc superoxide dismutase (CuZnSOD) levels, and it decreased catalase (CAT) protein levels. Olz in CSIS increased the number of GAD67+ cells in the SO and SP layers of dCA1 with no effect on PV+ cells. It reduced the PV+ and GAD67+ cell numbers in the Stratum Radiatum of dCA3 in CSIS. Olz antagonizes the CSIS-induced increase in CuZnSOD, CAT and SOCS3 protein levels with no effect on IL-6. Data suggest that the protective Olz effects in CSIS may be mediated by altering the number of PV+ and GAD67+ cells in dHIPP subregional layers.
Collapse
Affiliation(s)
- Andrijana Stanisavljević Ilić
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Snežana Đorđević
- Poisoning Control Centre, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Dragoš Inta
- Department for Community Health Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany;
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
Caballero-Florán RN, Nelson AD, Min L, Jenkins PM. Effects of chronic lithium treatment on neuronal excitability and GABAergic transmission in an Ank3 mutant mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564203. [PMID: 37961630 PMCID: PMC10634991 DOI: 10.1101/2023.10.26.564203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bipolar disorder (BD) is a common psychiatric disease that can lead to psychosocial disability, decreased quality of life, and high risk for suicide. Genome-wide association studies have shown that the ANK3 gene is a significant risk factor for BD, but the mechanisms involved in BD pathophysiology are not yet fully understood. Previous work has shown that ankyrin-G, the protein encoded by ANK3, stabilizes inhibitory synapses in vivo through its interaction with the GABAA receptor-associated protein (GABARAP). We generated a mouse model with a missense p.W1989R mutation in Ank3, that abolishes the interaction between ankyrin-G and GABARAP, which leads to reduced inhibitory signaling in the somatosensory cortex and increased pyramidal cell excitability. Humans with the same mutation exhibit BD symptoms, which can be attenuated with lithium therapy. In this study, we describe that chronic treatment of Ank3 p.W1989R mice with lithium normalizes neuronal excitability in cortical pyramidal neurons and increases inhibitory GABAergic postsynaptic currents. The same outcome in inhibitory transmission was observed when mice were treated with the GSK-3β inhibitor Tideglusib. These results suggest that lithium treatment modulates the excitability of pyramidal neurons in the cerebral cortex by increasing GABAergic neurotransmission, likely via GSK-3 inhibition. In addition to the importance of these findings regarding ANK3 variants as a risk factor for BD development, this study may have significant implications for treating other psychiatric disorders associated with alterations in inhibitory signaling, such as schizophrenia, autism spectrum disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | - Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Kelsoe J, Ou A, Rosenthal S, Adli M, Akiyama K, Akula N, Alda M, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Banzato C, Bauer M, Baune B, Bellivier F, Benabarre A, Bengesser S, Abesh B, Biernacka J, Bui E, Cervantes P, Chen GB, Chen HC, Chillotti C, Cichon S, Clark S, Colom F, Cousins D, Cruceanu C, Czerski P, Dantas C, Dayer A, Degenhardt F, DePaulo JR, Etain B, Falkai P, Fellendorf F, Ferensztajn-Rochowiak E, Forstner AJ, Frisen L, Frye M, Fullerton J, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Grof P, Gruber O, Hashimoto R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hofmann A, Hou L, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kittel-Schneider S, König B, Kuo PH, Kusumi I, Dalkner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband S, Jaramillo CL, MacQueen G, Maj M, Manchia M, Marie-Claire C, Martinsson L, Mattheisen M, McCarthy M, McElroy S, McMahon F, Mitchell P, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Nöthen M, Novak T, Osby U, Ozaki N, Papiol S, Perlis R, Pfennig A, Potash J, Reich-Erkelenz D, Reif A, Reininghaus E, Rietschel M, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schubert KO, Schulze T, Schweizer B, Seemüller F, Severino G, Shekhtman T, Shilling P, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Tighe S, Tortorella A, Turecki G, Vieta E, Volkert J, Witt S, Wray N, Wright A, Young T, Zandi P, Zompo MD. Lithium Response in Bipolar Disorder is Associated with Focal Adhesion and PI3K-Akt Networks: A Multi-omics Replication Study. RESEARCH SQUARE 2023:rs.3.rs-3258813. [PMID: 37886563 PMCID: PMC10602152 DOI: 10.21203/rs.3.rs-3258813/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
Collapse
Affiliation(s)
| | - Anna Ou
- University of California San Diego
| | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University
| | - Nirmala Akula
- National Institutes of Health, US Dept of Health & Human Services
| | | | | | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hsi-Chung Chen
- 3Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan 4Department of Psychiatry, Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich
| | | | | | | | - Liping Hou
- National Institute of Mental Health Intramural Research Program, National Institutes of Health
| | | | | | | | | | | | | | | | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | - Tomas Novak
- National Institute of Mental Health, Klecany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | - Gustavo Turecki
- Douglas Institute, Department of Psychiatry, McGill University
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kong L, Guo X, Shen Y, Xu L, Huang H, Lu J, Hu S. Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder. Int J Biol Sci 2023; 19:4539-4551. [PMID: 37781027 PMCID: PMC10535711 DOI: 10.7150/ijbs.84923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
Bipolar disorder (BD), a disabling mental disorder, is featured by the oscillation between episodes of depression and mania, along with disturbance in the biological rhythms. It is on an urgent demand to identify the intricate mechanisms of BD pathophysiology. Based on the continuous progression of neural science techniques, the dysfunction of circuits in the central nervous system was currently thought to be tightly associated with BD development. Yet, challenge exists since it depends on techniques that can manipulate spatiotemporal dynamics of neuron activity. Notably, the emergence of optogenetics has empowered researchers with precise timing and local manipulation, providing a possible approach for deciphering the pathological underpinnings of mental disorders. Although the application of optogenetics in BD research remains preliminary due to the scarcity of valid animal models, this technique will advance the psychiatric research at neural circuit level. In this review, we summarized the crucial aberrant brain activity and function pertaining to emotion and rhythm abnormities, thereby elucidating the underlying neural substrates of BD, and highlighted the importance of optogenetics in the pursuit of BD research.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuting Shen
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Le Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huimin Huang
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
11
|
Zamani B, Mehrab Mohseni M, Naghavi Gargari B, Taheri M, Sayad A, Shirvani-Farsani Z. Reduction of GAS5 and FOXD3-AS1 long non-coding RNAs in patients with bipolar disorder. Sci Rep 2023; 13:13870. [PMID: 37620425 PMCID: PMC10449891 DOI: 10.1038/s41598-023-41135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Bipolar disorder (BD) patients suffer from severe disability and premature death because of failure in prognosis, diagnosis, and treatment. Although neural mechanisms of bipolar have not been fully discovered, studies have shown long noncoding RNAs (lncRNAs) can play an important role in signaling pathways such as PI3K/AKT pathway. There has been little study on deregulated lncRNAs and the lncRNAs' mode of action in the BD. Hence, we aimed to investigate the expression of PI3K/AKT pathway-related lncRNAs named TUG1, GAS5, and FOXD3-AS1 lncRNAs in the PMBC in 50 bipolar patients and 50 healthy controls. Our results showed that FOXD3-AS1 and GAS5 under-expressed significantly in bipolar patients compared to healthy controls (P = 0.0028 and P < 0.0001 respectively). Moreover, after adjustment, all P values remained significant (q value < 0.0001). According to the ROC curve, AUC (area under the curve), specificity, and sensitivity of these lncRNAs, GAS5 and FOXD3-AS1 might work as BD candidate diagnostic biomarkers. Taken together, the current results highlight that the dysregulation of FOXD3-AS1 and GAS5 may be associated with an increased risk of BD.
Collapse
Affiliation(s)
- Bita Zamani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bahar Naghavi Gargari
- Department of Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
13
|
Zhang S, Hu S, Dong W, Huang S, Jiao Z, Hu Z, Dai S, Yi Y, Gong X, Li K, Wang H, Xu D. Prenatal dexamethasone exposure induces anxiety- and depressive-like behavior of male offspring rats through intrauterine programming of the activation of NRG1-ErbB4 signaling in hippocampal PV interneurons. Cell Biol Toxicol 2023; 39:657-678. [PMID: 34189720 DOI: 10.1007/s10565-021-09621-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Dexamethasone is a commonly used synthetic glucocorticoid in the clinic. As a compound that can cross the placental barrier to promote fetal lung maturation, dexamethasone is extensively used in pregnant women at risk of premature delivery. However, the use of glucocorticoids during pregnancy increases the risk of neurodevelopmental disorders. In the present study, we observed anxiety- and depressive-like behavior changes and hyperexcitability of hippocampal neurons in adult rat offspring with previous prenatal dexamethasone exposure (PDE); the observed changes were related to in utero damage of parvalbumin interneurons. A programmed change in neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ErbB4) signaling was the key to the damage of parvalbumin interneurons in the hippocampus of PDE offspring. Anxiety- and depressive-like behavior, NRG1-ErbB4 signaling activation, and damage of parvalbumin interneurons in PDE offspring were aggravated after chronic stress. The intervention of NRG1-ErbB4 signaling contributed to the improvement in dexamethasone-mediated injury to parvalbumin interneurons. These results suggested that PDE might cause anxiety- and depressive-like behavior changes in male rat offspring through the programmed activation of NRG1-ErbB4 signaling, resulting in damage to parvalbumin interneurons and hyperactivity of the hippocampus. Intrauterine programming of neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ERBB4) overactivation by dexamethasone mediates anxiety- and depressive-like behavior in male rat offspring.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Songqiang Huang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Dan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
14
|
Hartmann J, Bajaj T, Otten J, Klengel C, Gellner AK, Junglas E, Hafner K, Anderzhanova EA, Tang F, Missig G, Rexrode L, Li K, Pöhlmann ML, Heinz DE, Lardenoije R, Dedic N, McCullough KM, Próchnicki T, Rhomberg T, Martinelli S, Payton A, Robinson AC, Stein V, Latz E, Carlezon WA, Schmidt MV, Murgatroyd C, Berretta S, Klengel T, Pantazopoulos H, Ressler KJ, Gassen NC. SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534570. [PMID: 37066393 PMCID: PMC10103985 DOI: 10.1101/2023.04.03.534570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.
Collapse
|
15
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
16
|
Banerjee T, Pati S, Tiwari P, Vaidya VA. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J Biosci 2022. [DOI: 10.1007/s12038-022-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Onitsuka T, Tsuchimoto R, Oribe N, Spencer KM, Hirano Y. Neuronal imbalance of excitation and inhibition in schizophrenia: a scoping review of gamma-band ASSR findings. Psychiatry Clin Neurosci 2022; 76:610-619. [PMID: 36069299 DOI: 10.1111/pcn.13472] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Recent empirical findings suggest that altered neural synchronization, which is hypothesized to be associated with an imbalance of excitatory (E) and inhibitory (I) neuronal activities, may underlie a core pathophysiological mechanism in patients with schizophrenia. The auditory steady-state response (ASSR) examined by electroencephalography (EEG) and magnetoencephalography (MEG) has been proposed as a potential biomarker for evaluating altered neural synchronization in schizophrenia. For this review, we performed a comprehensive literature search for papers published between 1999 and 2021 examining ASSRs in patients with schizophrenia. Almost all EEG-ASSR studies reported gamma-band ASSR reductions, especially to 40-Hz stimuli both in power and/or phase synchronization in chronic and first-episode schizophrenia. In addition, similar to EEG-ASSR findings, MEG-ASSR deficits to 80-Hz stimuli (high gamma) have been reported in patients with schizophrenia. Moreover, the 40-Hz ASSR is likely to be a predictor of the onset of schizophrenia. Notably, increased spontaneous (or ongoing) broadband (30-100 Hz) gamma power has been reported during ASSR tasks, which resembles the increased spontaneous gamma activity reported in animal models of E/I imbalance. Further research on ASSRs and evoked and spontaneous gamma oscillations is expected to elucidate the pathophysiology of schizophrenia with translational implications.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rikako Tsuchimoto
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| |
Collapse
|
18
|
Balog M, Anderson A, Gurumurthy CB, Quadros RM, Korade Z, Mirnics K. Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. J Neurosci Methods 2022; 381:109704. [PMID: 36070817 DOI: 10.1016/j.jneumeth.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Somatostatin (SST) and cholecystokinin (CCK) are peptide hormones that regulate the endocrine system, cell proliferation and neurotransmission. NEW METHOD We utilized the novel Easi-CRISPR system to generate two knock-in mouse strains with Cre recombinase in SST- and CCK-expressing cells and validated their utility in the developing and adult brain tissues. RESULTS The full nomenclature for the newly generated strains are C57BL/6-Sstem1(P2A-iCre-T2A-mCherry)Mirn and C57BL/6-Cckem1(iCre-T2A-mCherry-P2A)Mirn. For the Sst locus, a P2A-iCre-T2A-mCherry cassette was inserted immediately upstream of the stop codon (C terminus fusion). For the Cck locus, iCre-P2A-mCherry-T2A cassette was inserted at the start codon (N terminus fusion). Knock-in mice were generated using the Easi-CRISPR method. Developmental and adult SST and CCK expressions were preserved and showed an appropriate expression pattern in both models, with an active fluorescent tag in both animal lines. COMPARISON WITH EXISTING METHODS Knock-in mouse models to study cell types that produce these critically important molecules are limited to date. The knock-in mice we generated can be used as reporters to study development, physiology, or pathophysiology of SST and CCK expressing cells - without interference with native expression of SST and CCK. In addition, they can be used as Cre driver models to conditionally delete floxed genes in SST and CCK expressing cells across various tissues. CONCLUSIONS These two mouse models serve as valuable tools for in vitro and in vivo research studies related to SST and CCK biology across the lifespan and across different tissue types.
Collapse
Affiliation(s)
- Marta Balog
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA; Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE, USA; Child Health Research Institute, University of Nebraska Medical Center Omaha, NE, USA.
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pediatrics, University of Nebraska Medical Center Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE, USA; Child Health Research Institute, University of Nebraska Medical Center Omaha, NE, USA.
| |
Collapse
|
19
|
Li H, Sung HH, Lau CG. Activation of Somatostatin-Expressing Neurons in the Lateral Septum Improves Stress-Induced Depressive-like Behaviors in Mice. Pharmaceutics 2022; 14:pharmaceutics14102253. [PMID: 36297687 PMCID: PMC9607457 DOI: 10.3390/pharmaceutics14102253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a debilitating mood disorder with highly heterogeneous pathogenesis. The limbic system is well-linked to depression. As an important node in the limbic system, the lateral septum (LS) can modulate multiple affective and motivational behaviors. However, the role of LS in depression remains unclear. By using c-Fos expression mapping, we first screened and showed activation of the LS in various depression-related behavioral tests, including the forced swim test (FST), tail suspension test (TST), and sucrose preference test. In the LS, more than 10% of the activated neurons were somatostatin-expressing (SST) neurons. We next developed a microendoscopic calcium imaging method in freely moving mice and revealed that LSSST neural activity increased during mobility in the TST but not open field test. We hypothesize that LSSST neuronal activity is linked to stress and depression. In two mouse models of depression, repeated lipopolysaccharide (LPS) injection and chronic restraint stress (CRS), we showed that LS neuronal activation was suppressed. To examine whether the re-activation of LSSST neurons can be therapeutically beneficial, we optogenetically activated LSSST neurons and produced antidepressant-like effects in LPS-injected mice by increasing TST motility. Moreover, chemogenetic activation of LSSST neurons increased FST struggling in the CRS-exposed mice. Together, these results provide the first evidence of a role for LSSST neurons in regulating depressive-like behaviors in mice and identify them as a potential therapeutic target for neuromodulation-based intervention in depression.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Hyun Hailey Sung
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3442-4345
| |
Collapse
|
20
|
Mannekote Thippaiah S, Pradhan B, Voyiaziakis E, Shetty R, Iyengar S, Olson C, Tang YY. Possible Role of Parvalbumin Interneurons in Meditation and Psychiatric Illness. J Neuropsychiatry Clin Neurosci 2022; 34:113-123. [PMID: 35040663 DOI: 10.1176/appi.neuropsych.21050136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parvalbumin (PV) interneurons are present in multiple brain regions and produce complex influences on brain functioning. An increasing number of research findings indicate that the function of these interneurons is more complex than solely to inhibit pyramidal neurons in the cortex. They generate feedback and feedforward inhibition of cortical neurons, and they are critically involved in the generation of neuronal network oscillation. These oscillations, generated by various brain regions, are linked to perceptions, thought processes, and cognitive functions, all of which, in turn, influence human emotions and behavior. Both animal and human studies consistently have found that meditation practice results in enhancement in the effects of alpha-, theta-, and gamma-frequency oscillations, which may correspond to positive changes in cognition, emotion, conscious awareness, and, subsequently, behavior. Although the study of meditation has moved into mainstream neuroscience research, the link between PV interneurons and any role they might play in meditative states remains elusive. This article is focused primarily on gamma-frequency oscillation, which is generated by PV interneurons, to develop insight and perspective into the role of PV interneurons in meditation. This article also points to new and emerging directions that address whether this role of PV interneurons in meditation extends to a beneficial, and potentially therapeutic, role in the treatment of common psychiatric disorders, including schizophrenia.
Collapse
Affiliation(s)
- Srinagesh Mannekote Thippaiah
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Basant Pradhan
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Emanuel Voyiaziakis
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Rashika Shetty
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Sloka Iyengar
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Carol Olson
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Yi-Yuan Tang
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| |
Collapse
|
21
|
Grotzinger AD, Mallard TT, Akingbuwa WA, Ip HF, Adams MJ, Lewis CM, McIntosh AM, Grove J, Dalsgaard S, Lesch KP, Strom N, Meier SM, Mattheisen M, Børglum AD, Mors O, Breen G, Lee PH, Kendler KS, Smoller JW, Tucker-Drob EM, Nivard MG. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat Genet 2022; 54:548-559. [PMID: 35513722 PMCID: PMC9117465 DOI: 10.1038/s41588-022-01057-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
Abstract
We interrogate the joint genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. We identify four broad factors (neurodevelopmental, compulsive, psychotic and internalizing) that underlie genetic correlations among the disorders and test whether these factors adequately explain their genetic correlations with biobehavioral traits. We introduce stratified genomic structural equation modeling, which we use to identify gene sets that disproportionately contribute to genetic risk sharing. This includes protein-truncating variant-intolerant genes expressed in excitatory and GABAergic brain cells that are enriched for genetic overlap across disorders with psychotic features. Multivariate association analyses detect 152 (20 new) independent loci that act on the individual factors and identify nine loci that act heterogeneously across disorders within a factor. Despite moderate-to-high genetic correlations across all 11 disorders, we find little utility of a single dimension of genetic risk across psychiatric disorders either at the level of biobehavioral correlates or at the level of individual variants.
Collapse
Affiliation(s)
- Andrew D Grotzinger
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA.
| | - Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Wonuola A Akingbuwa
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Hill F Ip
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, UK
| | | | - Jakob Grove
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Klaus-Peter Lesch
- Section of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nora Strom
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra M Meier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, UK
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU) and the Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU) and the Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Okamoto H, Onitsuka T, Kuga H, Oribe N, Nakayama N, Fukushima S, Nakao T, Ueno T. Decreased BOLD signals elicited by 40-Hz auditory stimulation of the right primary auditory cortex in bipolar disorder: An fMRI study. Front Psychiatry 2022; 13:833896. [PMID: 36186861 PMCID: PMC9519862 DOI: 10.3389/fpsyt.2022.833896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A number studies have been conducted on abnormalities in the cortical circuitry of gamma oscillations, including deficit in auditory steady-state response (ASSR) to gamma-frequency (≧ 30-Hz) stimulation, in patients with bipolar disorder (BD). In the current study, we investigated neural responses during click stimulation by blood oxygen level-dependent (BOLD) signals. We focused on Broadman 41 and 42, the main sources of ASSR. MATERIALS AND METHODS We acquired BOLD responses elicited by click trains of 80-, 40-, 30- and 20-Hz frequencies from 25 patients with BD to 27 healthy controls (HC) with normal hearing between 22 and 59 years of age assessed via a standard general linear-model-based analysis. We extracted contrast values by identifying the primary auditory cortex and Brodmann areas 41 and 42 as regions of interest (ROI)s. RESULTS BD group showed significantly decreased ASSR-BOLD signals in response to 40-Hz stimuli compared to the HC group in the right Brodmann areas 41 and 42. We found significant negative correlations between the BOLD change in the right Brodmann areas 41 and 42 and Structured Interview Guide for the Hamilton Depression Rating Scale (SIGH-D) scores, also the BOLD change in the right Brodmann areas 41 and 42 and the Positive and Negative Syndrome Scale (PANSS)-Negative scores. CONCLUSION The observed decrease in BOLD signal patterns in the right primary auditory cortex during 40-Hz ASSR may be a potential biomarker option for bipolar disorder.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Kuga
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,National Center for Cognitive Behavioral Therapy and Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoya Oribe
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naho Nakayama
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Shou Fukushima
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Medical Corporation Kouseikai, Michinoo Hospital, Nagasaki, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
24
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
25
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
26
|
Umeoka EHL, van Leeuwen JMC, Vinkers CH, Joëls M. The Role of Stress in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:21-39. [PMID: 32748285 DOI: 10.1007/7854_2020_151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress is a major risk factor for bipolar disorder. Even though we do not completely understand how stress increases the risk for the onset and poorer course of bipolar disorder, knowledge of stress physiology is rapidly evolving. Following stress, stress hormones - including (nor)adrenaline and corticosteroid - reach the brain and change neuronal function in a time-, region-, and receptor-dependent manner. Stress has direct consequences for a range of cognitive functions which are time-dependent. Directly after stress, emotional processing is increased at the cost of higher brain functions. In the aftermath of stress, the reverse is seen, i.e., increased executive function and contextualization of information. In bipolar disorder, basal corticosteroid levels (under non-stressed conditions) are generally found to be increased with blunted responses in response to experimental stress. Moreover, patients who have bipolar disorder generally show impaired brain function, including reward processing. There is some evidence for a causal role of (dysfunction of) the stress system in the etiology of bipolar disorder and their effects on brain system functionality. However, longitudinal studies investigating the functionality of the stress systems in conjunction with detailed information on the development and course of bipolar disorder are vital to understand in detail how stress increases the risk for bipolar disorder.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Faculty of Medicine, University Center Unicerrado, Goiatuba, GO, Brazil.
| | - Judith M C van Leeuwen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan H Vinkers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marian Joëls
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 2021; 46:279-287. [PMID: 32722660 PMCID: PMC7852528 DOI: 10.1038/s41386-020-0778-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
Parvalbumin-expressing interneurons (PV-INs) are highly vulnerable to stressors and have been implicated in many neuro-psychiatric diseases such as schizophrenia, Alzheimer's disease, autism spectrum disorder, and bipolar disorder. We examined the literature about the current knowledge of the physiological properties of PV-INs and gathered results from diverse research areas to provide insight into their vulnerability to stressors. Among the factors that confer heightened vulnerability are the substantial energy requirements, a strong excitatory drive, and a unique developmental trajectory. Understanding these stressors and elaborating on their impact on PV-IN health is a step toward developing therapies to protect these neurons in various disease states and to retain critical brain functions.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Konradi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry 2021; 26:151-167. [PMID: 32346158 DOI: 10.1038/s41380-020-0727-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Cognitive dysfunctions, including impaired attention, learning, memory, planning and problem solving, occur in depressive episodes, often persist during remission, predict relapse, worsen with recurrent episodes, and are not treated by current antidepressants or other medications. Cognitive symptoms are also present in other psychiatric disorders, are a hallmark of aging, and define several late-life disorders, including Alzheimer's disease. This pervasive occurrence suggests either a non-specific outcome of a diseased brain, or a shared underlying pathology contributing to this symptom dimension. Recent findings suggest a role for altered GABAergic inhibition in cognitive symptoms. Cellular, molecular and biochemical studies in human subjects report changes affecting the gamma-amino butyric acid (GABA) system, specifically somatostatin-expressing (SST+) GABAergic interneurons, across brain disorders and during aging. SST+ neurons gate excitatory input onto pyramidal neurons within cortical microcircuits. Experimentally reducing the function of these neurons affects excitatory signal-to-noise ratio, reduces synchronized cellular and neural activity, and leads to cognitive dysfunctions. Conversely, augmenting SST+ cell post-synaptic α5-GABA-A receptor activity has pro-cognitive efficacy in stress and aging models. Together, this suggests that reduced signaling of the SST+ neuron/α5-GABA-A receptor pathway contributes to cognitive dysfunctions, and that it represents a novel therapeutic target for remediating mood and cognitive symptoms in depression, other psychiatric disorders and during aging.
Collapse
|
29
|
Nelson AD, Caballero-Florán RN, Rodríguez Díaz JC, Hull JM, Yuan Y, Li J, Chen K, Walder KK, Lopez-Santiago LF, Bennett V, McInnis MG, Isom LL, Wang C, Zhang M, Jones KS, Jenkins PM. Ankyrin-G regulates forebrain connectivity and network synchronization via interaction with GABARAP. Mol Psychiatry 2020; 25:2800-2817. [PMID: 30504823 PMCID: PMC6542726 DOI: 10.1038/s41380-018-0308-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons, where it interacts directly with the GABAA receptor-associated protein (GABARAP) to stabilize cell surface GABAA receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction (Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.
Collapse
Affiliation(s)
- A D Nelson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - R N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J C Rodríguez Díaz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J M Hull
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Y Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J Li
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K Chen
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K K Walder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - L F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - V Bennett
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Departments of Biochemistry, Neurobiology, and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - M G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - C Wang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - M Zhang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K S Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - P M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, Alnæs D, Alonso‐Lana S, Bauer J, Baune BT, Benedetti F, Berk M, Bettella F, Bøen E, Bonnín CM, Brambilla P, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Erp TGM, Fatjó‐Vilas M, Foley SF, Förster K, Fullerton JM, Goikolea JM, Grotegerd D, Gruber O, Haarman BCM, Haatveit B, Hajek T, Hallahan B, Harris M, Hawkins EL, Howells FM, Hülsmann C, Jahanshad N, Jørgensen KN, Kircher T, Krämer B, Krug A, Kuplicki R, Lagerberg TV, Lancaster TM, Lenroot RK, Lonning V, López‐Jaramillo C, Malt UF, McDonald C, McIntosh AM, McPhilemy G, Meer D, Melle I, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Oertel V, Oldani L, Opel N, Otaduy MCG, Overs BJ, Pineda‐Zapata JA, Pomarol‐Clotet E, Radua J, Rauer L, Redlich R, Repple J, Rive MM, Roberts G, Ruhe HG, Salminen LE, Salvador R, Sarró S, Savitz J, Schene AH, Sim K, Soeiro‐de‐Souza MG, Stäblein M, Stein DJ, Stein F, Tamnes CK, Temmingh HS, Thomopoulos SI, Veltman DJ, Vieta E, Waltemate L, Westlye LT, Whalley HC, Sämann PG, Thompson PM, Ching CRK, Andreassen OA, Agartz I. In vivo hippocampal subfield volumes in bipolar disorder—A mega‐analysis from The Enhancing Neuro Imaging Genetics through
Meta‐Analysis
Bipolar Disorder Working Group. Hum Brain Mapp 2020; 43:385-398. [PMID: 33073925 PMCID: PMC8675404 DOI: 10.1002/hbm.25249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Collapse
Affiliation(s)
- Unn K. Haukvik
- Department of Adult Mental Health Institute of Clinical Medicine, University of Oslo Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Theophilus N. Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
- Institute of Medical Imaging & Visualisation Faculty of Health & Social Sciences, Bournemouth University Bournemouth UK
| | - Martin Alda
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jochen Bauer
- Institute of Clinical Radiology University of Münster Münster Germany
| | - Bernhard T. Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry Melbourne Medical School, The University of Melbourne Melbourne Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Australia
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Michael Berk
- Deakin University IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health and Centre for Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Erlend Bøen
- Psychosomatic and CL Psychiatry Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Caterina M. Bonnín
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences Cardiff University Cardiff UK
| | - Orwa Dandash
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry University of Melbourne and Melbourne Health Melbourne Victoria Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
| | - Theo G. M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
- Center for the Neurobiology of Learning University of California Irvine and Memory Irvine California USA
| | - Mar Fatjó‐Vilas
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Sonya F. Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
| | | | - Janice M. Fullerton
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Medical Sciences The University of New South Wales Sydney New South Wales Australia
| | - José M. Goikolea
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Tomas Hajek
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Mathew Harris
- Division of Psychiatry University of Edinburgh Edinburgh UK
| | | | - Fleur M. Howells
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Carina Hülsmann
- Department of Psychiatry University of Münster Münster Germany
| | - Neda Jahanshad
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Kjetil N. Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
- Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
| | - Rayus Kuplicki
- Laureate Institute for Brain Research Tulsa Oklahoma USA
| | - Trine V. Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
- School of Psychology Bath University Bath UK
| | - Rhoshel K. Lenroot
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- University of New Mexico Albuquerque New Mexico USA
| | - Vera Lonning
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Antioquia Colombia
| | - Ulrik F. Malt
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | | | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Dennis Meer
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- School of Mental Health and Neuroscience Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht The Netherlands
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Elisa M. T. Melloni
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Philip B. Mitchell
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Viola Oertel
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Lucio Oldani
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Maria C. G. Otaduy
- LIM44, Department of Radiology and Oncology University of São Paulo São Paulo Brazil
| | - Bronwyn J. Overs
- Neuroscience Research Australia Randwick New South Wales Australia
| | - Julian A. Pineda‐Zapata
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Research Group Instituto de Alta Tecnología Médica Medellín Antioquia Colombia
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM Barcelona Spain
- Department of Psychosis Studies Institute of Psychiatry, Psychology and Neuroscience, King's College London London UK
- Department of Clinical Neuroscience Centre for Psychiatry Research, Karolinska Institutet Stockholm Sweden
| | - Lisa Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Jonathan Repple
- Department of Psychiatry University of Münster Münster Germany
| | - Maria M. Rive
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
| | - Gloria Roberts
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Henricus G. Ruhe
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Lauren E. Salminen
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research Tulsa Oklahoma USA
- Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
| | - Aart H. Schene
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health Singapore Singapore
- Yong Loo Lin School of Medicine/National University of Singapore Singapore Singapore
- Lee Kong Chian School of Medicine/Nanyang Technological University Singapore Singapore
| | | | - Michael Stäblein
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- PROMENTA Research Center, Department of Psychology University of Oslo Oslo Norway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- General Adult Psychiatry Division Valkenberg Hospital Cape Town Western Cape South Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Dick J. Veltman
- Department of Psychiatry Amsterdam UMC, Location VUMC Amsterdam The Netherlands
- Amsterdam Neuroscience Amsterdam UMC Amsterdam The Netherlands
| | - Eduard Vieta
- Hospital Clinic University of Barcelona, IDIBAPS, CIBERSAM Barcelona Catalonia Spain
| | - Lena Waltemate
- Department of Psychiatry University of Münster Münster Germany
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Psychology University of Oslo Oslo Norway
| | | | | | - Paul M. Thompson
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Christopher R. K. Ching
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- Department of Clinical Neuroscience Centre for Psychiatric Research, Karolinska Institutet Stockholm Sweden
| | | |
Collapse
|
31
|
Hill RA, Grech AM, Notaras MJ, Sepulveda M, van den Buuse M. Brain-Derived Neurotrophic Factor Val66Met polymorphism interacts with adolescent stress to alter hippocampal interneuron density and dendritic morphology in mice. Neurobiol Stress 2020; 13:100253. [PMID: 33344708 PMCID: PMC7739172 DOI: 10.1016/j.ynstr.2020.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays essential roles in GABAergic interneuron development. The common BDNF val66met polymorphism, leads to decreased activity-dependent release of BDNF. The current study used a humanized mouse model of the BDNF val66met polymorphism to determine how reduced activity-dependent release of BDNF, both on its own, and in combination with chronic adolescent stress hormone, impact hippocampal GABAergic interneuron cell density and dendrite morphology. Male and female Val/Val and Met/Met mice were exposed to corticosterone (CORT) or placebo in their drinking water from weeks 6-8, before brains were perfuse-fixed at 15 weeks. Cell density and dendrite morphology of immunofluorescent labelled inhibitory interneurons; somatostatin, parvalbumin and calretinin in the CA1, and 3 and dentate gyrus (DG) across the dorsal (DHP) and ventral hippocampus (VHP) were assessed by confocal z-stack imaging, and IMARIS dendritic mapping software. Mice with the Met/Met genotype showed significantly lower somatostatin cell density compared to Val/Val controls in the DHP, and altered somatostatin interneuron dendrite morphology including branch depth, and spine density. Parvalbumin-positive interneurons were unchanged between genotype groups, however BDNF val66met genotype influenced the dendritic volume, branch level and spine density of parvalbumin interneurons differentially across hippocampal subregions. Contrary to this, no such effects were observed for calretinin-positive interneurons. Adolescent exposure to CORT treatment also significantly altered somatostatin and parvalbumin dendrite branch level and the combined effect of Met/Met genotype and CORT treatment significantly reduced somatostatin and parvalbumin dendrite spine density. In sum, the BDNFVal66Met polymorphism significantly alters somatostatin and parvalbumin-positive interneuron cell development and dendrite morphology. Additionally, we also report a compounding effect of the Met/Met genotype and chronic adolescent CORT treatment on dendrite spine density, indicating that adolescence is a sensitive period of risk for Val66Met polymorphism carriers.
Collapse
Affiliation(s)
- Rachel Anne Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Corresponding author. Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University Level 3, Monash Medical Centre 27Wright St Clayton VIC 3168 Australia, .
| | - Adrienne Mary Grech
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael J. Notaras
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Weill Cornell Medical College of Cornell University, Centre for Neurogenetics, Brain & Mind Research Institute, New York City, New York, USA
| | - Mauricio Sepulveda
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, VIC, Australia
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
32
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
33
|
The black sheep of the family- whole-exome sequencing in family of lithium response discordant bipolar monozygotic twins. Eur Neuropsychopharmacol 2020; 34:19-27. [PMID: 32305265 DOI: 10.1016/j.euroneuro.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023]
Abstract
Twin studies are among the most promising strategies for studying heritable disorders, including bipolar disorder (BD). The aim of the present study was to identify distinguishing genes between monozygotic (MZ) twins with different BD phenotype and compare them to their non-affected siblings. Whole-exome sequencing (WES) can identify rare and structural variants that could detect the polygenetic burden of complex disorders. WES was performed on a family composed of two MZ twins with BD, their unaffected brother and unaffected parents. The twins have a discordant response to lithium and distinct course of illness. Following WES, six genes of particular interest emerged: Neurofibromin type 1 (NF1), Biorientation of chromosomes in cell division 1 (BOD1), Golgi-associated gamma adaptin ear-containing ARF binding protein 3 (GGA3), Disrupted in schizophrenia 1 (DISC1), Neuromedin U receptor 2 (NMUR2), and Huntingtin interacting protein 1-related (HIP1R). Interestingly, many of these influence glutamatergic pathways and thus the findings may have therapeutical implications. These results may provide important insights to unveil genetic underpinnings of BD and the response to lithium.
Collapse
|
34
|
Madden JT, Thompson SM, Magcalas CM, Wagner JL, Hamilton DA, Savage DD, Clark BJ, Pentkowski NS. Moderate prenatal alcohol exposure reduces parvalbumin expressing GABAergic interneurons in the dorsal hippocampus of adult male and female rat offspring. Neurosci Lett 2019; 718:134700. [PMID: 31874217 DOI: 10.1016/j.neulet.2019.134700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) negatively impacts hippocampal development and impairs hippocampal-sensitive learning and memory. However, hippocampal neural adaptations in response to moderate PAE are not completely understood. To explore the effects of moderate PAE on GABAergic interneuron expression, this study used a rat model of moderate PAE to examine the effects of PAE on parvalbumin (PARV)-positive cells in fields CA1, CA3 and the dentate gyrus (DG) of the dorsal hippocampus (dHC). Long-Evans dams were given daily access to 5 % (vol/vol) ethanol or saccharine (SAC) control solutions throughout the course of gestation. Offspring were divided into four separate groups: PAE (n = 7) or SAC (n = 7) males, or PAE (n = 8) or SAC (n = 8) females. All rats were aged to adulthood and, following testing in the Morris water task, their brains were analyzed for the expression of the GABAergic neuronal marker PARV. We report a main effect of PAE on GABAergic expression, with significant reductions in PARV-positive cells in area CA3 for males and the DG for females. There was also a trend for a reduction in PARV expressing neurons in fields CA1 and CA3 in females. The results are discussed in relation to hippocampal GABAergic interneuron function, PAE and behavior.
Collapse
Affiliation(s)
- John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Shannon M Thompson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer L Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
35
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
36
|
Gigase FAJ, Snijders GJLJ, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 2019; 103:150-162. [PMID: 31163205 DOI: 10.1016/j.neubiorev.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
37
|
Differential effects of unipolar versus bipolar depression on episodic memory updating. Neurobiol Learn Mem 2019; 161:158-168. [PMID: 31004802 DOI: 10.1016/j.nlm.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
Abstract
Episodic memories, when reactivated, can be modified or updated by new learning. Since such dynamic memory processes remain largely unexplored in psychiatric disorders, we examined the impact of depression on episodic memory updating. Unipolar and bipolar depression patients, and age/education matched controls, first learned a set of objects (List-1). Two days later, participants in all three groups were either reminded of the first learning session or not followed by the learning of a new set of objects (List-2). Forty-eight hours later, List-1 recall was impaired in unipolar and bipolar patients compared to control participants. Further, as expected, control participants who received a reminder spontaneously recalled items from List-2 during recall of List-1, indicative of an updated List-1 memory. Such spontaneous intrusions were also seen in the unipolar and bipolar patients that received the reminder, suggesting that memory updating was unaffected in these two patient groups despite impaired recall of List 1. Unexpectedly, we observed a trend towards higher intrusions, albeit statistically insignificant, not only in the reminder but also in the no-reminder subgroups of bipolar patients. We probed this further in a second cohort by testing recall of List-2, which was also impaired in both depression groups. Again bipolar patients showed intrusions, but this time in the reverse order from List-1 into List-2, independent of a reminder. Taken together, despite impaired recall, updating of episodic memories was intact and unidirectional in unipolar depression. In contrast, indiscriminate updating, as evidenced by bidirectional interference between episodic memories, was seen in bipolar depression. These findings reveal a novel distinction between unipolar versus bipolar depression using a reactivation-dependent memory updating paradigm.
Collapse
|
38
|
Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition? BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.
Collapse
Affiliation(s)
- Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Toker L, Mancarci BO, Tripathy S, Pavlidis P. Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 2018; 84:787-796. [PMID: 30177255 PMCID: PMC6226343 DOI: 10.1016/j.biopsych.2018.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND High-throughput expression analyses of postmortem brain tissue have been widely used to study bipolar disorder and schizophrenia. However, despite the extensive efforts, no consensus has emerged as to the functional interpretation of the findings. We hypothesized that incorporating information on cell type-specific expression would provide new insights. METHODS We reanalyzed 15 publicly available bulk tissue expression datasets on schizophrenia and bipolar disorder, representing various brain regions from eight different cohorts of subjects (unique subjects: 332 control, 129 bipolar disorder, 341 schizophrenia). We studied changes in the expression profiles of cell type marker genes and evaluated whether these expression profiles could serve as surrogates for relative abundance of their corresponding cells. RESULTS In both bipolar disorder and schizophrenia, we consistently observed an increase in the expression profiles of cortical astrocytes and a decrease in the expression profiles of fast-spiking parvalbumin interneurons. No changes in astrocyte expression profiles were observed in subcortical regions. Furthermore, we found that many of the genes previously identified as differentially expressed in schizophrenia are highly correlated with the expression profiles of astrocytes or fast-spiking parvalbumin interneurons. CONCLUSIONS Our results indicate convergence of transcriptome studies of schizophrenia and bipolar disorder on changes in cortical astrocytes and fast-spiking parvalbumin interneurons, providing a unified interpretation of numerous studies. We suggest that these changes can be attributed to alterations in the relative abundance of the cells and are important for understanding the pathophysiology of the disorders.
Collapse
Affiliation(s)
- Lilah Toker
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Burak Ogan Mancarci
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreejoy Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Wang Y, Zhong S, Chen G, Liu T, Zhao L, Sun Y, Jia Y, Huang L. Altered cerebellar functional connectivity in remitted bipolar disorder: A resting-state functional magnetic resonance imaging study. Aust N Z J Psychiatry 2018; 52:962-971. [PMID: 29232968 DOI: 10.1177/0004867417745996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Several recent studies have reported a strong association between the cerebellar structural and functional abnormalities and psychiatric disorders. However, there are no studies to investigate possible changes in cerebellar functional connectivity in bipolar disorder. This study aimed to examine the whole-brain functional connectivity pattern of patients with remitted bipolar disorder II, in particular in the cerebellum. METHODS A total of 25 patients with remitted bipolar disorder II and 25 controls underwent resting-state functional magnetic resonance imaging and neuropsychological tests. Voxel-wise whole-brain connectivity was analyzed using a graph theory approach: functional connectivity strength. A seed-based resting-state functional connectivity analysis was further performed to investigate abnormal functional connectivity pattern of those regions with changed functional connectivity strength. RESULTS Remitted bipolar disorder II patients had significantly decreased functional connectivity strength in the bilateral posterior lobes of cerebellum (mainly lobules VIIb/VIIIa). The seed-based functional connectivity analyses revealed decreased functional connectivity between the right posterior cerebellum and the default mode network (i.e. right posterior cingulate cortex/precuneus and right superior temporal gyrus), bilateral hippocampus, right putamen, left paracentral lobule and bilateral posterior cerebellum and decreased functional connectivity between the left posterior cerebellum and the right inferior parietal lobule and bilateral posterior cerebellum in patients with remitted bipolar disorder II. CONCLUSION Our results suggest that cerebellar dysconnectivity, in particular distributed cerebellar-cerebral functional connectivity, might be associated with the pathogenesis of bipolar disorder.
Collapse
Affiliation(s)
- Ying Wang
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,2 Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuming Zhong
- 3 Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanmao Chen
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Liu
- 3 Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China.,4 The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Lianping Zhao
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yao Sun
- 2 Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Yanbin Jia
- 3 Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- 2 Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res 2018; 104:217-226. [PMID: 30107268 DOI: 10.1016/j.jpsychires.2018.08.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
The hippocampus is a complex structure consisting of subregions with specialized cytoarchitecture and functions. Magnetic resonance imaging (MRI) studies in psychotic disorders show hippocampal subfield abnormalities, but affected regions differ between studies. We here present an overview of hippocampal anatomy and function relevant to psychosis, and the first systematic review and meta-analysis of MRI studies of hippocampal subfield morphology in schizophrenia and bipolar disorder. Twenty-one MRI studies assessing hippocampal subfield volumes or shape in schizophrenia or bipolar disorder were included (n 15-887 subjects). Nine volumetric group comparison studies (total n = 2593) were included in random effects meta-analyses of group differences. The review showed mixed results, with volume reductions reported in most subfields in schizophrenia and bipolar disorder. Volumetric studies using ex-vivo based image analysis templates corresponded best with the shape studies, with CA1 as the most affected region. The meta-analyses showed volume reductions in all subfields in schizophrenia and bipolar disorder compared to healthy controls (all p < .005; schizophrenia: d = 0.28-0.49, bipolar disorder: d = 0.20-0.35), and smaller left CA2/3 and right subiculum in schizophrenia than bipolar disorder. In conclusion, the hippocampal subfields appear to be differently affected in psychotic disorders. However, due to the lack of control for putative confounders such as medication, alcohol and illicit substance use, and illness stage, the results from the meta-analysis should be interpreted with caution. Methodological subfield segmentation weaknesses should be addressed in future studies.
Collapse
|
42
|
Abstract
Bipolar I disorder and interictal personality syndrome have many overlapping characteristics that are difficult to distinguish. There is scant literature focused on interictal personality syndrome and no case reports to date detailing patients with comorbid bipolar pathology. We describe an individual with a history of bipolar I disorder who developed right temporal lobe epilepsy after several head injuries. He subsequently exhibited symptoms consistent with interictal personality syndrome that were independent of his bipolar symptomatology. Better understanding of these disorders can lead to improved diagnosis and symptom management. The similarities may also point to a partially shared neuropathology.
Collapse
|
43
|
Baglivo V, Cao B, Mwangi B, Bellani M, Perlini C, Lasalvia A, Dusi N, Bonetto C, Cristofalo D, Alessandrini F, Zoccatelli G, Ciceri E, Dario L, Enrico C, Francesca P, Mazzi F, Paolo S, Balestrieri M, Soares JC, Ruggeri M, Brambilla P. Hippocampal Subfield Volumes in Patients With First-Episode Psychosis. Schizophr Bull 2018; 44:552-559. [PMID: 29897598 PMCID: PMC5890476 DOI: 10.1093/schbul/sbx108] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background Hippocampal abnormalities have been largely reported in patients with schizophrenia and bipolar disorder, and are considered to be involved in the pathophysiology of the psychosis. The hippocampus consists of several subfields but it remains unclear their involvement in the early stages of psychosis. Aim The aim of this study was to investigate volumetric alterations in hippocampal subfields in patients at the first-episode psychosis (FEP). Methods Magnetic resonance imaging (MRI) data were collected in 134 subjects (58 FEP patients; 76 healthy controls [HC]). A novel automated hippocampal segmentation algorithm was used to segment the hippocampal subfields, based on an atlas constructed from ultra-high resolution imaging on ex vivo hippocampal tissue. The general linear model was used to investigate volume differences between FEP patients and HC, with age, gender and total intracranial volume as covariates. Results We found significantly lower volumes of bilateral CA1, CA4, and granule cell layer (GCL), and of left CA3, and left molecular layer (ML) in FEP patients compared to HC. Only the volumes of the left hippocampus and its subfields were significantly lower in FEP than HC at the False Discovery Rate (FDR) of 0.1. No correlation was found between hippocampal subfield volume and duration of illness, age of onset, duration of medication, and Positive and Negative Syndrome Scale (PANSS). Conclusion We report abnormally low volumes of left hippocampal subfields in patients with FEP, sustaining its role as a putative neural marker of psychosis onset.
Collapse
Affiliation(s)
- Valentina Baglivo
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| | - Bo Cao
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Marcella Bellani
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
| | - Cinzia Perlini
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
- Department of Public Health and Community Medicine, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Antonio Lasalvia
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
| | - Nicola Dusi
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Doriana Cristofalo
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | | | - Giada Zoccatelli
- Neuroradiology Department, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Elisa Ciceri
- Neuroradiology Department, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Lamonaca Dario
- Department of Psychiatry, CSM AULSS 21 Legnago, Verona, Italy
| | - Ceccato Enrico
- Department of Mental Health, Hospital of Montecchio Maggiore, Vicenza, Italy
| | | | | | | | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Mirella Ruggeri
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Brambilla
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - GET UP Group
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
44
|
Yu JY, Fang P, Wang C, Wang XX, Li K, Gong Q, Luo BY, Wang XD. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits. Neuropharmacology 2018; 135:474-486. [PMID: 29626564 DOI: 10.1016/j.neuropharm.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory.
Collapse
Affiliation(s)
- Jing-Ying Yu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ping Fang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chi Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xing-Xing Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Kun Li
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qian Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ben-Yan Luo
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
45
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
46
|
In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium 2017; 67:53-64. [DOI: 10.1016/j.ceca.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022]
|
47
|
Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017; 5:e79. [PMID: 32309597 PMCID: PMC7159844 DOI: 10.15190/d.2017.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid β peptide (Aβ) and somatostatin (SST). Whereas Aβ is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aβ and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aβ and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.
Collapse
Affiliation(s)
- Angus Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Matthew Bourkas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Yang Qing Qin Lu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Anne Ostrowski
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Danielle Weber-Adrian
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Carlyn Figueiredo
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hamza Arshad
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Seyedeh Zahra Shams Shoaei
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Daniel Morrone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stuart Matan-Lithwick
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Karan Joshua Abraham
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
48
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
49
|
Homer1a protein expression in schizophrenia, bipolar disorder, and major depression. J Neural Transm (Vienna) 2017; 124:1261-1273. [DOI: 10.1007/s00702-017-1776-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 01/14/2023]
|
50
|
Bast T, Pezze M, McGarrity S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol 2017; 174:3211-3225. [PMID: 28477384 DOI: 10.1111/bph.13850] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/18/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Tobias Bast
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Marie Pezze
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Stephanie McGarrity
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|