1
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 PMCID: PMC11526017 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
3
|
Joyce M, Yang S, Morin K, Duque A, Arellano J, Datta D, Wang M, Arnsten A. β1-adrenoceptor expression on GABAergic interneurons in primate dorsolateral prefrontal cortex: potential role in stress-induced cognitive dysfunction. Neurobiol Stress 2024; 30:100628. [PMID: 38550854 PMCID: PMC10973161 DOI: 10.1016/j.ynstr.2024.100628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/12/2024] Open
Abstract
Uncontrollable stress exposure impairs working memory and reduces the firing of dorsolateral prefrontal cortex (dlPFC) "Delay cells", involving high levels of norepinephrine and dopamine release. Previous work has focused on catecholamine actions on dlPFC pyramidal cells, but inhibitory interneurons may contribute as well. The current study combined immunohistochemistry and multi-scale microscopy with iontophoretic physiology and behavioral analyses to examine the effects of beta1-noradrenergic receptors (β1-ARs) on inhibitory neurons in layer III dlPFC. We found β1-AR robustly expressed on different classes of inhibitory neurons labeled by the calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). Immunoelectron microscopy confirmed β1-AR expression on the plasma membrane of PV-expressing dendrites. PV interneurons can be identified as fast-spiking (FS) in physiological recordings, and thus were studied in macaques performing a working memory task. Iontophoresis of a β1-AR agonist had a mixed effect, increasing the firing of a subset and decreasing the firing of others, likely reflecting loss of firing of the entire microcircuit. This loss of overall firing likely contributes to impaired working memory during stress, as pretreatment with the selective β1-AR antagonist, nebivolol, prevented stress-induced working memory deficits. Thus, selective β1-AR antagonists may be helpful in treating stress-related disorders.
Collapse
Affiliation(s)
- M.K.P. Joyce
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - S. Yang
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - K. Morin
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - A. Duque
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - J. Arellano
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - D. Datta
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - M. Wang
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - A.F.T. Arnsten
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| |
Collapse
|
4
|
Chow FC, Mundada NS, Abohashem S, La Joie R, Iaccarino L, Arechiga VM, Swaminathan S, Rabinovici GD, Epel ES, Tawakol A, Hsue PY. Psychological stress is associated with arterial inflammation in people living with treated HIV infection. Brain Behav Immun 2023; 113:21-28. [PMID: 37369339 DOI: 10.1016/j.bbi.2023.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress and depression are increasingly recognized as cerebrovascular risk factors, including among high stress populations such as people living with HIV infection (PLWH). Stress may contribute to stroke risk through activation of neural inflammatory pathways. In this cross-sectional study, we examined the relationships between stress, systemic and arterial inflammation, and metabolic activity in stress-related brain regions on 18F-fluorodeoxyglucose (FDG)-PET in PLWH. Participants were recruited from a parent trial evaluating the impact of alirocumab on radiologic markers of cardiovascular risk in people with treated HIV infection. We administered a stress battery to assess different forms of psychological stress, specifying the Perceived Stress Scale as the primary stress measure, and quantified plasma markers of inflammation and immune activation. Participants underwent FDG-PET of the brain, neck, and chest. Age- and sex-matched control participants without HIV infection were selected for brain FDG-PET comparisons. Among PLWH, we used nonparametric pairwise correlations, partial correlations, and linear regression to investigate the association between stress and 1) systemic inflammation; 2) atherosclerotic inflammation on FDG-PET; and metabolic activity in 3) brain regions in which glucose metabolism differed significantly by HIV serostatus; and 4) in a priori defined stress-responsive regions of interest (ROI) and stress-related neural network activity (i.e., ratio of amygdala to ventromedial prefrontal cortex or temporal lobe activity). We studied 37 PLWH (mean age 60 years, 97% men) and 29 control participants without HIV (mean age 62 years, 97% men). Among PLWH, stress was significantly correlated with systemic inflammation (r = 0.33, p = 0.041) and arterial inflammation in the carotid (r = 0.41, p = 0.023) independent of age, race/ethnicity, traditional vascular risk factors and health-related behaviors. In voxel-wise analyses, metabolic activity in a cluster corresponding to the anterior medial temporal lobes, including the bilateral amygdalae, was significantly lower in PLWH compared with controls. However, we did not find a significant positive relationship between stress and this cluster of decreased metabolic activity in PLWH, a priori defined stress-responsive ROI, or stress-related neural network activity. In conclusion, psychological stress was associated with systemic and carotid arterial inflammation in this group of PLWH with treated infection. These data provide preliminary evidence for a link between psychological stress, inflammation, and atherosclerosis as potential drivers of excess cerebrovascular risk among PLWH.
Collapse
Affiliation(s)
- Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases) and Weill Institute for Neurosciences, University of California, San Francisco, USA.
| | - Nidhi S Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Victor M Arechiga
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| | - Shreya Swaminathan
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Medicine (Cardiology), Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Priscilla Y Hsue
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| |
Collapse
|
5
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
6
|
Nahvi RJ, Tanelian A, Nwokafor C, Godino A, Parise E, Estill M, Shen L, Nestler EJ, Sabban EL. Transcriptome profiles associated with resilience and susceptibility to single prolonged stress in the locus coeruleus and nucleus accumbens in male sprague-dawley rats. Behav Brain Res 2023; 439:114162. [PMID: 36257560 PMCID: PMC9812303 DOI: 10.1016/j.bbr.2022.114162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Although most people are subjected to traumatic stress at least once in their lifetime, only a subset develop long-lasting, stress-triggered neuropsychiatric disorders, such as PTSD. Here we examined different transcriptome profiles within the locus coeruleus (LC) and nucleus accumbens (NAc) that may contribute to stress susceptibility. Sprague Dawley male rats were exposed to the single prolonged stress (SPS) model for PTSD. Two weeks later they were tested for their anxiety/avoidance behavior on the Elevated Plus Maze (EPM) and were divided into high and low anxiety-like subgroups. RNA (n = 5 per group) was subsequently isolated from LC and NAc and subjected to RNAseq. Transcriptome analysis was used to identify differentially-expressed genes (DEGs) which differed by at least 50 % with significance of 0.01. The LC had more than six times the number of DEGs than the NAc. Only one DEG was regulated similarly in both locations. Many of the DEGs in the LC were associated with morphological changes, including regulation of actin cytoskeleton, growth factor activity, regulation of cell size, brain development and memory, with KEGG pathway of regulation of actin cytoskeleton. The DEGs in the NAc were primarily related to DNA repair and synthesis, and differential regulation of cytokine production. The analysis identified MTPN (myotrophin) and NR3C1 (glucocorticoid receptor) as important upstream regulators of stress susceptibility in the LC. Overall the study provides new insight into molecular pathways in the LC and NAc that are associated with anxiety-like behavior triggered by stress susceptibility or resilience.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
7
|
Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial Magnetic Stimulation and its Imaging Features in Patients With Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad Radiol 2023; 30:103-112. [PMID: 35437218 DOI: 10.1016/j.acra.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most studies to date have focused on TMS's ability to treat major depressive disorder, it has shown promise in several other conditions including post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understanding of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imaging features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Joseph H Huntley
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandeep Vaishnavi
- MindPath Care Centers Clinical Research Institute, Raleigh, North Carolina
| | - Parisa Khoshpouri
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael A Kraut
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
8
|
Zhan B, Zhu Y, Xia J, Li W, Tang Y, Beesetty A, Ye JH, Fu R. Comorbidity of Post-Traumatic Stress Disorder and Alcohol Use Disorder: Animal Models and Associated Neurocircuitry. Int J Mol Sci 2022; 24:ijms24010388. [PMID: 36613829 PMCID: PMC9820348 DOI: 10.3390/ijms24010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anju Beesetty
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence: (J.-H.Y.); (R.F.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.-H.Y.); (R.F.)
| |
Collapse
|
9
|
Swanberg KM, Campos L, Abdallah CG, Juchem C. Proton Magnetic Resonance Spectroscopy in Post-Traumatic Stress Disorder-Updated Systematic Review and Meta-Analysis. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221128004. [PMID: 36237981 PMCID: PMC9551353 DOI: 10.1177/24705470221128004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A stressor-related disorder wherein traumatic experience precipitates protracted
disruptions to mood and cognition, post-traumatic stress disorder (PTSD) is
associated with wide-ranging abnormalities across the body. While various
methods have investigated these deviations, only proton magnetic resonance
spectroscopy (1H MRS) enables noninvasive measurement of
small-molecule metabolites in the living human. 1H MRS has
correspondingly been employed to test hypotheses about the composition and
function of multiple brain regions putatively involved in PTSD. Here we
systematically review methodological considerations and reported findings, both
positive and negative, of the current 1H-MRS literature in PTSD
(N = 32 studies) to communicate the brain regional metabolite alterations
heretofore observed, providing random-effects model meta-analyses for those most
extensively studied. Our review suggests significant PTSD-associated decreases
in N-acetyl aspartate in bilateral hippocampus and anterior cingulate cortex
with less evident effect in other metabolites and regions. Model heterogeneities
diverged widely by analysis (I2 < 0.01% to 90.1%) and suggested
regional dependence on quantification reference (creatine or otherwise). While
observed variabilities in methods and reported findings suggest that
1H-MRS explorations of PTSD could benefit from methodological
standardization, informing this standardization by quantitative assessment of
the existing literature is currently hampered by its small size and limited
scope.
Collapse
Affiliation(s)
- Kelley M. Swanberg
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
- Kelley M. Swanberg, Department of
Biomedical Engineering, Columbia University Fu Foundation School of Engineering
and Applied Science, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York,
NY 10027, USA.
| | - Leonardo Campos
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Clinical Neuroscience Division, Department of Veterans Affairs
National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
- Psychiatry and Behavioral Sciences,
Baylor College
of Medicine, Houston, TX, USA
| | - Christoph Juchem
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
- Department of Radiology, Columbia University College of Physicians and
Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Oyarzabal EA, Hsu LM, Das M, Chao THH, Zhou J, Song S, Zhang W, Smith KG, Sciolino NR, Evsyukova IY, Yuan H, Lee SH, Cui G, Jensen P, Shih YYI. Chemogenetic stimulation of tonic locus coeruleus activity strengthens the default mode network. SCIENCE ADVANCES 2022; 8:eabm9898. [PMID: 35486721 PMCID: PMC9054017 DOI: 10.1126/sciadv.abm9898] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/15/2022] [Indexed: 05/31/2023]
Abstract
The default mode network (DMN) of the brain is functionally associated with a wide range of behaviors. In this study, we used functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and spectral fiber photometry to investigate the selective neuromodulatory effect of norepinephrine (NE)-releasing noradrenergic neurons in the locus coeruleus (LC) on the mouse DMN. Chemogenetic-induced tonic LC activity decreased cerebral blood volume (CBV) and glucose uptake and increased synchronous low-frequency fMRI activity within the frontal cortices of the DMN. Fiber photometry results corroborated these findings, showing that LC-NE activation induced NE release, enhanced calcium-weighted neuronal spiking, and reduced CBV in the anterior cingulate cortex. These data suggest that LC-NE alters conventional coupling between neuronal activity and CBV in the frontal DMN. We also demonstrated that chemogenetic activation of LC-NE neurons strengthened functional connectivity within the frontal DMN, and this effect was causally mediated by reduced modulatory inputs from retrosplenial and hippocampal regions to the association cortices of the DMN.
Collapse
Affiliation(s)
- Esteban A. Oyarzabal
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Manasmita Das
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Sheng Song
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Kathleen G. Smith
- Developmental Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Natale R. Sciolino
- Developmental Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Irina Y. Evsyukova
- Developmental Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Hong Yuan
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Patricia Jensen
- Developmental Neurobiology Group, Neurobiology Laboratory, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a prevalent and disabling disorder. Evidence that PTSD is characterised by specific psychobiological dysfunctions has contributed to a growing interest in the use of medication in its treatment. OBJECTIVES To assess the effects of medication for reducing PTSD symptoms in adults with PTSD. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 11, November 2020); MEDLINE (1946-), Embase (1974-), PsycINFO (1967-) and PTSDPubs (all available years) either directly or via the Cochrane Common Mental Disorders Controlled Trials Register (CCMDCTR). We also searched international trial registers. The date of the latest search was 13 November 2020. SELECTION CRITERIA All randomised controlled trials (RCTs) of pharmacotherapy for adults with PTSD. DATA COLLECTION AND ANALYSIS Three review authors (TW, JI, and NP) independently assessed RCTs for inclusion in the review, collated trial data, and assessed trial quality. We contacted investigators to obtain missing data. We stratified summary statistics by medication class, and by medication agent for all medications. We calculated dichotomous and continuous measures using a random-effects model, and assessed heterogeneity. MAIN RESULTS We include 66 RCTs in the review (range: 13 days to 28 weeks; 7442 participants; age range 18 to 85 years) and 54 in the meta-analysis. For the primary outcome of treatment response, we found evidence of beneficial effect for selective serotonin reuptake inhibitors (SSRIs) compared with placebo (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.59 to 0.74; 8 studies, 1078 participants), which improved PTSD symptoms in 58% of SSRI participants compared with 35% of placebo participants, based on moderate-certainty evidence. For this outcome we also found evidence of beneficial effect for the noradrenergic and specific serotonergic antidepressant (NaSSA) mirtazapine: (RR 0.45, 95% CI 0.22 to 0.94; 1 study, 26 participants) in 65% of people on mirtazapine compared with 22% of placebo participants, and for the tricyclic antidepressant (TCA) amitriptyline (RR 0.60, 95% CI 0.38 to 0.96; 1 study, 40 participants) in 50% of amitriptyline participants compared with 17% of placebo participants, which improved PTSD symptoms. These outcomes are based on low-certainty evidence. There was however no evidence of beneficial effect for the number of participants who improved with the antipsychotics (RR 0.51, 95% CI 0.16 to 1.67; 2 studies, 43 participants) compared to placebo, based on very low-certainty evidence. For the outcome of treatment withdrawal, we found evidence of a harm for the individual SSRI agents compared with placebo (RR 1.41, 95% CI 1.07 to 1.87; 14 studies, 2399 participants). Withdrawals were also higher for the separate SSRI paroxetine group compared to the placebo group (RR 1.55, 95% CI 1.05 to 2.29; 5 studies, 1101 participants). Nonetheless, the absolute proportion of individuals dropping out from treatment due to adverse events in the SSRI groups was low (9%), based on moderate-certainty evidence. For the rest of the medications compared to placebo, we did not find evidence of harm for individuals dropping out from treatment due to adverse events. AUTHORS' CONCLUSIONS The findings of this review support the conclusion that SSRIs improve PTSD symptoms; they are first-line agents for the pharmacotherapy of PTSD, based on moderate-certainty evidence. The NaSSA mirtazapine and the TCA amitriptyline may also improve PTSD symptoms, but this is based on low-certainty evidence. In addition, we found no evidence of benefit for the number of participants who improved following treatment with the antipsychotic group compared to placebo, based on very low-certainty evidence. There remain important gaps in the evidence base, and a continued need for more effective agents in the management of PTSD.
Collapse
Affiliation(s)
- Taryn Williams
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicole J Phillips
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Ipser
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Nisticò V, Rossi RE, D'Arrigo AM, Priori A, Gambini O, Demartini B. Functional neuroimaging in Irritable Bowel Syndrome: a systematic review highlights common brain alterations with Functional Movement Disorders. J Neurogastroenterol Motil 2022; 28:185-203. [PMID: 35189600 PMCID: PMC8978134 DOI: 10.5056/jnm21079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by recurring abdominal pain and altered bowel habits without detectable organic causes. This study aims to provide a comprehensive overview of the literature on functional neuroimaging in IBS and to highlight brain alterations similarities with other functional disorders - functional movement disorders in particular. We conducted the bibliographic search via PubMed in August 2020 and included 50 studies following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines for systematic reviews. Overall, our findings showed an aberrant activation and functional connectivity of the insular, cingulate, sensorimotor and frontal cortices, the amygdala and the hippocampus, suggesting an altered activity of the homeostatic and salience network and of the autonomous nervous system. Moreover, glutamatergic dysfunction in the anterior insula and hypothalamic pituitary axis dysregulation were often reported. These alterations seem to be very similar to those observed in patients with functional movement disorders. Hence, we speculate that different functional disturbances might share a common pathophysiology and we discussed our findings in the light of a Bayesian model framework.
Collapse
Affiliation(s)
- Veronica Nisticò
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Roberta E Rossi
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Pathophysiology and Organ Transplant, Università degli Studi di Milano, Milan, Italy
| | - Andrea M D'Arrigo
- Department of Neurology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Alberto Priori
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,III Clinica Neurologica, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| | - Orsola Gambini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Unità di Psichiatria 52, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| | - Benedetta Demartini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Unità di Psichiatria 52, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| |
Collapse
|
13
|
Krystal JH, Southwick SM, Girgenti MJ. Matthew J. Friedman, M.D., Ph.D. and His Legacy of Leadership in the Field of Post-traumatic Stress Disorder. Psychiatry 2022; 85:161-170. [PMID: 35588483 DOI: 10.1080/00332747.2022.2068931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
15
|
Bremner JD, Wittbrodt MT, Gurel NZ, Shandhi MH, Gazi AH, Jiao Y, Levantsevych OM, Huang M, Beckwith J, Herring I, Murrah N, Driggers EG, Ko YA, Alkhalaf ML, Soudan M, Shallenberger L, Hankus AN, Nye JA, Park J, Woodbury A, Mehta PK, Rapaport MH, Vaccarino V, Shah AJ, Pearce BD, Inan OT. Transcutaneous Cervical Vagal Nerve Stimulation in Patients with Posttraumatic Stress Disorder (PTSD): A Pilot Study of Effects on PTSD Symptoms and Interleukin-6 Response to Stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100190. [PMID: 34778863 PMCID: PMC8580056 DOI: 10.1016/j.jadr.2021.100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and inflammatory responses to stress. METHODS Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of inflammation. Patients then self administered active or sham tcVNS twice daily for three months. PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of measurement of biomarkers with traumatic scripts. After three months patients self treated with twice daily open label active tcVNS for another three months followed by assessment with the CGI. RESULTS Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS (p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI compared to the sham treatment period p<0.05). CONCLUSIONS These preliminary results suggest that tcVNS reduces inflammatory responses to stress, which may in part underlie beneficial effects on PTSD symptoms.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Medical Center, Decatur, Georgia
| | - Matthew T. Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Oleksiy M. Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Joy Beckwith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Isaias Herring
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Emily G. Driggers
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - MhmtJamil L. Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Allison N. Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Anna Woodbury
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| | - Puja K. Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Wittbrodt MT, Gurel NZ, Nye JA, H. Shandhi M, Gazi AH, Shah AJ, Pearce BD, Murrah N, Ko YA, Shallenberger LH, Vaccarino V, Inan OT, Bremner JD. Noninvasive Cervical Vagal Nerve Stimulation Alters Brain Activity During Traumatic Stress in Individuals With Posttraumatic Stress Disorder. Psychosom Med 2021; 83:969-977. [PMID: 34292205 PMCID: PMC8578349 DOI: 10.1097/psy.0000000000000987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) is a disabling condition affecting a large segment of the population; however, current treatment options have limitations. New interventions that target the neurobiological alterations underlying symptoms of PTSD could be highly beneficial. Transcutaneous cervical (neck) vagal nerve stimulation (tcVNS) has the potential to represent such an intervention. The goal of this study was to determine the effects of tcVNS on neural responses to reminders of traumatic stress in PTSD. METHODS Twenty-two participants were randomized to receive either sham (n = 11) or active (n = 11) tcVNS stimulation in conjunction with exposure to neutral and personalized traumatic stress scripts with high-resolution positron emission tomography scanning with radiolabeled water for brain blood flow measurements. RESULTS Compared with sham, tcVNS increased brain activations during trauma scripts (p < .005) within the bilateral frontal and temporal lobes, left hippocampus, posterior cingulate, and anterior cingulate (dorsal and pregenual), and right postcentral gyrus. Greater deactivations (p < .005) with tcVNS were observed within the bilateral frontal and parietal lobes and left thalamus. Compared with tcVNS, sham elicited greater activations (p < .005) in the bilateral frontal lobe, left precentral gyrus, precuneus, and thalamus, and right temporal and parietal lobes, hippocampus, insula, and posterior cingulate. Greater (p < .005) deactivations were observed with sham in the right temporal lobe, posterior cingulate, hippocampus, left anterior cingulate, and bilateral cerebellum. CONCLUSIONS tcVNS increased anterior cingulate and hippocampus activation during trauma scripts, potentially indicating a reversal of neurobiological changes with PTSD consistent with improved autonomic control.Trial Registration: No. NCT02992899.
Collapse
Affiliation(s)
- Matthew T. Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA
| | - Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA
| | - Amit J Shah
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| | - Bradley D. Pearce
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Nancy Murrah
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta GA
| | - Lucy H. Shallenberger
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
17
|
Gazarini L, Stern CA, Takahashi RN, Bertoglio LJ. Interactions of Noradrenergic, Glucocorticoid and Endocannabinoid Systems Intensify and Generalize Fear Memory Traces. Neuroscience 2021; 497:118-133. [PMID: 34560200 DOI: 10.1016/j.neuroscience.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Systemic administration of drugs that activate the noradrenergic or glucocorticoid system potentiates aversive memory consolidation and reconsolidation. The opposite happens with the stimulation of endocannabinoid signaling under certain conditions. An unbalance of these interacting neurotransmitters can lead to the formation and maintenance of traumatic memories, whose strength and specificity attributes are often maladaptive. Here we aimed to investigate whether originally low-intensity and precise contextual fear memories would turn similar to traumatic ones in rats systemically administered with adrenaline, corticosterone, and/or the cannabinoid type-1 receptor antagonist/inverse agonist AM251 during consolidation or reconsolidation. The high dose of each pharmacological agent evaluated significantly increased freezing times at test in the conditioning context one and nine days later when given alone post-acquisition or post-retrieval. Their respective low dose produced no relative changes when given separately, but co-treatment of adrenaline with corticosterone or AM251 and the three drugs combined, but not corticosterone with AM251, produced results equivalent to those mentioned initially. Neither the high nor the low dose of adrenaline, corticosterone, or AM251 altered freezing times at test in a novel, neutral context two and ten days later. In contrast, animals receiving the association of their low dose exhibited significantly higher freezing times than controls. Together, the results indicate that newly acquired and destabilized threat memory traces become more intense and generalized after a combined interference acting synergistically and mimicking that reported in patients presenting stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Lucas Gazarini
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidade Federal de Mato Grosso do Sul, Três Lagoas, MS, Brazil.
| | - Cristina A Stern
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Reinaldo N Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Xu Q, Jahanshad N, Li L, Cao Z, Lu GM, Thompson PM. Decreased functional connectivity of hippocampal subregions and methylation of the NR3C1 gene in Han Chinese adults who lost their only child. Psychol Med 2021; 51:1310-1319. [PMID: 31983347 PMCID: PMC7938667 DOI: 10.1017/s0033291720000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Losing one's only child is a major traumatic life event that may lead to post-traumatic stress disorder (PTSD); however, the underlying mechanisms of its psychological consequences remain poorly understood. Here, we investigated subregional hippocampal functional connectivity (FC) networks based on resting-state functional magnetic resonance imaging and the deoxyribonucleic acid methylation of the human glucocorticoid receptor gene (NR3C1) in adults who had lost their only child. METHODS A total of 144 Han Chinese adults who had lost their only child (51 adults with PTSD and 93 non-PTSD adults [trauma-exposed controls]) and 50 controls without trauma exposure were included in this fMRI study (age: 40-67 years). FCs between hippocampal subdivisions (four regions in each hemisphere: cornu ammonis1 [CA1], CA2, CA3, and dentate gyrus [DG]) and methylation levels of the NR3C1 gene were compared among the three groups. RESULTS Trauma-exposed adults, regardless of PTSD diagnosis, had weaker positive FC between the left hippocampal CA1, left DG, and the posterior cingulate cortex, and weaker negative FC between the right CA1, right DG, and several frontal gyri, relative to healthy controls. Compared to non-PTSD adults, PTSD adults showed decreased negative FC between the right CA1 region and the right middle/inferior frontal gyri (MFG/IFG), and decreased negative FC between the right DG and the right superior frontal gyrus and left MFG. Both trauma-exposed groups showed lower methylation levels of the NR3C1 gene. CONCLUSIONS Adults who had lost their only child may experience disrupted hippocampal network connectivity and NR3C1 methylation status, regardless of whether they have developed PTSD.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| |
Collapse
|
19
|
Diet, Stress and Mental Health. Nutrients 2020; 12:nu12082428. [PMID: 32823562 PMCID: PMC7468813 DOI: 10.3390/nu12082428] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: There has long been an interest in the effects of diet on mental health, and the interaction of the two with stress; however, the nature of these relationships is not well understood. Although associations between diet, obesity and the related metabolic syndrome (MetS), stress, and mental disorders exist, causal pathways have not been established. Methods: We reviewed the literature on the relationship between diet, stress, obesity and psychiatric disorders related to stress. Results: Diet and obesity can affect mood through direct effects, or stress-related mental disorders could lead to changes in diet habits that affect weight. Alternatively, common factors such as stress or predisposition could lead to both obesity and stress-related mental disorders, such as depression and posttraumatic stress disorder (PTSD). Specific aspects of diet can lead to acute changes in mood as well as stimulate inflammation, which has led to efforts to assess polyunsaturated fats (PUFA) as a treatment for depression. Bidirectional relationships between these different factors are also likely. Finally, there has been increased attention recently on the relationship between the gut and the brain, with the realization that the gut microbiome has an influence on brain function and probably also mood and behavior, introducing another way diet can influence mental health and disorders. Brain areas and neurotransmitters and neuropeptides that are involved in both mood and appetite likely play a role in mediating this relationship. Conclusions: Understanding the relationship between diet, stress and mood and behavior could have important implications for the treatment of both stress-related mental disorders and obesity.
Collapse
|
20
|
Morris LS, McCall JG, Charney DS, Murrough JW. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 2020; 4:2398212820930321. [PMID: 32954002 PMCID: PMC7479871 DOI: 10.1177/2398212820930321] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
This review aims to synthesise a large pre-clinical and clinical
literature related to a hypothesised role of the locus coeruleus
norepinephrine system in responses to acute and chronic threat, as
well as the emergence of pathological anxiety. The locus coeruleus has
widespread norepinephrine projections throughout the central nervous
system, which act to globally modulate arousal states and adaptive
behavior, crucially positioned to play a significant role in
modulating both ascending visceral and descending cortical
neurocognitive information. In response to threat or a stressor, the
locus coeruleus–norepinephrine system globally modulates arousal,
alerting and orienting functions and can have a powerful effect on the
regulation of multiple memory systems. Chronic stress leads to
amplification of locus coeruleus reactivity to subsequent stressors,
which is coupled with the emergence of pathological anxiety-like
behaviors in rodents. While direct in vivo evidence for locus
coeruleus dysfunction in humans with pathological anxiety remains
limited, recent advances in high-resolution 7-T magnetic resonance
imaging and computational modeling approaches are starting to provide
new insights into locus coeruleus characteristics.
Collapse
Affiliation(s)
- Laurel S Morris
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis S Charney
- Dean's Office, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Bremner JD, Wittbrodt MT, Shah AJ, Pearce BD, Gurel NZ, Inan OT, Raggi P, Lewis TT, Quyyumi AA, Vaccarino V. Confederates in the Attic: Posttraumatic Stress Disorder, Cardiovascular Disease, and the Return of Soldier's Heart. J Nerv Ment Dis 2020; 208:171-180. [PMID: 32091470 PMCID: PMC8214871 DOI: 10.1097/nmd.0000000000001100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Da Costa originally described Soldier's Heart in the 19th Century as a syndrome that occurred on the battlefield in soldiers of the American Civil War. Soldier's Heart involved symptoms similar to modern day posttraumatic stress disorder (PTSD) as well as exaggerated cardiovascular reactivity felt to be related to an abnormality of the heart. Interventions were appropriately focused on the cardiovascular system. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were relegated to the unconscious. Later, the physiology of PTSD and other psychiatric disorders was conceived as solely residing in the brain. More recently, advances in psychosomatic medicine led to the recognition of mind-body relationships and the involvement of multiple physiological systems in the etiology of disorders, including stress, depression PTSD, and cardiovascular disease, has moved to the fore, and has renewed interest in the validity of the original model of the Soldier's Heart syndrome.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
- Department of Radiology, Emory University School of Medicine, Emory University, Atlanta
- Atlanta VA Medical Center, Decatur
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tené T. Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Arshed A. Quyyumi
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Viola Vaccarino
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
- Department of Epidemiology, Rollins School of Public Health, Emory University
| |
Collapse
|
22
|
Bremner JD, Wittbrodt MT. Stress, the brain, and trauma spectrum disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:1-22. [PMID: 32450992 PMCID: PMC8214870 DOI: 10.1016/bs.irn.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This chapter reviews the relationship between stress and brain function in patients with neuropsychiatric disorders, with an emphasis on disorders that have most clearly been linked to traumatic stress exposure. These disorders, which have been described as trauma spectrum disorders, include posttraumatic stress disorder (PTSD), a subgroup of major depression, borderline personality disorder (BPD) and dissociative disorders; they share in common a neurobiological footprint, including smaller hippocampal volume, and are distinguished from other disorders that may share symptom similarities, like some of the anxiety disorders, but are not as clearly linked to stress. The relationship between environmental events such as stressors, especially in early childhood, and their effects on brain and neurobiology is important to understand in approaching these disorders as well as the development of therapeutic interventions. Addressing patients with stress-related disorders from multiple developmental (age at onset of trauma) as well as levels of analysis (cognitive, cultural, neurobiological) approaches will provide the most complete picture and result in the most successful treatment outcomes.
Collapse
Affiliation(s)
- J Douglas Bremner
- Emory University School of Medicine, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, Decatur, GA, United States.
| | | |
Collapse
|
23
|
Gurel NZ, Huang M, Wittbrodt MT, Jung H, Ladd SL, Shandhi MMH, Ko YA, Shallenberger L, Nye JA, Pearce B, Vaccarino V, Shah AJ, Bremner JD, Inan OT. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimul 2020; 13:47-59. [PMID: 31439323 PMCID: PMC8252146 DOI: 10.1016/j.brs.2019.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. OBJECTIVE The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. METHODS Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. RESULTS tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6-6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4-94.5%, p < 0.05), a 9% decrease in respiratory rate (-14.3 to -3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. CONCLUSION Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.
Collapse
Affiliation(s)
- Nil Z Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stacy L Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Mobashir H Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
24
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
25
|
Prasad A, Chaichi A, Kelley DP, Francis J, Gartia MR. Current and future functional imaging techniques for post-traumatic stress disorder. RSC Adv 2019; 9:24568-24594. [PMID: 35527877 PMCID: PMC9069787 DOI: 10.1039/c9ra03562a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma and stressor related psychiatric disorder associated with structural, metabolic, and molecular alternations in several brain regions including diverse cortical areas, neuroendocrine regions, the striatum, dopaminergic, adrenergic and serotonergic pathways, and the limbic system. We are in critical need of novel therapeutics and biomarkers for PTSD and a deep understanding of cutting edge imaging and spectroscopy methods is necessary for the development of promising new approaches to better diagnose and treat the disorder. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) criterion, all forms of traumatic stress-induced disorder are considered acute stress disorder for the first month following the stressor. Only after symptoms do not remit for one month can the disorder be deemed PTSD. It would be particularly useful to differentiate between acute stress disorder and PTSD during the one month waiting period so that more intensive treatments can be applied early on to patients with a high likelihood of developing PTSD. This would potentially enhance treatment outcomes and/or prevent the development of PTSD. Comprehension of the qualities and limitations of currently applied methods as well as the novel emerging techniques provide invaluable knowledge for fast paced development. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression. As the field currently stands, there is no diagnostic biomarker available for any psychiatric disease, PTSD included. Currently, emerging and available technologies are not utilized to their full capacity and in appropriate experimental designs for the most fruitful possible studies in this area. Therefore, there is an apparent need for improved methods in PTSD research. This review demonstrates the current state of the literature in PTSD, including molecular, cellular, and behavioral indicators, possible biomarkers and clinical and pre-clinical imaging techniques relevant to PTSD, and through this, elucidate the void of current practical imaging and spectroscopy methods that provide true biomarkers for the disorder and the significance of devising new techniques for future investigations. We are unlikely to develop a single biomarker for any psychiatric disorder however. As psychiatric disorders are incomparably complex compared to other medical diagnoses, its most likely that transcriptomic, metabolomic and structural and connectomic imaging data will have to be analyzed in concert in order to produce a dependable non-behavioral marker of PTSD. This can explain the necessity of bridging conventional approaches to novel technologies in order to create a framework for further discoveries in the treatment of PTSD. Conventional methods of studying posttraumatic stress disorder (PTSD) have proven to be insufficient for diagnosis. We have reviewed clinical and preclinical imaging techniques as well as molecular, cellular, and behavioral indicators for PTSD.![]()
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| | - D. Parker Kelley
- Comparative Biomedical Sciences
- School of Veterinary Medicine
- Louisiana State University
- Baton Rouge
- USA
| | - Joseph Francis
- Comparative Biomedical Sciences
- School of Veterinary Medicine
- Louisiana State University
- Baton Rouge
- USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
26
|
Glutamate and norepinephrine interaction: Relevance to higher cognitive operations and psychopathology. Behav Brain Sci 2018; 39:e201. [PMID: 28347382 DOI: 10.1017/s0140525x15001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mather and colleagues present an impressive interdisciplinary model of arousal-induced norepinephrine release and its role in selectively enhancing/inhibiting perception, attention, and memory consolidation. This model will require empirical investigation to test its validity and generalizability beyond classic norepinephrine circuits because it simplifies extremely complex and heterogeneous actions including norepinephrine mechanisms related to higher cognitive circuits and psychopathology.
Collapse
|
27
|
Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment. Curr Psychiatry Rep 2018; 20:52. [PMID: 30019147 DOI: 10.1007/s11920-018-0908-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes neurotransmitter, peptide, and other neurohormone abnormalities associated with posttraumatic stress disorder (PTSD) and relevant to development of precision medicine therapeutics for PTSD. RECENT FINDINGS As the number of molecular abnormalities associated with PTSD across a variety of subpopulations continues to grow, it becomes clear that no single abnormality characterizes all individuals with PTSD. Instead, individually variable points of molecular dysfunction occur within several different stress-responsive systems that interact to produce the clinical PTSD phenotype. Future work should focus on critical interactions among the systems that influence PTSD risk, severity, chronicity, comorbidity, and response to treatment. Effort also should be directed toward development of clinical procedures by which points of molecular dysfunction within these systems can be identified in individual patients. Some molecular abnormalities are more common than others and may serve as subpopulation biological endophenotypes for targeting of currently available and novel treatments.
Collapse
|
28
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
29
|
Inserra A. Hypothesis: The Psychedelic Ayahuasca Heals Traumatic Memories via a Sigma 1 Receptor-Mediated Epigenetic-Mnemonic Process. Front Pharmacol 2018; 9:330. [PMID: 29674970 PMCID: PMC5895707 DOI: 10.3389/fphar.2018.00330] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ayahuasca ingestion modulates brain activity, neurotransmission, gene expression and epigenetic regulation. N,N-Dimethyltryptamine (DMT, one of the alkaloids in Ayahuasca) activates sigma 1 receptor (SIGMAR1) and others. SIGMAR1 is a multi-faceted stress-responsive receptor which promotes cell survival, neuroprotection, neuroplasticity, and neuroimmunomodulation. Simultaneously, monoamine oxidase inhibitors (MAOIs) also present in Ayahuasca prevent the degradation of DMT. One peculiarity of SIGMAR1 activation and MAOI activity is the reversal of mnemonic deficits in pre-clinical models. Since traumatic memories in post-traumatic stress disorder (PTSD) are often characterised by “repression” and PTSD patients ingesting Ayahuasca report the retrieval of such memories, it cannot be excluded that DMT-mediated SIGMAR1 activation and the concomitant MAOIs effects during Ayahuasca ingestion might mediate such “anti-amnesic” process. Here I hypothesise that Ayahuasca, via hyperactivation of trauma and emotional memory-related centres, and via its concomitant SIGMAR1- and MAOIs- induced anti-amnesic effects, facilitates the retrieval of traumatic memories, in turn making them labile (destabilised). As Ayahuasca alkaloids enhance synaptic plasticity, increase neurogenesis and boost dopaminergic neurotransmission, and those processes are involved in memory reconsolidation and fear extinction, the fear response triggered by the memory can be reprogramed and/or extinguished. Subsequently, the memory is stored with this updated significance. To date, it is unclear if new memories replace, co-exist with or bypass old ones. Although the mechanisms involved in memory are still debated, they seem to require the involvement of cellular and molecular events, such as reorganisation of homo and heteroreceptor complexes at the synapse, synaptic plasticity, and epigenetic re-modulation of gene expression. Since SIGMAR1 mobilises synaptic receptor, boosts synaptic plasticity and modulates epigenetic processes, such effects might be involved in the reported healing of traumatic memories in PTSD patients. If this theory proves to be true, Ayahuasca could come to represent the only standing pharmacological treatment which targets traumatic memories in PTSD. Lastly, since SIGMAR1 activation triggers both epigenetic and immunomodulatory programmes, the mechanism here presented could help understanding and treating other conditions in which the cellular memory is dysregulated, such as cancer, diabetes, autoimmune and neurodegenerative pathologies and substance addiction.
Collapse
Affiliation(s)
- Antonio Inserra
- Mind and Brain Theme, The South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Department of Psychiatry, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
30
|
Rajindrajith S, Zeevenhooven J, Devanarayana NM, Perera BJC, Benninga MA. Functional abdominal pain disorders in children. Expert Rev Gastroenterol Hepatol 2018; 12:369-390. [PMID: 29406791 DOI: 10.1080/17474124.2018.1438188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Chronic abdominal pain is a common problem in pediatric practice. The majority of cases fulfill the Rome IV criteria for functional abdominal pain disorders (FAPDs). At times, these disorders may lead to rather serious repercussions. Area covered: We have attempted to cover current knowledge on epidemiology, pathophysiology, risk factors related to pathophysiology, clinical evaluation and management of children with FAPDs. Expert commentary: FAPDs are a worldwide problem with a pooled prevalence of 13.5%. There are a number of predisposing factors and pathophysiological mechanisms including stressful events, child maltreatment, visceral hypersensitivity, altered gastrointestinal motility and change in intestinal microbiota. It is possible that the environmental risk factors intricately interact with genes through epigenetic mechanisms to contribute to the pathophysiology. The diagnosis mainly depends on clinical evaluation. Commonly used pharmacological interventions do not play a major role in relieving symptoms. Centrally directed, nonpharmacological interventions such as hypnotherapy and cognitive behavioral therapy have shown both short and long term efficacy in relieving pain in children with FAPDs. However, these interventions are time consuming and need specially trained staff and therefore, not currently available at grass root level. Clinicians and researchers should join hands in searching for more pragmatic and effective therapeutic modalities to improve overall care of children with FAPDs.
Collapse
Affiliation(s)
- Shaman Rajindrajith
- a Department of Paediatrics, Faculty of Medicine , University of Kelaniya , Ragama , Sri Lanka
| | - Judith Zeevenhooven
- b Department of Pediatric Gastroenterology and Nutrition , Emma Children, Hospital, Academic Medical Centre , Amsterdam , The Netherlands
| | | | | | - Marc A Benninga
- b Department of Pediatric Gastroenterology and Nutrition , Emma Children, Hospital, Academic Medical Centre , Amsterdam , The Netherlands
| |
Collapse
|
31
|
Borodovitsyna O, Flamini MD, Chandler DJ. Acute Stress Persistently Alters Locus Coeruleus Function and Anxiety-like Behavior in Adolescent Rats. Neuroscience 2018; 373:7-19. [DOI: 10.1016/j.neuroscience.2018.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/01/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
|
32
|
Genesis and Maintenance of Attentional Biases: The Role of the Locus Coeruleus-Noradrenaline System. Neural Plast 2017; 2017:6817349. [PMID: 28808590 PMCID: PMC5541826 DOI: 10.1155/2017/6817349] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Abstract
Emotionally arousing events are typically better remembered than mundane ones, in part because emotionally relevant aspects of our environment are prioritized in attention. Such biased attentional tuning is itself the result of associative processes through which we learn affective and motivational relevance of cues. We propose that the locus coeruleus-noradrenaline (LC-NA) system plays an important role in the genesis of attentional biases through associative learning processes as well as their maintenance. We further propose that individual differences in and disruptions of the LC-NA system underlie the development of maladaptive biases linked to psychopathology. We provide support for the proposed role of the LC-NA system by first reviewing work on attentional biases in development and its link to psychopathology in relation to alterations and individual differences in NA availability. We focus on pharmacological manipulations to demonstrate the effect of a disrupted system as well as the ADRA2b polymorphism as a tool to investigate naturally occurring differences in NA availability. We next review associative learning processes that-modulated by the LC-NA system-result in such implicit attentional biases. Further, we demonstrate how NA may influence aversive and appetitive conditioning linked to anxiety disorders as well as addiction and depression.
Collapse
|
33
|
Kelmendi B, Adams TG, Southwick S, Abdallah CG, Krystal JH. Posttraumatic Stress Disorder: an integrated overview and neurobiological rationale for pharmacology. ACTA ACUST UNITED AC 2017; 24:281-297. [PMID: 31404451 DOI: 10.1111/cpsp.12202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thirty years of research on the biology of posttraumatic stress disorder now provides a foundation for hypotheses related to the mechanisms underlying the pharmacotherapy of this disorder. Only two medications, sertraline and paroxetine, are approved by the U.S. Food and Drug Administration for the treatment of PTSD. While these medications are somewhat effective, other treatment mechanisms must be explored to address the unmet need for effective treatment. This article provides a concise summary of advances in our understanding of the neurobiology of PTSD that suggest novel approaches to pharmacotherapy.
Collapse
Affiliation(s)
- Benjamin Kelmendi
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Thomas G Adams
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Steven Southwick
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Chadi G Abdallah
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - John H Krystal
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Psychiatry Services, Yale-New Haven Hospital, New Haven, CT
| |
Collapse
|
34
|
Abstract
Abstract
Many traumatized individuals alternate between re-experiencing their trauma and being detached from, or even relatively unaware of the trauma and its effects. At first sight one may be inclined to conceptualize detachment from trauma and re-experiencing of trauma as mental states. However, on closer scrutiny it becomes apparent that in both cases a range or cluster of states rather than a singular state is involved. For example, being detached from trauma does not itself exclude being joyful, ashamed, sexually aroused, or curious at times, and re-experiencing trauma can encompass states such as fleeing, freezing, and being in pain or being analgesic. In this paper we relate detachment from trauma and re-experiencing trauma to emotional operating systems (Panksepp, 1998) and functional systems (Fanselow & Lester, 1988), briefly addressed as action systems. Action systems control a range of functions, but some are more complex than others. Reexperiencing trauma will be associated with the inborn and evolutionary derived defensive system that is evoked by severe threat, in particular threat to the integrity of the body. As a complex system, it encompasses various subsystems, such as flight, freeze, and fight. Detachment from trauma, in our view, is associated with several action systems (Panksepp, 1998), i.e., the ones that control functions in daily life (e.g., exploration of the environment, energy control), and the ones that are dedicated to survival of the species (e.g., reproduction, attachment to and care for offspring). In this context we will maintain that severe threat may provoke a structural dissociation of the premorbid personality (Van der Hart, 2000). In its primary form this dissociation is between the defensive system on one hand, and the systems that involve managing daily life and survival of the species on the other hand. To summarize the essence of the theory of structural dissociation of the personality, we argue (1) that traumatic experiences, especially when they occur early in life and involve severe threat to the integrity of the body, may activate psychobiological action systems that have been developed by evolution, and (2) that due to extreme stress levels and classical as well as evaluative conditioning to traumatic memories these systems may remain unintegrated to varying degrees.
Collapse
|
35
|
Bremner JD, Mishra S, Campanella C, Shah M, Kasher N, Evans S, Fani N, Shah AJ, Reiff C, Davis LL, Vaccarino V, Carmody J. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder. Front Psychiatry 2017; 8:157. [PMID: 28890702 PMCID: PMC5574875 DOI: 10.3389/fpsyt.2017.00157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 08/09/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. METHOD Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. RESULTS Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. CONCLUSION This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with changes in brain regions that have been implicated in PTSD and are involved in extinction of fear responses to traumatic memories as well as regulation of the stress response.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States.,Department of Radiology, Emory University, Atlanta, GA, United States.,Atlanta VA Medical Center, Decatur, GA, United States.,Department of Psychiatry, University of Alabama, Birmingham, AL, United States.,The Tuskegee VA Medical Center, Tuskegee, AL, United States
| | - Sanskriti Mishra
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Carolina Campanella
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Majid Shah
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Nicole Kasher
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Sarah Evans
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Amit Jasvant Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Collin Reiff
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Lori L Davis
- Atlanta VA Medical Center, Decatur, GA, United States.,Department of Psychiatry, University of Alabama, Birmingham, AL, United States.,The Tuskegee VA Medical Center, Tuskegee, AL, United States
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - James Carmody
- Department of Medicine, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
36
|
Im JJ, Namgung E, Choi Y, Kim JY, Rhie SJ, Yoon S. Molecular Neuroimaging in Posttraumatic Stress Disorder. Exp Neurobiol 2016; 25:277-295. [PMID: 28035179 PMCID: PMC5195814 DOI: 10.5607/en.2016.25.6.277] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Over the past decade, an increasing number of neuroimaging studies have provided insight into the neurobiological mechanisms of posttraumatic stress disorder (PSTD). In particular, molecular neuroimaging techniques have been employed in examining metabolic and neurochemical processes in PTSD. This article reviews molecular neuroimaging studies in PTSD and focuses on findings using three imaging modalities including positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance spectroscopy (MRS). Although there were some inconsistences in the findings, patients with PTSD showed altered cerebral metabolism and perfusion, receptor bindings, and metabolite profiles in the limbic regions, medial prefrontal cortex, and temporal cortex. Studies that have investigated brain correlates of treatment response are also reviewed. Lastly, the limitations of the molecular neuroimaging studies and potential future research directions are discussed.
Collapse
Affiliation(s)
- Jooyeon Jamie Im
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Eun Namgung
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yejee Choi
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jung Yoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sandy Jeong Rhie
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
37
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
38
|
Ronzoni G, Del Arco A, Mora F, Segovia G. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD. Psychoneuroendocrinology 2016; 70:1-9. [PMID: 27131036 DOI: 10.1016/j.psyneuen.2016.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure (1) on reactivity to novelty in an open-field (as an index of hyperarousal), and (2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86mA, and 6s per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5min in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results suggest that an increased noradrenergic activity in the amygdala contributes to the expression of hyperarousal in an animal model of PTSD.
Collapse
Affiliation(s)
- Giacomo Ronzoni
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Del Arco
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Mora
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Gregorio Segovia
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
39
|
Abstract
Substance use disorders (SUD) and posttraumatic stress disorder (PTSD) are chronic, debilitating conditions that frequently co-occur. Individuals with co-occurring SUD and PTSD suffer a more complicated course of treatment and less favorable treatment outcomes compared to individuals with either disorder alone. The development of effective psychosocial and pharmacological interventions for co-occurring SUD and PTSD is an active and critically important area of investigation. Several integrated psychosocial treatments for co-occurring SUD and PTSD have demonstrated promising outcomes. While recent studies examining medications to treat co-occurring SUD and PTSD have yielded encouraging findings, there remain substantial gaps in the evidence base regarding the treatment of co-occurring SUD and PTSD. This review will summarize the findings from clinical trials targeting a reduction in SUD and PTSD symptoms simultaneously. These results may improve our knowledge base and subsequently enhance our ability to develop effective interventions for this complex comorbid condition.
Collapse
Affiliation(s)
- Julianne C Flanagan
- Medical University of South Carolina, 5 Charleston Center Drive, Suite 151, Charleston, SC, 29455, USA.
| | - Kristina J Korte
- Medical University of South Carolina, 5 Charleston Center Drive, Suite 151, Charleston, SC, 29455, USA
| | - Therese K Killeen
- Medical University of South Carolina, 5 Charleston Center Drive, Suite 151, Charleston, SC, 29455, USA
| | - Sudie E Back
- Medical University of South Carolina, 5 Charleston Center Drive, Suite 151, Charleston, SC, 29455, USA
- Ralph H. Johnson VAMC, 109 Bee St, Charleston, SC, 29401, USA
| |
Collapse
|
40
|
Le Dorze C, Gisquet-Verrier P. Sensitivity to trauma-associated cues is restricted to vulnerable traumatized rats and reinstated after extinction by yohimbine. Behav Brain Res 2016; 313:120-134. [PMID: 27392642 DOI: 10.1016/j.bbr.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/24/2022]
Abstract
While post-traumatic stress disorder (PTSD) symptom is mainly characterized by re-experiencing the traumatic event, the reactivity to trauma-associated cues in resilient and vulnerable subjects has not been extensively studied. Using an animal model of PTSD induced by a single prolonged stress (SPS), the responses of traumatized Vulnerable and Resilient rats to PTSD-like symptom tests and to trauma-associated cues were investigated. In addition, the implication of the noradrenergic system in "re-experiencing" was explored. Rats received either a SPS, combining a 2h restraint stress, a 20min forced-swim followed by a 15min rest, and a loss of consciousness produced by inhaling CO2 emissions, delivered in the presence of particular cues (tone and odor), or a control procedure. PTSD-like symptoms and reactivity to various trauma-associated cues (specific, contextual, or predictive) were tested from D15 to D60 after the SPS. Rats were then divided into Resilient and Vulnerable on the basis of three main symptom tests, including the elevated plus maze, the light-dark and the acoustic startle response tests. Although Resilient rats behaved like Controls rats, Vulnerable rats developed long-term PTSD-like symptoms on the main symptoms tests (anxiety and alteration of arousal), as well as other PTSD-like outcomes (such as anhedonia and avoidance to trauma-associated cues). These Vulnerable rats were also the only ones to demonstrate strong reactivity to trauma-associated cues. In addition, the alpha-2 adrenergic receptor antagonist, Yohimbine (i.p., 1.5mg/kg/ml), was able to reinstate fear responses to an extinguished trauma-associated odor. Our results established clear relationships between Vulnerability to trauma and reactivity to trauma-associated cues and further suggest an involvement of the noradrenergic system.
Collapse
Affiliation(s)
- Claire Le Dorze
- Neuro-PSI, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
41
|
Charney DS, Grillon C, Bremner JD. Review : The Neurobiological Basis of Anxiety and Fear: Circuits, Mechanisms, and Neurochemical Interactions (Part I. Neuroscientist 2016. [DOI: 10.1177/107385849800400111] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There have been tremendous advances in our knowledge of the neurobiological basis of human anxiety and fear. This review seeks to highlight how specific neuronal circuits, neural mechanisms, and neuromod ulators may play a critical role in anxiety and fear states. It focuses on several brain structures, including the amygdala, locus coeruleus, hippocampus, and various cortical regions and the functional interactions among brain noradrenergic (NE), corticotropin releasing hormone (CRH), and the hypothalamic pituitary adrenal axis (HPA). Particular attention is directed toward results that can lead to a better understanding of the constellation of the symptoms associated with two of the more severe anxiety disorders, panic disorder and posttraumatic stress disorder (PTSD), the persistence of traumatic memories, and the effects of stress, particularly early life adverse experiences, on brain function and clinical outcome. NEUROSCIENTIST 4: 35-44, 1998
Collapse
Affiliation(s)
- Dennis S. Charney
- Yale University School of Medicine Department of Psychiatry
New Haven, Connecticut
| | - Christian Grillon
- Yale University School of Medicine Department of Psychiatry
New Haven, Connecticut
| | - J. Douglas Bremner
- Yale University School of Medicine Department of Psychiatry
New Haven, Connecticut
| |
Collapse
|
42
|
Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 2016; 284:181-195. [PMID: 27222130 DOI: 10.1016/j.expneurol.2016.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
A central role for noradrenergic dysregulation in the pathophysiology of post-traumatic stress disorder (PTSD) is increasingly suggested by both clinical and basic neuroscience research. Here, we integrate recent findings from clinical and animal research with the earlier literature. We first review the evidence for net upregulation of the noradrenergic system and its responsivity to stress in individuals with PTSD. Next, we trace the evidence that the α1 noradrenergic receptor antagonist prazosin decreases many of the symptoms of PTSD from initial clinical observations, to case series, to randomized controlled trials. Finally, we review the basic science work that has begun to explain the mechanism for this efficacy, as well as to explore its possible limitations and areas for further advancement. We suggest a view of the noradrenergic system as a central, modifiable link in a network of interconnected stress-response systems, which also includes the amygdala and its modulation by medial prefrontal cortex. Particular attention is paid to the evidence for bidirectional signaling between noradrenaline and corticotropin-releasing factor (CRF) in coordinating these interconnected systems. The multiple different ways in which the sensitivity and reactivity of the noradrenergic system may be altered in PTSD are highlighted, as is the evidence for possible heterogeneity in the pathophysiology of PTSD between different individuals who appear clinically similar. We conclude by noting the importance moving forward of improved measures of noradrenergic functioning in clinical populations, which will allow better recognition of clinical heterogeneity and further assessment of the functional implications of different aspects of noradrenergic dysregulation.
Collapse
|
43
|
Ramage AE, Litz BT, Resick PA, Woolsey MD, Dondanville KA, Young-McCaughan S, Borah AM, Borah EV, Peterson AL, Fox PT. Regional cerebral glucose metabolism differentiates danger- and non-danger-based traumas in post-traumatic stress disorder. Soc Cogn Affect Neurosci 2016; 11:234-42. [PMID: 26373348 PMCID: PMC4733332 DOI: 10.1093/scan/nsv102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 01/23/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with (18)fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R(2 )= 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R(2 )= 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context.
Collapse
Affiliation(s)
- Amy E Ramage
- Department of Psychiatry and the Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,
| | - Brett T Litz
- Massachusetts Veterans Epidemiological Research and Information Center, VA Boston Healthcare System, Washington, DC, USA, Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Patricia A Resick
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Mary D Woolsey
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | - Adam M Borah
- Carl R. Darnall Army Medical Center, Fort Hood, TX, USA
| | | | - Alan L Peterson
- Department of Psychiatry and the South Texas Veterans Health Care System, San Antonio, TX, USA, and
| | - Peter T Fox
- Department of Psychiatry and the Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, State Key Laboratory for Brain and Cognitive Science, Hong Kong University, Pok Fu Lam, Hong Kong
| |
Collapse
|
44
|
Behavioral and central correlates of contextual fear learning and contextual modulation of cued fear in posttraumatic stress disorder. Int J Psychophysiol 2015; 98:584-93. [DOI: 10.1016/j.ijpsycho.2015.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/04/2023]
|
45
|
Bersani FS, Coviello M, Imperatori C, Francesconi M, Hough CM, Valeriani G, De Stefano G, Bolzan Mariotti Posocco F, Santacroce R, Minichino A, Corazza O. Adverse Psychiatric Effects Associated with Herbal Weight-Loss Products. BIOMED RESEARCH INTERNATIONAL 2015; 2015:120679. [PMID: 26457296 PMCID: PMC4589574 DOI: 10.1155/2015/120679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/02/2015] [Indexed: 12/24/2022]
Abstract
Obesity and overeating are among the most prevalent health concerns worldwide and individuals are increasingly using performance and image-enhancing drugs (PIEDs) as an easy and fast way to control their weight. Among these, herbal weight-loss products (HWLPs) often attract users due to their health claims, assumed safety, easy availability, affordable price, extensive marketing, and the perceived lack of need for professional oversight. Reports suggest that certain HWLPs may lead to onset or exacerbation of psychiatric disturbances. Here we review the available evidence on psychiatric adverse effects of HWLPs due to their intrinsic toxicity and potential for interaction with psychiatric medications.
Collapse
Affiliation(s)
- F. Saverio Bersani
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Marialuce Coviello
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudio Imperatori
- Department of Human Sciences, European University of Rome, 00163 Rome, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Christina M. Hough
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Giuseppe Valeriani
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- Department of Psychiatry, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Gianfranco De Stefano
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Rita Santacroce
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- Department of Neuroscience and Imaging, Gabriele D'Annunzio University, 66100 Chieti, Italy
| | - Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Ornella Corazza
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
46
|
Amen DG, Raji CA, Willeumier K, Taylor D, Tarzwell R, Newberg A, Henderson TA. Functional Neuroimaging Distinguishes Posttraumatic Stress Disorder from Traumatic Brain Injury in Focused and Large Community Datasets. PLoS One 2015; 10:e0129659. [PMID: 26132293 PMCID: PMC4488529 DOI: 10.1371/journal.pone.0129659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. METHODS Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). RESULTS For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. CONCLUSIONS This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Daniel G. Amen
- Department of Research, Amen Clinics, Inc., Costa Mesa, California, United States of America
| | - Cyrus A. Raji
- Department of Radiology, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Kristen Willeumier
- Department of Research, Amen Clinics, Inc., Costa Mesa, California, United States of America
| | - Derek Taylor
- Department of Research, Amen Clinics, Inc., Costa Mesa, California, United States of America
| | - Robert Tarzwell
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Lions Gate Hospital, North Vancouver, British Columbia, Canada
| | - Andrew Newberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Theodore A. Henderson
- The Synaptic Space, Denver, Colorado, United States of America
- The International Society of Applied Neuroimaging, Denver, Colorado, United States of America
| |
Collapse
|
47
|
Brashers-Krug T, Jorge R. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI. PLoS One 2015; 10:e0130246. [PMID: 26120848 PMCID: PMC4488265 DOI: 10.1371/journal.pone.0130246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. METHODS We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. RESULTS Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. CONCLUSIONS Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The conceptualization of post-traumatic changes in neural function should be reconsidered.
Collapse
Affiliation(s)
- Tom Brashers-Krug
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Psychiatry, Iowa City VA Healthcare System, Iowa City, Iowa, United States of America
| | - Ricardo Jorge
- Mental Health Service Line, Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
48
|
Yehuda R, Lehrner A, Rosenbaum TY. PTSD and Sexual Dysfunction in Men and Women. J Sex Med 2015; 12:1107-19. [DOI: 10.1111/jsm.12856] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Kawa L, Arborelius UP, Yoshitake T, Kehr J, Hökfelt T, Risling M, Agoston D. Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin. J Neurotrauma 2015; 32:1190-9. [PMID: 25525686 DOI: 10.1089/neu.2014.3669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exposure to improvised explosive devices can result in a unique form of traumatic brain injury--blast-induced traumatic brain injury (bTBI). At the mild end of the spectrum (mild bTBI [mbTBI]), there are cognitive and mood disturbances. Similar symptoms have been observed in post-traumatic stress disorder caused by exposure to extreme psychological stress without physical injury. A role of the monoaminergic system in mood regulation and stress is well established but its involvement in mbTBI is not well understood. To address this gap, we used a rodent model of mbTBI and detected a decrease in immobility behavior in the forced swim test at 1 d post-exposure, coupled with an increase in climbing behavior, but not after 14 d or later, possibly indicating a transient increase in anxiety-like behavior. Using in situ hybridization, we found elevated messenger ribonucleic acid levels of both tyrosine hydroxylase and tryptophan hydroxylase 2 in the locus coeruleus and the dorsal raphe nucleus, respectively, as early as 2 h post-exposure. High-performance liquid chromatography analysis 1 d post-exposure primarily showed elevated noradrenaline levels in several forebrain regions. Taken together, we report that exposure to mild blast results in transient changes in both anxiety-like behavior and brain region-specific molecular changes, implicating the monoaminergic system in the pathobiology of mbTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Ulf P Arborelius
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Takashi Yoshitake
- 2 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Jan Kehr
- 2 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Tomas Hökfelt
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Mårten Risling
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Denes Agoston
- 3 Department of Anatomy, Physiology and Genetics, the Uniformed Services University , Bethesda, Maryland
| |
Collapse
|
50
|
Kao CY, Stalla G, Stalla J, Wotjak CT, Anderzhanova E. Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci 2015; 41:1139-48. [PMID: 25720329 DOI: 10.1111/ejn.12860] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
This study measured changes in brain extracellular norepinephrine (NE) and free corticosterone (CORT) levels in a mouse model of post-traumatic stress disorder and related them to hyperarousal and fear memory retention. To this end, microdialysis in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of male C57BL/6NCrl mice was performed during an acoustic startle response (ASR) and following an electric foot shock (FS), as well as during an ASR and recall of contextual fear (CF) 1 day later. Changes in ASR-stimulated NE levels in the mPFC corresponded to ASR 34 days after FS. Changes in basal and ASR-stimulated extracellular NE levels in the HPC, in contrast, were related to expression of early (day 2) and late (day 34) CF after FS. The increase in extracellular NE levels correlated in a U-shape manner with arousal levels and CF, thus suggesting a non-direct relationship. Stress of different modalities/strength (ASR, FS and CF) caused a similar relative increase in free CORT levels both in the mPFC and the HPC. One day after FS, ASR-induced increases in the CORT content in the mPFC tended to correlate with the FS-potentiated ASR in a U-shape manner. Taken together, these data show that the intracerebral increase in free CORT was likely related to an immediate response to stress, whereas NE neurotransmission in the forebrain predicted arousal and CF 1 month after trauma.
Collapse
Affiliation(s)
- C-Y Kao
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|