1
|
Niazi SK. Bioavailability as Proof to Authorize the Clinical Testing of Neurodegenerative Drugs-Protocols and Advice for the FDA to Meet the ALS Act Vision. Int J Mol Sci 2024; 25:10211. [PMID: 39337696 PMCID: PMC11432374 DOI: 10.3390/ijms251810211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Although decades of intensive drug discovery efforts to treat neurodegenerative disorders (NDs) have failed, around half a million patients in more than 2000 studies continue being tested, costing over USD 100 billion, despite the conclusion that even those drugs which have been approved have no better effect than a placebo. The US Food and Drug Administration (FDA) has established multiple programs to innovate the treatment of rare diseases, particularly NDs, providing millions of USD in funding primarily by encouraging novel clinical trials to account for issues related to study sizes and adopting multi-arm studies to account for patient dropouts. Instead, the FDA should focus on the primary reason for failure: the poor bioavailability of drugs reaching the brain (generally 0.1% at most) due to the blood-brain barrier (BBB). There are several solutions to enhance entry into the brain, and the FDA must require proof of significant entry into the brain as the prerequisite to approving Investigational New Drug (IND) applications. The FDA should also rely on factors other than biomarkers to confirm efficacy, as these are rarely relevant to clinical use. This study summarizes how the drugs used to treat NDs can be made effective and how the FDA should change its guidelines for IND approval of these drugs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Coates PM, Bailey RL, Blumberg JB, El-Sohemy A, Floyd E, Goldenberg JZ, Gould Shunney A, Holscher HD, Nkrumah-Elie Y, Rai D, Ritz BW, Weber WJ. The Evolution of Science and Regulation of Dietary Supplements: Past, Present, and Future. J Nutr 2024; 154:2335-2345. [PMID: 38971530 PMCID: PMC11375470 DOI: 10.1016/j.tjnut.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Dietary supplement use in the United States is widespread and increasing, especially among certain population groups, such as older Americans. The science surrounding dietary supplements has evolved substantially over the last few decades since their formal regulation in 1994. Much has been learned about the mechanisms of action of many dietary supplement ingredients, but the evidence on their health effects is still building. As is true of much nutrition research, there are many studies that point to health effects, but not all are at the level of scientific evidence (e.g., randomized controlled interventions), rigor, or quality needed for definitive statements of efficacy regarding clinical end points. New technologies and approaches are being applied to the science of dietary supplements, including nutrigenomics and microbiome analysis, data science, artificial intelligence (AI), and machine learning-all of which can elevate the science behind dietary supplements. Products can contain an array of bioactive compounds derived from foods as well as from medicinal plants, which creates enormous challenges in data collection and management. Clinical applications, particularly those aimed at providing personalized nutrition options for patients, have become more sophisticated as dietary supplements are incorporated increasingly into clinical practice and self-care. The goals of this article are to provide historical context for the regulation and science of dietary supplements, identify research resources, and suggest some future directions for science in this field.
Collapse
Affiliation(s)
- Paul M Coates
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN, United States.
| | - Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M University System, College Station, TX, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Floyd
- McIlhenny Botanical Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Joshua Z Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | | | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | - Deshanie Rai
- OmniActive Health Technologies, Morristown, NJ, United States
| | - Barry W Ritz
- Nestlé Health Science, Bridgewater, NJ, United States
| | - Wendy J Weber
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Chen L, Liu X, Zheng J, Li G, Yang B, He A, Liu H, Liang Y, Wang WA, Du J. A randomized, double-blind, placebo-controlled study of Cistanche tubulosa and Ginkgo biloba extracts for the improvement of cognitive function in middle-aged and elderly people. Phytother Res 2024. [PMID: 38972848 DOI: 10.1002/ptr.8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Mild cognitive impairment poses an increasing challenge to middle-aged and elderly populations. Traditional Chinese medicinal herbs like Cistanche tubulosa and Ginkgo biloba (CG) have been proposed as potential agents to improve cognitive and memory functions. A randomized controlled trial involving 100 Chinese middle-aged and elderly participants was conducted to investigate the potential synergistic effects of CG on cognitive function in individuals at risk of neurodegenerative diseases. Over 90 days, both CG group and placebo group received two tablets daily, with each pair of CG tablets containing 72 mg echinacoside and 27 mg flavonol glycosides. Cognitive functions were assessed using multiple scales and blood biomarkers were determined at baseline, Day 45, and Day 90. The CG group exhibited significant improvements in the scores of Mini-Mental State Examination (26.5 at baseline vs. 27.1 at Day 90, p < 0.001), Montreal Cognitive Assessment (23.4 at baseline vs. 25.3 at Day 90, p < 0.001), and World Health Organization Quality of Life (81.6 at baseline vs. 84.2 at Day 90, p < 0.001), all surpassing scores in placebo group. Notably, both the Cognitrax matrix test and the Wechsler Memory Scale-Revised demonstrated enhanced memory functions, including long-term and delayed memory, after CG intervention. Moreover, cognitive-related blood biomarkers, including total tau, pT181, pS199, pT231, pS396, and thyroid-stimulating hormone, significantly decreased, whereas triiodothyronine and free triiodothyronine significantly increased. No treatment-related adverse events were reported, and routine blood and urine tests remained stable. These findings indicated that CG supplementation could potentially serve as an effective supplementary solution for enhancing cognitive and memory functions.
Collapse
Affiliation(s)
- Liang Chen
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Xin Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Zheng
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Gang Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Binrui Yang
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Anli He
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Hongyue Liu
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | | | - Wen' An Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Libby TE, Ilango SD, Leary CS, Semmens EO, Adam CE, Fitzpatrick AL, Kaufman JD, Hajat A. An assessment of the mediating role of hypertension in the effect of long-term air pollution exposure on dementia. Environ Epidemiol 2024; 8:e306. [PMID: 38799261 PMCID: PMC11115980 DOI: 10.1097/ee9.0000000000000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background Growing evidence links air pollution exposure to the risk of dementia. We hypothesized that hypertension may partially mediate this effect. Methods We previously documented an association between air pollution and dementia in the Ginkgo Evaluation of Memory Study, a randomized, placebo-controlled trial of 3069 adults ≥75 years across four US sites who were evaluated for dementia every 6 months from 2000-2008. We utilized a two-stage regression approach for causal mediation analysis to decompose the total effect of air pollution on dementia into its natural direct and indirect effect through prevalent hypertension. Exposure to air pollution in the 10 or 20 years before enrollment was assigned using estimates from fine-scale spatial-temporal models for PM2.5, PM10, and NO2. We used Poisson regression models for hypertension and Cox proportional hazard models for time-to-incident all-cause dementia, adjusting for a priori confounders. Results Participants were free of mild cognitive impairment at baseline (n = 2564 included in analyses); 69% had prevalent hypertension at baseline. During follow-up, 12% developed all-cause dementia (Alzheimer's disease [AD] = 212; vascular dementia with or without AD [VaD/AD mixed] = 97). We did not find an adverse effect of any air pollutant on hypertension. Hypertension was associated with VaD/AD mixed (HR, 1.92 [95% CI = 1.14, 3.24]) but not AD. We did not observe mediation through hypertension for the effect of any pollutant on dementia outcomes. Conclusions The lack of mediated effect may be due to other mechanistic pathways and the minimal effect of air pollution on hypertension in this cohort of older adults.
Collapse
Affiliation(s)
- Tanya E. Libby
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Sindana D. Ilango
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Cindy S. Leary
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana
| | - Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana
| | - Claire E. Adam
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana
| | - Annette L. Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Anjum Hajat
- Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
6
|
Peng Y, Chen Q, Xue YH, Jin H, Liu S, Du MQ, Yao SY. Ginkgo biloba and Its Chemical Components in the Management of Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:625-666. [PMID: 38654507 DOI: 10.1142/s0192415x24500277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD), a degenerative disease of the central nervous system, remains unclear. The main manifestations of AD include cognitive and behavioral disorders, neuropsychiatric symptoms, neuroinflammation, amyloid plaques, and neurofibrillary tangles. However, current drugs for AD once the dementia stage has been reached only treat symptoms and do not delay progression, and the research and development of targeted drugs for AD have reached a bottleneck. Thus, other treatment options are needed. Bioactive ingredients derived from plants are promising therapeutic agents. Specifically, Ginkgo biloba (Gb) extracts exert anti-oxidant, anticancer, neuroplastic, neurotransmitter-modulating, blood fluidity, and anti-inflammatory effects, offering alternative options in the treatment of cardiovascular, metabolic, and neurodegenerative diseases. The main chemical components of Gb include flavonoids, terpene lactones, proanthocyanidins, organic acids, polysaccharides, and amino acids. Gb and its extracts have shown remarkable therapeutic effects on various neurodegenerative diseases, including AD, with few adverse reactions. Thus, high-quality Gb extracts are a well-established treatment option for AD. In this review, we summarize the insights derived from traditional Chinese medicine, experimental models, and emerging clinical trials on the role of Gb and its chemical components in the treatment of the main clinical manifestations of AD.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
7
|
Allam EAH, Assi AA, Badary DM, Farrag MMY, Nicola MA. Memantine versus Ginkgo biloba Extract: A Comparative Study on Cognitive Dysfunction Treatment in a Novel Rat Model. PLANTA MEDICA 2024; 90:286-297. [PMID: 38286405 DOI: 10.1055/a-2245-3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Extracellular senile plaques and intraneuronal neurofibrillary tangles are two devastating brain proteinopathies that are indicative of Alzheimer's disease, the most prevalent type of dementia. Currently, no effective medications are available to stop or reverse Alzheimer's disease. Ginkgo biloba extract, commonly referred to as EGb 761, is a natural product made from the leaves of the G. biloba tree. It has long been demonstrated to have therapeutic benefits in Alzheimer's disease. The current study assessed the beneficial effects of EGb 761 against Alzheimer's disease in comparison with memantine, a standard treatment for Alzheimer's disease. The scopolamine-heavy metals mixture rat Alzheimer's disease model is a newly created model to study the effects of EGb 761 oral therapy on cognitive performance and other Alzheimer's disease-like changes over a 28-day experimental period. This new Alzheimer's disease model provides better criteria for Alzheimer's disease hallmarks than the conventional scopolamine model. The EGb 761 reversed memory and learning deficits induced by the scopolamine-heavy metals mixture. These outcomes were linked to a more pronounced inhibitory effect on acetylcholinesterase, caspase-3, hippocampal amyloid-beta protein (Aβ1 - 42), phosphorylated tau protein counts, and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) compared to the memantine-treated group. Furthermore, EGb 761 treatment considerably reduced lipid peroxidation (malondialdehyde) and improved reduced glutathione levels compared to memantine. Our results suggest EGb 761's potential in treating central nervous system disorders. It's a promising candidate for future Alzheimer's disease therapeutic exploration. This study also highlights the need for future research to focus on the positive benefits of herbal medicines.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dalia M Badary
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Magda M Y Farrag
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Lopez OL, Villemagne VL, Chang YF, Cohen AD, Klunk WE, Mathis CA, Pascoal T, Ikonomovic MD, Rowe C, Dore V, Snitz BE, Lopresti BJ, Kamboh MI, Aizenstein HJ, Kuller LH. Association Between β-Amyloid Accumulation and Incident Dementia in Individuals 80 Years or Older Without Dementia. Neurology 2024; 102:e207920. [PMID: 38165336 PMCID: PMC10870745 DOI: 10.1212/wnl.0000000000207920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES While the highest prevalence of dementia occurs in individuals older than 80 years, most imaging studies focused on younger populations. The rates of β-amyloid (Aβ) accumulation and the effect of Alzheimer disease (AD) pathology on progression to dementia in this age group remain unexplored. In this study, we examined the relationship between changes in Aβ deposition over time and incident dementia in nondemented individuals followed during a period of 11 years. METHODS We examined 94 participants (age 85.9 + 2.8 years) who had up to 5 measurements of Pittsburgh compound-B (PiB)-PET and clinical evaluations from 2009 to 2020. All 94 participants had 2 PiB-PET scans, 76 participants had 3 PiB-PET scans, 18 participants had 4 PiB-PET scans, and 10 participants had 5 PiB-PET scans. The rates of Aβ deposition were compared with 120 nondemented individuals younger than 80 years (69.3 ± 5.4 years) from the Australian Imaging, Biomarker, and Lifestyle (AIBL) study who had 3 or more annual PiB-PET assessments. RESULTS By 2020, 49% of the participants developed dementia and 63% were deceased. There was a gradual increase in Aβ deposition in all participants whether they were considered Aβ positive or negative at baseline. In a Cox model controlled for age, sex, education level, APOE-4 allele, baseline Mini-Mental State Examination, and mortality, short-term change in Aβ deposition was not significantly associated with incident dementia (HR 2.19 (0.41-11.73). However, baseline Aβ burden, cortical thickness, and white matter lesions volume were the predictors of incident dementia. Aβ accumulation was faster (p = 0.01) in the older cohort (5.6%/year) when compared with AIBL (4.1%/year). In addition, baseline Aβ deposition was a predictor of short-term change (mean time 1.88 years). DISCUSSION There was an accelerated Aβ accumulation in cognitively normal individuals older than 80 years. Baseline Aβ deposition was a determinant of incident dementia and short-term change in Aβ deposition suggesting that an active Aβ pathologic process was present when these participants were cognitively normal. Consequently, age may not be a limiting factor for the use of the emergent anti-Aβ therapies.
Collapse
Affiliation(s)
- Oscar L Lopez
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Victor L Villemagne
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Yue-Fang Chang
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Ann D Cohen
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - William E Klunk
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Chester A Mathis
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Tharick Pascoal
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Milos D Ikonomovic
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Christopher Rowe
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Vincent Dore
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Beth E Snitz
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Brian J Lopresti
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - M Ilyas Kamboh
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Howard J Aizenstein
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| | - Lewis H Kuller
- From the Departments of Neurology (O.L.L., W.E.K., M.D.I., B.E.S.), Psychiatry (O.L.L., V.L.V., A.D.C., W.E.K., T.P., H.J.A.), Neurosurgery (Y.-F.C.), Radiology (A.D.C., C.A.M., B.J.L.), Epidemiology (L.H.K.), and Human Genetics, Graduate School of Public Health (M.I.K.), University of Pittsburgh, PA; Department of Molecular Imaging and Therapy (C.R.), Austin Health, Melbourne; The Florey Institute of Neuroscience and Mental Health (C.R., V.D.), University of Melbourne; and CSIRO Health and Biosecurity (V.D.), Melbourne, Australia
| |
Collapse
|
10
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
11
|
Adam CE, Fitzpatrick AL, Leary CS, Ilango SD, Phelan EA, Semmens EO. The impact of falls on activities of daily living in older adults: A retrospective cohort analysis. PLoS One 2024; 19:e0294017. [PMID: 38170712 PMCID: PMC10763967 DOI: 10.1371/journal.pone.0294017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Falls contribute to impairments in activities of daily living (ADLs), resulting in significant declines in the quality of life, safety, and functioning of older adults. Understanding the magnitude and duration of the effect of falls on ADLs, as well as identifying the characteristics of older adults more likely to have post-fall ADL impairment is critical to inform fall prevention and post-fall intervention. The purpose of this study is to 1) Quantify the association between falls and post-fall ADL impairment and 2) Model trajectories of ADL impairment pre- and post-fall to estimate the long-term impact of falls and identify characteristics of older adults most likely to have impairment. METHOD Study participants were from the Ginkgo Evaluation of Memory Study, a randomized controlled trial in older adults (age 75+) in the United States. Self-reported incident falls and ADL scores were ascertained every 6 months over a 7-year study period. We used Cox proportional hazards analyses (n = 2091) to quantify the association between falls and ADL impairment and latent class trajectory modeling (n = 748) to visualize trajectories of ADL impairment pre-and post-fall. RESULTS Falls reported in the previous 6 months were associated with impairment in ADLs (HR: 1.42; 95% CI 1.32, 1.52) in fully adjusted models. Based on trajectory modeling (n = 748), 19% (n = 139) of participants had increased, persistent ADL impairment after falling. Participants who were female, lived in a neighborhood with higher deprivation, or experienced polypharmacy were more likely to have ADL impairment post-fall. CONCLUSIONS Falls are associated with increased ADL impairment, and this impairment can persist over time. It is crucial that all older adults, and particularly those at higher risk of post-fall ADL impairment have access to comprehensive fall risk assessment and evidence-based fall prevention interventions, to help mitigate the negative impacts on ADL function.
Collapse
Affiliation(s)
- Claire E. Adam
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, University of Montana, Missoula, Montana, United States of America
| | - Annette L. Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Cindy S. Leary
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, University of Montana, Missoula, Montana, United States of America
| | - Sindana D. Ilango
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth A. Phelan
- Division of Gerontology and Geriatric Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Erin O. Semmens
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
12
|
Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer's Disease. J Alzheimers Dis 2024; 101:S285-S298. [PMID: 39422946 DOI: 10.3233/jad-231372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Extracts made from plants are complex mixtures of substances with varying compositions depending on the plant material and method of manufacture. This complexity makes it difficult for scientists and clinicians to interpret findings from pharmacological and clinical research. We performed a narrative review summarizing information on ginkgo biloba leaf extract, its composition, pharmacological data and clinical evidence supporting its administration for the treatment of Alzheimer's disease (AD). Medicinal products containing ginkgo biloba leaf extract which are manufactured in compliance with the requirements of the European Pharmacopoeia are approved as medicinal products for the treatment of dementia and related conditions by drug regulatory agencies in Europe, Asia and South America. As multicomponent mixtures, they may affect various targets in the pathogenesis of AD, the most common form of dementia. Pharmacodynamic studies demonstrate the effects of EGb 761 and individual constituents on various pathophysiological features of experimentally induced cognitive impairment and neurodegeneration that could contribute to its clinical efficacy. The safety and efficacy in the treatment of AD and cognitive decline has been studied in randomized, placebo-controlled clinical trials. Most of the studies that investigate the effects of ginkgo biloba extract (GbE) used the special extract EGb 761, which makes it the best-researched plant preparation worldwide. It is therefore the only herbal alternative to standard-of-care anti-dementia drugs. However, the mechanism of action has not been fully elucidated yet, and the clinical studies in AD show heterogeneity.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Trabert M, Seifert R. Critical analysis of ginkgo preparations: comparison of approved drugs and dietary supplements marketed in Germany. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:451-461. [PMID: 37470803 PMCID: PMC10771617 DOI: 10.1007/s00210-023-02602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 07/21/2023]
Abstract
Demographic change is taking place in the population of western industrialized countries, and the population is aging constantly. As a result, the mortality rate of patients due to dementia is rising steadily. To counteract this, the relevance of neuroprotective agents is increasing. Preparations from the medicinal tree species Ginkgo biloba ("gingko") are becoming increasingly popular. In this study, 63 ginkgo preparations marketed in Germany were analyzed. The following data were collected from the package inserts of the preparations: Country of manufacture, approval as a drug, compliance to target values of flavone glycosides, compliance to target values of terpene lactones, compliance to target values of ginkgolic acids, dosage per unit in milligrams (mg), duration of use, interactions with other drugs, contraindications, adverse effects and daily defined dose costs. In the next step, these data were compared in the following form: Total preparations versus preparations with drug approval versus dietary supplements. Almost without exception, the results indicate a pharmaceutical reliability of the preparations with drug approval and a dubious reliability of the preparations marketed as dietary supplements. Thus, ginkgo preparations marketed as dietary supplements appear to have an economic rather than a medical focus. We discuss the evidence of efficacy, and other criteria mentioned above, to evaluate the adequacy of the costs for the statutory health insurance that pay for preparations with drug approval in Germany. From the analysis of our results it is very doubtful that ginkgo biloba extract preparations of the food industry have any health benefit. It must be evaluated whether prohibition of selling ginkgo biloba extract as a dietary supplement is an option.
Collapse
Affiliation(s)
- Milan Trabert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hanover, Germany.
| |
Collapse
|
14
|
Ji HJ, Zhou XH, Wu HY, Liu HX, Zhang GZ. A bibliometric and thematic analysis of the trends in the research on ginkgo biloba extract from 1985 to 2022. Heliyon 2023; 9:e21214. [PMID: 37964856 PMCID: PMC10641152 DOI: 10.1016/j.heliyon.2023.e21214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Background Ginkgo biloba extract (GBE), a complementary and alternative medicine, has been widely used for disorders such as brain infarction, dementia, and coronary heart disease, in recent decades. Given its widespread clinical use, GBE has always been a vital research topic. However, there are no bibliometric analyses on this topic; furthermore, published reviews of GBE focus only on a specific research field or lack scientific and systematic evaluation. This study combined bibliometrics with thematic reviews by visual analysis to identify the current status of GBE research and to better identify research hotspots and trends in the past 40 years to understand future developments in basic and clinical research. Methods Articles and reviews on GBE were retrieved by topic from the Web of Science Core Collection from inception to 2022.12.01. Countries, institutions, authors, journals, references, and keywords in the field were visually analyzed using CiteSpace, Scimago Graphica, and VOSviewer software; then, these visualization results for references and keywords were clarified in detail by thematic reviews in subdivisions of the fields. Results In total, 2015 publications were included. The GBE-related literature has high volumes of publications and citations. The majority of literature is from China, and the USA cooperates most closely with other countries. In GBE research, Christen Yves is the most cited author, Phytotherapy Research is the most prolific journal, and the Journal of Ethnopharmacology is the most co-cited journal. Through a comprehensive analysis of keywords, references, and reviews, the quality of the meta-analysis of randomized controlled clinical trials of GBE in treating dementia was evaluated by the Risk of Bias in Systematic Reviews scale (ROBIS). Current research on GBE focuses on its pharmacological mechanisms, and neuroprotective application in diseases such as Alzheimer's disease, and glaucoma. Randomized controlled trials are the current research hotspot. Conclusion Research on GBE is flourishing; using bibliometric and thematic analysis, we identified its hotspots and trends. The pharmacological mechanisms and clinical applications of GBE are the focus of present and likely future research.
Collapse
Affiliation(s)
- Hong-Jian Ji
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Xiao-Hua Zhou
- Department of Internal Medicine, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, Jiangsu, China
| | - Hong-Yan Wu
- Institute of Medical Biotechnology, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Hong-Xia Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Guo-Zhe Zhang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| |
Collapse
|
15
|
Acharya V, Fan KH, Snitz BE, Ganguli M, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Meta-analysis of age-related cognitive decline reveals a novel locus for the attention domain and implicates a COVID-19-related gene for global cognitive function. Alzheimers Dement 2023; 19:5010-5022. [PMID: 37089073 PMCID: PMC10590825 DOI: 10.1002/alz.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Cognitive abilities have substantial heritability throughout life, as shown by twin- and population-based studies. However, there is limited understanding of the genetic factors related to cognitive decline in aging across neurocognitive domains. METHODS We conducted a meta-analysis on 3045 individuals aged ≥65, derived from three population-based cohorts, to identify genetic variants associated with the decline of five neurocognitive domains (attention, memory, executive function, language, visuospatial function) and global cognitive decline. We also conducted gene-based and functional bioinformatics analyses. RESULTS Apolipoprotein E (APOE)4 was significantly associated with decline of memory (p = 5.58E-09) and global cognitive function (p = 1.84E-08). We identified a novel association with attention decline on chromosome 9, rs6559700 (p = 2.69E-08), near RASEF. Gene-based analysis also identified a novel gene, TMPRSS11D, involved in the activation of SARS-CoV-2, to be associated with the decline in global cognitive function (p = 4.28E-07). DISCUSSION Domain-specific genetic studies can aid in the identification of novel genes and pathways associated with decline across neurocognitive domains. HIGHLIGHTS rs6559700 was associated with decline of attention. APOE4 was associated with decline of memory and global cognitive decline. TMPRSS11D, a gene involved in the activation of SARS-CoV-2, was implicated in global cognitive decline. Cognitive domain abilities had both unique and shared molecular pathways across the domains.
Collapse
Affiliation(s)
- Vibha Acharya
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven T. DeKosky
- McKnight Brain Institute and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
17
|
Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer's disease risk. Mol Psychiatry 2023; 28:4451-4462. [PMID: 37666928 PMCID: PMC10827653 DOI: 10.1038/s41380-023-02170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 09/06/2023]
Abstract
The APOE 2/3/4 polymorphism is the greatest genetic risk factor for Alzheimer's disease (AD). This polymorphism is also associated with variation in plasma ApoE level; while APOE*4 lowers, APOE*2 increases ApoE level. Lower plasma ApoE level has also been suggested to be a risk factor for incident dementia. To our knowledge, no large genome-wide association study (GWAS) has been reported on plasma ApoE level. This study aimed to identify new genetic variants affecting plasma ApoE level as well as to test if baseline ApoE level is associated with cognitive function and incident dementia in a longitudinally followed cohort of the Ginkgo Evaluation of Memory (GEM) study. Baseline plasma ApoE concentration was measured in 3031 participants (95.4% European Americans (EAs)). GWAS analysis was performed on 2580 self-identified EAs where both genotype and plasma ApoE data were available. Lower ApoE concentration was associated with worse cognitive function, but not with incident dementia. As expected, the risk for AD increased from E2/2 through to E4/4 genotypes (P for trend = 4.8E-75). In addition to confirming the expected and opposite associations of APOE*2 (P = 4.73E-79) and APOE*4 (P = 8.73E-12) with ApoE level, GWAS analysis revealed nine additional independent signals in the APOE region, and together they explained about 22% of the variance in plasma ApoE level. We also identified seven new loci on chromosomes 1, 4, 5, 7, 11, 12 and 20 (P range = 5.49E-08 to 5.36E-10) that explained about 9% of the variance in ApoE level. Plasma ApoE level-associated independent variants, especially in the APOE region, were also associated with AD risk and amyloid deposition in the brain, indicating that genetically determined ApoE level variation may be a risk factor for developing AD. These results improve our understanding of the genetic determinants of plasma ApoE level and their potential value in affecting AD risk.
Collapse
Affiliation(s)
- M Muaaz Aslam
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth Lawrence
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Margaret Anne Bedison
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- McKnight Brain Institute and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Roy R, Mandal PK, Maroon JC. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer's Disease: Role of Glutathione and Metal Ions. ACS Chem Neurosci 2023; 14:2944-2954. [PMID: 37561556 PMCID: PMC10485904 DOI: 10.1021/acschemneuro.3c00486] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disorder that affects millions of people worldwide. Although the pathogenesis remains obscure, there are two dominant causal hypotheses. Since last three decades, amyloid beta (Aβ) deposition was the most prominent hypothesis, and the other is the tau hyperphosphorylation hypothesis. The confirmed diagnostic criterion for AD is the presence of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and the deposition of toxic oligomeric Aβ in the autopsied brain. Consistent with these hypotheses, oxidative stress (OS) is garnering major attention in AD research. OS results from an imbalance of pro-oxidants and antioxidants. There is a considerable debate in the scientific community on which process occurs first, OS or plaque deposition/tau hyperphosphorylation. Based on recent scientific observations of various laboratories including ours along with critical analysis of those information, we believe that OS is the early event that leads to oligomeric Aβ deposition as well as dimerization of tau protein and its subsequent hyperphosphorylation. This OS hypothesis immediately suggests the consideration of novel therapeutic approaches to include antioxidants involving glutathione enrichment in the brain by supplementation with or without an iron chelator.
Collapse
Affiliation(s)
- Rimil
Guha Roy
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
| | - Pravat K Mandal
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, 3052 VIC, Australia
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Moreira J, Machado M, Dias-Teixeira M, Ferraz R, Delerue-Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants-A critical review. Acta Pharm Sin B 2023; 13:3208-3237. [PMID: 37655317 PMCID: PMC10465969 DOI: 10.1016/j.apsb.2023.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Neurodegenerative and neuropsychiatric diseases are increasingly affecting individuals' quality of life, thus increasing their cost to social and health systems. These diseases have overlapping mechanisms, such as oxidative stress, protein aggregation, neuroinflammation, neurotransmission impairment, mitochondrial dysfunction, and excitotoxicity. Currently, there is no cure for neurodegenerative diseases, and the available therapies have adverse effects and low efficacy. For neuropsychiatric disorders, such as depression, the current therapies are not adequate to one-third of the patients, the so-called treatment-resistant patients. So, searching for new treatments is fundamental. Medicinal plants appear as a strong alternative and complement towards new treatment protocols, as they have been used for health purposes for thousands of years. Thus, the main goal of this review is to revisit the neuroprotective potential of some of the most predominant medicinal plants (and one fungus) used in traditional Chinese medicine (TCM), focusing on their proven mechanisms of action and their chemical compositions, to give clues on how they can be useful against neurodegeneration progression.
Collapse
Affiliation(s)
- João Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Mariana Machado
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa 1950-396, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
- REQUIMTE/LAQV, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| |
Collapse
|
20
|
Ilango SD, Leary CS, Ritchie E, Semmens EO, Park C, Fitzpatrick AL, Kaufman JD, Hajat A. An Examination of the Joint Effect of the Social Environment and Air Pollution on Dementia Among US Older Adults. Environ Epidemiol 2023; 7:e250. [PMID: 37304341 PMCID: PMC10256342 DOI: 10.1097/ee9.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
Evidence suggests exposure to air pollution increases the risk of dementia. Cognitively stimulating activities and social interactions, made available through the social environment, may slow cognitive decline. We examined whether the social environment buffers the adverse effect of air pollution on dementia in a cohort of older adults. Methods This study draws from the Ginkgo Evaluation of Memory Study. Participants aged 75 years and older were enrolled between 2000 and 2002 and evaluated for dementia semi-annually through 2008. Long-term exposure to particulate matter and nitrogen dioxide was assigned from spatial and spatiotemporal models. Census tract-level measures of the social environment and individual measures of social activity were used as measures of the social environment. We generated Cox proportional hazard models with census tract as a random effect and adjusted for demographic and study visit characteristics. Relative excess risk due to interaction was estimated as a qualitative measure of additive interaction. Results This study included 2,564 individuals. We observed associations between increased risk of dementia and fine particulate matter (µg/m3), coarse particulate matter (µg/m3), and nitrogen dioxide (ppb); HRs per 5 unit increase were 1.55 (1.01, 2.18), 1.31 (1.07, 1.60), and 1.18 (1.02, 1.37), respectively. We found no evidence of additive interaction between air pollution and the neighborhood social environment. Conclusions We found no consistent evidence to suggest a synergistic effect between exposure to air pollution and measures of the social environment. Given the many qualities of the social environment that may reduce dementia pathology, further examination is encouraged.
Collapse
Affiliation(s)
- Sindana D Ilango
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Cindy S Leary
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Ritchie
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Erin O Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Christina Park
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Family Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Joel D Kaufman
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anjum Hajat
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Adam CE, Fitzpatrick AL, Leary CS, Hajat A, Ilango SD, Park C, Phelan EA, Semmens EO. Change in gait speed and fall risk among community-dwelling older adults with and without mild cognitive impairment: a retrospective cohort analysis. BMC Geriatr 2023; 23:328. [PMID: 37231344 PMCID: PMC10214622 DOI: 10.1186/s12877-023-03890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Although slow gait speed is an established risk factor for falls, few studies have evaluated change in gait speed as a predictor of falls or considered variability in effects by cognitive status. Change in gait speed may be a more useful metric because of its potential to identify decline in function. In addition, older adults with mild cognitive impairment are at an elevated risk of falls. The purpose of this research was to quantify the association between 12-month change in gait speed and falls in the subsequent 6 months among older adults with and without mild cognitive impairment. METHODS Falls were self-reported every six months, and gait speed was ascertained annually among 2,776 participants in the Ginkgo Evaluation of Memory Study (2000-2008). Adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for fall risk relative to a 12-month change in gait speed. RESULTS Slowing gait speed over 12 months was associated with increased risk of one or more falls (HR:1.13; 95% CI: 1.02 to 1.25) and multiple falls (HR:1.44; 95% CI: 1.18 to 1.75). Quickening gait speed was not associated with risk of one or more falls (HR 0.97; 95% CI: 0.87 to 1.08) or multiple falls (HR 1.04; 95% CI: 0.84 to 1.28), relative to those with a less than 0.10 m/s change in gait speed. Associations did not vary by cognitive status (pinteraction = 0.95 all falls, 0.25 multiple falls). CONCLUSIONS Decline in gait speed over 12 months is associated with an increased likelihood of falls among community-dwelling older adults, regardless of cognitive status. Routine checks of gait speed at outpatient visits may be warranted as a means to focus fall risk reduction efforts.
Collapse
Affiliation(s)
- Claire E Adam
- School of Public and Community Health Sciences, University of Montana, Missoula, USA.
- Center for Population Health Research, University of Montana, Missoula, USA.
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
- Department of Global Health, University of Washington, Seattle, USA
| | - Cindy S Leary
- School of Public and Community Health Sciences, University of Montana, Missoula, USA
- Center for Population Health Research, University of Montana, Missoula, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Sindana D Ilango
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Christina Park
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Elizabeth A Phelan
- Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, USA
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, Missoula, USA
- Center for Population Health Research, University of Montana, Missoula, USA
| |
Collapse
|
22
|
Morató X, Marquié M, Tartari JP, Lafuente A, Abdelnour C, Alegret M, Jofresa S, Buendía M, Pancho A, Aguilera N, Ibarria M, Diego S, Cuevas R, Cañada L, Calvet A, Antonio EED, Pérez-Cordón A, Sanabria Á, de Rojas I, Nuñez-Llaves R, Cano A, Orellana A, Montrreal L, Cañabate P, Rosende-Roca M, Vargas L, Bojaryn U, Ricciardi M, Ariton DM, Espinosa A, Ortega G, Muñoz N, Lleonart N, Alarcón-Martín E, Moreno M, Preckler S, Tantinya N, Ramis M, Nogales AB, Seguer S, Martín E, Pytel V, Valero S, Gurruchaga M, Tárraga L, Ruiz A, Boada M. A randomized, open-label clinical trial in mild cognitive impairment with EGb 761 examining blood markers of inflammation and oxidative stress. Sci Rep 2023; 13:5406. [PMID: 37012306 PMCID: PMC10070452 DOI: 10.1038/s41598-023-32515-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Although beta-amyloid (Aβ) and phosphorylated tau remain the preferred targets for disease-modifying treatments (DMT) against Alzheimer's disease (AD), part of the pathophysiological mechanisms of cognitive impairment are related to neuroinflammation and oxidative stress. In mild cognitive impairment (MCI), a prodromal stage of AD and other neurodegenerative conditions, the joint appearance of inflammation, oxidative stress, and metabolic alterations are the common pathways of neurotoxicity and neurodegeneration. The standardized extract of Ginkgo biloba EGb 761 interferes with the pathogenic mechanisms involved in both the development of cognitive impairment due to AD and that of vascular origin. The primary objective of this study is to compare changes in the levels of blood markers of inflammation and oxidative stress after treatment with EGb 761 in a cohort of 100 patients with MCI. In addition, we aim to assess changes in these blood markers during an additional 12-month extension phase in which patients in the control group will also receive EGb 761 and patients in the active group will extend their treatment duration. Secondary objectives include comparing changes in neuropsychiatric and cognitive test scores between the baseline (v0) and 12-month visits (v2). This study is a Phase IV, single-center, randomized, open-label, parallel-group clinical trial consisting of the 12-month follow-up of a cohort of participants with MCI [Global Deterioration Scale (GDS) = 3] and an extension with an additional 12-month follow-up. During the first 12 months, participants will be randomized into two arms: in one arm, patients will receive 1 daily tablet of EGb 761 240 mg orally (study group, n = 50), while in the other arm, patients will not receive EGb 761 and will undergo the same assessments as the treated group (control group, n = 50). After the first 12 months of the study, patients in the EGb 761-treated group will continue treatment, and patients in the control group will be offered one EGb 761 240 mg tablet per day orally. All participants will be monitored for an additional 12 months. A battery of blood markers of inflammation and oxidative stress will be quantified at v0, v1, v2, v3, and v4. The Olink Proteomics panel of inflammation markers ( https://www.olink.com/products/inflammation/ ) will be used to evaluate 92 proteins associated with inflammatory diseases and related biological processes. The second panel measures 92 proteins involved in neurological processes. At v0, v2, and v4, neuropsychological and neurological evaluations will be conducted in addition to vital signs and anthropometric studies using a body composition monitor with bioimpedance technology (Tanita). Sixty percent of the 100 MCI patients recruited were women. The mean age was 73.1 years, and the mean time between symptom onset and MCI diagnosis was 2.9 years. The mean Mini-Mental State Examination (MMSE) score was 26.7. Depressive and anxiety disorders, as well as vascular risk factors, were the most frequent comorbidities among the cohort. The study is still ongoing, and results for the first year of treatment (v0, v1, v2) are expected by 2023. Individuals with MCI have an elevated risk of developing dementia. EGb 761 is used worldwide for the symptomatic treatment of cognitive disorders due to its neuroprotective effects. In experimental models and clinical observational studies, EGb 761 has shown strong antioxidant and anti-inflammatory activity. As a result, this study has been proposed to evaluate the antioxidant and anti-inflammatory effects on plasma markers and their potential clinical correlation with the progression of cognitive decline in patients with MCI.Trial registration: Registro Español de estudios clínicos (REec) number 2020-003776-41, ClinicalTrials.gov Identifier: NCT05594355.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Asunción Lafuente
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carla Abdelnour
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Jofresa
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mar Buendía
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Pancho
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Ibarria
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Susana Diego
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rosario Cuevas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Laia Cañada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Anna Calvet
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raúl Nuñez-Llaves
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pilar Cañabate
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Liliana Vargas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Urszula Bojaryn
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mario Ricciardi
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Diana M Ariton
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Espinosa
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalia Muñoz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Lleonart
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariola Moreno
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Preckler
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Tantinya
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maribel Ramis
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Belen Nogales
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Susanna Seguer
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elvira Martín
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Gurruchaga
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Wang X, Su Y, Cai Z, Xu Y, Wu X, Al Rudaisat M, Hua C, Chen S, Lai L, Cheng H, Song Y, Zhou Q. γ-Aminobutyric acid promotes the inhibition of hair growth induced by chronic restraint stress. Life Sci 2023; 317:121439. [PMID: 36731645 DOI: 10.1016/j.lfs.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Su
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mus'ab Al Rudaisat
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Hajat A, Park C, Adam C, Fitzpatrick AL, Ilango SD, Leary C, Libby T, Lopez O, Semmens EO, Kaufman JD. Air pollution and plasma amyloid beta in a cohort of older adults: Evidence from the Ginkgo Evaluation of Memory study. ENVIRONMENT INTERNATIONAL 2023; 172:107800. [PMID: 36773564 PMCID: PMC9974914 DOI: 10.1016/j.envint.2023.107800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Air pollution has been linked to Alzheimer's disease and related dementias (ADRD), but the mechanisms connecting air pollution to ADRD have not been firmly established. Air pollution may cause oxidative stress and neuroinflammation and contribute to the deposition of amyloid beta (Aβ) in the brain. We examined the association between fine particulate matter<2.5 μm in diameter (PM2.5), particulate matter<10 μm in diameter (PM10), nitrogen dioxide (NO2), and plasma based measures of Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 using data from 3044 dementia-free participants of the Ginkgo Evaluation of Memory Study (GEMS). Air pollution exposures were estimated at residential addresses that incorporated address histories dating back to 1980, resulting in one-, five-, 10- and 20- year exposure averages. Aβ was measured at baseline (2000-2002) and then again at the end of the study (2007-2008) allowing for linear regression models to assess cross-sectional associations and linear random effects models to evaluate repeated measures. After adjustment for socio-demographic and behavioral covariates, we found small positive associations between each air pollutant and Aβ1-40 but no association with Aβ1-42 or the ratio measures in cross sectional analysis. In repeat measures analysis, we found larger positive associations between each air pollutant and all three outcomes. We observed a 4.43% (95% CI 3.26%, 5.60%) higher Aβ1-40 level, 9.73% (6.20%, 13.38%) higher Aβ1-42 and 1.57% (95% CI: 0.94%, 2.20%) higher Aβ1-42/Aβ1-40 ratio associated with a 2 µg/m3 higher 20-year average PM2.5. Associations with other air pollutants were similar. Our study contributes to the broader evidence base on air pollution and ADRD biomarkers by evaluating longer air pollution exposure averaging periods to better mimic disease progression and provides a modifiable target for ADRD prevention.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA.
| | - Christina Park
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Claire Adam
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Annette L Fitzpatrick
- University of Washington, Department of Family Medicine, 4225 Roosevelt Ave NE Seattle, WA 98195, USA
| | - Sindana D Ilango
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Cindy Leary
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Tanya Libby
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Oscar Lopez
- University of Pittsburgh, Department of Neurology, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15123, USA
| | - Erin O Semmens
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health and Epidemiology, 4225 Roosevelt Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Semmens EO, Leary CS, Fitzpatrick AL, Ilango SD, Park C, Adam CE, DeKosky ST, Lopez O, Hajat A, Kaufman JD. Air pollution and dementia in older adults in the Ginkgo Evaluation of Memory Study. Alzheimers Dement 2023; 19:549-559. [PMID: 35436383 PMCID: PMC9576823 DOI: 10.1002/alz.12654] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Growing evidence implicates air pollution as a risk factor for dementia, but prior work is limited by challenges in diagnostic accuracy and assessing exposures in the decades prior to disease development. We evaluated the impact of long-term fine particulate matter (PM2.5 ) exposures on incident dementia (all-cause, Alzheimer's disease [AD], and vascular dementia [VaD]) in older adults. METHODS A panel of neurologists adjudicated dementia cases based on extensive neuropsychological testing and magnetic resonance imaging. We applied validated fine-scale air pollutant models to reconstructed residential histories to assess exposures. RESULTS An interquartile range increase in 20-year PM2.5 was associated with a 20% higher risk of dementia (95% confidence interval [CI]: 5%, 37%) and an increased risk of mixed VaD/AD but not AD alone. DISCUSSION Our findings suggest that air pollutant exposures over decades contribute to dementia and that effects of current exposures may be experienced years into the future.
Collapse
Affiliation(s)
- Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Cindy S. Leary
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Sindana D. Ilango
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christina Park
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Claire E. Adam
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Departments of Environmental and Occupational Health Sciences and Medicine, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Liu D, Hu Y, Wang D, Han H, Wang Y, Wang X, Zhou Z, Ma X, Dong Y. Herbal medicines in the treatment of tinnitus: An updated review. Front Pharmacol 2023; 13:1037528. [PMID: 36686691 PMCID: PMC9847569 DOI: 10.3389/fphar.2022.1037528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Tinnitus is perception of sound in the absence of an apparent external acoustic stimulus. The condition is prevalent in adults, especially the elderly (≥65 years), and may be associated with cognitive function decline and significantly impacts on the quality of life, heralding difficulties in managing this challenging disorder. Interventions for tinnitus have been varied. However, drugs have not yet been approved for the treatment of tinnitus and there is no pharmacotherapy recommended by existing guidelines. Still, herbal medicines are used for the treatment of tinnitus in many countries, especially Gingko (G.) biloba. In the current updated literature review, we evaluated the efficacy of herbal medicines in the treatment of tinnitus by reviewing the evidence of relevant randomized controlled trials. The authors also highlight some of the issues in clinical trials of herbal medicines given that currently available evidence on herbal medicines for tinnitus is overall of insufficient quality and the conclusions from existing trials are conflicting. Nevertheless, there is a clear and urgent need for safe and effective pharmacotherapy of tinnitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiulan Ma
- *Correspondence: Yaodong Dong, ; Xiulan Ma,
| | | |
Collapse
|
27
|
Ahmad S, Ahmed SB, Khan A, Wasim M, Tabassum S, Haider S, Ahmed F, Batool Z, Khaliq S, Rafiq H, Tikmani P, Gilani AUH. Natural remedies for Alzheimer's disease: A systematic review of randomized controlled trials. Metab Brain Dis 2023; 38:17-44. [PMID: 35960461 DOI: 10.1007/s11011-022-01063-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the common type of dementia and is currently incurable. Existing FDA-approved AD drugs may not be effective for everyone, they cannot cure the disease nor stop its progression and their effects diminish over time. Therefore, the present review aimed to explore the role of natural alternatives in the treatment of AD. A systematic search was conducted using Ovid MEDLINE, CINAHL, Cochrane and PubMed databases and reference lists up to November 30, 2021. Only randomized control trials were included and appraised using the National Institute of Health framework. Data analysis showed that herbs like Gingko Biloba, Melissa Officinalis, Salvia officinalis, Ginseng and saffron alone or in combination with curcumin, low-fat diet, NuAD-Trail, and soy lecithin showed significant positive effects on AD. Moreover, combination of natural and pharmaceuticals has far better effects than only allopathic treatment. Thus, different herbal remedies in combination with FDA approved drugs are effective and more promising in treatment of AD.
Collapse
Affiliation(s)
- Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Saad Bilal Ahmed
- Department of Geriatrics, Monash University, Melbourne, Australia
| | - Asra Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Department of Biosciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Saida Haider
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Fatima Ahmed
- Department of Ophthalmology, Liaquat National Hospital, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Science and Technology, Karachi, Pakistan
| | - Hamna Rafiq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Prashant Tikmani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Anwar-Ul-Hassan Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
28
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
30
|
Kuller LH, Snitz BE, Hughes TM, Chang Y, Cohen AD, Mathis CA, Aizenstein HJ, Lopez OL. Low untreated systolic blood pressure over 18 years is associated with survival free of dementia age 90. Alzheimers Dement 2022; 18:2176-2187. [PMID: 35089640 PMCID: PMC9787390 DOI: 10.1002/alz.12493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION We hypothesized that lower untreated systolic blood pressure (SBP) would be associated with a lower risk of dementia and death up to age 95. METHODS SBP measured between 2000 and 2006 was evaluated in relationship to dementia risk and brain biomarkers from 2009-2020 (n = 177) in the Gingko Evaluation of Memory Study (GEMS), mean age 95 in 2020. Participants had measurements of brain amyloid beta (Aβ) and repeat clinical-cognitive evaluations every 6 months. RESULTS By 2020, only 9 of 177 patients (5%) were alive and cognitively unimpaired (CU). Mean SBP from 2000 to 2006 was 120 mm Hg for nine alive/CU, 125 mm Hg for alive/mild cognitive impairment (MCI), and 130 mm Hg for alive/dementia (P = .03). The amount of Aβ was directly related to SBP levels. In multivariate analysis, Aβ+ in 2009 and thinner cortex were significant predictors of dementia. Excluding Aβ, SBP became a significant predictor of dementia. DISCUSSION Low SBP untreated by antihypertensive medications was associated with significant decreased risk of dementia and less Aβ.
Collapse
Affiliation(s)
- Lewis H. Kuller
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Beth E. Snitz
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Timothy M. Hughes
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yuefang Chang
- Department of NeurosurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ann D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chester A. Mathis
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Oscar L. Lopez
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
31
|
Kim J, Kim MY, Kim JA, Lee Y. Factors affecting preventive behaviors of Alzheimer's disease in family members of patients with Alzheimer's disease. Medicine (Baltimore) 2022; 101:e31136. [PMID: 36281127 PMCID: PMC9592491 DOI: 10.1097/md.0000000000031136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As genetic factors increase the risk of Alzheimer's disease (AD), the families of dementia patients are at risk of AD. We aimed to evaluate the factors affecting preventive behaviors of AD in family members of AD patients. Using constructed questionnaire based on the Health Belief Model (HBM) theoretical framework, this cross-sectional study investigated factors influencing preventive behaviors of AD such the intention to take AD-preventive medicines, prior experience of taking cognitive function supplements, and AD-preventive lifestyle. 147 family members of AD patients were recruited through the Korea Alzheimer's Caregiver Association. Out of 147 participants, 94.6% had intention to take AD-preventive medicines and 46.3% had experience of taking cognitive function supplements. The intention to take AD-preventive medicines were significantly influenced by self-efficacy (odds ratio [OR] 1.39, 95% confidence interval [CI] 1.03, 1.87) and dementia knowledge (OR 3.42, 95% CI 1.13, 10.39), whereas prior experience of cognitive function supplements was significantly associated with cue to action (OR 1.22, 95% CI 1.07, 1.40). AD-preventive lifestyle was significantly influenced by socio-demographics such as age, sex, and marital status, and the HBM factors such as perceived susceptibility, self-efficacy, and cue to action. Self-efficacy, cue to action, dementia knowledge, and perceived susceptibility were significantly associated with preventive behaviors of AD. Also, family members of dementia patients, who are at risk of dementia due to genetic factors, lifestyles, and environment factors, had high level of AD-preventive lifestyle and strong intention to take AD-preventive medicines. Further research could be suggested to understand AD-preventive behavior and intention to take AD-preventive medicines in general population.
Collapse
Affiliation(s)
- JiEun Kim
- Medical, Eisai Korea Inc, Gangnam-gu, Seoul, Republic of Korea
- *Correspondence: JiEun Kim, Department of Medical, Eisai Korea Inc, 6 Bongeunsa-ro 86-gil, Gangnam-gu, Seoul, Republic of Korea (e-mail: )
| | - Min Young Kim
- Medical, Eisai Korea Inc, Gangnam-gu, Seoul, Republic of Korea
| | - Jung-Ae Kim
- Real World Solutions, IQVIA Korea, Jung-gu, Seoul, Republic of Korea
| | - Youngeun Lee
- Real World Solutions, IQVIA Korea, Jung-gu, Seoul, Republic of Korea
| |
Collapse
|
32
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
33
|
Kang M, Lee DB, Kwon S, Lee E, Kim WJ. Effectiveness of Nootropics in Combination with Cholinesterase Inhibitors on Cognitive Function in Mild-to-Moderate Dementia: A Study Using Real-World Data. J Clin Med 2022; 11:jcm11164661. [PMID: 36012898 PMCID: PMC9409895 DOI: 10.3390/jcm11164661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical benefits of nootropics in the treatment of cognitive decline has been either limited or controversial. This study aimed to observe the effectiveness of cholinesterase inhibitor (ChEI) and nootropics combination in the treatment of cognitive impairment in dementia. Data were based on electronic medical records in a university health system. Patients with mild-to-moderate dementia and no history of prior cognitive enhancer use were included (n = 583). The subjects were categorized into the ChEI only group and the ChEI and nootropics combination group. The primary outcome measure was the change in cognitive function, as assessed by the mini-mental state examination (MMSE) from baseline to 300–400 days after the first ChEI prescription. Subsequent analyses were conducted in consideration of the dementia type, medical adherence, and type of nootropics. The changes in MMSE scores from baseline to endpoint were not significantly different between the two groups. In Alzheimer’s dementia, the combination group showed significantly less deterioration in MMSE language subscale scores compared to the ChEI only group (F = 6.86, p = 0.009), and the difference was consistent in the highly adherent subjects (F = 10.16, p = 0.002). The choline alfoscerate and the ginkgo biloba extract subgroups in Alzheimer’s dementia showed more significant improvements in the MMSE language subscale scores compared to the other nootropics subgroup (F = 7.04, p = 0.001). The present study showed that the effectiveness of ChEI and nootropics combination on cognition may appear differently according to the dementia type. This emphasizes the need for well-controlled studies to generalize the effectiveness of nootropics across various clinical settings.
Collapse
Affiliation(s)
- Minjae Kang
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dan Bee Lee
- Medical Information Team, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
| | - Sungchan Kwon
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Lee
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Woo Jung Kim
- Medical Information Team, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
- Correspondence:
| |
Collapse
|
34
|
Hassen G, Belete G, Carrera KG, Iriowen RO, Araya H, Alemu T, Solomon N, Bam DS, Nicola SM, Araya ME, Debele T, Zouetr M, Jain N. Clinical Implications of Herbal Supplements in Conventional Medical Practice: A US Perspective. Cureus 2022; 14:e26893. [PMID: 35978741 PMCID: PMC9375827 DOI: 10.7759/cureus.26893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/05/2022] Open
|
35
|
Harper JD, Fan KH, Aslam MM, Snitz BE, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Genome-Wide Association Study of Incident Dementia in a Community-Based Sample of Older Subjects. J Alzheimers Dis 2022; 88:787-798. [PMID: 35694926 PMCID: PMC9359180 DOI: 10.3233/jad-220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Alzheimer’s disease (AD) is a complex disease influenced by the environment and genetics; however, much of the genetic component remains unaccounted for. Objective: The purpose of this work was to use genome-wide association analyses to detect genetic associations with incident AD in a sample of older adults aged 75 and above. Methods: We performed a genome-wide association study (GWAS) on genome-wide genotyped and imputed data (14,072,053 variants) on the Gingko Evaluation of Memory (GEM) study sample consisting of 424 incident dementia (mean age = 84.46±3.91) and 2,206 non-demented (mean age = 84.55±3.23) subjects. Results: The established association of APOE*4 carriers with AD was confirmed in this community-based sample of older subjects (odds ratio (OR) = 2.22; p = 9.36E-14) and was stronger in females (OR = 2.72; p = 1.74E-10) than in males (OR = 1.88; p = 2.43E-05). We observed a novel genome-wide significant (GWS) locus on chromosome 12 near ncRNA LOC105369711/rs148377161 (OR = 3.31; p = 1.66E-08). In addition, sex-stratified analyses identified two novel associations in males: one near ncRNA LOC729987/rs140076909 on chromosome 1 (OR = 4.51; p = 3.72E-08) and the other approaching GWS near ncRNA LOC105375138/rs117803234 on chromosome 7 (OR = 3.76; p = 6.93E-08). Conclusion: The use of community-based samples of older individuals and incident dementia as a phenotype may be a helpful approach for the identification of novel genes for AD, which may not be detected in standard case-control studies. Replication of these signals and further studies of these regions and genes will help to provide a clearer picture for their role in AD.
Collapse
Affiliation(s)
- Jordan D Harper
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Muaaz Aslam
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology, College of Medicine, University of Florida, FL, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review. Biomolecules 2022; 12:biom12050694. [PMID: 35625622 PMCID: PMC9139049 DOI: 10.3390/biom12050694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease (HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical needs worldwide. Despite a significantly developed understanding of disease development and pathology, treatments that stop AD progression are not yet available. The recent approval of sodium oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural products for the treatment of neurodegenerative disorders. Many current clinical studies include the administration of a natural compound as a single and combination treatment. The most prominent mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular survival. Here, we review current natural products that are either approved or are in testing for a treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin, we also put special emphasis on compounds from algae, given their neuroprotective activity and their underlying mechanisms of neuroprotection.
Collapse
|
37
|
Dutta T, Anand U, Mitra SS, Ghorai M, Jha NK, Shaikh NK, Shekhawat MS, Pandey DK, Proćków J, Dey A. Phytotherapy for Attention Deficit Hyperactivity Disorder (ADHD): A Systematic Review and Meta-analysis. Front Pharmacol 2022; 13:827411. [PMID: 35592415 PMCID: PMC9110892 DOI: 10.3389/fphar.2022.827411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is commonly a neurodevelopmental behavioural disorder in children and adolescents. Mainly characterized by symptoms like lack of attention, hyperactivity, and impulsiveness, it can impact the overall mental development of the one affected. Several factors, both genetic and non-genetic, can be responsible for this disorder. Although several traditional treatment methods involve medication and other counselling techniques, they also come with different side effects. Hence, the choice is now shifting to alternative treatment techniques. Herbal treatments are considered one of the most popular complementary and alternative medicine (CAM) administered. However, issues related to the safety and efficacy of herbal remedies for the treatment of ADHD need to be investigated further. This study aims to find out the recent advancement in evidence-based use of herbal remedies for ADHD by a comprehensive and systematic review that depicts the results of the published works on herbal therapy for the disorder. The electronic databases and the references retrieved from the included studies present related randomized controlled trials (RCTs) and open-label studies. Seven RCTs involving children and adolescents diagnosed with ADHD met the inclusion criteria. There is a fair indication of the efficacy and safety of Melissa officinalis L., Bacopa monnieri (L.) Wettst., Matricaria chamomilla L., and Valeriana officinalis L. from the studies evaluated in this systematic review for the treatment of various symptoms of ADHD. Limited evidence was found for Ginkgo biloba L. and pine bark extract. However, various other preparations from other plants did not show significant efficacy. There is inadequate proof to strongly support and recommend the administration of herbal medicines for ADHD, but more research is needed in the relevant field to popularize the alternative treatment approach.
Collapse
Affiliation(s)
- Tusheema Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Lucknow, Uttar Pradesh, India
| | | | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Nusratbanu K. Shaikh
- Department of Pharmaceutical Chemistry, Smt N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Lawspet, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Biosciences, Lovely Professional University, Phagwara, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
38
|
Villegas C, Perez R, Petiz LL, Glaser T, Ulrich H, Paz C. Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life 2022; 74:763-779. [PMID: 35384262 DOI: 10.1002/iub.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual deterioration of cognitive function, memory, and inability to perform daily, social, or occupational activities. Its etiology is associated with the accumulation of β-amyloid peptides, phosphorylated tau protein, and neuroinflammatory and oxidative processes in the brain. Currently, there is no successful pharmacological treatment for AD. The few approved drugs are mainly aimed at treating the symptoms; however, due to the increasing discovery of etiopathological factors, there are great efforts to find new multifunctional molecules to slow down the course of this neurodegenerative disease. The commercial Ginkgo biloba formulation EGb 761® and Huperzine A, an alkaloid present in the plant Huperzia serrata, have shown in clinical trials to possess cholinergic and neuroprotective activities, including improvement in cognition, activities of daily living, and neuropsychiatric symptoms in AD patients. The purpose of this review is to expose the positive results of intervention with EGb 761® and Huperzine in patients with mild to moderate AD in the last 10 years, highlighting the pharmacological functions that justify their use in AD therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
39
|
Efficacy and Safety of Kleeb Bua Daeng Formula in Mild Cognitive Impairment Patients: A Phase I Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1148112. [PMID: 35368763 PMCID: PMC8975679 DOI: 10.1155/2022/1148112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Individuals with mild cognitive impairment (MCI) were at increased risk of conversion to dementia. The Kleeb Bua Daeng (KBD) formula could be the alternative treatment option for MCI through multitarget activities. Lacking of clinical trial information brought about the study in our research. Forty patients with MCI were randomly assigned to receive the KBD capsule or placebo at a dose of 1,000 mg twice a day for three months. Their cognitive functions were monitored by the Montreal Cognitive Assessment (MoCA) and blood chemistry assessment every one month. We found that the KBD-treated group had no significant differences in the MoCA test compared to placebo. Moreover, there was no alteration in biochemical parameters of the liver and renal function was observed which could confirm the safety of this KBD formula.
Collapse
|
40
|
Vidal-Palencia L, Ramon-Duaso C, González-Parra JA, Busquets-Garcia A. Gene Expression Analysis of the Endocannabinoid System in Presymptomatic APP/PS1 Mice. Front Pharmacol 2022; 13:864591. [PMID: 35370697 PMCID: PMC8971609 DOI: 10.3389/fphar.2022.864591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and neurodegeneration. The actual cause of AD progression is still unknown and no curative treatment is available. Recently, findings in human samples and animal models pointed to the endocannabinoid system (ECS) as a promising therapeutic approach against AD. However, the specific mechanisms by which cannabinoid drugs induce potential beneficial effects are still undefined. For this reason, it is required a full characterization of the ECS at different time points of AD progression considering important factors such as sex or the analysis of different brain regions to improve future cannabinoid-dependent therapies in AD. Thus, the main aim of the present study is to expand our knowledge of the status of the ECS in a presymptomatic period (3 months of age) using the AD mouse model APP/PS1 mice. First, we evaluated different behavioral domains including anxiety, cognitive functions, and social interactions in male and female APP/PS1 mice at 4 months of age. Although a mild working memory impairment was observed in male APP/PS1 mice, in most of the behaviors assessed we found no differences between genotypes. At 3 months of age, we performed a characterization of the ECS in different brain regions of the APP/PS1 mice considering the sex variable. We assessed the expression of the ECS components by quantitative Real-Time Polymerase Chain Reaction in the hippocampus, prefrontal cortex, hypothalamus, olfactory bulb, and cerebellum. Interestingly, gene expression levels of the type-1 and type-2 cannabinoid receptors and the anabolic and catabolic enzymes, differed depending on the brain region and the sex analyzed. For example, CB1R expression levels decreased in both hippocampus and prefrontal cortex of male APP/PS1 mice but increased in female mice. In contrast, CB2R expression was decreased in females, whereas males tended to have higher levels. Overall, our data indicated that the ECS is already altered in APP/PS1 mice at the presymptomatic stage, suggesting that it could be an early event contributing to the pathophysiology of AD or being a potential predictive biomarker.
Collapse
|
41
|
Bohlken J, Peters O, Kostev K. Association Between Ginkgo Biloba Extract Prescriptions and Dementia Incidence in Outpatients with Mild Cognitive Impairment in Germany: A Retrospective Cohort Study. J Alzheimers Dis 2022; 86:703-709. [PMID: 35124648 PMCID: PMC9028600 DOI: 10.3233/jad-215348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Clinical trials have demonstrated a significant effectiveness of Ginkgo biloba therapy versus placebo in patients with dementia. Objective: The present study aims to analyze the impact of Ginkgo biloba drug prescriptions on dementia incidence in patients with mild cognitive impairment (MCI) in a real-world setting. Methods: This retrospective study was based on the IQVIA Disease Analyzer database and included patients aged 65 or older with a first diagnosis of MCI from January 2000 to December 2019. Each patient was followed for up to 20 years after MCI diagnosis until February 2021. Date of the first diagnosis of dementia or loss to follow-up, whichever occurred first, was noted. To estimate the association between Ginkgo biloba prescriptions during the follow-up and dementia incidence, a multivariable Cox regression analysis was performed, adjusted for age, sex, health insurance, documented co-diagnoses, and prescription of cholinesterase inhibitors. Results: Overall, 24,483 MCI patients (mean age: 77.0 years, 56.3% women) were included. It was found that > 2 prescriptions of Ginkgo biloba were significantly associated with a reduced dementia incidence (HR: 0.71 (95% CI: 0.55–0.91), p = 0.007), as compared with no Ginkgo biloba prescription. The effect of receiving > 3 Ginkgo biloba prescriptions was even stronger, with an HR of 0.64 (95% CI: 0.48–0.86), p = 0.003), while for > 4 prescriptions the HR was 0.58 (95% CI: 0.41–0.82) (p = 0.002). Conclusion: All-cause dementia incidence decreased with higher numbers of Ginkgo biloba prescriptions in MCI patients.
Collapse
Affiliation(s)
- Jens Bohlken
- Institute for Social Medicine, Occupational Medicine, and Public Health (ISAP) of the Medical Faculty at the University of Leipzig, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | |
Collapse
|
42
|
Slawsky ED, Hajat A, Rhew IC, Russette H, Semmens EO, Kaufman JD, Leary CS, Fitzpatrick AL. Neighborhood greenspace exposure as a protective factor in dementia risk among U.S. adults 75 years or older: a cohort study. Environ Health 2022; 21:14. [PMID: 35033073 PMCID: PMC8760791 DOI: 10.1186/s12940-022-00830-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/06/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Research suggests that greenspace may confer neurocognitive benefits. This study examines whether residential greenspace is associated with risk of dementia among older adults. METHODS Greenspace exposure was computed for 3047 participants aged 75 years and older enrolled in the Gingko Evaluation of Memory Study (GEMS) across four U.S. sites that prospectively evaluated dementia and its subtypes, Alzheimer's disease (AD), vascular dementia (VaD), and mixed pathologies, using neuropsychiatric evaluations between 2000 and 2008. After geocoding participant residences at baseline, three greenspace metrics-Normalized Difference Vegetative Index, percent park overlap within a 2-km radius, and linear distance to nearest park-were combined to create a composite residential greenspace measure categorized into tertiles. Cox proportional hazards models estimated the associations between baseline greenspace and risk of incident all-cause dementia, AD, and Mixed/VaD. RESULTS Compared to low residential greenspace, high residential greenspace was associated with a reduced risk of dementia (HR = 0.76 95% CI: 0.59,0.98) in models adjusted for multiple covariates. After additional adjustment for behavioral characteristics, Apolipoprotein E ɛ4 status, and other covariates, the association was slightly attenuated (HR = 0.82; 95% CI:0.63,1.06). Those exposed to medium levels of greenspace also had 28% lower risk (HR = 0.72; CI: 0.55, 0.95) of dementia compared to those with low greenspace in adjusted models. Subtype associations between high residential greenspace and AD were not statistically significant. Greenspace was not found to be significantly associated with mixed/vascular pathologies. CONCLUSIONS This study showed evidence for an association between residential greenspace and all-cause dementia among older adults. Future research with larger sample size, precise characterization of different dementia subtypes, and assessment of residential greenspace earlier in life may help clarify the role between exposure to greenspace and dementia risk.
Collapse
|
43
|
Lee J, Howard RS, Schneider LS. The Current Landscape of Prevention Trials in Dementia. Neurotherapeutics 2022; 19:228-247. [PMID: 35587314 PMCID: PMC9130372 DOI: 10.1007/s13311-022-01236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 01/03/2023] Open
Abstract
As the prevalence of dementia and Alzheimer's disease (AD) increases worldwide, it is imperative to reflect on the major clinical trials in the prevention of dementia and the challenges that surround them. The pharmaceutical industry has focused on developing drugs that primarily affect the Aβ cascade and tau proteinopathy, while academics have focused on repurposed therapeutics and multi-domain interventions for prevention studies. This paper highlights significant primary, secondary, and tertiary prevention trials for dementia and AD, overall design, methods, and systematic issues to better understand the current landscape of prevention trials. We included 32 pharmacologic intervention trials and 9 multi-domain trials. Fourteen could be considered primary prevention, and 18 secondary or tertiary prevention trials. Major categories were Aβ vaccines, Aβ antibodies, tau antibodies, anti-inflammatories, sex hormones, and Ginkgo biloba extract. The 9 multi-domain studies mainly focused on lifestyle modifications such as blood pressure management, socialization, and physical activity. The lack of validated drug targets, and the complexity of the diagnostic frameworks, eligibility criteria, and outcome measurements for trials, make it difficult to show efficacy for both pharmacological and multi-domain interventions. We hope that this summative analysis of trials will stimulate discussion for scientists and clinicians interested in reviewing and developing preventative interventions for AD.
Collapse
Affiliation(s)
- Jonathan Lee
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Rebecca Sitra Howard
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Lon S Schneider
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, USA.
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, USA.
| |
Collapse
|
44
|
Kloft C, Hoerr R. EGb 761 ® Does Not Affect Blood Coagulation and Bleeding Time in Patients with Probable Alzheimer's Dementia-Secondary Analysis of a Randomized, Double-Blind Placebo-Controlled Trial. Healthcare (Basel) 2021; 9:healthcare9121678. [PMID: 34946404 PMCID: PMC8701823 DOI: 10.3390/healthcare9121678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Following reports of bleeding upon Ginkgo intake, we assessed whether Ginkgo extract EGb 761® affects coagulation or platelet function or increases the risk of bleeding. In a double-blind, placebo-controlled trial, prothrombin time, activated partial thromboplastin time, international normalized ratio and bleeding time were measured in patients with Alzheimer’s dementia at baseline, weeks 6 and 26. A total of 513 patients were randomized to 120 mg (n = 169) or 240 mg EGb 761® (n = 170) or placebo (n = 174). No relevant changes were found for coagulation parameters and bleeding time. Numbers of bleeding-related adverse events were similar in all groups. Concomitant intake of acetylsalicylic acid was documented for 68 patients in the placebo group and 105 in the EGb 761® groups. Within these groups, the means at baseline and week 26 differed by less than 1 unit for prothrombin time and bleeding time and less than 0.1 unit for international normalized ratio. Data on warfarin treatment in nine patients each taking placebo or EGb 761® did not indicate enhancement of warfarin effects by EGb 761®. No evidence was found that EGb 761® affects hemostasis or increases the bleeding risk. No pharmacodynamic interactions with warfarin or acetylsalicylic acid were found.
Collapse
Affiliation(s)
- Charlotte Kloft
- Institute of Pharmacy, Freie Universität Berlin, 12169 Berlin, Germany;
| | - Robert Hoerr
- Research & Development, Dr. Willmar Schwabe GmbH & Co. KG, 76227 Karlsruhe, Germany
- Correspondence: ; Tel.: +49-721-4005-492
| |
Collapse
|
45
|
Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, Wróbel M, Sołek-Pastuszka J, Klimowicz A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer's Disease. Front Pharmacol 2021; 12:775034. [PMID: 34803717 PMCID: PMC8599153 DOI: 10.3389/fphar.2021.775034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer's disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer's disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer's disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer's disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Szczecin, Poland
| | - Mariola Wróbel
- Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
46
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
47
|
He X, Yang F, Huang X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021; 26:molecules26196088. [PMID: 34641631 PMCID: PMC8512048 DOI: 10.3390/molecules26196088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Xin’an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-020-36585450
| |
Collapse
|
48
|
EGb in the Treatment for Patients with VCI: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8787684. [PMID: 34504643 PMCID: PMC8422158 DOI: 10.1155/2021/8787684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
Background Ginkgo biloba extract (EGb) is widely used to treat impairments in memory, cognition, activities of daily living, inflammation, edema, stroke, Alzheimer's dementia, and aging. Aim We aimed to evaluate the safety and efficacy of EGb in treating vascular cognitive impairment (VCI). Methods The systematic review was performed using the latest guidelines. We searched for EGb-related trials up to March 1, 2021, in four Chinese databases, three English databases, and clinical trial registry platforms. Randomized controlled trials (RCTs) were included if the study enrolled participants with VCI. Two reviewers independently extracted the data and critically appraised the study quality. Heterogeneity was quantified with I 2. Both sensitivity and subgroup analyses were used to identify the sources of heterogeneity. Publication bias was assessed with funnel plots. We used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to rate the evidence quality. Outcomes included assessments using the Activities of Daily Living (ADL), Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Hasegawa Dementia Scale (HDS), Barthel Index (BI), Functional Activity Questionnaire (FAQ), and adverse events. Results In this study, a total of 2019 patients in 23 RCTs were included. EGb appeared to be more effective than control conditions as assessed by the results of cognitive function evaluation, including MMSE (MDMMSE,EGb vs.blank = 3.04, 95% CI: 0.10-5.98; MDMMSE,EGb vs.drugs for VCI = 2.70, 95% CI: 1.39-4.01; MDMMSE,EGb+drugs for VCI vs.blank = 5.90, 95% CI: 4.21-7.59; and MDMMSE,EGb+drugs for VCI vs.drugs for VCI = 3.14, 95% CI: 2.14-4.15), MoCA (MDMoCA,EGb vs.blank = 5.30, 95% CI: 2.15-8.46; MDMoCA,EGb+drugs for VCI vs.blank = 2.66, 95% CI: 1.82-3.50; and MDMoCA,EGb+drugs for VCI vs.drugs for VCI = 2.56, 95% CI: 1.85-3.27), HDS (MDHDS,EGb vs.blank = 6.50; 95% CI: 4.86-8.14; MDHDS,EGb+drugs for VCI vs.drugs for VCI = 3.60, 95% CI: 2.50-4.70), ADL (MDADL,EGb vs.blank = 7.20, 95% CI: 3.28-11.12; MDADL,EGb+drugs for VCI vs.blank = 10.00, 95% CI: 7.51-12.49; and MDADL,EGb+drugs for VCI vs.drugs for VCI = 9.20, 95% CI: 7.26-11.14), BI (MDBI,EGb+drugs for VCI vs.drugs for VCI = 5.71, 95% CI: 2.99-8.43; MDFAQ,EGb vs.drugs for VCI = -1.43, 95% CI: -2.78 to 0.08), and FAQ (MDFAQ,EGb+drugs for VCI vs.drugs for VCI = -2.17, 95% CI: -4.13 to 0.21). Evidence of certainty ranged from medium certainty to very low certainty. Conclusion This meta-analysis showed that EGb may be an effective and safe treatment in improving MMSE, MOCA, ADL, and BI for VCI patients within three months of diagnosis. However, given the quality of the included RCTs, more preregistered trials are needed that explicitly examine the efficacy of EGb. This systematic review has been registered on PROSPERO, with the registration number CRD42021232967.
Collapse
|
49
|
Koch M, Furtado JD, Cronjé HT, DeKosky ST, Fitzpatrick AL, Lopez OL, Kuller LH, Mukamal KJ, Jensen MK. Plasma antioxidants and risk of dementia in older adults. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12208. [PMID: 34504943 PMCID: PMC8418668 DOI: 10.1002/trc2.12208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Plant-based diets rich in fruits and vegetables have been associated with lower risk of dementia, but the specific role of antioxidants, a key class of bioactive phytochemicals, has not been well ascertained. METHODS We measured antioxidants in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 996 randomly selected participants and 521 participants who developed dementia, of which 351 were diagnosed with Alzheimer's disease (AD) during a median of 5.9 years of follow-up. We measured baseline plasma levels of retinol, α-, and γ-tocopherol; zeaxanthin and lutein (combined); beta-cryptoxanthin; cis-lycopene; trans-lycopene; α-carotene; and trans-β-carotene by organic phase extraction followed by chromatographic analysis and related these to neurologist-adjudicated risks of all-cause dementia and AD. RESULTS Plasma retinol, α-, and γ-tocopherol, and carotenoids were not significantly related to risk of dementia or AD. Associations were not significant upon Bonferroni correction for multiple testing and were consistent within strata of sex, age, apolipoprotein E ε4 genotype, mild cognitive impairment at baseline, and intake of multivitamin, vitamin A or β-carotene, or vitamin E supplements. Higher trans-β-carotene tended to be related to a higher risk of dementia (adjusted hazard ratio [HR] per 1 standard deviation [SD] higher trans-β-carotene: 1.10; 95% confidence interval [CI]: 1.00, 1.20) and α-carotene tended to be associated with higher risk of AD only (adjusted HR per 1 SD higher α-carotene: 1.15; 95% CI: 1.02, 1.29). DISCUSSION Plasma antioxidants were not significantly associated with risk of dementia or AD among older adults. Similar studies in younger populations are required to better understand the association between plasma antioxidants and dementia risk.
Collapse
Affiliation(s)
- Manja Koch
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jeremy D. Furtado
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Héléne Toinét Cronjé
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Annette L. Fitzpatrick
- Departments of Family MedicineEpidemiology and Global HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Oscar L. Lopez
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lewis H. Kuller
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Majken K. Jensen
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
50
|
Moored KD, Bandeen-Roche K, Snitz BE, DeKosky ST, Williamson JD, Fitzpatrick AL, Carlson MC. Risk of Dementia Differs across Lifestyle Engagement Subgroups: A Latent Class and Time to Event Analysis in Community-Dwelling Older Adults. J Gerontol B Psychol Sci Soc Sci 2021; 77:872-884. [PMID: 34387336 PMCID: PMC9071387 DOI: 10.1093/geronb/gbab152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Better understanding of the lifestyle activities shared among older adult subgroups may inform further health-behavioral interventions that can be deployed at the group or community level. We applied latent class analysis to characterize qualitatively distinct lifestyle engagement groups, examined their differential risk of incident dementia, and compared their predictive utility to traditional activity frequency and variety scores. METHOD Participants were from the Ginkgo Evaluation of Memory Study (N=3,068, Mean age=78.5). Lifestyle activities were measured at baseline using the Lifestyle Activity Questionnaire. All-cause dementia was screened every six months and cases were clinically adjudicated. Median follow-up was 6 years. Time to dementia was assessed using discrete-time proportional hazards models, adjusted for demographic and health covariates. RESULTS Latent classes provided slightly poorer case discrimination than the frequency scores but identified distinct qualitative subgroups. In the four-class model, the Variety (22%) and Intellectual (18%) lifestyle groups had high engagement in intellectual activities, whereas the Variety and Social groups (32%) had high engagement in formal social activities. Compared to the Least Active group (28%), the Variety (HR=.67, 95% CI:(.48,.93)) and Intellectual (HR=.65, 95% CI:(.45,.93)) groups had significantly lower risk of incident dementia, but only among those without prevalent MCI. DISCUSSION Older adults highly engaged in intellectual activities, but not necessarily social activities, had the lowest risk of incident dementia. Activity frequency scores provided only slightly better case discrimination than activity variety scores and latent classes. Latent classes of older adults differed by their amount and types of activities, which may inform intervention design.
Collapse
Affiliation(s)
- Kyle D Moored
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven T DeKosky
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Jeff D Williamson
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Annette L Fitzpatrick
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, Washington
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|