1
|
Fearnley E, Leong LEX, Centofanti A, Dowsett P, Combs BG, Draper ADK, Hocking H, Howden B, Horan K, Wilmot M, Levy A, Cooley LA, Kennedy KJ, Wang Q, Arnott A, Graham RMA, Sinchenko V, Jennison AV, Kane S, Wright R. Vibrio parahaemolyticus Foodborne Illness Associated with Oysters, Australia, 2021-2022. Emerg Infect Dis 2024; 30:2271-2278. [PMID: 39447146 PMCID: PMC11521163 DOI: 10.3201/eid3011.240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
The bacterium Vibrio parahaemolyticus is ubiquitous in tropical and temperate waters throughout the world and causes infections in humans resulting from water exposure and from ingestion of contaminated raw or undercooked seafood, such as oysters. We describe a nationwide outbreak of enteric infections caused by Vibrio parahaemolyticus in Australia during September 2021-January 2022. A total of 268 persons were linked with the outbreak, 97% of whom reported consuming Australia-grown oysters. Cases were reported from all states and territories of Australia. The outbreak comprised 2 distinct strains of V. parahaemolyticus, sequence types 417 and 50. We traced oysters with V. parahaemolyticus proliferation back to a common growing region within the state of South Australia. The outbreak prompted a national recall of oysters and subsequent improvements in postharvest processing of the shellfish.
Collapse
|
2
|
Siriphap A, Prapasawat W, Borthong J, Tanomsridachchai W, Muangnapoh C, Suthienkul O, Chonsin K. Prevalence, virulence characteristics, and antimicrobial resistance of Vibrio parahaemolyticus isolates from raw seafood in a province in Northern Thailand. FEMS Microbiol Lett 2024; 371:fnad134. [PMID: 38111221 DOI: 10.1093/femsle/fnad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/26/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is commonly found in seawater and seafood products, but evidence is limited of its presence in seafood marketed in locations very distant from coastal sources. This study determined the prevalence and characterization of V. parahaemolyticus in seafood from markets in landlocked Phayao province, Northern Thailand. Among 120 samples, 26 (21.7%) were positive for V. parahaemolyticus, being highest in shrimp (43.3%), followed by shellfish (36.7%), and squid (6.7%), but was not found in fish. V. parahaemolyticus comprised 33 isolates that were non-pathogenic and non-pandemic. Almost all isolates from shrimp and shellfish samples were positive for T3SS1. Only five isolates (15.2%) showed two antimicrobial resistance patterns, namely, kanamycin-streptomycin (1) carrying sul2 and ampicillin-kanamycin-streptomycin (4) that carried tetA (2), tetA-sul2 (1), as well as one negative. Antimicrobial susceptible V. parahaemolyticus isolates possessing tetA (67.9%) and sul2 (3.5%) were also found. Six isolates positive for integron class 1 and/or class 2 were detected in 4 antimicrobial susceptible and 2 resistant isolates. While pathogenic V. parahaemolyticus was not detected, contamination of antimicrobial resistance V. parahaemolyticus in seafood in locations distant from coastal areas requires ongoing monitoring to improve food safety in the seafood supply chain.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Watsawan Prapasawat
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Jednipit Borthong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Hokkaido 001-0020, Japan
| | - Chonchanok Muangnapoh
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orasa Suthienkul
- Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Kaknokrat Chonsin
- Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani 84100, Thailand
| |
Collapse
|
3
|
Zhang P, Ji L, Yan W, Chen L, Zhu X, Lu Z, Dong F. Whole-genome sequencing and transcriptome-characterized mechanism of streptomycin resistance in Vibrio parahaemolyticus O10: K4. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105540. [PMID: 38114043 DOI: 10.1016/j.meegid.2023.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Streptomycin resistance in V. parahaemolyticus has been widespread in both clinical and environmental isolates. Therefore, it is of great significance to characterize the mechanism of streptomycin resistance in V. parahaemolyticus. O10:K4 has emerged and becoming the new dominant serotype since 2020. In this study, we isolated a total of 36 strains of V. parahaemolyticus O10:K4 from 2020 to 2022 and found that more than half of them were resistant to streptomycin. We obtained streptomycin resistant and sensitive strains by detecting the resistance profiles. Whole-genome sequencing showed that VP_RS10735 and VP_RS05605 were the predominant mutations in streptomycin resistant O10:K4 clinical isolates. In addition, this study provided global insight into the characteristics of the transcriptome signature of streptomycin resistance, revealing that efflux transporters play a key role in streptomycin resistance. Finally, we found that streptomycin resistant strain was more virulent than sensitive strain. The results of this study should advance our understanding of the mechanisms of aminoglycoside resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Xiaohua Zhu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Zhonghao Lu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
4
|
Fang GY, Liu XQ, Mu XJ, Huang BW, Jiang YJ. Distinct increase in antimicrobial resistance genes among Vibrio parahaemolyticus in recent decades worldwide. CHEMOSPHERE 2023; 340:139905. [PMID: 37611759 DOI: 10.1016/j.chemosphere.2023.139905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Vibrio parahaemolyticus is a common pathogen, and has emerged with multiple antimicrobial resistance (AMR). However, few studies have conducted large-scale investigations of AMR and virulence trends of V. parahaemolyticus worldwide. This study longitudinally monitored antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) trends of 1540 V. parahaemolyticus isolates isolated from 1951 to 2021. The number of ARGs in V. parahaemolyticus isolates distinctly increased over the years (P = 5.9e-10), while the number of VFGs decreased significantly (P < 2.2e-16). However, the number of VFGs of isolates isolated from humans has not changed significantly over the years (R = 0.013, P = 0.74), suggesting that the pathogenic risk to humans has not been reduced. Besides, mobile genetic elements are important contributors to ARGs in V. parahaemolyticus (R = 0.34, P < 2.2e-16), but have no promoting effect on VFGs (P = 0.50). The structural equation model illustrated that the human development index promoted the consumption of antibiotics, thereby indirectly promoting an increase in the AMR of the V. parahaemolyticus isolates. Finally, the random forest was performed to predict the ARG and VFG risks of global terrestrial V. parahaemolyticus isolates, and successfully map these threats with over 80% accuracy. This study aimed to evaluate the global risks posed by AMR and virulence, which helps to develop methods specifically targeting V. parahaemolyticus to mitigate these threats.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, PR China.
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Suzhou Precision Biotechco., Ltd, Suzhou, 215000, PR China
| | - Bing-Wen Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| |
Collapse
|
5
|
Zhang Y, Song X, Chen C, Liu L, Xu Y, Zhang N, Huang W, Zheng J, Yuan W, Tang L, Lin Z. Structural insights of the toxin-antitoxin system VPA0770-VPA0769 in Vibrio parahaemolyticus. Int J Biol Macromol 2023:124755. [PMID: 37164131 DOI: 10.1016/j.ijbiomac.2023.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin (TA) systems are involved in both normal bacterial physiology and pathogenicity, including gene regulation, antibiotic resistance, and bacteria persistence under stressful environments. In pathogenic Vibrio parahaemolyticus, however, TA interaction and assembly remain largely unknown. In this work, we identified a new RES-Xre type II TA module, encoded by gene cluster vpa0770-vpa0769 on chromosome II of V. parahaemolyticus. Ectopic expression of the VPA0770 toxin rapidly arrests the growth of E. coli cells, which can be neutralized by co-expression of the VPA0769 antitoxin. To decipher the action mechanism, we determined the crystal structure of the VPA0770-VPA0769 TA complex. VPA0770 and VPA0769 proteins can assemble into two types of large complexes, a W-shaped hetero-hexamer and a donut-like hetero-dodecamer, in a concentration-dependent manner in solution. Disruption of the TA interface results in a loss of the antitoxic phenotype. The toxicity of the VPA0770 toxin, which harbors a NAD+-binding pocket, may be largely ascribed to its highly effective capability to degrade intracellular NAD+. Our study provides a structural basis for a better understanding of diverse molecular mechanisms employed by human pathogens.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Xiaojie Song
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yangyang Xu
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Ning Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, 750004, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| | - Le Tang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| |
Collapse
|
6
|
Rene Blickem E, Bell JW, C M Oliveira A, Mona Baumgartel D, DeBeer J. An Analysis of Seafood Recalls in the Unitedthrough 2022. J Food Prot 2023; 86:100090. [PMID: 37024092 DOI: 10.1016/j.jfp.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
This review analyzes the seafood recalls registered by the United States Food and Drug Administration (USFDA) from October 2002 through March 2022. There were more than 2,400 recalls for seafood products over this 20-year period. Biological contamination was the listed root cause for about 40% of these recalls. Almost half were designated as Class I recalls, due to the high risk of the recalled seafood to cause disease or death. Independent of the recall classification, 74% of the recalls were due to violations of the Current Good Manufacturing Practices (cGMPs) regulations. The most common cause for these seafood recalls was due to undeclared allergens (34%). More than half of the undeclared allergen recalls were for undeclared milk and eggs. Recalls for Listeria monocytogenes accounted for 30% of all recalls and were all Class I. Finfish comprised 70% of the recall incidents, and salmon was the single most recalled species (22%). Improper cold smoking treatment that resulted in Listeria monocytogenes contamination was the most common reason reported for the salmon recalls. The goal of this review is to evaluate the main causes for food safety failures within the seafood manufacturing and distribution sectors. Human errors and failures to control food safety risks during the processing of food are the main driving factors for most reported recalls in the U.S. Properly applying the Hazard Analysis Critical Control Points (HACCP) approach and procedures are needed to identify the potential food safety risks. The key to reducing the risks of human error and loss of process control is the development and implementation of an effective food safety culture program at the manufacturing facility, which must require strong senior management support at corporate and enterprise levels.
Collapse
Affiliation(s)
| | - Jon W Bell
- NOAA Fisheries, National Seafood Laboratory, Pascagoula, MS
| | | | | | - John DeBeer
- Retired from Chicken of the Sea International.
| |
Collapse
|
7
|
Ellett AN, Rosales D, Jacobs JM, Paranjpye R, Parveen S. Growth Rates of Vibrio parahaemolyticus Sequence Type 36 Strains in Live Oysters and in Culture Medium. Microbiol Spectr 2022; 10:e0211222. [PMID: 36445142 PMCID: PMC9769909 DOI: 10.1128/spectrum.02112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogenic marine bacterium Vibrio parahaemolyticus can cause seafood-related gastroenteritis via the consumption of raw or undercooked seafood. Infections originating from relatively cool waters in the northeast United States are typically rare, but recently, this region has shown an increase in infections attributed to the ecological introduction of pathogenic sequence type 36 (ST36) strains, which are endemic to the cool waters of the Pacific Northwest. A 2005 risk assessment performed by the Food and Drug Administration (FDA) modeled the postharvest growth of V. parahaemolyticus in oysters as a function of air temperature and the length of time the oysters remained unrefrigerated. This model, while useful, has raised questions about strain growth differences in oyster tissue and whether invasive pathogenic strains exhibit different growth rates than nonclinical strains, particularly at lower temperatures. To investigate this question, live eastern oysters were injected with ST36 clinical strains and non-ST36 nonclinical strains, and growth rates were measured using the most probable number (MPN) enumeration. The presence of V. parahaemolyticus was confirmed using PCR by targeting the thermolabile hemolysin gene (tlh), thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and a pathogenesis-related protein (prp). The growth rates of the ST36 strains were compared to the FDA model and several other data sets of V. parahaemolyticus growth in naturally inoculated oysters harvested from the Chesapeake Bay. Our data indicate that the growth rates from most studies fall within the mean of the FDA model, but with slightly higher growth at lower temperatures for ST36 strains injected into live oysters. These data suggest that further investigations of ST36 growth capability in oysters at temperatures previously thought unsuitably low for Vibrio growth are warranted. IMPORTANCE Vibrio parahaemolyticus is the leading cause of seafood-related gastroenteritis in the United States, with an estimated 45,000 cases per year. Most individuals who suffer from vibriosis consume raw or undercooked seafood, including oysters. While gastroenteritis vibriosis is usually self-limiting and treatable, V. parahaemolyticus infections are a stressor on the growing aquaculture industry. Much effort has been placed on modeling the growth of Vibrio cells in oysters in order to aid oyster growers in designing harvesting best practices and ultimately, to protect the consumer. However, ecological invasions of nonnative bacterial strains make modeling their growth complicated, as these strains are not accounted for in current models. The National Shellfish Sanitation Program (NSSP) considers 10°C (50°F) a temperature too low to enable Vibrio growth, where 15°C is considered a cutoff temperature for optimal Vibrio growth, with temperatures approaching 20°C supporting higher growth rates. However, invasive strains may be native to cooler waters. This research aimed to understand strain growth in live oysters by measuring growth rates when oysters containing ST36 strains, which may be endemic to the U.S. Pacific Northwest, were exposed to multiple temperatures postharvest. Our results will be used to aid future model development and harvesting best practices for the aquaculture industry.
Collapse
Affiliation(s)
- Ava N. Ellett
- University of Maryland Eastern Shore, Princess Anne, Maryland, USA
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Oxford, Maryland, USA
| | - Detbra Rosales
- University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - John M. Jacobs
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Oxford, Maryland, USA
| | - Rohinee Paranjpye
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Salina Parveen
- University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| |
Collapse
|
8
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
9
|
Wang J, Zhan Y, Sun H, Fu X, Kong Q, Zhu C, Mou H. Regulation of Virulence Factors Expression During the Intestinal Colonization of Vibrio parahaemolyticus. Foodborne Pathog Dis 2022; 19:169-178. [PMID: 35085447 DOI: 10.1089/fpd.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colonization and adhesion are the key steps for Vibrio parahaemolyticus to infect human body and cause seafood poisoning. However, at present, there is a lack of systematic review on the regulation of virulence factors expression during the intestinal colonization of V. parahaemolyticus. This review aims to describe the virulence factors associated with the colonization and adhesion of V. parahaemolyticus (multivalent adhesion molecule 7, enolase secretion, use of flagella, biofilm formation, and the action of secretion systems) and focuses on the aspects that affect these processes in V. parahaemolyticus, including secretion systems, quorum sensing (QS), and the human gastrointestinal tract. V. parahaemolyticus regulates the expression of virulence factors by forming a virulence regulation network through QS and the core regulator, ToxR, which contributes to the early colonization of the pathogen. In the virulence regulation network, the secretion systems, type III and type VI secretion systems, help V. parahaemolyticus adhere to the distal end of the small intestine by secreting effectors that induce the lysis of epithelial cells and change the shape of the intestinal lining, which provides nutrients and a suitable environment for its growth. This review summarizes the research progress in recent years on the virulence factors associated with the colonization and adhesion of V. parahaemolyticus, which provides valuable information for the safety control of marine food.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal, Jinan, China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Guerrero A, Gomez-Gil B, Lizarraga-Partida ML. Genomic stability among O3:K6 V. parahaemolyticus pandemic strains isolated between 1996 to 2012 in American countries. BMC Genom Data 2021; 22:38. [PMID: 34579653 PMCID: PMC8477464 DOI: 10.1186/s12863-021-00985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The V. parahaemolyticus pandemic clone, results in the development of gastrointestinal illness in humans. Toxigenic strains of this species are frequently isolated from aquatic habitats and organisms such as mollusks and crustaceans. Reports on the isolation of the pandemic clone started in 1996, when a new O3:K6 clone was identified in Asia, that rapidly spread worldwide, becoming the predominant clone isolated from clinical cases. In this study whole genome sequencing was accomplished with an Illumina MiniSeq platform, upon six novel V. parahaemolyticus strains, that have been isolated in Mexico since 1998 and three representative genomes of strains that were isolated from reported outbreaks in other American countries, and were deposited in the GenBank. These nine genomes were compared against the reference sequence of the O3:K6 pandemic strain (RIMD 2210633), which was isolated in 1996, to determine sequence differences within American isolates and between years of isolation. RESULTS The results indicated that strains that were isolated at different times and from different countries, were highly genetically similar, among them as well as to the reference strain RIMD 2210633, indicating a high level of genetic stability among the strains from American countries between 1996 to 2012, without significant genetic changes relative to the reference strain RIMD 2210633, which was isolated in 1996 and was considered to be representative of a novel O3:K6 pandemic strain. CONCLUSIONS The genomes of V. parahaemolyticus strains isolated from clinical and environmental sources in Mexico and other American countries, presented common characteristics that have been reported for RIMD 2210633 O3:K6 pandemic strain. The major variations that were registered in this study corresponded to genes non associated to virulence factors, which could be the result of adaptations to different environmental conditions. Nevertheless, results do not show a clear pattern with the year or locality where the strains were isolated, which is an indication of a genomic stability of the studied strains.
Collapse
Affiliation(s)
- Abraham Guerrero
- Cátedras CONACyT-CIAD, Food Research and Development Center A.C. Mazatlán Unit (Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán), Mazatlán, Sinaloa, Mexico.,CIAD, Food Research and Development Center A.C. Mazatlán Unit for Aquaculture, A.P. 711, Mazatlán, Sinaloa, Mexico, 82100
| | - Bruno Gomez-Gil
- CIAD, Food Research and Development Center A.C. Mazatlán Unit for Aquaculture, A.P. 711, Mazatlán, Sinaloa, Mexico, 82100
| | | |
Collapse
|
11
|
Davis BJK, Corrigan AE, Sun Z, Atherly E, DePaola A, Curriero FC. A case-control analysis of traceback investigations for Vibrio parahaemolyticus infections (vibriosis) and pre-harvest environmental conditions in Washington State, 2013-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141650. [PMID: 32898797 PMCID: PMC7674187 DOI: 10.1016/j.scitotenv.2020.141650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Vibrio parahaemolyticus is a major cause of seafood-borne illness. It is naturally prevalent in brackish waters and accumulates in shellfish. Vibriosis cases are rising globally, likely due to rising temperatures. OBJECTIVES To identify associations between vibriosis in Washington State and pre-harvest environmental and V. parahaemolyticus genetic measurements sampled from shellfish. METHODS Successful vibriosis traceback investigations were spatiotemporally matched to routine intertidal oyster (Crassostrea gigas) sampling events, which included measurements of temperature, salinity, and V. parahaemolyticus genetic targets (thermolabile hemolysin: tlh; thermostable direct hemolysin: tdh; thermostable direct-related hemolysin: trh). Unmatched sampling events were treated as controls. Associations were evaluated using logistic regression models. RESULTS Systematic differences were observed across Washington harvesting zones. These included positive associations between the odds of vibriosis and all three genetic targets in South Puget Sound, with a large odds ratio (OR) = 13.0 (95% CI: 1.5, 115.0) for a 1-log10 increase in tdh when total bacterium abundance was low (tlh < 1 log10 MPN/g). A positive association also occurred for a 1 °C increase in tissue temperature OR = 1.20 (95% CI: 1.10, 1.30) while a negative association occurred for a similar increase in water temperature OR = 0.70 (95% CI: 0.59, 0.81). In contrast, the coastal bays displayed positive associations for water temperature OR = 2.16 (95% CI, 1.15, 4.05), and for a 1-log10 increase in the tdh:trh ratio OR = 5.85 (95% CI, 1.06, 32.26). DISCUSSION The zonal variation in associations indicates unique pathogenic strain prominence, suggesting tdh+/trh+ strains in South Puget Sound, such as the O4:K12 serotype, and tdh+/trh- strains in the coastal bays. The temperature discrepancy between water and oyster tissue suggests that South Puget Sound pathogenic strains flourish with exposure to relatively warm air during low tide. These findings identify new ecological risk factors for vibriosis in Washington State that can be used in future prevention efforts.
Collapse
Affiliation(s)
- Benjamin J K Davis
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA; Center for Chemical Regulation and Food Safety, Exponent, Inc., 1105 Connective Avenue #1100, Washington, DC 20036, USA
| | - Anne E Corrigan
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Zhe Sun
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Erika Atherly
- Office of Environmental Health & Safety, Division of Environmental Public Health, Washington State Department of Health, Olympia, WA, USA
| | | | - Frank C Curriero
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Bauer J, Teitge F, Neffe L, Adamek M, Jung A, Peppler C, Steinhagen D, Jung-Schroers V. Impact of a reduced water salinity on the composition of Vibrio spp. in recirculating aquaculture systems for Pacific white shrimp (Litopenaeus vannamei) and its possible risks for shrimp health and food safety. JOURNAL OF FISH DISEASES 2021; 44:89-105. [PMID: 32971569 DOI: 10.1111/jfd.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 05/27/2023]
Abstract
Tropical shrimp, like Litopenaeus vannamei, in land-based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.
Collapse
Affiliation(s)
- Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Neffe
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Pang R, Li Y, Chen M, Zeng H, Lei T, Zhang J, Ding Y, Wang J, Wu S, Ye Q, Zhang J, Wu Q. A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. Sci Data 2020; 7:321. [PMID: 33009407 PMCID: PMC7532206 DOI: 10.1038/s41597-020-00671-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 01/23/2023] Open
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide. The increasing number of cases of V. parahaemolyticus infections in China indicates an urgent need to evaluate the prevalence and genetic diversity of this pathogenic bacterium. In this paper, we introduce the Foodborne Vibrio parahaemolyticus genome database (FVPGD), the first scientific database of foodborne V. parahaemolyticus distribution and genomic data in China, based on our previous investigations of V. parahaemolyticus contamination in different kinds of food samples across China from 2011 to 2016. The dataset includes records of 2,499 food samples and 643 V. parahaemolyticus strains from supermarkets and marketplaces distributed over 39 cities in China; 268 whole-genome sequences have been deposited in this database. A spatial view on the risk situations of V. parahaemolyticus contamination in different food types is provided. Additionally, the database provides a functional interface of sequence BLAST, core genome multilocus sequence typing, and phylogenetic analysis. The database will become a powerful tool for risk assessment and outbreak investigations of foodborne pathogens in China.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanping Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Junhui Zhang
- Department of Food Science and Technology, Jinan University, Guangzhou, 510000, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, 510000, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
14
|
Prevalence of Vibrio parahaemolyticus Causing Acute Hepatopancreatic Necrosis Disease of Shrimp in Shrimp, Molluscan Shellfish and Water Samples in the Mekong Delta, Vietnam. BIOLOGY 2020; 9:biology9100312. [PMID: 32992682 PMCID: PMC7600832 DOI: 10.3390/biology9100312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023]
Abstract
Simple Summary Recently, Vibrio parahaemolyticus has been identified as an important agent of acute hepatopancreatic necrosis disease in shrimp. In Vietnam, this disease has appeared since 2010 and caused a big economic loss for shrimp farming. However, the information of this agent in Vietnam has been not fully understood. This study aims to investigate the prevalence of shrimp pathogenic Vibrio parahaemolyticus and several it’s characteristics in the Mekong Delta of Vietnam. A total of 481 shrimp and molluscan shellfish samples from retail shops and farms and 64 water samples from shrimp and molluscan shellfish farms were examined for the presence of pathogenic strains. The pathogenic strains were isolated in 0.7% of molluscan shellfish samples from retail shops, 9.9% of shrimp samples from shrimp ponds, and 4.8% of water samples from shrimp ponds. These strains were classified into two types of O antigen (O1 and O3), in which O1 was the predominant. They showed resistance to several antimicrobial agents, multidrug resistance and pathogenicity to experimental shrimp. These results indicate that shrimp pathogenic Vibrio parahaemolyticus is widely prevalent in environment in the Mekong Delta, Vietnam. These findings can be used for understanding the risk of shrimp pathogenic Vibrio parahaemolyticus in the Mekong Delta. Abstract A total of 481 samples, including 417 shrimp and molluscan shellfish samples from retail shops and farms and 64 water samples from shrimp and molluscan shellfish farms in the Mekong Delta located the southern part of Vietnam, were examined for the presence of Vibrio parahaemolyticus (VpAHPND) caused acute haepatopancreatic necrosic disease (AHPND) in shrimp. VpAHPND strains were isolated in two of 298 (0.7%) molluscan shellfish samples from retail shops, seven of 71 (9.9%) shrimp samples from shrimp ponds, and two of 42 (4.8%) water samples from shrimp ponds. VpAHPND strains were classified into two types of O antigen, including O1 and O3, in which O1 was the predominant. VpAHPND strains isolated showed high resistance rates to colistin (100%), ampicillin (93.8%), and streptomycin (87.5%). These results indicate that VpAHPND is widely prevalent in environment in the Mekong Delta, Vietnam.
Collapse
|
15
|
Lei S, Gu X, Zhong Q, Duan L, Zhou A. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Richards GP, Chintapenta LK, Watson MA, Abbott AG, Ozbay G, Uknalis J, Oyelade AA, Parveen S. Bacteriophages Against Pathogenic Vibrios in Delaware Bay Oysters (Crassostrea virginica) During a Period of High Levels of Pathogenic Vibrio parahaemolyticus. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:101-112. [PMID: 30706411 DOI: 10.1007/s12560-019-09365-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Eastern oysters (Crassostrea virginica) from three locations along the Delaware Bay were surveyed monthly from May to October 2017 for levels of total Vibrio parahaemolyticus, pathogenic strains of V. parahaemolyticus and Vibrio vulnificus, and for strain-specific bacteriophages against vibrios (vibriophages). The objectives were to determine (a) whether vibriophages against known strains or serotypes of clinical and environmental vibrios were detectable in oysters from the Delaware Bay and (b) whether vibriophage presence or absence corresponded with Vibrio abundances in oysters. Host cells for phage assays included pathogenic V. parahaemolyticus serotypes O3:K6, O1:KUT (untypable) and O1:K1, as well as clinical and environmental strains of V. vulnificus. Vibriophages against some, but not all, pathogenic V. parahaemolyticus serotypes were readily detected in Delaware Bay oysters. In July, abundances of total and pathogenic V. parahaemolyticus at one site spiked to levels exceeding regulatory guidelines. Phages against three V. parahaemolyticus host serotypes were detected in these same oysters, but also in oysters with low V. parahaemolyticus levels. Serotype-specific vibriophage presence or absence did not correspond with abundances of total or pathogenic V. parahaemolyticus. Vibriophages were not detected against three V. vulnificus host strains, even though V. vulnificus were readily detectable in oyster tissues. Selected phage isolates against V. parahaemolyticus showed high host specificity. Transmission electron micrographs revealed that most isolates were ~ 60-nm diameter, non-tailed phages. In conclusion, vibriophages were detected against pandemic V. parahaemolyticus O3:K6 and O1:KUT, suggesting that phage monitoring in specific host cells may be a useful technique to assess public health risks from oyster consumption.
Collapse
Affiliation(s)
- Gary P Richards
- United States Department of Agriculture, Agricultural Research Service, Delaware State University, James Baker Center, Dover, DE, 19901, USA.
| | - Lathadevi K Chintapenta
- College of Agriculture Science and Technology, Delaware State University, Dover, DE, 19901, USA
- University of Wisconsin - River Falls, 410 S. 3rd Street, River Falls, WI, 54022, USA
| | - Michael A Watson
- United States Department of Agriculture, Agricultural Research Service, Delaware State University, James Baker Center, Dover, DE, 19901, USA
| | - Amanda G Abbott
- College of Agriculture Science and Technology, Delaware State University, Dover, DE, 19901, USA
| | - Gulnihal Ozbay
- College of Agriculture Science and Technology, Delaware State University, Dover, DE, 19901, USA
| | - Joseph Uknalis
- United States Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Abolade A Oyelade
- New Jersey Department of Environmental Protection, Leeds Point, NJ, USA
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| |
Collapse
|
17
|
|
18
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
19
|
TRAN THT, YANAGAWA H, NGUYEN KT, HARA-KUDO Y, TANIGUCHI T, HAYASHIDANI H. Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam. J Vet Med Sci 2018; 80:1737-1742. [PMID: 30249937 PMCID: PMC6261814 DOI: 10.1292/jvms.18-0241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/01/2018] [Indexed: 01/22/2023] Open
Abstract
A total of 449 samples including 385 seafood and 64 water samples in the Mekong Delta of Vietnam collected in 2015 and 2016 were examined. Of 385 seafood samples, 332 (86.2%) samples were contaminated with Vibrio parahaemolyticus and 25 (6.5%) samples were pathogenic V. parahaemolyticus carrying tdh and/or trh genes. The tdh gene positive V. parahaemolyticus strains were detected in 22 (5.7%) samples and trh gene positive V. parahaemolyticus strains were found in 5 (1.3%) samples. Of 25 pathogenic V. parahaemolyticus strains, two strains harbored both tdh and trh genes and the other 23 strains carried either tdh or trh gene. Of 64 water samples at aquaculture farms, 50 (78.1%) samples were contaminated with V. parahaemolyticus. No tdh gene positive V. parahaemolyticus strains were detected; meanwhile, trh gene positive V. parahaemolyticus strain was detected in 1 (1.6%) sample. Twenty-six pathogenic V. parahaemolyticus strains isolated were classified into 6 types of O antigen, in which the serotype O3:K6 was detected in 4 strains. All pathogenic strains were group-specific PCR negative except for 4 O3:K6 strains. The result of antimicrobial susceptibility test indicated that pathogenic strains showed high resistance rates to streptomycin (84.6%), ampicillin (57.7%) and sulfisoxazole (57.7%). These findings can be used for understanding microbiological risk of seafood in the Mekong Delta, Vietnam.
Collapse
Affiliation(s)
- Thi Hong To TRAN
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509,
Japan
| | - Haruka YANAGAWA
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509,
Japan
| | - Khanh Thuan NGUYEN
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509,
Japan
| | - Yukiko HARA-KUDO
- National Institute of Health Science, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takahide TANIGUCHI
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509,
Japan
| | - Hideki HAYASHIDANI
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509,
Japan
| |
Collapse
|
20
|
Chen AJ, Hasan NA, Haley BJ, Taviani E, Tarnowski M, Brohawn K, Johnson CN, Colwell RR, Huq A. Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland. Front Microbiol 2017; 8:2460. [PMID: 29375492 PMCID: PMC5770735 DOI: 10.3389/fmicb.2017.02460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 01/10/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.
Collapse
Affiliation(s)
- Arlene J Chen
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Nur A Hasan
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States.,CosmosID Inc., College Park, MD, United States
| | - Bradd J Haley
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Elisa Taviani
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Mitch Tarnowski
- Maryland Department of Natural Resources, Annapolis, MD, United States
| | - Kathy Brohawn
- Maryland Department of the Environment, Baltimore, MD, United States
| | - Crystal N Johnson
- Department of Environmental Science, Louisiana State University, Baton Rouge, LA, United States
| | - Rita R Colwell
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States.,CosmosID Inc., College Park, MD, United States.,Maryland Institute for Applied Environmental Health, University of Maryland, College Park, College Park, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, United States
| | - Anwar Huq
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States.,Maryland Institute for Applied Environmental Health, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
21
|
Chan S, Ng K, Cheung W, Rainer T. Vibrio Parahaemolyticus: A Leading Cause of Infectious Diarrhoea in Hong Kong. HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490790200900104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vibrio parahaemolyticus is one of the commonest pathogens responsible for infectious diarrhoea in Asia. This article highlights recent findings from a retrospective study in an A&E Department in Hong Kong, and reviews current literature in regard to the epidemiological features and laboratory investigations. Prevention, prompt diagnosis and treatment are discussed. Vibrio parahaemolyticus gastroenteritis causes significant morbidity, and is much more prevalent in the summer season. Compared to other bacterial gastroenteritis, patients with this condition may present relatively sooner after the onset of diarrhoea. To ensure prompt detection of outbreaks, an appropriate stool culture medium specific for Vibrio spp. should be used.
Collapse
Affiliation(s)
- Ssw Chan
- Prince of Wales Hospital, Accident & Emergency Department, 30–32 Ngan Shing Street, Shatin, N.T., Hong Kong
| | - Kc Ng
- Prince of Wales Hospital, Department of Microbiology
| | | | - Th Rainer
- Prince of Wales Hospital, Accident & Emergency Medicine Academic Unit Timothy
| |
Collapse
|
22
|
Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments. Appl Microbiol Biotechnol 2017; 101:1781-1794. [PMID: 28144705 DOI: 10.1007/s00253-017-8096-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Vibrio parahaemolyticus is a commonly encountered and highly successful organism in marine ecosystems. It is a fast-growing, extremely versatile copiotroph that is active over a very broad range of conditions. It frequently occurs suspended in the water column (often attached to particles or zooplankton), and is a proficient colonist of submerged surfaces. This organism is an important pathogen of animals ranging from microcrustaceans to humans and is a causative agent of seafood-associated food poisoning. This review examines specific ecological adaptations of V. parahaemolyticus, including its broad tolerances to temperature and salinity, its utilization of a wide variety of organic carbon and energy sources, and its pervasive colonization of suspended and stationary materials that contribute to its success and ubiquity in temperate and tropical estuarine ecosystems. Several virulence-related features are examined, in particular the thermostable direct hemolysin (TDH), the TDH-related hemolysin (TRH), and the type 3 secretion system, and the possible importance of these features in V. parahaemolyticus pathogenicity is explored. The impact of new and much more effective PCR primers on V. parahaemolyticus detection and our views of virulent strain abundance are also described. It is clear that strains carrying the canonical virulence genes are far more common than previously thought, which opens questions regarding the role of these genes in pathogenesis. It is also clear that virulence is an evolving feature of V. parahaemolyticus and that novel combinations of virulence factors can lead to emergent virulence in which a strain that is markedly more pathogenic evolves and propagates to produce an outbreak. The effects of global climate change on the frequency of epidemic disease, the geographic distribution of outbreaks, and the human impacts of V. parahaemolyticus are increasing and this review provides information on why this ubiquitous human pathogen has increased its footprint and its significance so dramatically.
Collapse
|
23
|
Tiruvayipati S, Bhassu S. Host, pathogen and environment: a bacterial gbpA gene expression study in response to magnesium environment and presence of prawn carapace and commercial chitin. Gut Pathog 2016; 8:23. [PMID: 27231485 PMCID: PMC4880808 DOI: 10.1186/s13099-016-0105-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/11/2016] [Indexed: 11/30/2022] Open
Abstract
Background Vibrio parahaemolyticus is a Gram-negative halophilic bacterium which is found largely in estuarine and coastal waters. The bacteria has been a main focus in gastro-intestinal infections caused primarily due to the consumption of contaminated seafood. It was shown to survive in magnesium concentrations as high as 300 mM which are toxic to various other micro-organisms. Several genes of V. parahaemolyticus were studied, among which gbpA (N-acetyl glucosamine binding protein) was reported in Vibrio cholerae. Methods The current study investigates the V. parahaemolyticus gbpA gene expression at different concentrations of magnesium sulfate heptahydrate (MgSO4·7H2O, chosen as the magnesium environment), in the presence of the host’s (prawn) carapace and the mimicked carapace [commercial chitin flakes (Sigma)]. The concentrations of MgSO4·7H2O utilized were approximately 0, 1, 75, 137, 225 and 300 mM. These were selected based upon the survival conditions required by prawn and bacteria, respectively. 0.05 gm/3 ml of carapace (by dry weight) and commercial chitin flakes were used in the experiments. Bacterial count was performed for the biological triplicates for the 3 experimental setups. The genome of Vibrio parahaemolyticus PCV08-7 (VPPCV08-7) was used as a reference, based on whose translated gbpA gene the probable protein-chemical interactions were determined on the STITCH database. Results The GbpA protein was shown to interact with chitin on the STITCH database. In our experiments, the gbpA showed lower gene expression levels at different MgSO4·7H2O concentrations in the presence of chitin and carapace, than with the presence of only MgSO4•7H2O. In addition, the bacterial count for various concentrations of magnesium used, revealed a distinct decrease in bacterial count within and among each of the three experimental setups. Conclusion In the presence of only magnesium, an increase in the gbpA expression with neither chitin nor carapace and vice versa supported by the results from the bacterial counts could help further studies to prove that the moulting phase of prawns may trigger increased expression of the V. parahaemolyticus gbpA gene. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0105-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Center of Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Tiruvayipati S, Bhassu S. Host, pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog 2016; 8:15. [PMID: 27114742 PMCID: PMC4843205 DOI: 10.1186/s13099-016-0097-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022] Open
Abstract
Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Centre of Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Abstract
Vibrio vulnificus, carrying a 50% fatality rate, is the most deadly of the foodborne pathogens. It occurs in estuarine and coastal waters and it is found in especially high numbers in oysters and other molluscan shellfish. The biology of V. vulnificus, including its ecology, pathogenesis, and molecular genetics, has been described in numerous reviews. This article provides a brief summary of some of the key aspects of this important human pathogen, including information on biotypes and genotypes, virulence factors, risk factor requirements and the role of iron in disease, association with oysters, geographic distribution, importance of salinity and water temperature, increasing incidence associated with global warming. This article includes some of our findings as presented at the "Vibrios in the Environment 2010" conference held in Biloxi, MS.
Collapse
|
26
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
27
|
Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 2014; 5:705. [PMID: 25566219 PMCID: PMC4263241 DOI: 10.3389/fmicb.2014.00705] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Bandar Sunway, Malaysia ; Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Bandar Sunway, Malaysia
| |
Collapse
|
28
|
HARA-KUDO Y, KUMAGAI S. Impact of seafood regulations for Vibrio parahaemolyticus infection and verification by analyses of seafood contamination and infection. Epidemiol Infect 2014; 142:2237-47. [PMID: 25078437 PMCID: PMC9151258 DOI: 10.1017/s0950268814001897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022] Open
Abstract
Consumption of seafood contaminated with Vibrio parahaemolyticus causes foodborne infections, which are on the rise owing to increased consumption of raw seafood in Asia, Europe, North America, and other regions. V. parahaemolyticus infections have been common in Japan since the 1960s. Following an epidemic in 1997, the Japanese Ministry of Health, Labour, and Welfare instituted regulations for seafood in 1999, which appear to be reducing V. parahaemolyticus infections. In this review, we describe the scientific findings for these regulations. Analyses of the V. parahaemolyticus serotypes and isolate characteristics in samples from infected patients and contaminated seafood are discussed. In addition, based on the results of a survey, we show that new food safety regulations have led to improvements in food hygiene at many seafood retail shops, food service facilities, and restaurants. This example from Japan could be of immense help to control foodborne infections in other countries.
Collapse
Affiliation(s)
- Y. HARA-KUDO
- Division of Microbiology, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - S. KUMAGAI
- Food Safety Commission, Akasaka, Minato-ku, Tokyo, Japan
| |
Collapse
|
29
|
Moore JG, Ruple A, Ballenger-Bass K, Bell S, Pennington PL, Scott GI. Snapshot of Vibrio parahaemolyticus densities in open and closed shellfish beds in Coastal South Carolina and Mississippi. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:7949-7960. [PMID: 25106119 DOI: 10.1007/s10661-014-3979-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Vibrio parahaemolyticus is a Gram negative, halophilic bacterium that is ubiquitous in warm, tropical waters throughout the world. It is a major cause of seafood-associated gastroenteritis and is generally associated with consumption of raw or undercooked seafood, especially oysters. This study presents a snapshot of total V. parahaemolyticus densities in surface waters and shellstock American oysters (Crassostrea virginica) from open and closed shellfish harvesting areas, as well as "more rural areas" on two different US coasts, the Atlantic and the Gulf. Sampling was conducted from 2001 to 2003 at five sites near Charleston/Georgetown, SC and at four locations in the Gulfport/Pascagoula, MS area. V. parahaemolyticus numbers were determined by a direct plating method using an alkaline-phosphatase-labeled DNA probe targeting the species-specific thermolabile hemolysin gene (tlh) that was used for identification of bacterial isolates. The greatest difference between the two coasts was salinity; mean salinity in SC surface waters was 32.9 ppt, whereas the mean salinity in MS waters was 19.2 ppt, indicating more freshwater input into MS shellfish harvesting areas during the study period. The mean V. parahaemolyticus numbers in oysters were almost identical between the two states (567.4 vs. 560.1 CFU/g). Bacterial numbers in the majority of surface water samples from both states were at or below the limit of detection (LOD = <10 CFU/mL). The bacterial concentrations determined during this study predict a low public health risk from consumption of oysters in shellfish growing areas on either the Gulf or the Atlantic US coast.
Collapse
Affiliation(s)
- J Gooch Moore
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Center for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) Lab, Charleston, SC, USA,
| | | | | | | | | | | |
Collapse
|
30
|
Flores-Primo A, Pardío-Sedas V, Lizárraga-Partida L, López-Hernández K, Uscanga-Serrano R, Flores-Hernández R. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus isolated from American oysters harvested in the Mandinga Lagoon System, Veracruz, Mexico: implications for food safety. J Food Prot 2014; 77:1069-77. [PMID: 24988011 DOI: 10.4315/0362-028x.jfp-13-482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The abundance of total and pathogenic Vibrio parahaemolyticus (Vp) strains in American oysters (Crassostrea virginica) harvested in two different harvest sites from the Mandinga lagoon System was evaluated monthly for 1 year (January through December 2012). Frequencies of species-specific genes and pathogenic genes exhibited a seasonal distribution. The annual occurrence of Vp with the species-specific tlh gene (tlh(+)) was significantly higher during the winter windy season (32.50%) and spring dry season (15.0%), with the highest densities observed during spring dry season at 283.50 most probable number (MPN)/g (lagoon bank A, near human settlements), indicating the highest risk of infection during warmer months. Pathogenic Vp tlh(+)/tdh(+) frequency was significantly higher during the winter windy and the spring dry seasons at 22.50 and 10.00%, respectively, with highest densities of 16.22 and 41.05 MPN/g (bank A), respectively. The tlh/trh and tdh/trh gene combinations were also found in Vp isolates during the spring dry season at 1.25 and 1.3%, respectively, with densities of 1.79 and 0.4 MPN/g (bank A), respectively. The orf8 genes were detected during the winter windy season (1.25%) with highest densities of 5.96 MPN/g (bank A) and 3.21 MPN/g (bank B, near mangrove islands and a heron nesting area). Densities of Vp tdh(+) were correlated (R(2) = 0.245, P < 0.015) with those of Vp orf8(+). The seasonal dynamics of Vp harboring pathogenic genes varied with seasonal changes, with very high proportions of Vp tdh(+) and Vp orf8(+) isolates in the winter windy season at 46.2 and 17.0%, respectively, which suggests that environmental factors may differentially affect the abundance of pathogenic subpopulations. Although all densities of total Vp (Vp tlh(+)) were lower than 10(4) MPN/g, thus complying with Mexican regulations, the presence of pathogenic strains is a public health concern. Our results suggest that total Vp densities may not be appropriate for assessing oyster contamination and predicting the risk of infection. Evaluation of the presence of pathogenic strains would be a better approach to protecting public health.
Collapse
Affiliation(s)
- Argel Flores-Primo
- Faculty of Veterinary Medicine, Universidad Veracruzana, Avenida Miguel Ángel de Quevedo s/n esquina Yáñez, Colonia Unidad Veracruzana, Veracruz, Veracruz, México 91710
| | | | | | | | | | | |
Collapse
|
31
|
Velazquez-Roman J, León-Sicairos N, de Jesus Hernández-Díaz L, Canizalez-Roman A. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front Cell Infect Microbiol 2014; 3:110. [PMID: 24427744 PMCID: PMC3878053 DOI: 10.3389/fcimb.2013.00110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/15/2013] [Indexed: 12/22/2022] Open
Abstract
Vibrio parahaemolyticus is one of the most important seafood-borne bacterial in recent years and is the leading causal agent of human acute gastroenteritis, primarily following the consumption of raw, undercooked or mishandled marine products. Until 1996, infections caused by V. parahaemolyticus were generally associated with diverse serovars. However, in February 1996, a unique serovar (O3:K6) of V. parahaemolyticus with specific genetic markers (tdh, toxRS/New and/or orf8) appeared abruptly in Kolkata, India. In subsequent years, O3:K6 isolates similar to those isolated in Kolkata have been reported from food borne outbreaks in Southeast Asia, as well as in the Atlantic and Gulf coasts of the United States (U.S). More recently, there have been reports in Europe, Africa and Central and South America. Specifically, in the American continent, some countries have reported cases of gastroenteritis due to the pandemic O3:K6 strain and its serovariants; the pandemic strain was first detected in Peru (1996, >100 cases), subsequently spreading to Chile in 1998 (>16,804 human cases), to the U.S. in 1998 (>700 cases), to Brazil in 2001 (>18 cases) and to Mexico in 2004 (>1200 cases). The arrival of the pandemic clone on the American continent may have resulted in a significant shift on the epidemic dynamics of V. parahaemolyticus. However, although O3:K6 is the predominant serovar of the recognized clinical strains in some countries in the Americas, a decrease in clinical cases caused by O3:K6 and an increase in cases associated with a new serotype (O3:K59, Chile) have been recently reported. The emergence and worldwide dissemination of O3:K6 and other pandemic strains since 1996 have come to represent a threat to public health and should concern health authorities. This review focuses on the presence, distribution and virulence factors of the V. parahaemolyticus O3:K6 pandemic clone and its serovariants in clinical and environmental strains on the American continent.
Collapse
Affiliation(s)
| | - Nidia León-Sicairos
- School of Medicine, Autonomous University of Sinaloa Culiacan, Mexico ; Pediatric Hospital of Sinaloa Culiacan, Mexico
| | | | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa Culiacan, Mexico ; The Sinaloa State Public Health Laboratory, Secretariat of Health Culiacan, Mexico
| |
Collapse
|
32
|
Molecular characterization of clinical and environmental Vibrio parahaemolyticus isolates in Taiwan. Int J Food Microbiol 2013; 165:18-26. [DOI: 10.1016/j.ijfoodmicro.2013.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022]
|
33
|
Biosynthesis of the osmoprotectant ectoine, but not glycine betaine, is critical for survival of osmotically stressed Vibrio parahaemolyticus cells. Appl Environ Microbiol 2013; 79:5038-49. [PMID: 23770911 DOI: 10.1128/aem.01008-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state.
Collapse
|
34
|
Oliver JD. Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology. MICROBIAL ECOLOGY 2013; 65:793-9. [PMID: 23263234 DOI: 10.1007/s00248-012-0140-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/16/2012] [Indexed: 05/24/2023]
Abstract
Vibrio vulnificus is an estuarine bacterium which occurs in high numbers in filter-feeding molluscan shellfish, such as oysters. In individuals with certain underlying diseases, ingestion of the bacterium, e.g., in raw or undercooked oysters, can lead to a rapid and extremely fatal infection. Indeed, this one bacterium is responsible for 95 % of all seafood-borne deaths. In addition, the bacterium is capable of entering a preexisting lesion or cut obtained during coastal recreational activities, resulting in potentially fatal wound infections. This brief review, which comprised a presentation made at the Gordon Research Conference on "Oceans and Human Health," reflects over 35 years of research on this bacterium in the author's laboratory. It describes some of the known virulence factors and why males account for ca 85 % of all V. vulnificus cases. It notes the two genotypes now known to exist and how this pathogen enters a dormant, "viable but nonculturable" state during the winter months. Finally, the review discusses how global warming may be causing worldwide increases in the frequency and geographical extent of Vibrio infections.
Collapse
Affiliation(s)
- James D Oliver
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
35
|
|
36
|
Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. Int J Food Microbiol 2013; 160:185-92. [DOI: 10.1016/j.ijfoodmicro.2012.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/23/2012] [Accepted: 11/03/2012] [Indexed: 11/21/2022]
|
37
|
Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl Environ Microbiol 2012; 78:8631-8. [PMID: 23042162 DOI: 10.1128/aem.01531-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh(+) V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh(+) but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh(+), trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh(+), trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.
Collapse
|
38
|
Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters. Appl Environ Microbiol 2012; 78:7455-66. [PMID: 22904049 DOI: 10.1128/aem.01594-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters.
Collapse
|
39
|
Guo A, Sheng H, Zhang M, Wu R, Xie J. Development and Evaluation of a Colloidal Gold Immunochromatography Strip for Rapid Detection ofVibrio parahaemolyticusin Food. J FOOD QUALITY 2012. [DOI: 10.1111/j.1745-4557.2012.00449.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ailing Guo
- College of Food Science & Technology; Huazhong Agricultural University; 1 Shizi Shan Street; Wuhan; 430070; Hubei; China
| | - Hongli Sheng
- College of Food Science & Technology; Huazhong Agricultural University; 1 Shizi Shan Street; Wuhan; 430070; Hubei; China
| | - Min Zhang
- College of Food Science & Technology; Huazhong Agricultural University; 1 Shizi Shan Street; Wuhan; 430070; Hubei; China
| | - Renwei Wu
- College of Food Science & Technology; Huazhong Agricultural University; 1 Shizi Shan Street; Wuhan; 430070; Hubei; China
| | - Ji Xie
- College of Food Science & Technology; Huazhong Agricultural University; 1 Shizi Shan Street; Wuhan; 430070; Hubei; China
| |
Collapse
|
40
|
Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, Kistemann T. Climate Change Impact Assessment of Food- and Waterborne Diseases. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2012; 42:857-890. [PMID: 24808720 PMCID: PMC3996521 DOI: 10.1080/10643389.2010.534706] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.
Collapse
Affiliation(s)
- Jan C. Semenza
- Future Threats and Determinants Section, Scientific Advice Unit, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Susanne Herbst
- Institute for Hygiene and Public Health, Department of Medical Geography and Public Health, University of Bonn, Bonn, Germany
| | - Andrea Rechenburg
- Institute for Hygiene and Public Health, Department of Medical Geography and Public Health, University of Bonn, Bonn, Germany
| | - Jonathan E. Suk
- Future Threats and Determinants Section, Scientific Advice Unit, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Christoph Höser
- Institute for Hygiene and Public Health, Department of Medical Geography and Public Health, University of Bonn, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, Department of Medical Geography and Public Health, University of Bonn, Bonn, Germany
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, Department of Medical Geography and Public Health, University of Bonn, Bonn, Germany
| |
Collapse
|
41
|
Bisha B, Simonson J, Janes M, Bauman K, Goodridge LD. A review of the current status of cultural and rapid detection of Vibrio parahaemolyticus. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.02950.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Rojas MVR, Matté MH, Dropa M, Silva MLD, Matté GR. Characterization of Vibrio parahaemolyticus isolated from oysters and mussels in São Paulo, Brazil. Rev Inst Med Trop Sao Paulo 2012; 53:201-5. [PMID: 21915463 DOI: 10.1590/s0036-46652011000400005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 06/20/2011] [Indexed: 11/22/2022] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium, responsible for gastroenteritis in humans. Most of the clinical isolates produce thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) encoded by tdh and trh genes respectively. In this study, twenty-three V. parahaemolyticus, previously isolated from oysters and mussels were analyzed by PCR using specific primers for the 16S rRNA and virulence genes (tdh, trh and tlh) and for resistance to different classes of antibiotics and PFGE. Nineteen isolates were confirmed by PCR as V. parahaemolyticus. The tlh gene was present in 100% of isolates, the tdh gene was identified in two (10.5%) isolates, whereas the gene trh was not detected. Each isolate was resistant to at least one of the nine antimicrobials tested. Additionally, all isolates possessed the blaTEM-116 gene. The presence of this gene in V. parahaemolyticus indicates the possibility of spreading this gene in the environment. Atypical strains of V. parahaemolyticus were also detected in this study.
Collapse
|
43
|
TIAN CHANGDONG, ZHANG YUNZHE, MA XIAOYAN, ZHANG WEI, WANG JIE. STUDY ON DETECTION OF VIBRIO PARAHAEMOLYTICUS IN SHELLFISH BY USE OF LOOP-MEDIATED ISOTHERMAL AMPLIFICATION METHOD. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00309.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Zhao F, Zhou DQ, Cao HH, Ma LP, Jiang YH. Distribution, serological and molecular characterization of Vibrio parahaemolyticus from shellfish in the eastern coast of China. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Fernando RR, Krishnan S, Fairweather MG, Ericsson CD. Vibrio parahemolyticus septicaemia in a liver transplant patient: a case report. J Med Case Rep 2011; 5:171. [PMID: 21548914 PMCID: PMC3111368 DOI: 10.1186/1752-1947-5-171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/06/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Vibrio parahemolyticus is the leading cause of vibrio-associated gastroenteritis in the United States of America, usually related to poor food handling; only rarely has it been reported to cause serious infections including sepsis and soft tissue infections. In contrast, Vibrio vulnificus is a well-known cause of septicaemia, especially in patients with cirrhosis. We present a patient with V. parahemolyticus sepsis who had an orthotic liver transplant in 2007 and was on immunosuppression for chronic rejection. Clinical suspicion driven by patient presentation, travel to Gulf of Mexico and soft tissue infection resulted in early diagnosis and institution of appropriate antibiotic therapy. CASE PRESENTATION A 48 year old Latin American man with a history of chronic kidney disease, orthotic liver transplant in 2007 secondary to alcoholic end stage liver disease on immunosuppressants, and chronic rejection presented to the emergency department with fever, vomiting, abdominal pain, left lower extremity swelling and fluid filled blisters after a fishing trip in the Gulf of Mexico. Samples from the blister and blood grew V. parahemolyticus. The patient was successfully treated with ceftriaxone and ciprofloxacin. CONCLUSION Febrile patients with underlying liver disease and/or immunosuppression should be interviewed regarding recent travel to a coastal area and seafood ingestion. If this history is obtained, appropriate empiric antibiotics must be chosen. Patients with liver disease and/or immunosuppresion should be counselled to avoid eating raw or undercooked molluscan shellfish. People can prevent Vibrio sepsis and wound infections by proper cooking of seafood and avoiding exposure of open wounds to seawater or raw shellfish products.
Collapse
Affiliation(s)
- Rajeev R Fernando
- Department of Internal Medicine, the University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
46
|
Aydin I, Dimitropoulos A, Chen SH, Thomas C, Roujeinikova A. Purification, crystallization and preliminary X-ray crystallographic analysis of the putative Vibrio parahaemolyticus resuscitation-promoting factor YeaZ. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:604-7. [PMID: 21543872 PMCID: PMC3087651 DOI: 10.1107/s1744309111010219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/17/2011] [Indexed: 11/11/2022]
Abstract
Vibrio parahaemolyticus is a human pathogen associated with gastroenteritis caused by the ingestion of contaminated raw seafood. V. parahaemolyticus is able to survive exposure to low temperatures typical of those used for the refrigeration of foods by entering a viable but nonculturable (VBNC) state. The VBNC cells can regain culturability and renewed ability to cause infection upon temperature upshift. The resuscitation-promoting factor protein (Rpf, YeaZ) plays a key role in reactivation of growth. Crystals of V. parahaemolyticus YeaZ have been grown using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitating agent. The crystals belonged to the primitive monoclinic space group P2(1), with unit-cell parameters a = 81.7, b = 63.8, c = 82.3 Å, β = 105° and four subunits in the asymmetric unit. A complete X-ray diffraction data set was collected from a single crystal to 3.1 Å resolution.
Collapse
Affiliation(s)
- Inci Aydin
- Department of Microbiology and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandra Dimitropoulos
- Department of Microbiology and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Shih Hsun Chen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Connor Thomas
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anna Roujeinikova
- Department of Microbiology and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Kirs M, DePaola A, Fyfe R, Jones J, Krantz J, Van Laanen A, Cotton D, Castle M. A survey of oysters (Crassostrea gigas) in New Zealand for Vibrio parahaemolyticus and Vibrio vulnificus. Int J Food Microbiol 2011; 147:149-53. [DOI: 10.1016/j.ijfoodmicro.2011.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 03/15/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
|
48
|
Hongping W, Jilun Z, Ting J, Yixi B, Xiaoming Z. Insufficiency of the Kanagawa hemolytic test for detecting pathogenic Vibrio parahaemolyticus in Shanghai, China. Diagn Microbiol Infect Dis 2011; 69:7-11. [PMID: 21146708 DOI: 10.1016/j.diagmicrobio.2010.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022]
Abstract
We evaluated the Kanagawa hemolytic test and tdh gene test for accuracy in identifying pathogenic Vibrio parahaemolyticus isolates in Shanghai. One hundred and seventy-two V. parahaemolyticus isolates were collected from diarrhea patients, freshly harvested sea fish, or fresh water samples. Statistical data for the Kanagawa hemolytic test and tdh gene test were compared. There were 83.51% isolates (81/97) from patients and 22.22% isolates (10/45) from sea-fish positive for the tdh gene. However, none of 30 isolates from fresh water samples were tdh-positive. Positive Kanagawa hemolytic tests were obtained in 88.66%, 46.67%, and 76.67% of isolates, which were from patients, sea fish, and fresh water samples, respectively. Positive rates of the Kanagawa hemolytic tests and the tdh gene tests were significantly different in isolates from those 3 sources (P < 0.001). The tdh gene test showed higher specificity than the Kanagawa hemolytic test on identifying pathogenic V. parahaemolyticus isolates in Shanghai, China.
Collapse
Affiliation(s)
- Wang Hongping
- Department of Epidemiology, Shanghai Public Health Clinical Center, Fudan University affiliated, Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
49
|
Chandran A, Varghese S, Kandeler E, Thomas A, Hatha M, Mazumder A. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Int J Hyg Environ Health 2011; 214:258-64. [PMID: 21316302 DOI: 10.1016/j.ijheh.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/14/2010] [Accepted: 01/15/2011] [Indexed: 10/18/2022]
Abstract
Microcosm studies were performed to evaluate the survival of Escherichia coli, Salmonella paratyphi and Vibrio parahaemolyticus in water and sediment collected from the freshwater region of Vembanad Lake (9'35 °N 76'25 °E) along the south west coast of India. All three test microorganisms showed significantly (p < 0.01) higher survival in sediment compared to overlying water. The survival in different sediment types with different particle size and organic carbon content revealed that sediment with small particle size and high organic carbon content could enhance their extended survival (p < 0.05). The results indicate that sediments of the Lake could act as a reservoir of pathogenic bacteria and exhibit a potential health hazard from possible resuspension and subsequent ingestion during recreational activities. Therefore, the assessment of bacterial concentration in freshwater Lake sediments used for contact and non contact recreation has of considerable significance for the proper assessment of microbial pollution of the overlying water, and for the management and protection of related health risk at specific recreational sites. Besides, assessment of the bacterial concentration in sediments can be used as a relatively stable indicator of long term mean bacterial concentration in the water column above.
Collapse
Affiliation(s)
- Abhirosh Chandran
- Water and Aquatic Sciences Research Lab, Department of Biology, University of Victoria, PO Box 3020 STN CSC Victoria, BC V8W 3N5, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Occurrence and distribution of Vibrio parahaemolyticus in retail oysters in Sao Paulo State, Brazil. Food Microbiol 2011; 28:137-40. [DOI: 10.1016/j.fm.2010.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022]
|