1
|
Suleri A, Creasey N, Walton E, Muetzel R, Felix JF, Duijts L, Bergink V, Cecil CAM. Mapping prenatal predictors and neurobehavioral outcomes of an epigenetic marker of neonatal inflammation - A longitudinal population-based study. Brain Behav Immun 2024; 122:483-496. [PMID: 39209009 DOI: 10.1016/j.bbi.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND DNA methylation levels at specific sites can be used to proxy C-reactive protein (CRP) levels, providing a potentially more stable and accurate indicator of sustained inflammation and associated health risk. However, its use has been primarily limited to adults or preterm infants, and little is known about determinants for - or offspring outcomes of - elevated levels of this epigenetic proxy in cord blood. The aim of this study was to comprehensively map prenatal predictors and long-term neurobehavioral outcomes of neonatal inflammation, as assessed with an epigenetic proxy of inflammation in cord blood, in the general pediatric population. METHODS Our study was embedded in the prospective population-based Generation R Study (n = 2,394). We created a methylation profile score of CRP (MPS-CRP) in cord blood as a marker of neonatal inflammation and validated it against serum CRP levels in mothers during pregnancy, as well as offspring at birth and in childhood. We then examined (i) which factors (previously associated with sustained inflammation) explain variability in MPS-CRP at birth, including a wide range of prenatal lifestyle and clinical conditions, pro-inflammatory exposures, as well as child genetic liability to elevated CRP levels; and (ii) whether MPS-CRP at birth associates with child neurobehavioral outcomes, including global structural MRI and DTI measures (child mean age 10 and 14 years) as well as psychiatric symptoms over time (Child Behavioral Checklist, at mean age 1.5, 3, 6, 10 and 14 years). RESULTS MPS-CRP at birth was validated with serum CRP in cord blood (cut-off > 1 mg/L) (AUC = 0.72). Prenatal lifestyle pro-inflammatory factors explained a small part (i.e., < 5%) of the variance in the MPS-CRP at birth. No other prenatal predictor or the polygenic score of CRP in the child explained significant variance in the MPS-CRP at birth. The MPS-CRP at birth prospectively associated with a reduction in global fractional anisotropy over time on mainly a nominal threshold (β = -0.014, SE = 0.007, p = 0.032), as well as showing nominal associations with structural differences (amygdala [(β = 0.016, SE = 0.006, p = 0.010], cerebellum [(β = -0.007, SE = 0.003, p = 0.036]). However, no associations with child psychiatric symptoms were observed. CONCLUSION Prenatal exposure to lifestyle-related pro-inflammatory factors was the only prenatal predictor that accounted for some of the individual variability in MPS-CRP levels at birth. Further, while the MPS-CRP prospectively associated with white matter alterations over time, no associations were observed at the behavioral level. Thus, the relevance and potential utility of using epigenetic data as a marker of neonatal inflammation in the general population remain unclear. In the future, the use of epigenetic proxies for a wider range of immune markers may lend further insights into the relationship between neonatal inflammation and adverse neurodevelopment within the general pediatric population.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Creasey
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Guo BQ, Li HB, Zhai DS, Yang LQ. Prevalence of autism spectrum disorder diagnosis by birth weight, gestational age, and size for gestational age: a systematic review, meta-analysis, and meta-regression. Eur Child Adolesc Psychiatry 2024; 33:2035-2049. [PMID: 36066648 DOI: 10.1007/s00787-022-02078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
We aimed to comprehensively pool the prevalence of autism spectrum disorder (ASD) diagnosis by birth weight, gestational age, and size for gestational age. PubMed, EMBASE, Web of Science, Ovid PsycINFO, and Cochrane Library were searched up to December 22, 2021. We pooled data using the random-effects model and quantified heterogeneity using the I2 statistic. Of 66 643 records initially identified, 75 studies were included in the meta-analysis. The pooled prevalence estimates of ASD diagnosis are as follows: very-low-birth weight, 3.1% (912 ASD/66,445 individuals); low-birth weight, 2.3% (5672 ASD/593,927 individuals); normal-birth weight, 0.5% (17,361 ASD/2,378,933 individuals); high-birth weight, 0.6% (4505 ASD/430,699 individuals); very preterm, 2.8% (2113 ASD/128,513 individuals); preterm, 2.1% (19 672 ASD/1 725 244 individuals); term, 0.6% (113,261 ASD/15,297,259 individuals); postterm, 0.6% (9419 ASD/1,138,215 individuals); small-for-gestational-age, 1.9% (6314 ASD/796,550 individuals); appropriate-for-gestational-age, 0.7% (21,026 ASD/5,936,704 individuals); and large-for-gestational-age, 0.6% (2607 ASD/635,666 individuals). Compared with the reference prevalence (those in normal-birth weight, term, and appropriate-for-gestational-age individuals), the prevalence estimates of ASD diagnosis in very-low-birth weight, low-birth weight, very preterm, preterm, and small-for-gestational-age individuals increased significantly, while those in high-birth weight, postterm, and large-for-gestational-age individuals did not change significantly. There were geographical differences in the prevalence estimates. This meta-analysis provided reliable estimates of the prevalence of ASD diagnosis by birth weight, gestational age, and size for gestational age, and suggested that low-birth weight (especially very-low-birth weight), preterm (especially very preterm), and small-for-gestational-age births, rather than high-birth weight, postterm, and large-for-gestational-age births, were associated with increased risk of ASD diagnosis. However, in view of marked between-study heterogeneity in most conditions, unknown effects of certain important confounders associated with ASD due to limited information in original articles, and included studies from a relatively small number of countries, the findings of this study should be interpreted with caution.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| | - Hong-Bin Li
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - De-Sheng Zhai
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Li-Qiang Yang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| |
Collapse
|
3
|
Rajagopalan V, Hsu E, Luo S. Breastfeeding duration and brain-body development in 9-10-year-olds: modulating effect of socioeconomic levels. Pediatr Res 2024:10.1038/s41390-024-03330-0. [PMID: 38879625 DOI: 10.1038/s41390-024-03330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate relationships of breastfeeding duration with brain structure and adiposity markers in youth and how these relationships are modified by neighborhood socioeconomic environments (SEEs). METHODS This was a cross-sectional study of youth enrolled in the Adolescent Brain and Cognitive Development (ABCD) Study® (n = 7511). Mixed effects models examined associations of breastfeeding duration with global brain measures and adiposity markers, adjusting for sociodemographic, pre- and post-natal covariates. Stratified analysis was performed by area deprivation index (ADI) tertiles. RESULTS Total cortical surface area (SA) (False Discovery Rate - FDR corrected P < 0.001), cortical (FDR corrected P < 0.001) and subcortical gray matter (GM) volume (FDR corrected P < 0.001) increased with increased breastfeeding duration. Body mass index (BMI) z-scores (FDR corrected P = 0.001), waist circumference (FDR corrected P = 0.002) and waist-to-height ratio (WHtR) (FDR corrected P = 0.001) decreased with increased breastfeeding duration. Breastfeeding duration was inversely associated with adiposity in youth from high- and medium- ADI neighborhoods, but positively associated with SA across ADI tertiles. CONCLUSIONS In this cross-sectional study, longer breastfeeding duration was associated with lower adiposity indices, particularly in youth from lower SEEs and greater SA across SEE levels. Longer breastfeeding duration showed long-term associations with brain and body development for offspring. IMPACT Building on previous findings that longer breastfeeding duration is associated with healthier weight gain, lower obesity risk, and brain white matter development in infancy, our results find longer breastfeeding duration to be associated with lower adiposity indices and greater cortical and subcortical gray matter volume, and cortical surface area during peri-adolescence. Children from lower socioeconomic environments (SEEs) demonstrated stronger negative associations of breastfeeding duration and adiposity indices, and children across SEEs showed positive relationships between breastfeeding duration and cortical surface area. Promoting breastfeeding, particularly among women from lower SEEs would confer long-term benefits to offspring.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eustace Hsu
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shan Luo
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lee J. Neonatal family-centered care: evidence and practice models. Clin Exp Pediatr 2024; 67:171-177. [PMID: 37321589 PMCID: PMC10990654 DOI: 10.3345/cep.2023.00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Although advances in neonatology have reduced the mortality rate of high-risk infants, sick newborns or pre-mature infants undergo more intensive monitoring, pain-ful procedures, and lengthy hospitalization, leading to pro-longed separation from their parents. In recent decades, the importance of parent-infant closeness early in life has become more apparent, especially in preterm infants who are prone to neurodevelopmental deficits. There is an increasing body of evidence regarding the benefits of family-centered care (FCC) in neonatal intensive care units. Key aspects related to neonatal FCC include the parents' presence in the ward and their participation in infants' daily care and decision-making processes. In addition, an environment that supports a private and comfortable space for each family member and infant, such as a single-family room, should be provided. To successfully implement FCC in neonatal intensive care units, the culture of care and hospital policies should be changed to successfully implement FCC in neonatal intensive care units, and appropriate training for medical staff is also required.
Collapse
Affiliation(s)
- Juyoung Lee
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
5
|
Farias CP, Soares PSM, Barros FC, Menezes AMB, Gonçalves H, Wehrmeister FC, Pinheiro RT, Quevedo LDA, Horta BL. [Birth conditions and attention deficit/hyperactivity disorders (ADHD) in adults in the Pelotas (Brazil) birth cohorts of 1982 and 1993]. CAD SAUDE PUBLICA 2023; 39:e00138122. [PMID: 37820233 PMCID: PMC10566560 DOI: 10.1590/0102-311xpt138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 10/13/2023] Open
Abstract
This study evaluates the association of birth conditions with attention deficit/hyperactivity disorders (ADHD) in adults using data from two birth cohorts in the city of Pelotas Rio Grande do Sul State, Brazil. In 1982 and 1993 all births in the city were identified and have been prospectively monitored. In the follow-ups at 30 and 22 years of the 1982 (n = 3,574) and 1993 (n = 3,780) cohorts, respectively, participants were examined, and trained psychologists applied the Mini-International Neuropsychiatric Interview (M.I.N.I.). Those individuals who met the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) diagnostic criteria were defined as positive for ADHD. Poisson regression with robust variance adjustment was used to estimate the prevalence ratio (PR) adjusted for sex, maternal skin color, family income, maternal age, maternal schooling during pregnancy, maternal marital status, parity, and maternal smoking during pregnancy. The prevalence of adult ADHD was 4.4% and 4.5% in the 1982 and 1993 cohorts, respectively. The prevalence of ADHD was higher in those born with lower weight, but no linear trend was observed, and those born with weight between 3,000 and 3,499 grams (PR = 1.40; 95%CI: 1.05-1.86) had the highest risk. For gestational age, we observed an inversely proportional relationship for the presence of ADHD: preterm infants had a 33% higher risk (95%CI: 0.90-1.96) of being considered as having ADHD than those born at 39 or more weeks, but as the confidence interval included nullity, this association may have occurred at random. These results indicate that birth weight and gestational age may be associated with adult ADHD.
Collapse
|
6
|
Walhovd KB, Lövden M, Fjell AM. Timing of lifespan influences on brain and cognition. Trends Cogn Sci 2023; 27:901-915. [PMID: 37563042 DOI: 10.1016/j.tics.2023.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
Modifiable risk and protective factors for boosting brain and cognitive development and preventing neurodegeneration and cognitive decline are embraced in neuroimaging studies. We call for sobriety regarding the timing and quantity of such influences on brain and cognition. Individual differences in the level of brain and cognition, many of which present already at birth and early in development, appear stable, larger, and more pervasive than differences in change across the lifespan. Incorporating early-life factors, including genetics, and investigating both level and change will reduce the risk of ascribing undue importance and causality to proximate factors in adulthood and older age. This has implications for both mechanistic understanding and prevention.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Martin Lövden
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Jenabi E, Farashi S, Salehi AM, Parsapoor H. The association between post-term births and autism spectrum disorders: an updated systematic review and meta-analysis. Eur J Med Res 2023; 28:316. [PMID: 37660041 PMCID: PMC10474756 DOI: 10.1186/s40001-023-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND This study aimed to conduct a meta-analysis to determine whether post-term birth has an increased risk of ASD. MATERIALS AND METHODS To retrieve eligible studies regarding the effect of post-term and ASD in children, major databases including PubMed, Scopus, and Web of Science were searched. A random effect model was used for meta-analysis. For assessing the quality of included studies, the GRADE checklist was used. RESULTS In total, 18 records were included with 1,412,667 sample populations from 12 countries. The pooled estimates of RR and OR showed a significant association between post-term birth and ASD among children, respectively (RR = 1.34, 95% CI 1.10 to 1.58) and (OR = 1.47, 95% CI 1.03 to 1.91). There was no heterogeneity among the studies that reported the risk of ASD among children based on RR (I2 = 6.6%, P = 0.301). There was high heterogeneity in the studies reported risk of ASD based on OR (I2 = 94.1%, P = 0.000). CONCLUSION Post-term births still occur relatively frequently (up to 5-10%) even in developed countries. Our results showed that post-term birth is an increased risk of ASD, although high heterogeneity was found among the studies reported based on adjusted and crude forms, however, after subgroup analysis by gender, this heterogeneity disappeared among males.
Collapse
Affiliation(s)
- Ensiyeh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Farashi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Mohammad Salehi
- Student Research Committee, Hamadan University of Medical Sciences School of Medicine, Hamadan, Iran
| | - Hamideh Parsapoor
- Clinical Research Development Unit of Fatemieh Hospital, Department of Gynecology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Selvaratnam RJ, Wallace EM, Rolnik DL, Mol BW, Butler SE, Bisits A, Lawson J, Davey MA. Elective induction of labour at full-term gestations and childhood school outcomes. J Paediatr Child Health 2023; 59:1028-1034. [PMID: 37294278 DOI: 10.1111/jpc.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
AIM To explore the association between induction of labour at full-term gestations in low-risk nulliparous women and childhood school outcomes. METHODS A retrospective whole-of-population cohort study linking perinatal data to educational test scores at grades 3, 5 and 7 in Victoria, Australia. Low-risk nulliparous women with singleton pregnancies induced at 39 and 40 weeks without a medical indication were compared to those expectantly managed from that week of gestation. Multivariable logistic regressions were used as well as generalised estimating equations on longitudinal data. RESULTS At 39 weeks, there were 3687 and 103 164 infants in the induction and expectant arms, respectively. At 40 weeks' gestation, there were 7914 and 70 280 infants, respectively. Infants born to nulliparous women induced at 39 weeks' gestation had significantly poorer educational outcomes at grade 3 (adjusted odds ratio (aOR) = 1.39, 95% confidence interval (CI): 1.13-1.70) but not grades 5 (aOR = 1.05, 95% CI: 0.84-1.33) and 7 (aOR = 1.07, 95% CI: 0.81-1.40) compared to those expectantly managed. Infants born to nulliparous women induced at 40 weeks had comparable educational outcomes at grade 3 (aOR = 1.06, 95% CI: 0.90-1.25) but poorer educational outcomes at grades 5 (aOR = 1.23, 95% CI: 1.05-1.43) and 7 (aOR = 1.23, 95% CI: 1.03-1.47) compared to those expectantly managed. CONCLUSIONS There were inconsistent associations between elective induction of labour at full-term gestations in low-risk nulliparous women and impaired childhood school outcomes.
Collapse
Affiliation(s)
- Roshan J Selvaratnam
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
- Safer Care Victoria, Department of Health, Victorian Government, Melbourne, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
- Department of Health, Victorian Government, Melbourne, Victoria, Australia
| | - Daniel L Rolnik
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Ben W Mol
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Sarah E Butler
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Andrew Bisits
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Obstetrics and Gynaecology, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Janna Lawson
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Mary-Ann Davey
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
- Safer Care Victoria, Department of Health, Victorian Government, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Rabanaque D, Regalado M, Benítez R, Rabanaque S, Agut T, Carreras N, Mata C. Semi-Automatic GUI Platform to Characterize Brain Development in Preterm Children Using Ultrasound Images. J Imaging 2023; 9:145. [PMID: 37504822 PMCID: PMC10381479 DOI: 10.3390/jimaging9070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The third trimester of pregnancy is the most critical period for human brain development, during which significant changes occur in the morphology of the brain. The development of sulci and gyri allows for a considerable increase in the brain surface. In preterm newborns, these changes occur in an extrauterine environment that may cause a disruption of the normal brain maturation process. We hypothesize that a normalized atlas of brain maturation with cerebral ultrasound images from birth to term equivalent age will help clinicians assess these changes. This work proposes a semi-automatic Graphical User Interface (GUI) platform for segmenting the main cerebral sulci in the clinical setting from ultrasound images. This platform has been obtained from images of a cerebral ultrasound neonatal database images provided by two clinical researchers from the Hospital Sant Joan de Déu in Barcelona, Spain. The primary objective is to provide a user-friendly design platform for clinicians for running and visualizing an atlas of images validated by medical experts. This GUI offers different segmentation approaches and pre-processing tools and is user-friendly and designed for running, visualizing images, and segmenting the principal sulci. The presented results are discussed in detail in this paper, providing an exhaustive analysis of the proposed approach's effectiveness.
Collapse
Affiliation(s)
- David Rabanaque
- Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Maria Regalado
- Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Raul Benítez
- Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Pediatric Computational Imaging Research Group, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Sonia Rabanaque
- Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Thais Agut
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
- Neonatal Department, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
- Fundación NeNe, 28010 Madrid, Spain
| | - Nuria Carreras
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
- Neonatal Department, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Christian Mata
- Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Barcelona East School of Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Pediatric Computational Imaging Research Group, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Barcelona, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
10
|
Mou Y, Blok E, Barroso M, Jansen PW, White T, Voortman T. Dietary patterns, brain morphology and cognitive performance in children: Results from a prospective population-based study. Eur J Epidemiol 2023:10.1007/s10654-023-01012-5. [PMID: 37155025 DOI: 10.1007/s10654-023-01012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Dietary patterns in childhood have been associated with child neurodevelopment and cognitive performance, while the underlying neurobiological pathway is unclear. We aimed to examine associations of dietary patterns in infancy and mid-childhood with pre-adolescent brain morphology, and whether diet-related differences in brain morphology mediate the relation with cognition. We included 1888 and 2326 children with dietary data at age one or eight years, respectively, and structural neuroimaging at age 10 years in the Generation R Study. Measures of brain morphology were obtained using magnetic resonance imaging. Dietary intake was assessed using food-frequency questionnaires, from which we derived diet quality scores based on dietary guidelines and dietary patterns using principal component analyses. Full scale IQ was estimated using the Wechsler Intelligence Scale for Children-Fifth Edition at age 13 years. Children with higher adherence to a dietary pattern labeled as 'Snack, processed foods and sugar' at age one year had smaller cerebral white matter volume at age 10 (B = -4.3, 95%CI -6.9, -1.7). At age eight years, higher adherence to a 'Whole grains, soft fats and dairy' pattern was associated with a larger total brain (B = 8.9, 95%CI 4.5, 13.3), and larger cerebral gray matter volumes at age 10 (B = 5.2, 95%CI 2.9, 7.5). Children with higher diet quality and better adherence to a 'Whole grains, soft fats and dairy' dietary pattern at age eight showed greater brain gyrification and larger surface area, clustered primarily in the dorsolateral prefrontal cortex. These observed differences in brain morphology mediated associations between dietary patterns and IQ. In conclusion, dietary patterns in early- and mid-childhood are associated with differences in brain morphology which may explain the relation between dietary patterns and neurodevelopment in children.
Collapse
Affiliation(s)
- Yuchan Mou
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Elisabet Blok
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Monica Barroso
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Section on Social and Cognitive Developmental Neuroscience, National Institutes of Mental Health, Bethesda, MD, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Amis D. Research Update: Healthy Birth Practice #1-Let Labor Begin on Its Own. J Perinat Educ 2023; 32:72-82. [PMID: 37415934 PMCID: PMC10321453 DOI: 10.1891/jpe-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
This article is an adaptation for print of Debby Amis's presentation at the 2022 Lamaze Virtual Conference. She discusses worldwide recommendations as to the optimal time for routine labor induction for low-risk pregnant persons, the recent research about the optimal time for routine labor induction, and recommendations to help the pregnant family make an informed decision about routine induction. This article includes an important new study not included in the Lamaze Virtual Conference that found an increase in perinatal deaths for low-risk pregnancies that were induced at 39 weeks as compared to low-risk pregnancies not induced at 39 weeks but were delivered no later than 42 weeks.
Collapse
Affiliation(s)
- Debby Amis
- Correspondence regarding this article should be directed to Debby Amis, RN (Retired), BSN, CD (DONA), LCCE, FACCE. E-mail:
| |
Collapse
|
12
|
Hadders-Algra M, van Iersel PAM, Heineman KR, la Bastide-van Gemert S. Longer duration of gestation in term singletons is associated with better infant neurodevelopment. Early Hum Dev 2023; 181:105779. [PMID: 37120903 DOI: 10.1016/j.earlhumdev.2023.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Longer gestation at term and post-term age is associated with increased perinatal mortality. Nonetheless, recent neuroimaging studies indicated that longer gestation is also associated with better functioning of the child's brain. AIMS to assess whether longer gestation in term and post-term (in short: term) singletons is associated with better infant neurodevelopment. STUDY DESIGN cross-sectional observational study. SUBJECTS Participants were all singleton term infants (n = 1563) aged 2-18 months of the IMP-SINDA project that collected normative data for the Infant Motor Profile (IMP) and Standardized Infant NeuroDevelopmental Assessment (SINDA). The group was representative of the Dutch population. OUTCOME MEASURES Total IMP score was the primary outcome. Secondary outcomes were atypical total IMP scores (scores <15th percentile) and SINDA's neurological and developmental scores. RESULTS Duration of gestation had a quadratic relationship with IMP and SINDA developmental scores. IMP scores were lowest at a gestation of 38·5 weeks, SINDA developmental scores at 38·7 weeks. Next, both scores increased with increasing duration of gestation. Infants born at 41-42 weeks had significantly less often atypical IMP scores (adjusted OR [95 % CI]: 0·571 [0·341-0·957] and atypical SINDA developmental scores (adjusted OR: 0·366 [0·195-0·688]) than infants born at 39-40 weeks. Duration of gestation was not associated with SINDA's neurological score. CONCLUSIONS In term singleton infants representative of the Dutch population longer gestation is associated with better infant neurodevelopment scores suggesting better neural network efficiency. Longer gestation in term infants is not associated with atypical neurological scores.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - section Developmental Neurology, Groningen, the Netherlands.
| | - Patricia A M van Iersel
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - section Developmental Neurology, Groningen, the Netherlands
| | - Kirsten R Heineman
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - section Developmental Neurology, Groningen, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, the Netherlands
| | - Sacha la Bastide-van Gemert
- University of Groningen, University Medical Center Groningen, Dept. Epidemiology, Groningen, the Netherlands
| |
Collapse
|
13
|
Husby A, Wohlfahrt J, Melbye M. Gestational age at birth and cognitive outcomes in adolescence: population based full sibling cohort study. BMJ 2023; 380:e072779. [PMID: 36653028 PMCID: PMC9846680 DOI: 10.1136/bmj-2022-072779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To investigate the association between gestational age at birth and cognitive outcomes in adolescence. DESIGN Nationwide population based full sibling cohort study. SETTING Denmark. PARTICIPANTS 1.2 million children born between 1 January 1986 and 31 December 2003, of whom 792 724 had one or more full siblings born in the same period. MAIN OUTCOME MEASURES Scores in written language (Danish) and mathematics examinations as graded by masked assessors at the end of compulsory schooling (ninth grade, ages 15-16 years), in addition to intelligence test score at military conscription (predominantly at age 18 years) for a nested sub-cohort of male adolescents. School grades were standardised as z scores according to year of examination, and intelligence test scores were standardised as z scores according to year of birth. RESULTS Among 792 724 full siblings in the cohort, 44 322 (5.6%) were born before 37+0 weeks of gestation. After adjusting for multiple confounders (sex, birth weight, malformations, parental age at birth, parental educational level, and number of older siblings) and shared family factors between siblings, only children born at <34 gestational weeks showed reduced mean grades in written language (z score difference -0.10 (95% confidence interval -0.20 to -0.01) for ≤27 gestational weeks) and mathematics (-0.05 (-0.08 to -0.01) for 32-33 gestational weeks, -0.13 (-0.17 to -0.09) for 28-31 gestational weeks, and -0.23 (-0.32 to -0.15) for ≤27 gestational weeks), compared with children born at 40 gestational weeks. In a nested sub-cohort of full brothers with intelligence test scores, those born at 32-33, 28-31, and ≤27 gestational weeks showed a reduction in IQ points of 2.4 (95% confidence interval 1.1 to 3.6), 3.8 (2.3 to 5.3), and 4.2 (0.8 to 7.5), respectively, whereas children born at 34-39 gestational weeks showed a reduction in intelligence of <1 IQ point, compared with children born at 40 gestational weeks. CONCLUSIONS Cognitive outcomes in adolescence did not differ between those born at 34-39 gestational weeks and those born at 40 gestational weeks, whereas those with a gestational age of <34 weeks showed substantial deficits in multiple cognitive domains.
Collapse
Affiliation(s)
- Anders Husby
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- Center for Fertility and Health, Norwegian Institute of Public Health, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University for Science and Technology, Norway
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
14
|
Ma Q, Wang H, Rolls ET, Xiang S, Li J, Li Y, Zhou Q, Cheng W, Li F. Lower gestational age is associated with lower cortical volume and cognitive and educational performance in adolescence. BMC Med 2022; 20:424. [PMID: 36329481 PMCID: PMC9635194 DOI: 10.1186/s12916-022-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gestational age (GA) is associated with later cognition and behavior. However, it is unclear how specific cognitive domains and brain structural development varies with the stepwise change of gestational duration. METHODS This large-scale longitudinal cohort study analyzed 11,878 early adolescents' brain volume maps at 9-10 years (baseline) and 5685 at 11-12 years (a 2-year follow-up) from the Adolescent Brain Cognitive Development (ABCD) study. According to gestational age, adolescents were divided into five categorical groups: ≤ 33 weeks, 34-35 weeks, 36 weeks, 37-39 weeks, and ≥ 40 weeks. The NIH Toolbox was used to estimate neurocognitive performance, including crystallized and fluid intelligence, which was measured for 11,878 adolescents at baseline with crystallized intelligence and relevant subscales obtained at 2-year follow-up (with participant numbers ranging from 6185 to 6310 depending on the cognitive domain). An additional large population-based cohort of 618,070 middle adolescents at ninth-grade (15-16 years) from the Danish national register was utilized to validate the association between gestational age and academic achievements. A linear mixed model was used to examine the group differences between gestational age and neurocognitive performance, school achievements, and grey matter volume. A mediation analysis was performed to examine whether brain structural volumes mediated the association between GA and neurocognition, followed with a longitudinal analysis to track the changes. RESULTS Significant group differences were found in all neurocognitive scores, school achievements, and twenty-five cortical regional volumes (P < 0.05, Bonferroni corrected). Specifically, lower gestational ages were associated with graded lower cognition and school achievements and with smaller brain volumes of the fronto-parieto-temporal, fusiform, cingulate, insula, postcentral, hippocampal, thalamic, and pallidal regions. These lower brain volumes mediated the association between gestational age and cognitive function (P = 1 × 10-8, β = 0.017, 95% CI: 0.007-0.028). Longitudinal analysis showed that compared to full term adolescents, preterm adolescents still had smaller brain volumes and crystallized intelligence scores at 11-12 years. CONCLUSIONS These results emphasize the relationships between gestational age at birth and adolescents' lower brain volume, and lower cognitive and educational performance, measured many years later when 9-10 and 11-12 years old. The study indicates the importance of early screening and close follow-up for neurocognitive and behavioral development for children and adolescents born with gestational ages that are even a little lower than full term.
Collapse
Affiliation(s)
- Qing Ma
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Hui Wang
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Edmund T Rolls
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, Conventry, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Shitong Xiang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
| | - Yuzhu Li
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Wei Cheng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China. .,Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China. .,Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, 200032, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
15
|
Goodarzi B, Seijmonsbergen‐Schermers A, van Rijn M, Shah N, Franx A, de Jonge A. Maternal characteristics as indications for routine induction of labor: A nationwide retrospective cohort study. Birth 2022; 49:569-581. [PMID: 35229355 PMCID: PMC9546001 DOI: 10.1111/birt.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Maternal characteristics, such as parity and age, are increasingly considered indications for routine induction of labor of otherwise healthy women to prevent fetal and neonatal mortality. To fully balance the risks and benefits of induction of labor, we examined the association of additional relevant maternal characteristics and gestational age with fetal and neonatal mortality. METHODS We conducted a nationwide retrospective cohort study among a healthy Dutch population consisting of all singleton pregnancies in midwife-led care after 37 weeks of gestation in the period 2000-2018. We examined the association of maternal ethnicity, age, parity, and socioeconomic status with fetal and neonatal mortality, stratified by gestational age. The association of single characteristics was examined using descriptive statistics, and univariable and multivariable logistics regression analyses. The associations of multiple characteristics were examined using inter-categorical analyses and using interaction terms in the multivariable logistic regression analyses. RESULTS The results showed that ethnicity, age, parity, socioeconomic status, and gestational age did not act as single determinant of fetal and neonatal mortality. The probability of fetal and neonatal mortality differed among subgroups of women depending on which determinants were considered and the number of determinants included. CONCLUSIONS Decision-making about induction of labor to prevent fetal and neonatal mortality based on a single determinant may lead to overuse or underuse of IOL. A value-based health care strategy, addressing social inequity, and investing in better screening and diagnostic methods that employ an individualized and multi-determinant approach may be more effective at preventing fetal and neonatal mortality.
Collapse
Affiliation(s)
- Bahareh Goodarzi
- Department of Midwifery ScienceAmsterdam Public HealthAmsterdam UMCVrije Universiteit AmsterdamAVAGAmsterdamthe Netherlands
| | - Anna Seijmonsbergen‐Schermers
- Department of Midwifery ScienceAmsterdam Public HealthAmsterdam UMCVrije Universiteit AmsterdamAVAGAmsterdamthe Netherlands
| | - Maaike van Rijn
- Department of Obstetrics and GynaecologyHaga ZiekenhuisThe HagueThe Netherlands
| | - Neel Shah
- Department of Obstetrics, Gynaecology and Reproductive BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Arie Franx
- Department of Obstetrics and GynaecologyErasmus MCRotterdamthe Netherlands
| | - Ank de Jonge
- Department of Midwifery ScienceAmsterdam Reproduction and DevelopmentAmsterdam UMCVrije Universiteit AmsterdamAVAGAmsterdamthe Netherlands
| |
Collapse
|
16
|
The long-term impact of elevated C-reactive protein levels during pregnancy on brain morphology in late childhood. Brain Behav Immun 2022; 103:63-72. [PMID: 35378231 PMCID: PMC9149104 DOI: 10.1016/j.bbi.2022.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Animal studies show that Maternal Immune Activation (MIA) may have detrimental effects on fetal brain development. Clinical studies provide evidence for structural brain abnormalities in human neonates following MIA, but no study has investigated the long-term effects of MIA (as measured with biomarkers) on human brain morphology ten years after the exposure. OBJECTIVE Our aim was to evaluate the long-term impact of MIA on brain morphology in 10-year-old children, including the possible mediating role of gestational age at birth. DESIGN We leveraged data from Generation R, a large-scale prospective pregnancy cohort study. Pregnant women were included between 2002 and 2006, and their children were invited to participate in the MRI study between 2013 and 2015. To be included, mother-child dyads had to have data on maternal C-reactive protein levels during gestation and a good quality MRI-scan of the child's brain at age 10 years. Of the 3,992 children scanned, a total of 2,053 10-year-old children were included in this study. EXPOSURE Maternal C-reactive protein was measured in the first 18 weeks of gestation. For the analyses we used both a continuous approach as well as a categorical approach based on clinical cut-offs to determine if there was a dose-response relationship. MAIN OUTCOMES AND MEASURES High-resolution MRI brain morphology measures were used as the primary outcome. Gestational age at birth, established using ultrasound, was included as a mediator using a causal mediation analysis. Corrections were made for relevant confounders and multiple comparisons. Biological sex was investigated as moderator. RESULTS We found a direct association between continuous MIA and lower cerebellar volume. In girls, we demonstrated a negative indirect association between continuous MIA and total brain volume, through the mediator gestational age at birth. We observed no associations with categorical MIA after multiple testing correction. CONCLUSION AND RELEVANCE Our results suggest sex-specific long-term effects in brain morphology after MIA. Categorical analyses suggest that this association might be driven by acute infections or other sources of severe inflammation, which is of clinical relevance given that the COVID-19 pandemic is currently affecting millions of pregnant women worldwide.
Collapse
|
17
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
18
|
Chen Z, Xiong C, Liu H, Duan J, Kang C, Yao C, Chen K, Chen Y, Liu Y, Liu M, Zhou A. Impact of early term and late preterm birth on infants' neurodevelopment: evidence from a cohort study in Wuhan, China. BMC Pediatr 2022; 22:251. [PMID: 35513822 PMCID: PMC9074243 DOI: 10.1186/s12887-022-03312-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background The incidences of early term and late preterm birth have increased worldwide during recent years. However, there is a lack of prospective study about the influence of early term and late preterm birth on infants’ neurodevelopment, especially at the early stage. Therefore, we conducted this cohort study to investigate the impact of early term and late preterm birth on infants’ neurodevelopment within 6 months. Methods This cohort study was conducted in Wuhan, China, between October 2012 and September 2013. A total of 4243 singleton infants born within 34-41 weeks of gestation at Wuhan Children’s Hospital were included. The Gesell Developmental Scale (GDS) was utilized to evaluate the neurodevelopment of infants. Results Among the 4243 included participants, 155 (3.65%) were late preterm infants, 1288 (30.36%) were early term infants, and 2800 (65.99%) were full term infants. After adjusted for potential confounders, significant negative relationship was shown between late preterm birth and development quotient (DQ) in all domains of neurodevelopment: gross motor (β = − 17.42, 95% CI: − 21.15 to − 13.69), fine motor (β = − 23.61, 95% CI: − 28.52 to − 18.69), adaptability (β = − 10.10, 95% CI: − 13.82 to − 6.38), language (β = − 6.28, 95% CI: − 9.82 to − 2.74) and social behavior (β = − 5.99, 95% CI: − 9.59 to − 2.39). There was a significant negative trend for early term birth in DQ of fine motor (β = − 2.01, 95% CI: − 3.93 to − 0.09). Late preterm infants had a significantly elevated risk of neurodevelopmental delay in domains of gross motor (adjusted OR = 3.82, 95% CI: 2.67 to 5.46), fine motor (adjusted OR = 3.51, 95% CI: 2.47 to 5.01), and adaptability (adjusted OR = 1.60, 95% CI: 1.12 to 2.29), whereas early term birth was significantly associated with neurodevelopmental delay of fine motor (adjusted OR = 1.22, 95% CI: 1.05 to 1.42). Conclusions This study suggested that late preterm birth mainly elevated the risk of neurodevelopmental delay of gross motor, fine motor, and adaptability, whereas early term birth was associated with the developmental delay of fine motor within 6 months. Further research is needed to determine the effectiveness and necessity of the interventions at the early stage for early term and late preterm infants who had suspected neurodevelopmental delay.
Collapse
Affiliation(s)
- Zhong Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China.
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Hua Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Junyu Duan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Chun Kang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Cong Yao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Kai Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Yawen Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Yan Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Mingzhu Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No.100, Hong Kong Road, Jiang'an District, Wuhan, 430016, China.
| |
Collapse
|
19
|
Yao Y, Li C, Meng P, Cheng B, Cheng S, Liu L, Yang X, Jia Y, Wen Y, Zhang F. An atlas of genetic correlations between gestational age and common psychiatric disorders. Autism Res 2022; 15:1008-1017. [PMID: 35384380 DOI: 10.1002/aur.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
We aim to systematically explore the potential genetic correlations between five major psychiatric disorders and gestational ages. Genome-wide association study (GWAS) summary datasets of attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) in discovery were downloaded from the Psychiatric GWAS Consortium (PGC) website. Suggestive (Raw p < 0.05) genetic associations in the discovery phrase were further replicated in independent GWASs which downloaded from PGC, the FinnGen study or Integrative Psychiatric Research (iPSYCH) website. GWASs of gestational duration, preterm and post-term birth were derived from previous studies of infants from the Early Growth Genetics (EGG) Consortium, the iPSYCH study, and the Genomic and Proteomic Network for Preterm Birth Research (GPN). We calculated genetic correlations using linkage disequilibrium score (LDSC) regression. Mendelian randomization (MR) analyses were performed to investigate the causal effects. We identified four suggestive genetic correlations between psychiatric disorders and gestational age factors in discovery LDSC and two replicated in a confirmation LDSC: gestational duration and ADHD (rg = -0.1405, FDR p = 0.0406), post-term birth and SCZ (rg = -0.2003, FDR p = 0.0042). We also observed causal effect of post-term birth on SCZ by MR (PWeighted median = 0.037, PInverse variance weighted = 0.007). Our analysis suggested no significant evidence of horizontal pleiotropy and heterogeneity. This study showed the genetic correlation evidences between gestational age phenotypes and psychiatric disorders, providing novel clues for understanding the pathogenic factors of common psychiatric disorders. LAY SUMMARY: Whereas gestational age factors were reported to be associated with psychiatric disorders, the genetic relationship and causality remain to be revealed. The present study reported the first large-scale genetic correlations investigation of the associations between gestational age phenotypes and psychiatric disorders. Results indicate causal relationships between post-term birth and schizophrenia (SCZ), as well as suggestive genetic correlations between gestational duration and attention deficit/hyperactivity disorder (ADHD). This study provided novel clues for understanding the pathogenic factors of common psychiatric disorders.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Gale-Grant O, Fenn-Moltu S, França LGS, Dimitrova R, Christiaens D, Cordero-Grande L, Chew A, Falconer S, Harper N, Price AN, Hutter J, Hughes E, O'Muircheartaigh J, Rutherford M, Counsell SJ, Rueckert D, Nosarti C, Hajnal JV, McAlonan G, Arichi T, Edwards AD, Batalle D. Effects of gestational age at birth on perinatal structural brain development in healthy term-born babies. Hum Brain Mapp 2022; 43:1577-1589. [PMID: 34897872 PMCID: PMC8886657 DOI: 10.1002/hbm.25743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.
Collapse
Affiliation(s)
- Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK.,Department of Medicine and Informatics, Technical University of Munich, Munich, Germany
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Paediatric Neurosciences, Evelina London Children's Hospital Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
21
|
Giesbrecht G, Rojas L, Patel S, Kuret V, MacKinnon A, Tomfohr-Madsen L, Lebel C. Fear of COVID-19, mental health, and pregnancy outcomes in the pregnancy during the COVID-19 pandemic study: Fear of COVID-19 and pregnancy outcomes. J Affect Disord 2022; 299:483-491. [PMID: 34952107 PMCID: PMC8690287 DOI: 10.1016/j.jad.2021.12.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/19/2021] [Accepted: 12/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sustained fear during pregnancy has the potential to increase psychological distress and obstetric risk. This study aimed to (1) identify factors and characteristics associated with fear of COVID-19, (2) investigate the relationship between fear of COVID-19 and maternal anxiety and depression, and (3) determine the relationship between fear of COVID-19 and pregnancy outcomes. METHODS 9251 pregnant Canadians were recruited between April - December 2020. Participants self-reported (scale of 0-100) the degree of threat they perceived from the SARS-CoV-2 virus in relation to themselves and their unborn baby. RESULTS Mean fear scores indicated moderate to elevated concern. In multivariable linear regression, fear of COVID-19 was associated with food insecurity, ethnicity, geographic location, history of anxiety prior to pregnancy, having a chronic health condition, pre-pregnancy BMI, parity, and stage of pregnancy at study enrollment. Higher COVID-19 fear was associated with increased odds of depression, adjusted odds ratio (aOR) = 1.75, p < 0.001, 95% CI 1.66-1.85, and anxiety, aOR=2.04, p < 0.001, 95% CI 1.94-2.15). Furthermore, fear of COVID-19 was associated with a 192-gram reduction in infant birthweight, and a 6.1-day reduction in gestational age at birth. LIMITATIONS The sample has higher education compared to the Canadian population and cannot test causal effects. CONCLUSION This study suggests that sociodemographic, health, and obstetric factors may contribute to increased fear of COVID-19 and associated adverse psychological and pregnancy outcomes.
Collapse
Affiliation(s)
- G.F. Giesbrecht
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada,Department of Psychology, University of Calgary, Calgary, AB, Canada,Corresponding author at: Department of Paediatrics, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4
| | - L. Rojas
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
| | - S. Patel
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - V. Kuret
- Department of Obstetrics & Gynecology, University of Calgary, AB, Canada
| | - A.L. MacKinnon
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - L. Tomfohr-Madsen
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - C. Lebel
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada,Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Pollok TM, Kaiser A, Kraaijenvanger EJ, Monninger M, Brandeis D, Banaschewski T, Eickhoff SB, Holz NE. Neurostructural Traces of Early Life Adversities: A Meta-Analysis Exploring Age- and Adversity-specific Effects. Neurosci Biobehav Rev 2022; 135:104589. [DOI: 10.1016/j.neubiorev.2022.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
23
|
Carlson NS, Amore AD, Ellis JA, Page K, Schafer R. American College of Nurse-Midwives Clinical Bulletin Number 18: Induction of Labor. J Midwifery Womens Health 2022; 67:140-149. [PMID: 35119782 PMCID: PMC9026716 DOI: 10.1111/jmwh.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
Induction of labor is an increasingly common component of intrapartum care in the United States. This rise is fueled by a nationwide escalation in both medically indicated and elective inductions at or beyond term, supported by recent research showing some benefits of induction over expectant management. However, induction of labor medicalizes the birth experience and may lead to a complex cascade of interventions. The purpose of this Clinical Bulletin is twofold: (1) to guide clinicians on the use of person-centered decision-making when discussing induction of labor and (2) to review evidence-based practice recommendations for intrapartum midwifery care during labor induction.
Collapse
Affiliation(s)
| | | | | | | | - Katie Page
- President, RMWC Alumnae and Randolph College Alumni Association; President, VA Affiliate of ACNM
| | | |
Collapse
|
24
|
Silva CCV, El Marroun H, Sammallahti S, Vernooij MW, Muetzel RL, Santos S, Jaddoe VWV. Patterns of Fetal and Infant Growth and Brain Morphology at Age 10 Years. JAMA Netw Open 2021; 4:e2138214. [PMID: 34882181 PMCID: PMC8662367 DOI: 10.1001/jamanetworkopen.2021.38214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE Preterm birth and low birth weight are associated with brain developmental and neurocognitive outcomes in childhood; however, not much is known about the specific critical periods in fetal life and infancy for these outcomes. OBJECTIVE To examine the associations of fetal and infant growth patterns with brain morphology in children at school age. DESIGN, SETTING, AND PARTICIPANTS This population-based, prospective cohort study was conducted from February 1 to April 16, 2021, as a part of the Generation R Study in Rotterdam, the Netherlands. The study included 3098 singleton children born between April 1, 2002, and January 31, 2006. EXPOSURES Fetal weight was estimated in the second and third trimesters of pregnancy by ultrasonography. Infant weight was measured at birth and at 6, 12, and 24 months. Fetal and infant weight acceleration or deceleration were defined as a change in SD scores greater than 0.67 between time points. Infant measurements also included peak weight velocity, and age and body mass index reached at adiposity peak. MAIN OUTCOMES AND MEASURES Brain structure, including global and regional brain volumes, was quantified by magnetic resonance imaging at age 10 years. RESULTS The study evaluated 3098 children (mean [SD] age at follow-up, 10.1 [0.6] years; 1557 girls [50.3%]; and 1753 Dutch [57.8%]). One SD score-higher weight gain until the second and third trimesters, birth, and 6, 12, and 24 months was associated with larger total brain volume independently of growth during any other age windows (second trimester: 5.7 cm3; 95% CI, 1.2-10.2 cm3; third trimester: 15.3 cm3; 95% CI, 11.0-19.6 cm3; birth: 20.8 cm3; 95% CI, 16.4-25.1 cm3; 6 months: 15.6 cm3; 95% CI, 11.2-19.9 cm3; 12 months: 11.3 cm3; 95% CI, 7.0-15.6 cm3; and 24 months: 11.1 cm3; 95% CI, 6.8-15.4 cm3). Compared with children with normal fetal and infant growth, those with fetal and infant growth deceleration had the smallest total brain volume (-32.5 cm3; 95% CI, -53.2 to -11.9 cm3). Children with fetal weight deceleration followed by infant catch-up growth had similar brain volumes as children with normal growth. Higher peak weight velocity and body mass index reached at adiposity peak were associated with larger brain volumes. Similar results were observed for cerebral and cerebellar gray and white matter volumes. CONCLUSIONS AND RELEVANCE This cohort study's findings suggest that both fetal and infant weight growth might be critical for cerebral and cerebellar brain volumes during childhood. Whether these associations link to neurocognitive outcomes should be further studied.
Collapse
Affiliation(s)
- Carolina C. V. Silva
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Pediatrics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Sara Sammallahti
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Meike W. Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Dimitrova R, Arulkumaran S, Carney O, Chew A, Falconer S, Ciarrusta J, Wolfers T, Batalle D, Cordero-Grande L, Price AN, Teixeira RPAG, Hughes E, Egloff A, Hutter J, Makropoulos A, Robinson EC, Schuh A, Vecchiato K, Steinweg JK, Macleod R, Marquand AF, McAlonan G, Rutherford MA, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, O’Muircheartaigh J, Edwards AD. Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. Cereb Cortex 2021; 31:3665-3677. [PMID: 33822913 PMCID: PMC8258435 DOI: 10.1093/cercor/bhab039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis or predicting later outcome. Instead of focusing on describing effects common to the group, comparing individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we used Gaussian process regression to create normative curves characterizing brain volumetric development in 274 term-born infants, modeling for age at scan and sex. We then compared 89 preterm infants scanned at term-equivalent age with these normative charts, relating individual deviations from typical volumetric development to perinatal risk factors and later neurocognitive scores. To test generalizability, we used a second independent dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We describe rapid, nonuniform brain growth during the neonatal period. In both preterm cohorts, cerebral atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative development were associated with respiratory support, nutrition, birth weight, and later neurocognition, demonstrating their clinical relevance. Group-level understanding of the preterm brain disguises a large degree of individual differences. We provide a method and normative dataset that offer a more precise characterization of the cerebral consequences of preterm birth by profiling the individual neonatal brain.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Thomas Wolfers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525EN, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525EN, the Netherlands
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicacion, Universidad Politecnica de Madrid and CIBER-BBN, Madrid 28040, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Rui P A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Johannes K Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Russell Macleod
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525EN, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525EN, the Netherlands
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Stephen M Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| |
Collapse
|
26
|
Kennedy E, Poppe T, Tottman A, Harding J. Neurodevelopmental impairment is associated with altered white matter development in a cohort of school-aged children born very preterm. NEUROIMAGE-CLINICAL 2021; 31:102730. [PMID: 34174689 PMCID: PMC8246637 DOI: 10.1016/j.nicl.2021.102730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/02/2023]
Abstract
Over 30% of children born VPT have neurodevelopmental impairment. VPT children with neurodevelopmental impairment have smaller total brain volume. VPT children with neurodevelopmental impairment have lower FA and higher RD. Neurodevelopmental impairment in a VPT cohort may reflect altered microstructure.
Individuals born very preterm (<32 weeks gestation) have altered brain growth and white matter maturation relative to their full-term peers, and approximately 30% will experience neurodevelopmental impairment. We investigated the relationship between neurodevelopmental impairment and MRI measures of white matter microstructure and brain volume. Children born before 30 weeks’ gestation or who had very low birthweight (< 1500 g) underwent neurodevelopmental assessment and MRI at age 7 years as part of the PIANO study, a New Zealand-based cohort study. Fractional anisotropy (FA) and diffusivity measures were derived from diffusion tensor imaging to index white matter microstructure. Volumes were derived from T1-weighted imaging. Neurodevelopmental impairment was defined as a score < 85 on the Wechsler Intelligence Scale for Children, <5th centile on the Movement Assessment Battery for Children or a diagnosis of cerebral palsy by a paediatrician. Relationships between MRI and neurodevelopmental impairment were assessed with general linear models adjusted for sex, gestational age at birth, birthweight z-score, age at assessment, New Zealand Deprivation index score and multiplicity. Children with neurodevelopmental impairment (n = 38) had smaller total brain, cortical grey matter and cerebral white matter volumes compared to children without neurodevelopmental impairment (n = 62) (p < 0.05, false discovery rate corrected), but the regional volume differences did not remain significant after adjustment for total brain volume. Lower FA and higher radial diffusivity were observed in the superior longitudinal fasciculi, uncinate fasciculi and right hemisphere corticospinal tract in children with neurodevelopmental impairment. This may reflect differences in cellular properties such as myelination or axonal packing. Neurodevelopmental impairment may reflect smaller overall brain volume and altered microstructure in white matter tracts that are important for language, cognitive and motor functioning.
Collapse
Affiliation(s)
- Eleanor Kennedy
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Tanya Poppe
- Liggins Institute, University of Auckland, Auckland, New Zealand; Centre for the Developing Brain, Department of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anna Tottman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Vermeulen MJ, Burkhardt W, Fritze A, Roelants J, Mense L, Willemsen S, Rüdiger M. Reference Charts for Neonatal Cranial Volume Based on 3D Laser Scanning to Monitor Head Growth. Front Pediatr 2021; 9:654112. [PMID: 34123964 PMCID: PMC8192695 DOI: 10.3389/fped.2021.654112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Postnatal brain growth is an important predictor of neurodevelopmental outcome in preterm infants. A new reliable proxy for brain volume is cranial volume, which can be measured routinely by 3-D laser scanning. The aim of this study was to develop reference charts for normal cranial volume in newborn infants at different gestational ages starting from late preterm for both sexes. Methods: Cross-sectional cohort study in a German university hospital, including singleton, clinically stable, neonates born after 34 weeks of gestation. Cranial volume was measured in the first week of life by a validated 3-D laser scanner. Cranial volume data was modeled to calculate percentile values by gestational age and birth weight and to develop cranial volume reference charts for girls and boys separately. Results: Of the 1,703 included infants, 846 (50%) were female. Birth weights ranged from 1,370 to 4,830 grams (median 3,370). Median cranial volume ranged from 320 [interquartile range (IQR) 294-347] ml at 34 weeks to 469 [IQR 442-496] ml at 42 weeks and was higher in boys than in girls. Conclusions: This study presents the first reference charts of cranial volume which can be used in clinical practice to monitor brain growth between 34 and 42 weeks gestation in infants.
Collapse
Affiliation(s)
- Marijn Jorien Vermeulen
- Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wolfram Burkhardt
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics, Medizinische Fakultät der Technischen Universität, Dresden, Germany
| | - Anne Fritze
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics, Medizinische Fakultät der Technischen Universität, Dresden, Germany
| | - Jorine Roelants
- Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Lars Mense
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics, Medizinische Fakultät der Technischen Universität, Dresden, Germany
| | - Sten Willemsen
- Division of Biostatistics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mario Rüdiger
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics, Medizinische Fakultät der Technischen Universität, Dresden, Germany.,Saxonian Center for Feto-Neonatal Health, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|