1
|
Dehesh T, Mosleh-Shirazi MA, Jafari S, Abolhadi E, Dehesh P. A assessment of the effects of parental age on the development of autism in children: a systematic review and a meta-analysis. BMC Psychol 2024; 12:685. [PMID: 39578893 PMCID: PMC11583425 DOI: 10.1186/s40359-024-02184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE There has been conflicting evidence in earlier research on the association between parental age and autism risk. To clarify this association, we conducted a comprehensive meta-analysis of observational studies. The primary objective of this study was to determine the association between parents' age and the risk of autism in the offspring. METHODS PubMed, EMBASE and Web of Science were searched for reports published up to November 2023. Results from relevant studies were pooled using random effects models. Subgroup analyses and meta-regression were performed to examine heterogeneity between the studies. Studies were included in this meta-analysis that focused on children with autism and examined the relationship between parents' age (mother or father) and the risk of autism.The quality of studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS This meta-analysis included 41 articles. The low age of mother (OR = 0.96, (95% CIs: 0.88-1.05) and father (OR = 1.11, (95% CIs: 0.98-1.24) was not significantly associated with lower risk of autism in children. Conversely, greater paternal and maternal ages were associated with an increased risk of autism in their children. The adjusted odds ratios for mothers' and fathers' ages were 1.47 (95% CIs: 1.33-1.62) and 1.51 (95% CIs: 1.40-1.62), respectively. CONCLUSION Increased risk of autism in children is significantly associated with greater parents' ages. Further research is needed to gain further insight into the mechanisms responsible for the effects of parents' ages on the risk of autism in children. The findings of previous studies on the association between parents' ages and their children's autism risk have been mixed. Therefore, by carefully examining a number of previous investigations, in this study we aimed to determine the exact relationship between parental age and autism risk. According to the study's findings, parents who are older have a higher chance of their child getting autism. In other words, children of older parents are more likely to develop autism. The exact causes of this relationship, however, are still unclear. This study shows that higher age of parents can be one of the risk factors for autism in their childs.
Collapse
Affiliation(s)
- Tania Dehesh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Jafari
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abolhadi
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Paria Dehesh
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Wang SH, Lin MC, Wu CS, Chen PC, Thompson WK, Fan CC. Familial factors rather than paternal age contribute to the aetiology of epilepsy. Int J Epidemiol 2024; 53:dyad191. [PMID: 38199793 DOI: 10.1093/ije/dyad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Whether paternal age associated with offspring's epilepsy risk is a cause of de novo mutation as men age, or just an association due to confounding factors, is still unclear. METHODS We performed a population-based, multi-generation and sibling comparison study in Taiwan, which included 2 751 232 singletons born in 2001-17 who were followed until 2020. Of these, 819 371/826 087 with information on paternal/maternal grandparents were selected for multi-generation analyses and 1 748 382 with sibling(s) were selected for sibling comparison. Cox proportional hazard regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI). RESULTS In the total cohort, there was an increased risk of epilepsy in individuals with advanced paternal age, e.g. the HR for paternal age ≥50 was1.36 (95% CI: 1.15-1.61) compared with paternal age 25-29, and fathers older than mothers, e.g. the HR for parental age difference ≥15 years was 1.29 (95% CI: 1.16-1.43). When accounting for parental age difference, the association between paternal age and epilepsy in offspring was attenuated (HR for paternal age ≥50 was 1.11, 95% CI: 0.93-1.34). Multi-generation analyses did not support the association of advanced grand-paternal age at childbirth of the parent with offspring's risk of epilepsy. Sibling comparison analyses did not support the association of older paternal age with increased risk of epilepsy (HR was 0.96 for per year increase in paternal age, 95% CI: 0.96-0.97). CONCLUSIONS These results do not support the hypothesis that advanced paternal age is associated with epilepsy in offspring. Instead, familial factors may explain the observed paternal age association with the offspring's risk of epilepsy.
Collapse
Affiliation(s)
- Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Douliu, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Xiao J, Jain A, Bellia G, Nyhan K, Liew Z. A scoping review of multigenerational impacts of grandparental exposures on mental health in grandchildren. Curr Environ Health Rep 2023; 10:369-382. [PMID: 38008881 DOI: 10.1007/s40572-023-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW The multigenerational effects of grandparental exposures on their grandchildren's mental health and neurodevelopment are gaining research attention. We conducted a scoping review to summarize the current epidemiological studies investigating pregnancy-related and environmental factors that affected grandparental pregnancies and mental health outcomes in their grandchildren. We also identified methodological challenges that affect these multigenerational health studies and discuss opportunities for future research. RECENT FINDINGS We performed a literature search using PubMed and Embase and included 18 articles for this review. The most investigated grandparental pregnancy-related factors were the grandparental age of pregnancy (N = 6), smoking during pregnancy (N = 4), and medication intake (N = 3). The most frequently examined grandchild outcomes were autism spectrum disorder (N = 6) and attention-deficit/hyperactivity disorder (N = 4). Among these studies, grandparental smoking and the use of diethylstilbestrol were more consistently reported to be associated with neurodevelopmental disorders, while the findings for grandparental age vary across the maternal or paternal line. Grandmaternal weight, adverse delivery outcomes, and other spatial-temporal markers of physical and social environmental stressors require further scrutiny. The current body of literature has suggested that mental and neurodevelopmental disorders may be outcomes of unfavorable exposures originating from the grandparental generation during their pregnancies. To advance the field, we recommend research efforts into setting up multigenerational studies with prospectively collected data that span through at least three generations, incorporating spatial, environmental, and biological markers for exposure assessment, expanding the outcome phenotypes evaluated, and developing a causal analytical framework including mediation analyses specific for multigenerational research.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Anushka Jain
- Department of Social Behavioral Sciences, Yale School of Public Health, New Haven, USA
| | - Giselle Bellia
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA.
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
4
|
Abay-Nørgaard S, Tapia MC, Zeijdner M, Kim JH, Won KJ, Porse B, Salcini AE. Inter and transgenerational impact of H3K4 methylation in neuronal homeostasis. Life Sci Alliance 2023; 6:e202301970. [PMID: 37225426 PMCID: PMC10209521 DOI: 10.26508/lsa.202301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using Caenorhabditis elegans as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Cecylia Tapia
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandoh Zeijdner
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeonghwan Henry Kim
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Porse
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Gong T, Lundholm C, Lundström S, Kuja-Halkola R, Taylor MJ, Almqvist C. Understanding the relationship between asthma and autism spectrum disorder: a population-based family and twin study. Psychol Med 2023; 53:3096-3104. [PMID: 35388771 PMCID: PMC10235668 DOI: 10.1017/s0033291721005158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is some evidence that autism spectrum disorder (ASD) frequently co-occurs with immune-mediated conditions including asthma. We aimed to explore the familial co-aggregation of ASD and asthma using different genetically informed designs. METHODS We first examined familial co-aggregation of asthma and ASD in individuals born in Sweden from 1992 to 2007 (n = 1 569 944), including their full- and half-siblings (n = 1 704 388 and 356 544 pairs) and full cousins (n = 3 921 890 pairs), identified using Swedish register data. We then applied quantitative genetic modeling to siblings (n = 620 994 pairs) and twins who participated in the Child and Adolescent Twin Study in Sweden (n = 15 963 pairs) to estimate the contribution of genetic and environmental factors to the co-aggregation. Finally, we estimated genetic correlations between traits using linkage disequilibrium score regression (LDSC). RESULTS We observed a within-individual association [adjusted odds ratio (OR) 1.33, 95% confidence interval (CI) 1.28-1.37] and familial co-aggregation between asthma and ASD, and the magnitude of the associations decreased as the degree of relatedness decreased (full-siblings: OR 1.44, 95% CI 1.38-1.50, maternal half-siblings: OR 1.28, 95% CI 1.18-1.39, paternal half-siblings: OR 1.05, 95% CI 0.96-1.15, full cousins: OR 1.06, 95% CI 1.03-1.09), suggesting shared familial liability. Quantitative genetic models estimated statistically significant genetic correlations between ASD traits and asthma. Using the LDSC approach, we did not find statistically significant genetic correlations between asthma and ASD (coefficients between -0.09 and 0.12). CONCLUSIONS Using different genetically informed designs, we found some evidence of familial co-aggregation between asthma and ASD, suggesting the weak association between these disorders was influenced by shared genetics.
Collapse
Affiliation(s)
- Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Lundholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Lundström
- Centre for Ethics, Lawand Mental Health (CELAM), University of Gothenburg, Gothenburg, Sweden
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mark J. Taylor
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Wood KA, Goriely A. The impact of paternal age on new mutations and disease in the next generation. Fertil Steril 2022; 118:1001-1012. [PMID: 36351856 PMCID: PMC10909733 DOI: 10.1016/j.fertnstert.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.
Collapse
Affiliation(s)
- Katherine A Wood
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
7
|
Wang SH, Wu CS, Hsu LY, Lin MC, Chen PC, Thompson WK, Fan CC. Paternal age and 13 psychiatric disorders in the offspring: a population-based cohort study of 7 million children in Taiwan. Mol Psychiatry 2022; 27:5244-5254. [PMID: 36042285 PMCID: PMC11285795 DOI: 10.1038/s41380-022-01753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Although paternal age has been linked to certain psychiatric disorders, the nature of any causal relationship remains elusive. Here, we aimed to comprehensively assess the magnitude of a wide range of offspring's psychiatric risk conferred by paternal age, leveraging a pedigree inferred from covered-insurance relationship (accuracy >98%) in Taiwan's single-payer compulsory insurance program. We also examined whether there is an independent role of paternal age and explored the potential effect of parental age difference. A total cohort of 7,264,788 individuals born between 1980 and 2018 were included; 5,572,232 with sibling(s) were selected for sibling-comparison analyses and 1,368,942 and 1,044,420 children with information of paternal-grandparents and maternal-grandparents, respectively, were selected for multi-generation analyses. Using inpatient/outpatient claims data (1997-2018), we identified schizophrenia, autism, bipolar disorder (BPD), attention deficit-hyperactivity disorder (ADHD), major depressive disorder (MDD), eating disorder (ED), substance use disorder (SUD), mental retardation (MR), tic disorder, obsessive-compulsive disorder (OCD), anxiety, and somatoform disorder. We identified suicides using death certificates. Logistic regression analysis was used to estimate the paternal/maternal/grand-paternal age association with psychiatric risk in the offspring. The total cohort and sibling-comparison cohort resulted in similar estimates. Paternal age had a U-shaped relationship with offspring's MDD, ED, SUD, and anxiety. A very young maternal age (<20 years) was associated with markedly higher risk in offspring's SUD, MR, and suicide. Older paternal age (>25 years) was linearly associated with offspring's schizophrenia, autism, BPD, ADHD, MDD, ED, SUD, MR, OCD, anxiety, and suicide. Older grand-paternal age was linearly associated with offspring's schizophrenia, autism, ADHD, and MR. Dissimilar parental age was positively associated with offspring's ADHD, MDD, SUD, MR, anxiety, and suicide, and negatively associated with offspring's OCD. This comprehensive assessment provides solid evidence for the independent role of paternal age in psychiatric risk in the offspring and clarifies the significance of both early parenthood and delayed paternity.
Collapse
Affiliation(s)
- Shi-Heng Wang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
- Interdisciplinary Freshmen Program of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Le-Yin Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Graduate Program of Data Science, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Mei-Chen Lin
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
- Interdisciplinary Freshmen Program of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Chun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Milne BJ, D'Souza S, Andersen SH, Richmond-Rakerd LS. Use of Population-Level Administrative Data in Developmental Science. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2022; 4:447-468. [PMID: 37284522 PMCID: PMC10241456 DOI: 10.1146/annurev-devpsych-120920-023709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Population-level administrative data-data on individuals' interactions with administrative systems (e.g., health, criminal justice, and education)-have substantially advanced our understanding of life-course development. In this review, we focus on five areas where research using these data has made significant contributions to developmental science: (a) understanding small or difficult-to-study populations, (b) evaluating intergenerational and family influences, (c) enabling estimation of causal effects through natural experiments and regional comparisons, (d) identifying individuals at risk for negative developmental outcomes, and (e) assessing neighborhood and environmental influences. Further advances will be made by linking prospective surveys to administrative data to expand the range of developmental questions that can be tested; supporting efforts to establish new linked administrative data resources, including in developing countries; and conducting cross-national comparisons to test findings' generalizability. New administrative data initiatives should involve consultation with population subgroups including vulnerable groups, efforts to obtain social license, and strong ethical oversight and governance arrangements.
Collapse
Affiliation(s)
- Barry J Milne
- School of Social Sciences and Centre of Methods and Policy Application in the Social Sciences (COMPASS), University of Auckland, Auckland, New Zealand
| | - Stephanie D'Souza
- School of Social Sciences and Centre of Methods and Policy Application in the Social Sciences (COMPASS), University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
9
|
Carrageta DF, Guerra-Carvalho B, Spadella MA, Yeste M, Oliveira PF, Alves MG. Animal models of male reproductive ageing to study testosterone production and spermatogenesis. Rev Endocr Metab Disord 2022; 23:1341-1360. [PMID: 35604584 DOI: 10.1007/s11154-022-09726-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/11/2023]
Abstract
Ageing is the time-dependent gradual decline of the functional characteristics in an organism. It has been shown that it results in the loss of reproductive health and fertility. The age-dependent decline of fertility is a potential issue as the parenthood age is increasing in Western countries, mostly due to socioeconomic factors. In comparison to women, for whom the consequences of ageing are well documented and general awareness of the population is extensively raised, the effects of ageing for male fertility and the consequences of advanced paternal age for the offspring have not been widely studied. Studies with humans are welcome but it is hard to implement relevant experimental approaches to unveil the molecular mechanisms by which ageing affects male reproductive potential. Animal models have thus been extensively used. These models are advantageous due to their reduced costs, general easy maintenance in laboratory facilities, rigorous manipulation tools, short lifespan, known genetic backgrounds, and reduced ethical constraints. Herein, we discuss animal models for the study of male reproductive ageing. The most well-known and studied reproductive ageing models are rodents and non-human primates. The data collected from these models, particularly studies on testicular ageing, steroidogenesis, and genetic and epigenetic changes in spermatogenesis are detailed. Notably, some species challenge the currently accepted ageing theories and the concept of senescence itself, which renders them interesting animal models for the study of male reproductive ageing.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | | | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
| |
Collapse
|
10
|
Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, Grove J, Carey CE, Hong O, Arranz MJ, Hervas A, Corsello C, Vaux KK, Muotri AR, Iakoucheva LM, Courchesne E, Pierce K, Gleeson JG, Robinson EB, Nievergelt CM, Sebat J. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat Genet 2022; 54:1284-1292. [PMID: 35654974 PMCID: PMC9474668 DOI: 10.1038/s41588-022-01064-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
Abstract
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.
Collapse
Affiliation(s)
- Danny Antaki
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - James Guevara
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marieke Klein
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Madhusudan Gujral
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Caitlin E Carey
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Oanh Hong
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maria J Arranz
- Research Laboratory Unit, Fundacio Docencia i Recerca Mutua, Terrassa, Spain
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Christina Corsello
- TEACCH Autism Program, University of North Carolina, Chapel Hill, NC, USA
| | | | - Alysson R Muotri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Archealization Center, Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Autism Center of Excellence, University of California San Diego, La Jolla, CA, USA
| | - Joseph G Gleeson
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Elise B Robinson
- Harvard T.H. Chan School of Public Health, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Sari NP, Jansen PW, Blanken LME, Ruigrok ANV, Prinzie P, Tiemeier H, Baron-Cohen S, van IJzendoorn MH, White T. Maternal age, autistic-like traits and mentalizing as predictors of child autistic-like traits in a population-based cohort. Mol Autism 2022; 13:26. [PMID: 35705965 PMCID: PMC9199218 DOI: 10.1186/s13229-022-00507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Many empirical studies suggest that higher maternal age increases the likelihood of having an autistic child. However, little is known about factors that may explain this relationship or if higher maternal age is related to the number of autistic-like traits in offspring. One possibility is that mothers who have a higher number of autistic-like traits, including greater challenges performing mentalizing skills, are delayed in finding a partner. The goal of our study is to assess the relationship between maternal age, mentalizing skills and autistic-like traits as independent predictors of the number of autistic-like traits in offspring. Methods In a population-based study in the Netherlands, information on maternal age was collected during pre- and perinatal enrolment. Maternal mentalizing skills and autistic-like traits were assessed using the Reading the Mind in the Eyes Test and the Autism Spectrum Quotient, respectively. Autistic-like traits in children were assessed with the Social Responsiveness Scale. A total of 5718 mother/child dyads had complete data (Magechild = 13.5 years; 50.2% girls). Results The relationship between maternal age and autistic-like traits in offspring best fits a U-shaped curve. Furthermore, higher levels of autistic features in mothers are linked to higher levels of autistic-like traits in their children. Lower mentalizing performance in mothers is linked to higher levels of autistic-like traits in their children. Limitations We were able to collect data on both autistic-like traits and the mentalizing skills test in a large population of mothers, but we did not collect these data in a large number of the fathers. Conclusions The relationships between older and younger mothers may have comparable underlying mechanisms, but it is also possible that the tails of the U-shaped curve are influenced by disparate mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00507-4.
Collapse
Affiliation(s)
- Novika Purnama Sari
- Department Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands. .,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands. .,Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Pauline W Jansen
- Department Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Laura M E Blanken
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychiatry, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Amber N V Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Peter Prinzie
- Department Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Marinus H van IJzendoorn
- Department Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Research Department of Clinical Educational and Health Psychology, UCL, University of London, London, UK
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
12
|
A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatr Res 2022; 91:757-770. [PMID: 33674740 DOI: 10.1038/s41390-021-01435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Mental or neuropsychiatric disorders are widespread within our societies affecting one in every four people in the world. Very often the onset of a mental disorder (MD) occurs in early childhood and substantially reduces the quality of later life. Although the global burden of MDs is rising, mental health care is still suboptimal, partly due to insufficient understanding of the processes of disease development. New insights are needed to respond to this worldwide health problem. Next to the growing burden of MDs, there is a tendency to postpone pregnancy for various economic and practical reasons. In this review, we describe the current knowledge on the potential effect from advanced paternal age (APA) on development of autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, obsessive-compulsive disorder, and Tourette syndrome. Although literature did not clearly define an age cut-off for APA, we here present a comprehensive multifactorial model for the development of MDs, including the role of aging, de novo mutations, epigenetic mechanisms, psychosocial environment, and selection into late fatherhood. Our model is part of the Paternal Origins of Health and Disease paradigm and may serve as a foundation for future epidemiological research designs. This blueprint will increase the understanding of the etiology of MDs and can be used as a practical guide for clinicians favoring early detection and developing a tailored treatment plan. Ultimately, this will help health policy practitioners to prevent the development of MDs and to inform health-care workers and the community about disease determinants. Better knowledge of the proportion of all risk factors, their interactions, and their role in the development of MDs will lead to an optimization of mental health care and management. IMPACT: We design a model of causation for MDs, integrating male aging, (epi)genetics, and environmental influences. It adds new insights into the current knowledge about associations between APA and MDs. In clinical practice, this comprehensive model may be helpful in early diagnosis and in treatment adopting a personal approach. It may help in identifying the proximate cause on an individual level or in a specific subpopulation. Besides the opportunity to measure the attributed proportions of risk factors, this model may be used as a blueprint to design prevention strategies for public health purposes.
Collapse
|
13
|
Salazar R, Arbeithuber B, Ivankovic M, Heinzl M, Moura S, Hartl I, Mair T, Lahnsteiner A, Ebner T, Shebl O, Pröll J, Tiemann-Boege I. Discovery of an unusually high number of de novo mutations in sperm of older men using duplex sequencing. Genome Res 2022; 32:499-511. [PMID: 35210354 PMCID: PMC8896467 DOI: 10.1101/gr.275695.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
De novo mutations (DNMs) are important players in heritable diseases and evolution. Of particular interest are highly recurrent DNMs associated with congenital disorders that have been described as selfish mutations expanding in the male germline, thus becoming more frequent with age. Here, we have adapted duplex sequencing (DS), an ultradeep sequencing method that renders sequence information on both DNA strands; thus, one mutation can be reliably called in millions of sequenced bases. With DS, we examined ∼4.5 kb of the FGFR3 coding region in sperm DNA from older and younger donors. We identified sites with variant allele frequencies (VAFs) of 10-4 to 10-5, with an overall mutation frequency of the region of ∼6 × 10-7 Some of the substitutions are recurrent and are found at a higher VAF in older donors than in younger ones or are found exclusively in older donors. Also, older donors harbor more mutations associated with congenital disorders. Other mutations are present in both age groups, suggesting that these might result from a different mechanism (e.g., postzygotic mosaicism). We also observe that independent of age, the frequency and deleteriousness of the mutational spectra are more similar to COSMIC than to gnomAD variants. Our approach is an important strategy to identify mutations that could be associated with a gain of function of the receptor tyrosine kinase activity, with unexplored consequences in a society with delayed fatherhood.
Collapse
Affiliation(s)
- Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Maja Ivankovic
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Omar Shebl
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Johannes Pröll
- Center for Medical Research, Faculty of Medicine, Johannes Kepler University, Linz, Austria 4020
| | | |
Collapse
|
14
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Zacchini F, Sampino S, Zietek M, Chan A. Delayed parenthood and its influence on offspring health: What have we learned from the mouse model. Biol Reprod 2021; 106:58-65. [PMID: 34725675 DOI: 10.1093/biolre/ioab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Delayed parenthood is constantly increasing worldwide due to various socio-economic factors. In the last decade, a growing number of epidemiological studies have suggested a link between advanced parental age and an increased risk of diseases in the offspring. Also, poor reproductive outcome has been described in pregnancies conceived by aged parents. Similarly, animal studies showed that aging negatively affects gametes, early embryonic development, pregnancy progression and the postnatal phenotype of resulting offspring. However, how and to what extent parental age is a risk factor for the health of future generations is still subject to debate. Notwithstanding the limitation of an animal model, the mouse model represents a useful tool to understand not only the influence of parental age on offspring phenotype but also the biological mechanisms underlying the poor reproductive outcome and the occurrence of diseases in the descendants. The present review aims at i) providing an overview of the current knowledge from mouse model about the risks associated with conception at advanced age (e.g. neurodevelopmental and metabolic disorders), ii) highlighting the candidate biological mechanisms underlying this phenomenon, and iii) discussing on how murine-derived data can be relevant to humans.
Collapse
Affiliation(s)
- Federica Zacchini
- Percuros BV, Leiden, The Netherlands.,Wolfson Center for Age Related Diseases, King's College London, London, United Kingdom
| | - Silvestre Sampino
- Department of Experimental Embryology, IGAB PAS, Jastrzebiec, Poland
| | - Marta Zietek
- Department of Experimental Embryology, IGAB PAS, Jastrzebiec, Poland
| | - Alan Chan
- Percuros BV, Leiden, The Netherlands
| |
Collapse
|
16
|
Larroya M, Tortajada M, Mensión E, Pauta M, Rodriguez-Revenga L, Borrell A. Have maternal or paternal ages any impact on the prenatal incidence of genomic copy number variants associated with fetal structural anomalies? PLoS One 2021; 16:e0253866. [PMID: 34242293 PMCID: PMC8270131 DOI: 10.1371/journal.pone.0253866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to determine whether maternal or paternal ages have any impact on the prenatal incidence of genomic copy number variants (CNV) in fetuses with structural anomalies. We conducted a non-paired case-control study (1:2 ratio) among pregnancies undergoing chromosomal microarray analysis (CMA) because of fetal ultrasound anomalies, from December 2012 to May 2020. Pregnancies with any pathogenic copy number variant (CNV), either microdeletion or microduplication, were defined as cases. Controls were selected as the next two pregnancies with the same indication for CMA but with a normal result. Logistic regression was used, adjusting by use of assisted reproductive technology (ART) and parental smoking. Stratified analysis was performed according to CNV type (de novo/inherited and recurrent/non-recurrent). The study included 189 pregnancies: 63 cases and 126 controls. Mean maternal age in cases was 33.1 (SD 4.6) years and 33.9 (SD 6.0) years in controls. Mean paternal mean age was 34.5 (SD 4.8) years in cases and 35.8 (SD 5.8) years in controls. No significant differences in maternal or paternal age were observed, neither in stratified analysis according to the CNV type. Moreover, the proportion of cases were not significantly different between non-advanced and advanced ages, either considering paternal or maternal ages. The presence of pathogenic CNV at CMA in fetuses with structural anomalies was not found to be associated with advanced paternal or maternal age.
Collapse
Affiliation(s)
- Marta Larroya
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (ML); (AB)
| | - Marta Tortajada
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
| | - Eduard Mensión
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
| | - Montse Pauta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Laia Rodriguez-Revenga
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Catalonia, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Borrell
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (ML); (AB)
| |
Collapse
|
17
|
Xiao J, Gao Y, Yu Y, Toft G, Zhang Y, Luo J, Xia Y, Chawarska K, Olsen J, Li J, Liew Z. Associations of parental birth characteristics with autism spectrum disorder (ASD) risk in their offspring: a population-based multigenerational cohort study in Denmark. Int J Epidemiol 2021; 50:485-495. [PMID: 33411909 DOI: 10.1093/ije/dyaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fetal exposure risk factors are associated with increased autism spectrum disorder (ASD) risk. New hypotheses regarding multigenerational risk for ASD have been proposed, but epidemiological evidence is largely lacking. We evaluated whether parental birth characteristics, including preterm birth and low birthweight, were associated with ASD risk in offspring. METHODS We conducted a nationwide register-based cohort study that included 230 174 mother-child and 157 926 father-child pairs in Denmark. Logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for offspring ASD according to parental preterm (<37 weeks) and low birthweight (<2500 g) status, with or without adjustment for certain grandmaternal sociodemographic factors. Mediation analyses were performed for selected parental and offspring health-related factors. RESULTS Offspring of mothers or fathers with adverse birth characteristics had about 31-43% higher risk for ASD (maternal preterm birth, OR = 1.31, 95% CI= 1.12, 1.55; maternal low birthweight, OR = 1.35, 95% CI: 1.17,1.57; paternal preterm birth, OR = 1.43, 95% CI = 1.18, 1.73; paternal low birthweight, OR = 1.38, 95% CI= 1.13, 1.70). Parents born very preterm (<32 weeks) marked a nearly 2-fold increase in ASD risk in their children. These associations were slightly attenuated upon adjustment for grandmaternal sociodemographic factors. Mediation analyses suggested that parental social-mental and offspring perinatal factors might explain a small magnitude of the total effect observed, especially for maternal birth characteristic associations. CONCLUSIONS Offspring of parents born with adverse characteristics had an elevated risk for ASD. Transmission of ASD risk through maternal and paternal factors should be considered in future research on ASD aetiology.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Yu Gao
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA.,Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Yuntian Xia
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
18
|
Nguyen-Powanda P, Robaire B. Aging and oxidative stress alter DNA repair mechanisms in male germ cells of superoxide dismutase-1 null mice. Biol Reprod 2021; 105:944-957. [PMID: 34098580 DOI: 10.1093/biolre/ioab114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of antioxidant defense system decreases with aging, thus resulting in high levels of reactive oxygen species (ROS) and DNA damage in spermatozoa. This damage can lead to genetic disorders in the offspring. There are limited studies investigating the effects of the total loss of antioxidants, such as superoxide dismutase-1 (SOD1), in male germ cells as they progress through spermatogenesis. In this study, we evaluated the effects of aging and removing SOD1 (in male germ cells of SOD1-null (Sod1-/-) mice) in order to determine the potential mechanism(s) of DNA damage in these cells. Immunohistochemical analysis showed an increase in lipid peroxidation and DNA damage in the germ cells of aged wild-type (WT) and Sod1-/- mice of all age. Immunostaining of OGG1, a marker of base excision repair (BER), increased in aged WT and young Sod1-/- mice. In contrast, immunostaining intensity of LIGIV and RAD51, markers of non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively, decreased in aged and Sod1-/- mice. Gene expression analysis showed similar results with altered mRNA expression of these key DNA repair transcripts in pachytene spermatocytes and round spermatids of aged and Sod1-/- mice. Our study indicates that DNA repair pathway markers of BER, NHEJ, and HR are differentially regulated as a function of aging and oxidative stress in spermatocytes and spermatids, and aging enhances the repair response to increased oxidative DNA damage, whereas impairments in other DNA repair mechanisms may contribute to the increase in DNA damage caused by aging and the loss of SOD1.
Collapse
Affiliation(s)
| | - Bernard Robaire
- Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Vaughan DA, Tirado E, Garcia D, Datta V, Sakkas D. DNA fragmentation of sperm: a radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Hum Reprod 2021; 35:2188-2196. [PMID: 32976601 DOI: 10.1093/humrep/deaa159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What is the relationship between sperm DNA fragmentation and oxidative stress (OS) with increasing male age? SUMMARY ANSWER Sperm DNA fragmentation increases with age and is likely related to both defective spermatogenesis and increasing OS levels. WHAT IS KNOWN ALREADY Sperm quality declines with age. The presence of DNA damage in a high fraction of spermatozoa from a raw semen sample is associated with lower male fertility in natural conception and intrauterine insemination. STUDY DESIGN, SIZE, DURATION A retrospective cohort study of 16 945 semen samples analysed at a single reference laboratory between January 2010 and December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS All males were undergoing an infertility evaluation. The cohort was divided into seven age categories: <30, 30-34, 35-39, 40-44, 45-49, 50 to <54 and ≥55 years. The mean age was 37.6 years (SD 6.8). Sperm DNA fragmentation index (DFI) and high DNA stainability (HDS) were calculated using flow cytometry. OS levels were measured using the oxidative stress adducts (OSA) test, by spectrophotometry. ANOVA with weighted polynomial contrast analysis was used to evaluate trends for DFI, OSA and HDS values across age categories. MAIN RESULTS AND THE ROLE OF CHANCE Mean DFI significantly increased across all age groups (Ptrend < 0.001). OSA was lowest in patients <30 years old (mean 3.6, SD 1.0) and also increased as age increased (Ptrend < 0.001). There was a statistically significant difference between age groups for each of the three parameters (P < 0.001). There was a significant linear trend for DFI, OSA and HDS across the seven age categories (P < 0.001). Among patients with high DFI, there was a decreasing age-dependent trend in the patients observed with high OSA (P < 0.001). LIMITATIONS, REASONS FOR CAUTION This is a retrospective study. All males included in the study were undergoing a work-up for infertility and may not be representative of a fertile population. Additional patient demographics and clinical data were not available. WIDER IMPLICATIONS OF THE FINDINGS DNA and/or oxidative damage in sperm may be just as important to understand as the chromosomal aberrations that are carried in the oocyte. Further studies are needed to evaluate the effect of advancing paternal age on the male genome and, ultimately, on the health of the offspring. STUDY FUNDING/COMPETING INTEREST(S) No funding was obtained for this study. V.D. is an employee of Reprosource/Quest Diagnostics. D.S. reports he was a Scientific Advisor to Cooper Surgical. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- D A Vaughan
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA.,Boston IVF, Waltham, MA 02445, USA
| | - E Tirado
- ReproSource Fertility Diagnostics, Marlborough, MA 01752, USA
| | - D Garcia
- Clinica EUGIN, Barcelona 08029, Spain
| | - V Datta
- ReproSource Fertility Diagnostics, Marlborough, MA 01752, USA
| | - D Sakkas
- Boston IVF, Waltham, MA 02445, USA
| |
Collapse
|
20
|
Abstract
BACKGROUND Among the most disabling and fatal psychiatric illnesses, eating disorders (EDs) often manifest early in life, which encourages investigations into in utero and perinatal environmental risk factors. The objective of this study was to determine whether complications during pregnancy and birth and perinatal conditions are associated with later eating disorder risk in offspring and whether these associations are unique to EDs. METHODS All individuals born in Denmark to Danish-born parents 1989-2010 were included in the study and followed from their 6th birthday until the end of 2016. Exposure to factors related to pregnancy, birth, and perinatal conditions was determined using national registers, as were hospital-based diagnoses of anorexia nervosa (AN), bulimia nervosa, and eating disorder not otherwise specified during follow-up. For comparison, diagnoses of depressive, anxiety, and obsessive-compulsive disorders were also included. Cox regression was used to compare hazards of psychiatric disorders in exposed and unexposed individuals. RESULTS 1 167 043 individuals were included in the analysis. We found that similar to the comparison disorders, prematurity was associated with increased eating disorder risk. Conversely, patterns of increasing risks of EDs, especially in AN, with increasing parental ages differed from the more U-shaped patterns observed for depressive and anxiety disorders. CONCLUSIONS Our results suggest that pregnancy and early life are vulnerable developmental periods when exposures may influence offspring mental health, including eating disorder risk, later in life. The results suggest that some events pose more global transdiagnostic risk whereas other patterns, such as increasing parental ages, appear more specific to EDs.
Collapse
Affiliation(s)
- Janne Tidselbak Larsen
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Susanne Vinkel Koch
- Mental Health Centre for Child and Adolescent Psychiatry, Copenhagen Region, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Petersen
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Higazi AM, Kamel HM, Abdel-Naeem EA, Abdullah NM, Mahrous DM, Osman AM. Expression analysis of selected genes involved in tryptophan metabolic pathways in Egyptian children with Autism Spectrum Disorder and learning disabilities. Sci Rep 2021; 11:6931. [PMID: 33767242 PMCID: PMC7994393 DOI: 10.1038/s41598-021-86162-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/07/2021] [Indexed: 01/31/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and learning disabilities are neurodevelopmental disabilities characterized by dramatically increasing incidence rates, yet the exact etiology for these disabilities is not identified. Impairment in tryptophan metabolism has been suggested to participate in the pathogenesis of ASD, however, further validation of its involvement is required. Additionally, its role in learning disabilities is still uninvestigated. Our objective was to evaluate some aspects of tryptophan metabolism in ASD children (N = 45) compared to children with learning disabilities (N = 44) and healthy controls (N = 40) by measuring the expression levels of the MAOA, HAAO and AADAT genes using real-time RT-qPCR. We also aimed to correlate the expression patterns of these genes with parental ages at the time of childbirth, levels of serum iron, and vitamin D3 and zinc/copper ratio, as possible risk factors for ASD. Results demonstrated a significant decrease in the expression of the selected genes within ASD children (p < 0.001) relative to children with learning disabilities and healthy controls, which significantly associated with the levels of our targeted risk factors (p < 0.05) and negatively correlated to ASD scoring (p < 0.001). In conclusion, this study suggests that the expression of the MAOA, HAAO and AADAT genes may underpin the pathophysiology of ASD.
Collapse
Affiliation(s)
- Aliaa M. Higazi
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanan M. Kamel
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Emad A. Abdel-Naeem
- grid.411806.a0000 0000 8999 4945Immunology Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha M. Abdullah
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa M. Mahrous
- grid.411806.a0000 0000 8999 4945Department of Pediatrics, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ashraf M. Osman
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
22
|
Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, Nilsson E, Ben Maamar M, Skinner MK. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin Epigenetics 2021; 13:6. [PMID: 33413568 PMCID: PMC7789568 DOI: 10.1186/s13148-020-00995-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has increased over tenfold over the past several decades and appears predominantly associated with paternal transmission. Although genetics is anticipated to be a component of ASD etiology, environmental epigenetics is now also thought to be an important factor. Epigenetic alterations, such as DNA methylation, have been correlated with ASD. The current study was designed to identify a DNA methylation signature in sperm as a potential biomarker to identify paternal offspring autism susceptibility. METHODS AND RESULTS Sperm samples were obtained from fathers that have children with or without autism, and the sperm then assessed for alterations in DNA methylation. A genome-wide analysis (> 90%) for differential DNA methylation regions (DMRs) was used to identify DMRs in the sperm of fathers (n = 13) with autistic children in comparison with those (n = 13) without ASD children. The 805 DMR genomic features such as chromosomal location, CpG density and length of the DMRs were characterized. Genes associated with the DMRs were identified and found to be linked to previously known ASD genes, as well as other neurobiology-related genes. The potential sperm DMR biomarkers/diagnostic was validated with blinded test sets (n = 8-10) of individuals with an approximately 90% accuracy. CONCLUSIONS Observations demonstrate a highly significant set of 805 DMRs in sperm that can potentially act as a biomarker for paternal offspring autism susceptibility. Ancestral or early-life paternal exposures that alter germline epigenetics are anticipated to be a molecular component of ASD etiology.
Collapse
Affiliation(s)
- Nicolás Garrido
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Fabio Cruz
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Rocio Rivera Egea
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Carlos Simon
- Dept Ob/Gyn, València University/Instituto de Investigacion Clinica, Hospital Clinico de Valencia (INCLIVA), and Igenomix Foundation, València, Spain
- Beth Israel Deaconess Medical Center, Harvard University, Boston, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
23
|
Determining the probability of juvenile delinquency by using support vector machines and designing a clinical decision support system. Med Hypotheses 2020; 143:110118. [DOI: 10.1016/j.mehy.2020.110118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
|
24
|
Families, Health Registers, and Biobanks: Making the Unmeasurable Measurable. Biol Psychiatry 2020; 88:440-441. [PMID: 32854830 DOI: 10.1016/j.biopsych.2020.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/23/2022]
|
25
|
Krug A, Wöhr M, Seffer D, Rippberger H, Sungur AÖ, Dietsche B, Stein F, Sivalingam S, Forstner AJ, Witt SH, Dukal H, Streit F, Maaser A, Heilmann-Heimbach S, Andlauer TFM, Herms S, Hoffmann P, Rietschel M, Nöthen MM, Lackinger M, Schratt G, Koch M, Schwarting RKW, Kircher T. Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study. Mol Autism 2020; 11:54. [PMID: 32576230 PMCID: PMC7310295 DOI: 10.1186/s13229-020-00345-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany.
- Center for Mind, Brain and Behavior, Marburg, Germany.
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Dominik Seffer
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Henrike Rippberger
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anna Maaser
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Till F M Andlauer
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, 28334, Bremen, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
26
|
Gale-Grant O, Christiaens D, Cordero-Grande L, Chew A, Falconer S, Makropoulos A, Harper N, Price AN, Hutter J, Hughes E, Victor S, Counsell SJ, Rueckert D, Hajnal JV, Edwards AD, O'Muircheartaigh J, Batalle D. Parental age effects on neonatal white matter development. NEUROIMAGE-CLINICAL 2020; 27:102283. [PMID: 32526683 PMCID: PMC7284122 DOI: 10.1016/j.nicl.2020.102283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Advanced paternal age is associated with a range of later negative outcomes. It is not known if these negative outcomes are due to genetics or environment. We use neonatal diffusion MRI to demonstrate paternal age effect on white matter. The babies of older fathers had reduced fractional anisotropy in multiple areas. These changes correlated with cognitive outcome at 18 months.
Objective Advanced paternal age is associated with poor offspring developmental outcome. Though an increase in paternal age-related germline mutations may affect offspring white matter development, outcome differences could also be due to psychosocial factors. Here we investigate possible cerebral changes prior to strong environmental influences using brain MRI in a cohort of healthy term-born neonates. Methods We used structural and diffusion MRI images acquired soon after birth from a cohort (n = 275) of healthy term-born neonates. Images were analysed using a customised tract based spatial statistics (TBSS) processing pipeline. Neurodevelopmental assessment using the Bayley-III scales was offered to all participants at age 18 months. For statistical analysis neonates were compared in two groups, representing the upper quartile (paternal age ≥38 years) and lower three quartiles. The same method was used to assess associations with maternal age. Results In infants with older fathers (≥38 years), fractional anisotropy, a marker of white matter organisation, was significantly reduced in three early maturing anatomical locations (the corticospinal tract, the corpus callosum, and the optic radiation). Fractional anisotropy in these locations correlated positively with Bayley-III cognitive composite score at 18 months in the advanced paternal age group. A small but significant reduction in total brain volume was also observed in in the infants of older fathers. No significant associations were found between advanced maternal age and neonatal imaging. Conclusions The epidemiological association between advanced paternal age and offspring outcome is extremely robust. We have for the first time demonstrated a neuroimaging phenotype of advanced paternal age before sustained parental interaction that correlates with later outcome.
Collapse
Affiliation(s)
- Oliver Gale-Grant
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | | | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
27
|
|
28
|
Gao Y, Yu Y, Xiao J, Luo J, Zhang Y, Tian Y, Zhang J, Olsen J, Li J, Liew Z. Association of Grandparental and Parental Age at Childbirth With Autism Spectrum Disorder in Children. JAMA Netw Open 2020; 3:e202868. [PMID: 32293683 PMCID: PMC7160691 DOI: 10.1001/jamanetworkopen.2020.2868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE Advanced parental age has been associated with autism spectrum disorders (ASDs) in children. However, little is known about the association between grandparental age at the time of birth of the parent and the risk of ASD in the grandchildren. OBJECTIVE To estimate the associations between parental and grandparental age and ASD risk in children. DESIGN, SETTING, AND PARTICIPANTS This population-based, multigenerational cohort study used data from Danish national health registries. A parental age cohort was constructed to evaluate the association between parental age and ASD in 1 476 783 singleton children born from 1990 to 2013, and a multigenerational cohort was also constructed including 362 438 fathers and 458 234 mothers born from 1973 to 1990 for whom information on grandparental age was available. Data analyses were conducted from November 1, 2018, through February 7, 2020. EXPOSURES Parental age at childbirth and grandparental age at the time of the birth of the parent. MAIN OUTCOMES AND MEASURES Diagnoses of ASD in children were obtained from the Danish Psychiatric Central Register (1994-2017). Logistic regression analysis was used to estimate the associations between parental or grandparental age and ASD in children. RESULTS Of the 1 476 783 children born from 1990 to 2013, 758 066 (51.3%) were male, and 27 616 (1.9%) had ASD (20 467 [74.1%] were male). Advanced paternal or maternal age over 30 years was monotonically associated with increased ASD risk, with odds ratios (ORs) of 1.56 (95% CI, 1.45-1.68) for maternal age 40 years and older and 1.57 (95% CI, 1.39-1.78) for paternal age 50 years and older, compared with parents aged 25 to 29 years. In the multigenerational cohort, 9364 grandchildren (1.7%) had ASD. This study found U-shaped associations, in that ASD risk was higher among grandchildren of younger (≤19 years) maternal grandmothers (OR, 1.68; 95% CI, 1.52-1.85), younger maternal grandfathers (OR, 1.50; 95% CI, 1.26-1.78), and younger paternal grandmothers (OR, 1.18; 95% CI, 1.04-1.34), and older (≥40 years) paternal grandmothers (OR, 1.40; 95% CI, 1.03-1.90) compared with the grandchildren of grandparents who were aged 25 to 29 years at the time of giving birth to the parents. CONCLUSIONS AND RELEVANCE These findings corroborate previous studies suggesting that advanced parental age is independently associated with increased ASD risk in children. This study also found that children with young maternal grandparents and children with young and old paternal grandparents had elevated ASD risk. Possible transmission of ASD risk across generations should be considered in etiological research on ASD.
Collapse
Affiliation(s)
- Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Ministry of Education–Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- The Ministry of Education–Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
29
|
Janeczko D, Hołowczuk M, Orzeł A, Klatka B, Semczuk A. Paternal age is affected by genetic abnormalities, perinatal complications and mental health of the offspring. Biomed Rep 2019; 12:83-88. [PMID: 32042416 DOI: 10.3892/br.2019.1266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Infertility and fecundity problems concern 10-18% of partners in their reproductive years compromising around one million females and males in Poland. Research and analysis of factors that affect male fertility are limited, especially, regarding the age of the father and determining the age at which quality of semen decreases. Age of the father has greater impact than maternal age, on cases of sporadic autosomal dominant congenital diseases such as Apert, Crouzon, Pfeiffer, Noonan and Costello syndromes, multiple endocrine neoplasia (types 2A and 2B) and achondroplasia. However, there are only a few reports taking paternal advanced age into consideration for pre-mature birth, low Apgar scores or admission to a neonatal intensive care department. Paternal age increases the frequency of congenital diseases such as heart malformations as well as oral, palate and lip cleft. Moreover, mental disorders (autism, schizophrenia, bipolar disorder, low IQ level as well as ADHD) also occur more frequently in advanced father's age. Advanced paternal age is defined differently in every research. It depends on disorders in offspring we are talking about. Paternal age has an impact on child's health and development and it is as significant as maternal age, when it comes to reproductive matters.
Collapse
Affiliation(s)
- Dominika Janeczko
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Magdalena Hołowczuk
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Anna Orzeł
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Barbara Klatka
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| |
Collapse
|
30
|
Jenkins TG, James ER, Aston KI, Salas-Huetos A, Pastuszak AW, Smith KR, Hanson HA, Hotaling JM, Carrell DT. Age-associated sperm DNA methylation patterns do not directly persist trans-generationally. Epigenetics Chromatin 2019; 12:74. [PMID: 31856899 PMCID: PMC6921445 DOI: 10.1186/s13072-019-0323-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background The impact of aging on the sperm methylome is well understood. However, the direct, subsequent impact on offspring and the role of altered sperm DNA methylation alterations in this process remain poorly understood. The well-defined impact of aging on sperm DNA methylation represents an excellent opportunity to trace the direct, transgenerational transmission of these signals. Results We utilized the Illumina MethylationEPIC array to analyze the sperm of 16 patients with older (> 40 years of age) paternal grandfathers (‘old grand paternal age’ patients; OGPA) and 16 patients with younger (< 25 years of age) grandfathers (‘young grand paternal age’ patients; YGPA) identified through the Subfertility Health Assisted Reproduction and the Environment (SHARE) cohort to investigate differences in DNA methylation. No differentially methylated regions were identified between the OGPA and YGPA groups. Further, when assessing only the sites previously shown to be altered by age, no statistically significant differences between OGPA and YGPA were identified. This was true even despite the lower bar for significance after removing multiple comparison correction in a targeted approach. Interestingly though, in an analysis of the 140 loci known to have decreased methylation with age, the majority (~ 72%) had lower methylation in OGPA compared to YGPA though the differences were extremely small (~ 1.5%). Conclusions This study suggests that the robust and consistent age-associated methylation alterations seen in human sperm are ‘reset’ during large-scale epigenetic reprograming processes and are not directly inherited trans-generationally (over two generations). An extremely small trend was present between the YGPA and OGPA groups that resemble the aging pattern in older sperm. However, this trend was not significant and was so small that, if real, is almost certainly biologically inert.
Collapse
Affiliation(s)
- Timothy G Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University Provo, Life Sciences Building 4005, Provo, UT, 84602, USA. .,Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Emma R James
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Albert Salas-Huetos
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexander W Pastuszak
- Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ken R Smith
- Department of Population Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Heidi A Hanson
- Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Population Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James M Hotaling
- Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Surgery (Urology Division), University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Hu VW, Devlin CA, Debski JJ. ASD Phenotype-Genotype Associations in Concordant and Discordant Monozygotic and Dizygotic Twins Stratified by Severity of Autistic Traits. Int J Mol Sci 2019; 20:ijms20153804. [PMID: 31382655 PMCID: PMC6696087 DOI: 10.3390/ijms20153804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by impaired social communication coupled with stereotyped behaviors and restricted interests. Despite the high concordance rate for diagnosis, there is little information on the magnitude of genetic contributions to specific ASD behaviors. Using behavioral/trait severity scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument, we compared the phenotypic profiles of mono- and dizygotic twins where both co-twins were diagnosed with ASD or only one twin had a diagnosis. The trait distribution profiles across the respective twin populations were first used for quantitative trait association analyses using publicly available genome-wide genotyping data. Trait-associated single nucleotide polymorphisms (SNPs) were then used for case-control association analyses, in which cases were defined as individuals in the lowest (Q1) and highest (Q4) quartiles of the severity distribution curves for each trait. While all of the ASD-diagnosed twins exhibited similar trait severity profiles, the non-autistic dizygotic twins exhibited significantly lower ADI-R item scores than the non-autistic monozygotic twins. Case-control association analyses of twins stratified by trait severity revealed statistically significant SNPs with odds ratios that clearly distinguished individuals in Q4 from those in Q1. While the level of shared genomic variation is a strong determinant of the severity of autistic traits in the discordant non-autistic twins, the similarity of trait profiles in the concordantly autistic dizygotic twins also suggests a role for environmental influences. Stratification of cases by trait severity resulted in the identification of statistically significant SNPs located near genes over-represented within autism gene datasets.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| | - Christine A Devlin
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jessica J Debski
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
32
|
Wang SH, Hsiao PC, Yeh LL, Liu CM, Liu CC, Hwang TJ, Hsieh MH, Chien YL, Lin YT, Huang YT, Chen CY, Chandler SD, Faraone SV, Neale B, Glatt SJ, Tsuang MT, Hwu HG, Chen WJ. Advanced Paternal Age and Early Onset of Schizophrenia in Sporadic Cases: Not Confounded by Parental Polygenic Risk for Schizophrenia. Biol Psychiatry 2019; 86:56-64. [PMID: 30926130 DOI: 10.1016/j.biopsych.2019.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Whether paternal age effect on schizophrenia is a causation or just an association due to confounding by selection into late parenthood is still debated. We investigated the association between paternal age and early onset of schizophrenia in offspring, controlling for both paternal and maternal predisposition to schizophrenia as empirically estimated using polygenic risk score (PRS) derived from the Psychiatric Genomics Consortium. METHODS Among 2923 sporadic schizophrenia cases selected from the Schizophrenia Trio Genomic Research in Taiwan project, 1649 had parents' genotyping data. The relationships of paternal schizophrenia PRS to paternal age at first birth (AFB) and of maternal schizophrenia PRS to maternal AFB were examined. A logistic regression model of patients' early onset of schizophrenia (≤18 years old) on paternal age was conducted. RESULTS Advanced paternal age over 20 years exhibited a trend of an increasing proportion of early onset of schizophrenia (odds ratio per 10-year increase in paternal age = 1.28, p = .007) after adjusting for maternal age, sex, and age. Older paternal AFB also exhibited an increasing trend of paternal schizophrenia PRS. Additionally, a U-shaped relationship between maternal AFB and maternal schizophrenia PRS was observed. After adjusting for both paternal and maternal schizophrenia PRS, the association of paternal age with patients' early onset of schizophrenia remained (odds ratio = 1.29, p = .04). CONCLUSIONS The association between paternal age and early onset of schizophrenia was not confounded by parental PRS for schizophrenia, which partially captures parental genetic vulnerability to schizophrenia. Our findings support an independent role of paternal age per se in increased risk of early onset of schizophrenia in offspring.
Collapse
Affiliation(s)
- Shi-Heng Wang
- Departments of Public Health and Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Po-Chang Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan
| | - Ling-Ling Yeh
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Yen Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sharon D Chandler
- Center for Behavioral Genomics, Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Stephen V Faraone
- Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Medical Genetics Research Center, State University of New York Upstate Medical University, Syracuse, New York
| | - Benjamin Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stephen J Glatt
- Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Medical Genetics Research Center, State University of New York Upstate Medical University, Syracuse, New York
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Hai-Gwo Hwu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Institute of Brain and Mind Sciences, College of Medicine, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan; Department of Public Health, College of Public Health, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Janecka M, Hansen SN, Modabbernia A, Browne HA, Buxbaum JD, Schendel DE, Reichenberg A, Parner ET, Grice DE. Parental Age and Differential Estimates of Risk for Neuropsychiatric Disorders: Findings From the Danish Birth Cohort. J Am Acad Child Adolesc Psychiatry 2019; 58:618-627. [PMID: 30825496 PMCID: PMC10790681 DOI: 10.1016/j.jaac.2018.09.447] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Parental age at birth has been shown to affect the rates of a range of neurodevelopmental disorders, but the understanding of the mechanisms through which it mediates different outcomes is still lacking. A population-based cohort was used to assess differential effects of parental age on estimates of risk across pediatric-onset neuropsychiatric disorders: autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and Tourette's disorder/chronic tic disorder (TD/CT). METHOD The study cohort included all singleton births in Denmark from 1980 through 2007 with full information on parental ages (N = 1,490,745) and was followed through December 31, 2013. Cases of ASD, ADHD, OCD, and TD/CT were identified in the Danish Psychiatric Central Register and the National Patient Register. Associations with parental age were modeled using a stratified Cox regression, allowing for changes in baseline diagnostic rates across time. RESULTS Younger parental age was significantly associated with increased estimates of risk for ADHD and TD/CT, whereas older parental age was associated with ASD and OCD. Except for OCD, no evidence for differential effects of parental ages on male versus female offspring was observed. CONCLUSION This study provides novel evidence for the association between age at parenthood and TD/CT and OCD and for the first time shows in a population-based sample that parental age confers differential risk rates for pediatric-onset psychiatric disorders. These results are consistent with a model of shared and unshared risk architecture for pediatric-onset neuropsychiatric conditions, highlighting unique contributions of maternal and paternal ages.
Collapse
Affiliation(s)
- Magdalena Janecka
- Icahn School of Medicine at Mount Sinai, New York, NY; Seaver Autism Center for Research and Treatment
| | | | | | - Heidi A Browne
- Icahn School of Medicine at Mount Sinai, New York, NY; Icahn School of Medicine at Mount Sinai, Division of Tics, OCD, and Related Disorders
| | - Joseph D Buxbaum
- Icahn School of Medicine at Mount Sinai, New York, NY; Seaver Autism Center for Research and Treatment; Friedman Brain Institute and Mindich Child Health and Development Institute
| | - Diana E Schendel
- Section for Epidemiology, the National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus
| | - Abraham Reichenberg
- Icahn School of Medicine at Mount Sinai, New York, NY; Seaver Autism Center for Research and Treatment; Friedman Brain Institute and Mindich Child Health and Development Institute; Institute for Translational Epidemiology
| | | | - Dorothy E Grice
- Icahn School of Medicine at Mount Sinai, New York, NY; Icahn School of Medicine at Mount Sinai, Division of Tics, OCD, and Related Disorders; Friedman Brain Institute and Mindich Child Health and Development Institute.
| |
Collapse
|
34
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
35
|
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76:1275-1297. [PMID: 30570672 PMCID: PMC6420889 DOI: 10.1007/s00018-018-2988-4] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition of heterogeneous etiology. While it is widely recognized that genetic and environmental factors and their interactions contribute to autism phenotypes, their precise causal mechanisms remain poorly understood. This article reviews our current understanding of environmental risk factors of ASD and their presumed adverse physiological mechanisms. It comprehensively maps the significance of parental age, teratogenic compounds, perinatal risks, medication, smoking and alcohol use, nutrition, vaccination, toxic exposures, as well as the role of extreme psychosocial factors. Further, we consider the role of potential protective factors such as folate and fatty acid intake. Evidence indicates an increased offspring vulnerability to ASD through advanced maternal and paternal age, valproate intake, toxic chemical exposure, maternal diabetes, enhanced steroidogenic activity, immune activation, and possibly altered zinc-copper cycles and treatment with selective serotonin reuptake inhibitors. Epidemiological studies demonstrate no evidence for vaccination posing an autism risk. It is concluded that future research needs to consider categorical autism, broader autism phenotypes, as well as autistic traits, and examine more homogenous autism variants by subgroup stratification. Our understanding of autism etiology could be advanced by research aimed at disentangling the causal and non-causal environmental effects, both founding and moderating, and gene-environment interplay using twin studies, longitudinal and experimental designs. The specificity of many environmental risks for ASD remains unknown and control of multiple confounders has been limited. Further understanding of the critical windows of neurodevelopmental vulnerability and investigating the fit of multiple hit and cumulative risk models are likely promising approaches in enhancing the understanding of role of environmental factors in the etiology of ASD.
Collapse
Affiliation(s)
- Sven Bölte
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden.
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia.
| | - Sonya Girdler
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Peter B Marschik
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- iDN-interdisciplinary Developmental Neuroscience, Department of Phoniatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Simard M, Laprise C, Girard SL. Impact of Paternal Age at Conception on Human Health. Clin Chem 2019; 65:146-152. [DOI: 10.1373/clinchem.2018.294421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Abstract
BACKGROUND
The effect of maternal age at conception on various aspects of offspring health is well documented and often discussed. We seldom hear about the paternal age effect on offspring health, although the link is now almost as solid as with maternal age. The causes behind this, however, are drastically different between males and females.
CONTENT
In this review article, we will first examine documented physiological changes linked to paternal age effect. We will start with all morphological aspects of the testis that have been shown to be altered with aging. We will then move on to all the parameters of spermatogenesis that are linked with paternal age at conception. The biggest part of this review will focus on genetic changes associated with paternal age effects. Several studies that have established a strong link between paternal age at conception and the rate of de novo mutations will be reviewed. We will next discuss paternal age effects associated with telomere length and try to better understand the seemingly contradictory results. Finally, severe diseases that affect brain functions and normal development have been associated with older paternal age at conception. In this context, we will discuss the cases of autism spectrum disorder and schizophrenia, as well as several childhood cancers.
SUMMARY
In many Western civilizations, the age at which parents have their first child has increased substantially in recent decades. It is important to summarize major health issues associated with an increased paternal age at conception to better model public health systems.
Collapse
Affiliation(s)
- Mathieu Simard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Catherine Laprise
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Simon L Girard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| |
Collapse
|
37
|
Investigation of Circulating Serum MicroRNA-328-3p and MicroRNA-3135a Expression as Promising Novel Biomarkers for Autism Spectrum Disorder. Balkan J Med Genet 2018; 21:5-12. [PMID: 30984518 PMCID: PMC6454235 DOI: 10.2478/bjmg-2018-0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as promising diagnostic biomarkers for autism spectrum disorder (ASD), but their usefulness for detecting ASD remains unclear. Nowadays, development of promising biomarkers for ASD remains a challenge. Recently, dysregulation of the miRNAs expression in postmortem brain tissue, serum and peripheral blood, have been associated with ASD. Circulating miRNAs are known to be secreted by a number of different cells and can interpose delivery of information into receiver cells, thus affecting their functions. Based on this fact, it is supposed that serum miRNAs could be a novel class of biomarkers for prognosis or diagnosis of pathological disorders including ASD. In the current research, we investigated whether the expression patterns of circulating miRNAs showed dysregulation in subjects diagnosed with ASD. Expression levels of serum miR-328-3p and miR-3135a were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method of subjects diagnosed with ASD in comparison with healthy control subjects. Our data showed that miR-328-3p and miR-3135a were substantially down-regulated in ASD patients than in those of healthy control subjects. Moreover, target gene analysis of altered serum miRNAs displayed that these molecules targeted 162 genes denoted as unique validated targets in the miRWalk database, 71 of which appear to participate in biological pathways involved in synaptic pathways and neurodegenerative condition such as Alzheimer, Huntington and Parkinson diseases. Finally, the results strongly suggested that dys-regulated serum miRNAs might be involved in molecular pathways associated with ASD and miR-328-3p and miR-3135a have the potential to be promising novel biomarkers for ASD.
Collapse
|
38
|
Oldereid NB, Wennerholm UB, Pinborg A, Loft A, Laivuori H, Petzold M, Romundstad LB, Söderström-Anttila V, Bergh C. The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis. Hum Reprod Update 2018; 24:320-389. [PMID: 29471389 DOI: 10.1093/humupd/dmy005] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal factors, including increasing childbearing age and various life-style factors, are associated with poorer short- and long-term outcomes for children, whereas knowledge of paternal parameters is limited. Recently, increasing paternal age has been associated with adverse obstetric outcomes, birth defects, autism spectrum disorders and schizophrenia in children. OBJECTIVE AND RATIONALE The aim of this systematic review is to describe the influence of paternal factors on adverse short- and long-term child outcomes. SEARCH METHODS PubMed, Embase and Cochrane databases up to January 2017 were searched. Paternal factors examined included paternal age and life-style factors such as body mass index (BMI), adiposity and cigarette smoking. The outcome variables assessed were short-term outcomes such as preterm birth, low birth weight, small for gestational age (SGA), stillbirth, birth defects and chromosomal anomalies. Long-term outcome variables included mortality, cancers, psychiatric diseases/disorders and metabolic diseases. The systematic review follows PRISMA guidelines. Relevant meta-analyses were performed. OUTCOMES The search included 14 371 articles out of which 238 met the inclusion criteria, and 81 were included in quantitative synthesis (meta-analyses). Paternal age and paternal life-style factors have an association with adverse outcome in offspring. This is particularly evident for psychiatric disorders such as autism, autism spectrum disorders and schizophrenia, but an association is also found with stillbirth, any birth defects, orofacial clefts and trisomy 21. Paternal height, but not BMI, is associated with birth weight in offspring while paternal BMI is associated with BMI, weight and/or body fat in childhood. Paternal smoking is found to be associated with an increase in SGA, birth defects such as congenital heart defects, and orofacial clefts, cancers, brain tumours and acute lymphoblastic leukaemia. These associations are significant although moderate in size, with most pooled estimates between 1.05 and 1.5, and none exceeding 2.0. WIDER IMPLICATIONS Although the increased risks of adverse outcome in offspring associated with paternal factors and identified in this report represent serious health effects, the magnitude of these effects seems modest.
Collapse
Affiliation(s)
- Nan B Oldereid
- Livio IVF-klinikken Oslo, Sørkedalsveien 10A, 0369 Oslo, Norway
| | - Ulla-Britt Wennerholm
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sahlgrenska University Hospital East, SE 416 85 Gothenburg, Sweden
| | - Anja Pinborg
- Department of Obstetrics and Gynecology, Hvidovre Hospital, Institute of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Loft
- Fertility Clinic, Section 4071, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Hannele Laivuori
- Department of Obstetrics and Gynecology, Tampere University Hospital, Teiskontie 35, FI-33521 Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Tukhomankatu 8, FI-00290 Helsinki, Finland
| | - Max Petzold
- Swedish National Data Service and Health Metrics Unit, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Liv Bente Romundstad
- Spiren Fertility Clinic, Norwegian University of Science and Technology, Trondheim NO-7010, Norway.,Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Christina Bergh
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Reproductive Medicine, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
39
|
Jenkins TG, Aston KI, Cairns B, Smith A, Carrell DT. Paternal germ line aging: DNA methylation age prediction from human sperm. BMC Genomics 2018; 19:763. [PMID: 30348084 PMCID: PMC6198359 DOI: 10.1186/s12864-018-5153-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background The relationship between aging and epigenetic profiles has been highlighted in many recent studies. Models using somatic cell methylomes to predict age have been successfully constructed. However, gamete aging is quite distinct and as such age prediction using sperm methylomes is ineffective with current techniques. Results We have produced a model that utilizes human sperm DNA methylation signatures to predict chronological age by utilizing methylation array data from a total of 329 samples. The dataset used for model construction includes infertile patients, sperm donors, and individuals from the general population. Our model is capable predicting age with an R2 of 0.89, a mean absolute error (MAE) of 2.04 years, and a mean absolute percent error (MAPE) of 6.28% in our data set. We additionally investigated the reproducibility of prediction with our model in an independent cohort where 6 technical replicates of 10 individual samples were tested on different arrays. We found very similar age prediction accuracy (MAE = 2.37 years; MAPE = 7.05%) with a high degree of precision between replicates (standard deviation of only 0.877 years). Additionally, we found that smokers trended toward increased age profiles when compared to ‘never smokers’ though this pattern was only striking in a portion of the samples screened. Conclusions The predictive model described herein was built to offer researchers the ability to assess “germ line age” by accessing sperm DNA methylation signatures at genomic regions affected by age. Our data suggest that this model can predict an individual’s chronological age with a high degree of accuracy regardless of fertility status and with a high degree of repeatability. Additionally, our data suggest that the aging process in sperm may be impacted by environmental factors, though this effect appears to be quite subtle and future work is needed to establish this relationship.
Collapse
Affiliation(s)
- Timothy G Jenkins
- Andrology and IVF Laboratories, University of Utah, 675 Arapeen Dr. Suite 201, Salt Lake City, UT, 84108, USA.
| | - Kenneth I Aston
- Andrology and IVF Laboratories, University of Utah, 675 Arapeen Dr. Suite 201, Salt Lake City, UT, 84108, USA
| | | | - Andrew Smith
- University of Southern California, Los Angeles, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratories, University of Utah, 675 Arapeen Dr. Suite 201, Salt Lake City, UT, 84108, USA.,Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, USA.,Department of Genetics, University of Utah, Salt Lake City, USA
| |
Collapse
|
40
|
Ni G, Gratten J, Wray NR, Lee SH. Age at first birth in women is genetically associated with increased risk of schizophrenia. Sci Rep 2018; 8:10168. [PMID: 29977057 PMCID: PMC6033923 DOI: 10.1038/s41598-018-28160-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
Previous studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.
Collapse
Affiliation(s)
- Guiyan Ni
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Jacob Gratten
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sang Hong Lee
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia.
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
41
|
Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. Transl Androl Urol 2018; 7:S328-S335. [PMID: 30159239 PMCID: PMC6087840 DOI: 10.21037/tau.2018.06.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023] Open
Abstract
Advanced paternal age has very real consequences in fertility, embryogenesis, and even offspring health. Specifically, advanced paternal age has been linked to delayed time to pregnancy and in some studies even appears to be linked to a decreased likelihood of achieving a pregnancy. Epidemiological and animal model evidence also suggests that the offspring of older fathers are at an elevated risk for neuropsychiatric disease. For these reasons it is essential that we have a comprehensive understanding of what actually occurs in the gametes of the aging male. Available data suggest that there are very clear patterns of aging in the sperm epigenome that can be directly detected in DNA methylation patterns. Importantly, these alterations are so consistent that a predictive model has been successfully generated to predict an individual's age based only on sperm DNA methylation signatures. Because this metric is the most direct way to detect aging in sperm, it is logical that these signatures may offer predictive value for the offspring abnormalities that are also correlated with advanced paternal age and as such may offer a unique opportunity to generate diagnostic tools that can identify personalized risks for each couple hoping to achieve a pregnancy. While a great deal of work still needs to be performed to understand the real diagnostic utility of sperm epigenetic marks, the potential is real and warrants further investigation particularly in the context of advanced paternal age.
Collapse
Affiliation(s)
- Timothy G. Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
Niiranen TJ, McCabe EL, Larson MG, Henglin M, Lakdawala NK, Vasan RS, Cheng S. Risk for hypertension crosses generations in the community: a multi-generational cohort study. Eur Heart J 2018; 38:2300-2308. [PMID: 28430902 DOI: 10.1093/eurheartj/ehx134] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/28/2017] [Indexed: 01/02/2023] Open
Abstract
Aims Parental hypertension is known to predict high blood pressure (BP) in children. However, the extent to which risk for hypertension is conferred across multiple generations, notwithstanding the impact of environmental factors, is unclear. Our objective was therefore to evaluate the degree to which risk for hypertension extends across multiple generations of individuals in the community. Methods and results We studied three generations of Framingham Heart Study participants with standardized blood pressure measurements performed at serial examinations spanning 5 decades (1948 through 2005): First Generation (n = 1809), Second Generation (n = 2631), and Third Generation (n = 3608, mean age 39 years, 53% women). To capture a more precise estimate of conferrable risk, we defined early-onset hypertension (age <55 years) as the primary exposure. In multinomial logistic regression models adjusting for standard risk factors as well as physical activity and daily intake of dietary sodium, risk for hypertension in the Third Generation was conferred simultaneously by presence of early-onset hypertension in parents [OR 2.10 (95% CI, 1.66-2.67), P < 0.001] as well as in grandparents [OR 1.33 (95% CI, 1.12-1.58), P < 0.01]. Conclusion Early-onset hypertension in grandparents raises the risk for hypertension in grandchildren, even after adjusting for early-onset hypertension in parents and lifestyle factors. These results suggest that a substantial familial predisposition for hypertension exists, and this predisposition is not identical when assessed from one generation to the next. Additional studies are needed to elucidate the mechanisms underlying transgenerational risk for hypertension and its clinical implications.
Collapse
Affiliation(s)
- Teemu J Niiranen
- Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland.,National Heart, Blood and Lung Institute's and Boston University's Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA 01702, USA
| | - Elizabeth L McCabe
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, USA
| | - Martin G Larson
- National Heart, Blood and Lung Institute's and Boston University's Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA 01702, USA.,Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, USA
| | - Mir Henglin
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Neal K Lakdawala
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- National Heart, Blood and Lung Institute's and Boston University's Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA 01702, USA.,Section of Preventive Medicine, Department of Medicine, Boston University School of Medicine, 801 Massachusetts Avenue, Boston, MA 02118, USA.,Section of Cardiology, Department of Medicine, Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118, USA.,Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
| | - Susan Cheng
- National Heart, Blood and Lung Institute's and Boston University's Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA 01702, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
43
|
Ali A, Cui X, Eyles D. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms. J Steroid Biochem Mol Biol 2018; 175:108-118. [PMID: 28027915 DOI: 10.1016/j.jsbmb.2016.12.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Autism is a neurodevelopmental disease that presents in early life. Despite a considerable amount of studies, the neurobiological mechanisms underlying autism remain obscure. Both genetic and environmental factors are involved in the development of autism. Vitamin D deficiency is emerging as a consistently reported risk factor in children. One reason for the prominence now being given to this risk factor is that it would appear to interact with several other epidemiological risk factors for autism. Vitamin D is an active neurosteroid and plays crucial neuroprotective roles in the developing brain. It has important roles in cell proliferation and differentiation, immunomodulation, regulation of neurotransmission and steroidogenesis. Animal studies have suggested that transient prenatal vitamin D deficiency is associated with altered brain development. Here we review the potential neurobiological mechanisms linking prenatal vitamin D deficiency and autism and also discuss what future research targets must now be addressed.
Collapse
Affiliation(s)
- Asad Ali
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia.
| |
Collapse
|
44
|
Janecka M, Haworth CM, Ronald A, Krapohl E, Happé F, Mill J, Schalkwyk LC, Fernandes C, Reichenberg A, Rijsdijk F. Paternal Age Alters Social Development in Offspring. J Am Acad Child Adolesc Psychiatry 2017; 56:383-390. [PMID: 28433087 PMCID: PMC5409803 DOI: 10.1016/j.jaac.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Advanced paternal age (APA) at conception has been linked with autism and schizophrenia in offspring, neurodevelopmental disorders that affect social functioning. The current study explored the effects of paternal age on social development in the general population. METHOD We used multilevel growth modeling to investigate APA effects on socioemotional development from early childhood until adolescence, as measured by the Strengths and Difficulties Questionnaire (SDQ) in the Twins Early Development Study (TEDS) sample. We also investigated genetic and environmental underpinnings of the paternal age effects on development, using the Additive genetics, Common environment, unique Environment (ACE) and gene-environment (GxE) models. RESULTS In the general population, both very young and advanced paternal ages were associated with altered trajectory of social development (intercept: p = .01; slope: p = .03). No other behavioral domain was affected by either young or advanced age at fatherhood, suggesting specificity of paternal age effects. Increased importance of genetic factors in social development was recorded in the offspring of older but not very young fathers, suggesting distinct underpinnings of the paternal age effects at these two extremes. CONCLUSION Our findings highlight that the APA-related deficits that lead to autism and schizophrenia are likely continuously distributed in the population.
Collapse
Affiliation(s)
- Magdalena Janecka
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York.
| | - Claire M.A. Haworth
- MRC Integrative Epidemiology Unit, School of Experimental Psychology and School of Social and Community Medicine, University of Bristol, UK
| | | | - Eva Krapohl
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Jonathan Mill
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK,University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York
| | - Frühling Rijsdijk
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| |
Collapse
|
45
|
de Kluiver H, Buizer‐Voskamp JE, Dolan CV, Boomsma DI. Paternal age and psychiatric disorders: A review. Am J Med Genet B Neuropsychiatr Genet 2017; 174:202-213. [PMID: 27770494 PMCID: PMC5412832 DOI: 10.1002/ajmg.b.32508] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
We review the hypotheses concerning the association between the paternal age at childbearing and childhood psychiatric disorders (autism spectrum- and attention deficit/hyperactive disorder) and adult disorders (schizophrenia, bipolar-, obsessive-compulsive-, and major depressive disorder) based on epidemiological studies. Several hypotheses have been proposed to explain the paternal age effect. We discuss the four main-not mutually exclusive-hypotheses. These are the de novo mutation hypothesis, the hypothesis concerning epigenetic alterations, the selection into late fatherhood hypothesis, and the environmental resource hypothesis. Advanced paternal age in relation to autism spectrum disorders and schizophrenia provided the most robust epidemiological evidence for an association, with some studies reporting a monotonic risk increase over age, and others reporting a marked increase at a given age threshold. Although there is evidence for the de novo mutation hypothesis and the selection into late fatherhood hypothesis, the mechanism(s) underlying the association between advanced paternal age and psychiatric illness in offspring remains to be further clarified. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hilde de Kluiver
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
| | | | - Conor V. Dolan
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
46
|
Janecka M, Mill J, Basson MA, Goriely A, Spiers H, Reichenberg A, Schalkwyk L, Fernandes C. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms. Transl Psychiatry 2017; 7:e1019. [PMID: 28140401 PMCID: PMC5299396 DOI: 10.1038/tp.2016.294] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- M Janecka
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Mill
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - M A Basson
- Department of Craniofacial and Stem Cell Biology, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - A Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - H Spiers
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - A Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, UK
| | - C Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
47
|
Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand 2017; 135:29-41. [PMID: 27858958 DOI: 10.1111/acps.12666] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Advanced parental age has raised additional concern as a risk factor of autism. We conducted a meta-analysis of observational studies investigating the association between advanced parental age and risk of autism. METHOD PubMed, EMBASE, and Web of Science were searched for reports published up to November 11, 2015. Risk estimates from individual studies were pooled using random-effects models. RESULTS Twenty-seven studies were included in the meta-analysis. Compared with the reference points, the lowest parental age category was associated with a reduced risk of autism in the offspring, with adjusted odds ratios (ORs) 0.89 (95% confidence intervals [CIs] 0.75-1.06) and 0.81 (95% CI 0.73-0.89) for mother and father, respectively, and the highest parental age category was associated with an increased risk of autism in the offspring, with adjusted ORs 1.41 (95% CI 1.29-1.55) and 1.55 (95% CI 1.39-1.73) for mother and father respectively. Dose-response meta-analysis indicated that an increase of 10 years in maternal and paternal age was associated with an 18% and 21% higher risk of autism. CONCLUSION Advanced parental age was associated with an increased risk of autism in the offspring. More mechanistic studies are needed to further explain this positive association.
Collapse
Affiliation(s)
- S Wu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - F Wu
- Department of General Surgery, The 309th Hospital of PLA, Beijing, China
| | - Y Ding
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, China
| | - J Hou
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - J Bi
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Z Zhang
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
48
|
Ng M, de Montigny JG, Ofner M, Do MT. Environmental factors associated with autism spectrum disorder: a scoping review for the years 2003-2013. Health Promot Chronic Dis Prev Can 2017; 37:1-23. [PMID: 28102992 PMCID: PMC5480297 DOI: 10.24095/hpcdp.37.1.01] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
INTRODUCTION The number of children diagnosed with autism spectrum disorder (ASD) has been rapidly rising in the past decade. The etiology of this disorder, however, is largely unknown, although the environmental relative to the genetic contribution is substantial. We conducted a scoping review to comprehensively assess the current state of knowledge of the environmental factors present from preconception to early life associated with ASD, and to identify research gaps. METHODS We searched electronic databases MEDLINE, PsycINFO and ERIC for articles on potential risk factors or protective factors from the physical and social environments associated with ASD and its subclassifications published between 1 January, 2003, and 12 July, 2013. We categorized articles into broad themes: chemical, physiological, nutritional and social factors, based on environmental exposure. RESULTS We identified over 50 000 publications, but after ineligible studies were screened out, 315 articles remained. Most of these studies examined physiological factors, followed closely by chemical factors, and to a much lesser extent, nutritional and social factors, associated with ASD. Despite a vast literature and many heterogeneous studies, several risk factors emerged consistently: chemical factors such as traffic-related air pollutants; physiological factors including advanced parental age, preterm birth, low birth weight, hyperbilirubinemia and clustering of pregnancy complications; and maternal immigrant status. Despite extensive research on vaccines, findings overwhelmingly demonstrate no support for an association with ASD. CONCLUSION The lack of consistency, temporality and specificity of associations between environmental factors and ASD remains the largest barrier to establishing causal relationships. More robust research is required to resolve inconsistencies in the literature. Future research should explore underlying mechanisms of associations between the risk factors that we identified and ASD.
Collapse
Affiliation(s)
- M Ng
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - J G de Montigny
- Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada
| | - M Ofner
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - M T Do
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 2016; 7:47. [PMID: 27904735 PMCID: PMC5121959 DOI: 10.1186/s13229-016-0109-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of “control” status. Methods ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2–7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Results Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B6, riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. Conclusions The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and excitotoxic quinolinic acid, large reductions in melatonin synthesis, and gut dysbiosis. These metabolic abnormalities could underlie several comorbidities frequently associated to ASD, such as seizures, sleep disorders, and gastrointestinal symptoms, and could contribute to autism severity. Their diagnostic sensitivity, disease-specificity, and interethnic variability will merit further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Stefano Gabriele
- Unit of Child and Adolescent Neuropsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
50
|
Frans EM, Lichtenstein P, Hultman CM, Kuja-Halkola R. Age at fatherhood: heritability and associations with psychiatric disorders. Psychol Med 2016; 46:2981-2988. [PMID: 27516123 DOI: 10.1017/s0033291716001744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Advancing paternal age has been linked to psychiatric disorders. These associations might be caused by the increased number of de novo mutations transmitted to offspring of older men. It has also been suggested that the associations are confounded by a genetic liability for psychiatric disorders in parents. The aim of this study was to indirectly test the confounding hypotheses by examining if there is a genetic component to advancing paternal age and if men with a genetic liability for psychiatric disorders have children at older ages. METHOD We examined the genetic component to advancing paternal age by utilizing the twin model in a cohort of male twins (N = 14 679). We also studied ages at childbirth in men with or without schizophrenia, bipolar disorder and/or autism spectrum disorder. Ages were examined in: (1) healthy men, (2) affected men, (3) healthy men with an affected sibling, (4) men with healthy spouses, (5) men with affected spouses, and (6) men with healthy spouses with an affected sibling. RESULTS The twin analyses showed that late fatherhood is under genetic influence (heritability = 0.33). However, affected men or men with affected spouses did not have children at older ages. The same was found for healthy individuals with affected siblings. Instead, these men were generally having children at younger ages. CONCLUSION Although there is a genetic component influencing late fatherhood, our data suggest that the associations are not explained by psychiatric disorders or a genetic liability for psychiatric disorders in the parent.
Collapse
Affiliation(s)
- E M Frans
- Department of Medical Epidemiology and Biostatistics,Karolinska Institutet,Sweden
| | - P Lichtenstein
- Department of Medical Epidemiology and Biostatistics,Karolinska Institutet,Sweden
| | - C M Hultman
- Department of Medical Epidemiology and Biostatistics,Karolinska Institutet,Sweden
| | - R Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics,Karolinska Institutet,Sweden
| |
Collapse
|