1
|
Liddle PF, Sami MB. The Mechanisms of Persisting Disability in Schizophrenia: Imprecise Predictive Coding via Corticostriatothalamic-Cortical Loop Dysfunction. Biol Psychiatry 2025; 97:109-116. [PMID: 39181388 DOI: 10.1016/j.biopsych.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.
Collapse
Affiliation(s)
- Peter F Liddle
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom.
| | - Musa B Sami
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
McCutcheon RA, Cowen P, Nour MM, Pillinger T. Psychotropic Taxonomies: Constructing a Therapeutic Framework for Psychiatry. Biol Psychiatry 2024:S0006-3223(24)01812-2. [PMID: 39709070 DOI: 10.1016/j.biopsych.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Pharmacological interventions are a cornerstone of psychiatric practice. The taxonomies used to classify these interventions influence the treatment and interpretation of psychiatric symptoms. Disease-based classification systems (e.g., 'antidepressant' and 'antipsychotic') do not reflect the fact that psychotropic agents are used across diagnostic categories, nor account for the dimensional nature of both the psychopathology and biology of psychiatric illnesses. In this review we discuss the history of psychotropic drug taxonomies and their influence on both clinical practice and drug development. We frame taxonomies as existing on a spectrum, with high-level disease-based approaches at one end and target-based molecular approaches at the other. Finally, we consider how data-driven methods might address the issue of classification at an intermediate level, based around transdiagnostic neurobiological and psychopathological markers.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Philip Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation trust, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College, London
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry 2024; 29:3841-3856. [PMID: 38760501 DOI: 10.1038/s41380-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carmen F M van Hooijdonk
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle P A Bos
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands
| |
Collapse
|
4
|
Vano LJ, McCutcheon RA, Rutigliano G, Kaar SJ, Finelli V, Nordio G, Wellby G, Sedlacik J, Statton B, Rabiner EA, Ye R, Veronese M, Hopkins SC, Koblan KS, Everall IP, Howes OD. Mesostriatal Dopaminergic Circuit Dysfunction in Schizophrenia: A Multimodal Neuromelanin-Sensitive Magnetic Resonance Imaging and [ 18F]-DOPA Positron Emission Tomography Study. Biol Psychiatry 2024; 96:674-683. [PMID: 38942349 DOI: 10.1016/j.biopsych.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnetic resonance imaging contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia than in healthy control (HC) participants and whether this correlated with dopamine synthesis capacity. METHODS One hundred fifty-four participants (schizophrenia group: n = 74, HC group: n = 80) underwent NM-sensitive magnetic resonance imaging of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n = 38) also received [18F]-DOPA positron emission tomography to measure dopamine synthesis capacity (Kicer) in the SN-VTA and striatum. RESULTS SN-VTA NM-CNR was significantly higher in patients with schizophrenia than in HC participants (effect size = 0.38, p = .019). This effect was greatest for voxels in the medial and ventral SN-VTA. In patients, SN-VTA Kicer positively correlated with SN-VTA NM-CNR (r = 0.44, p = .005) and striatal Kicer (r = 0.71, p < .001). Voxelwise analysis demonstrated that SN-VTA NM-CNR was positively associated with striatal Kicer (r = 0.53, p = .005) and that this relationship seemed strongest between the ventral SN-VTA and associative striatum in schizophrenia. CONCLUSIONS Our results suggest that NM levels are higher in patients with schizophrenia than in HC individuals, particularly in midbrain regions that project to parts of the striatum that receive innervation from the limbic and association cortices. The direct relationship between measures of NM and dopamine synthesis suggests that these aspects of schizophrenia pathophysiology are linked. Our findings highlight specific mesostriatal circuits as the loci of dopamine dysfunction in schizophrenia and thus as potential therapeutic targets.
Collapse
Affiliation(s)
- Luke J Vano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stephen J Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Valeria Finelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Giovanna Nordio
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - George Wellby
- Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jan Sedlacik
- Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Mansfield Centre for Innovation - MR Facility, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom
| | - Ben Statton
- Psychiatric Imaging Group, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Mansfield Centre for Innovation - MR Facility, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom
| | - Eugenii A Rabiner
- Invicro, London, United Kingdom; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Rong Ye
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Mattia Veronese
- Department of Neuroimaging, King's College London, London, United Kingdom; Department of Information Engineering, University of Padua, Padova, Italy
| | - Seth C Hopkins
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts
| | | | - Ian P Everall
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
6
|
Sano Y, Yamamoto Y, Kubota M, Moriguchi S, Matsuoka K, Kurose S, Tagai K, Endo H, Yamagata B, Suzuki H, Tarumi R, Nomoto K, Takado Y, Kawamura K, Zhang MR, Tabuchi H, Mimura M, Uchida H, Higuchi M, Takahata K. Alterations of striatal phosphodiesterase 10 A and their association with recurrence rate in bipolar I disorder. Transl Psychiatry 2024; 14:403. [PMID: 39358334 PMCID: PMC11447081 DOI: 10.1038/s41398-024-03107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659), a radioligand that binds to PDE10A, to examine the alterations of the striatal PDE10A availability in the living brains of individuals with BD-I and their association with the clinical characteristics of BD-I. [18F]MNI-659 PET data were acquired from 25 patients with BD-I and 27 age- and sex-matched healthy controls. Patients with BD-I had significantly lower PDE10A availability than controls in the executive (F = 8.86; P = 0.005) and sensorimotor (F = 6.13; P = 0.017) subregions of the striatum. Lower PDE10A availability in the executive subregion was significantly associated with a higher frequency of mood episodes in patients with BD-I (r = -0.546; P = 0.007). This study provides the first evidence of altered PDE10A availability in patients with BD-I. Lower PDE10A availability in the executive subregion of the striatum is associated with an increased recurrence risk, suggesting that PDE10A may prevent BD-I relapse. Further studies are required to elucidate the role of PDE10A in BD-I pathophysiology and explore its potential as a treatment target.
Collapse
Affiliation(s)
- Yasunori Sano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Manabu Kubota
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hisaomi Suzuki
- National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, 578 Heta-cho, Midori, Chiba, Chiba, 266-0007, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kie Nomoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| |
Collapse
|
7
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Bharadwaj R, Nath P, Phukan JK, Deb K, Gogoi V, Bhattacharyya DK, Barah P. Integrative ceRNA network analysis identifies unique and shared molecular signatures in Bipolar Disorder and Schizophrenia. J Psychiatr Res 2024; 176:47-57. [PMID: 38843579 DOI: 10.1016/j.jpsychires.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 07/29/2024]
Abstract
Bipolar Disorder (BPD) and Schizophrenia (SCZ) are complex psychiatric disorders with shared symptomatology and genetic risk factors. Understanding the molecular mechanisms underlying these disorders is crucial for refining diagnostic criteria and guiding targeted treatments. In this study, publicly available RNA-seq data from post-mortem samples of the basal ganglia's striatum were analyzed using an integrative computational approach to identify differentially expressed (DE) transcripts associated with SCZ and BPD. The analysis aimed to reveal both shared and distinct genes and long non-coding RNAs (lncRNAs) and to construct competitive endogenous RNA (ceRNA) networks within the striatum. Furthermore, the functional implications of these identified transcripts are explored, alongside their presence in established databases such as BipEx and SCHEMA. A significant outcome of our analysis was the identification of 21 DEmRNAs and 1 DElncRNA shared between BPD and SCZ across the Caudate, Putamen, and Nucleus Accumbens. Another noteworthy finding was the identification of Hub nodes within the ceRNA networks that were linked to major psychosis. Particularly, MED19, HNRNPC, MAGED4B, KDM5A, GOLGA7, CHASERR, hsa-miR-4778-3p, hsa-miR-4739, and hsa-miR-4685-5p emerged as potential biomarkers. These findings shed light on the common and unique molecular signatures underlying BPD and SCZ, offering significant potential for the advancement of diagnostic and therapeutic strategies tailored to these psychiatric disorders.
Collapse
Affiliation(s)
- Rachayita Bharadwaj
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, 784028, Assam, India
| | - Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, 784028, Assam, India
| | - Jadab Kishore Phukan
- Department of Biochemistry, Lokopriya Gopinath Bordoloi Regional Institute of Mental Health (LGBRIMH), Sonitpur, Tezpur, 784001, Assam, India
| | - Kunal Deb
- Department of Psychiatry, Lokopriya Gopinath Bordoloi Regional Institute of Mental Health (LGBRIMH), Sonitpur, Tezpur, 784001, Assam, India
| | - Vijay Gogoi
- Department of Psychiatry, Lokopriya Gopinath Bordoloi Regional Institute of Mental Health (LGBRIMH), Sonitpur, Tezpur, 784001, Assam, India
| | - Dhruba Kumar Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Sonitpur, 784028, Assam, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, 784028, Assam, India.
| |
Collapse
|
9
|
Elmaghraby R, Pines A, Geske JR, Coombes BJ, Leung JG, Croarkin PE, Markota M, Bobo WV. Risk of Newly Diagnosed Psychotic Symptoms in Youth Receiving Medications for Attention-Deficit/Hyperactivity Disorder. JAACAP OPEN 2024; 2:135-144. [PMID: 39554204 PMCID: PMC11562438 DOI: 10.1016/j.jaacop.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 11/19/2024]
Abstract
Objective Epidemiological studies suggest that patients with attention-deficit/hyperactivity disorder (ADHD) treated with amphetamines have an increased risk of newly diagnosed psychosis. This risk in youth is poorly understood. This investigation studied the potential risk of newly diagnosed psychotic symptoms associated with exposure to 4 classes of ADHD medications. Method This retrospective study used a medical records-linkage system from a cohort of youth (age 6-18 years) with diagnosed ADHD who were prescribed amphetamines, methylphenidate, atomoxetine, or α-2 agonists. Cohort members with any diagnosis of psychosis before their first ADHD medication were excluded. The primary outcome was newly diagnosed psychotic symptoms. The risk for psychotic symptoms for each medication (vs the remaining medication classes combined) was estimated using a multivariable time-varying covariate Cox proportional hazard regression model that adjusted for sex and age at ADHD diagnosis. Results Of 5,171 youth (68.6% male), 134 (2.6 %) had newly diagnosed psychotic symptoms. Exposure to amphetamine (vs amphetamine nonexposure, hazard ratio 1.41, 95% CI 1.15-2.26) and atomoxetine (vs atomoxetine nonexposure, hazard ratio 2.01, 95% CI 1.38-2.92) was associated with increased risk of newly diagnosed psychotic symptoms. Secondary analysis showed that the frequency of newly diagnosed psychotic symptoms was higher with atomoxetine/stimulant lifetime combination therapy (12.5% with amphetamines, 7.7% with methylphenidate) than atomoxetine monotherapy (1.2%). Conclusion Risk of newly diagnosed psychotic symptoms was low. These results suggest that cumulative exposure to amphetamines or atomoxetine/stimulant lifetime combination therapy may be associated with an increased risk of newly diagnosed psychotic symptoms in youth with ADHD. Diversity & Inclusion Statement We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. We worked to ensure sex and gender balance in the recruitment of human participants. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper received support from a program designed to increase minority representation in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. While citing references scientifically relevant for this work, we also actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our reference list. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
Affiliation(s)
- Rana Elmaghraby
- Cincinnati Children’s Hospital Medical Center. Cincinnati, Ohio
| | - Andrew Pines
- Bringham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
10
|
Prodani C, Irvine EE, Sardini A, Gleneadie HJ, Dimond A, Van de Pette M, John R, Kokkinou M, Howes O, Withers DJ, Ungless MA, Merkenschlager M, Fisher AG. Protein restriction during pregnancy alters Cdkn1c silencing, dopamine circuitry and offspring behaviour without changing expression of key neuronal marker genes. Sci Rep 2024; 14:8528. [PMID: 38609446 PMCID: PMC11014953 DOI: 10.1038/s41598-024-59083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring.
Collapse
Affiliation(s)
- Chiara Prodani
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QR, UK
| | - Rosalind John
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Michelle Kokkinou
- Psychiatric Imaging Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- Metabolic Signalling Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mark A Ungless
- MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
11
|
Nkire N, Kinsella A, Russell V, Waddington JL. Duration of the psychosis prodrome and its relationship to duration of untreated psychosis across all 12 DSM-IV psychotic diagnoses: Evidence for a trans-diagnostic process associated with resilience. Eur Neuropsychopharmacol 2024; 80:5-13. [PMID: 38128335 DOI: 10.1016/j.euroneuro.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
While duration of the psychosis prodrome (DPP) attracts attention in relation to the developmental trajectory of psychotic illness and service models, fundamental issues endure in the context of dimensional-spectrum models of psychosis. Among 205 epidemiologically representative subjects in the Cavan-Monaghan First Episode Psychosis Study, DPP was systematically quantified and compared, for the first time, across all 12 DSM-IV psychotic diagnoses. DPP was also compared with duration of untreated psychosis (DUP) and each was then analysed in relation to premorbid features across three age ranges: <12, 12-15 and 16-18 years. For each diagnosis, medians for both DPP and DUP were shorter than means, indicating common right-skewed distributions. Rank orders for both DPP and DUP were longest for schizophrenia, intermediate for other schizophrenia-spectrum psychoses, psychotic depression and psychotic disorder not otherwise specified, and shortest for brief psychotic disorder, bipolar disorder and substance-induced psychotic disorder, though with overlapping right-skewed distributions. DPP was longer than DUP for all diagnoses except substance-induced psychotic disorder. Across functional psychotic diagnoses, longer DPP was predicted by higher premorbid intelligence and better premorbid adjustment during age 16-18 years. These findings indicate that, trans-diagnostically, DPP and DUP share right-skewed continuities, in accordance with a dimensional-spectrum model of psychotic illness, and may reflect a unitary process that has been dichotomized at a subjective threshold along its trajectory. Better premorbid functioning during age 16-18 years appears to confer resilience by delaying progression to overt psychotic symptoms and may constitute a particular target period for psychosocial interventions.
Collapse
Affiliation(s)
- Nnamdi Nkire
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anthony Kinsella
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vincent Russell
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; Department of Psychiatry, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Wengler K, Baker SC, Velikovskaya A, Fogelson A, Girgis RR, Reyes-Madrigal F, Lee S, de la Fuente-Sandoval C, Ojeil N, Horga G. Generalizability and Out-of-Sample Predictive Ability of Associations Between Neuromelanin-Sensitive Magnetic Resonance Imaging and Psychosis in Antipsychotic-Free Individuals. JAMA Psychiatry 2024; 81:198-208. [PMID: 37938847 PMCID: PMC10633403 DOI: 10.1001/jamapsychiatry.2023.4305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Importance The link between psychosis and dopaminergic dysfunction is established, but no generalizable biomarkers with clear potential for clinical adoption exist. Objective To replicate previous findings relating neuromelanin-sensitive magnetic resonance imaging (NM-MRI), a proxy measure of dopamine function, to psychosis severity in antipsychotic-free individuals in the psychosis spectrum and to evaluate the out-of-sample predictive ability of NM-MRI for psychosis severity. Design, Setting, and Participants This cross-sectional study recruited participants from 2019 to 2023 in the New York City area (main samples) and Mexico City area (external validation sample). The main samples consisted of 42 antipsychotic-free patients with schizophrenia, 53 antipsychotic-free individuals at clinical high risk for psychosis (CHR), and 52 matched healthy controls. An external validation sample consisted of 16 antipsychotic-naive patients with schizophrenia. Main Outcomes and Measures NM-MRI contrast within a subregion of the substantia nigra previously linked to psychosis severity (a priori psychosis region of interest [ROI]) and psychosis severity measured using the Positive and Negative Syndrome Scale (PANSS) in schizophrenia and the Structured Interview for Psychosis-Risk Syndromes (SIPS) in CHR. The cross-validated performance of linear support vector regression to predict psychosis severity across schizophrenia and CHR was assessed, and a final trained model was tested on the external validation sample. Results Of the 163 included participants, 76 (46.6%) were female, and the mean (SD) age was 29.2 (10.4) years. In the schizophrenia sample, higher PANSS positive total scores correlated with higher mean NM-MRI contrast in the psychosis ROI (t37 = 2.24, P = .03; partial r = 0.35; 95% CI, 0.05 to 0.55). In the CHR sample, no significant association was found between higher SIPS positive total score and NM-MRI contrast in the psychosis ROI (t48 = -0.55, P = .68; partial r = -0.08; 95% CI, -0.36 to 0.23). The 10-fold cross-validated prediction accuracy of psychosis severity was above chance in held-out test data (mean r = 0.305, P = .01; mean root-mean-square error [RMSE] = 1.001, P = .005). External validation prediction accuracy was also above chance (r = 0.422, P = .046; RMSE = 0.882, P = .047). Conclusions and Relevance This study provided a direct ROI-based replication of the in-sample association between NM-MRI contrast and psychosis severity in antipsychotic-free patients with schizophrenia. In turn, it failed to replicate such association in CHR individuals. Most critically, cross-validated machine-learning analyses provided a proof-of-concept demonstration that NM-MRI patterns can be used to predict psychosis severity in new data, suggesting potential for developing clinically useful tools.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Seth C. Baker
- New York State Psychiatric Institute, New York
- University at Buffalo Jacobs School of Medicine and Biological Sciences, Buffalo, New York
| | | | | | - Ragy R. Girgis
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| |
Collapse
|
13
|
Howes OD, Bukala BR, Beck K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Rev Neurol 2024; 20:22-35. [PMID: 38110704 DOI: 10.1038/s41582-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Schizophrenia is a leading cause of global disability. Current pharmacotherapy for the disease predominantly uses one mechanism - dopamine D2 receptor blockade - but often shows limited efficacy and poor tolerability. These limitations highlight the need to better understand the aetiology of the disease to aid the development of alternative therapeutic approaches. Here, we review the latest meta-analyses and other findings on the neurobiology of prodromal, first-episode and chronic schizophrenia, and the link to psychotic symptoms, focusing on imaging evidence from people with the disorder. This evidence demonstrates regionally specific neurotransmitter alterations, including higher glutamate and dopamine measures in the basal ganglia, and lower glutamate, dopamine and γ-aminobutyric acid (GABA) levels in cortical regions, particularly the frontal cortex, relative to healthy individuals. We consider how dysfunction in cortico-thalamo-striatal-midbrain circuits might alter brain information processing to underlie psychotic symptoms. Finally, we discuss the implications of these findings for developing new, mechanistically based treatments and precision medicine for psychotic symptoms, as well as negative and cognitive symptoms.
Collapse
Affiliation(s)
- Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Bernard R Bukala
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Petty A, Garcia-Hidalgo A, Halff EF, Natesan S, Withers DJ, Irvine EE, Kokkinou M, Wells LA, Bonsall DR, Tang SP, Veronese M, Howes OD. Sub-Chronic Ketamine Administration Increases Dopamine Synthesis Capacity in the Mouse Midbrain: a Preclinical In Vivo PET Study. Mol Imaging Biol 2023; 25:1054-1062. [PMID: 37872462 PMCID: PMC10728236 DOI: 10.1007/s11307-023-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity.
Collapse
Affiliation(s)
- Alice Petty
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK.
| | - Anna Garcia-Hidalgo
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Els F Halff
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dominic J Withers
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Elaine E Irvine
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Michelle Kokkinou
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | | | - Sac-Pham Tang
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Oliver D Howes
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
- H. Lundbeck A/S, St Albans, AL1 2PS, UK
| |
Collapse
|
15
|
Mizuno Y, Ashok AH, Bhat BB, Jauhar S, Howes OD. Dopamine in major depressive disorder: A systematic review and meta-analysis of in vivo imaging studies. J Psychopharmacol 2023; 37:1058-1069. [PMID: 37811803 PMCID: PMC10647912 DOI: 10.1177/02698811231200881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of global disability. Several lines of evidence implicate the dopamine system in its pathophysiology. However, the magnitude and consistency of the findings are unknown. We address this by systematically reviewing in vivo imaging evidence for dopamine measures in MDD and meta-analysing these where there are sufficient studies. METHODS Studies investigating the dopaminergic system using positron emission tomography or single photon emission computed tomography in MDD and a control group were included. Demographic, clinical and imaging measures were extracted from each study, and meta-analyses and sensitivity analyses were conducted. RESULTS We identified 43 studies including 662 patients and 801 controls. Meta-analysis of 38 studies showed no difference in mean or mean variability of striatal D2/3 receptor availability (g = 0.06, p = 0.620), or combined dopamine synthesis and release capacity (g = 0.19, p = 0.309). Dopamine transporter (DAT) availability was lower in the MDD group in studies using DAT selective tracers (g = -0.56, p = 0.006), but not when tracers with an affinity for serotonin transporters were included (g = -0.21, p = 0.420). Subgroup analysis showed greater dopamine release (g = 0.49, p = 0.030), but no difference in dopamine synthesis capacity (g = -0.21, p = 0.434) in the MDD group. Striatal D1 receptor availability was lower in patients with MDD in two studies. CONCLUSIONS The meta-analysis indicates striatal DAT availability is lower, but D2/3 receptor availability is not altered in people with MDD compared to healthy controls. There may be greater dopamine release and lower striatal D1 receptors in MDD, although further studies are warranted. We discuss factors associated with these findings, discrepancies with preclinical literature and implications for future research.
Collapse
Affiliation(s)
- Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Abhishekh Hulegar Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Sameer Jauhar
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Achtyes ED, Hopkins SC, Dedic N, Dworak H, Zeni C, Koblan K. Ulotaront: review of preliminary evidence for the efficacy and safety of a TAAR1 agonist in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1543-1556. [PMID: 37165101 PMCID: PMC10465394 DOI: 10.1007/s00406-023-01580-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/12/2023]
Abstract
Ulotaront is a trace amine-associated receptor 1 (TAAR1) agonist in Phase 3 clinical development for the treatment of schizophrenia. Ulotaront was discovered through a unique, target-agnostic approach optimized to identify drug candidates lacking D2 and 5-HT2A receptor antagonism, while demonstrating an antipsychotic-like phenotypic profile in vivo. The mechanism of action (MOA) of ulotaront is thought to be mediated by agonism at TAAR1 and serotonin 5-HT1A receptors. Ulotaront has completed two Phase 2 trials (4-week acute study and 26-week open-label extension) which led to Breakthrough Therapy Designation from the US Food and Drug Administration for the treatment of schizophrenia. In the double-blind, placebo-controlled, acute study, ulotaront was associated with significant (p < 0.001) improvement in Positive and Negative Syndrome Scale (PANSS) total score (effect size [ES]: 0.45), with improvements vs. placebo also observed across secondary endpoints. Post-hoc analyses of the acute trial revealed additional evidence to support the effect of ulotaront on negative symptoms. In the 4-week study, ulotaront was well-tolerated, with an incidence of adverse events (AEs) numerically lower compared to placebo (45.8% vs. 50.4%; with a number needed to harm [NNH] for individual ulotaront AEs all > 40). The open-label extension demonstrated further improvement across schizophrenia symptoms and confirmed the tolerability of ulotaront, with a 6-month completion rate of 67%. Based on current data, ulotaront shows potential to be a first-in-class TAAR1 agonist for the treatment of schizophrenia with a safety and efficacy profile distinct from current antipsychotics.
Collapse
Affiliation(s)
- Eric D Achtyes
- WMU Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | | | - Nina Dedic
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA
| | | | - Courtney Zeni
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA.
| | | |
Collapse
|
17
|
Nordio G, Easmin R, Giacomel A, Dipasquale O, Martins D, Williams S, Turkheimer F, Howes O, Veronese M, Jauhar S, Rogdaki M, McCutcheon R, Kaar S, Vano L, Rutigliano G, Angelescu I, Borgan F, D’Ambrosio E, Dahoun T, Kim E, Kim S, Bloomfield M, Egerton A, Demjaha A, Bonoldi I, Nosarti C, Maccabe J, McGuire P, Matthews J, Talbot PS. An automatic analysis framework for FDOPA PET neuroimaging. J Cereb Blood Flow Metab 2023; 43:1285-1300. [PMID: 37026455 PMCID: PMC10369152 DOI: 10.1177/0271678x231168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 04/08/2023]
Abstract
In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data, and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging platform was used to store the King's College London institutional brain FDOPA PET imaging archive, alongside individual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls ICC = 0.71, for the psychotic patients ICC = 0.88). From the demographic and experimental variables assessed, gender was found to most influence striatal dopamine synthesis capacity (F = 10.7, p < 0.001), with women showing greater dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility performances on a large sample size.
Collapse
Affiliation(s)
- Giovanna Nordio
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Rubaida Easmin
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
| | - and the FDOPA PET imaging working group:
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- COMPASS Pathways plc, London, UK
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Division of Psychiatry, Faculty of Brain Sciences, University College of London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosicences, King’s College London, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Luke Vano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Ilinca Angelescu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- COMPASS Pathways plc, London, UK
| | - Enrico D’Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Tarik Dahoun
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Micheal Bloomfield
- Division of Psychiatry, Faculty of Brain Sciences, University College of London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosicences, King’s College London, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - James Maccabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Chen EYH, Wong SMY, Tang EYH, Lei LKS, Suen YN, Hui CLM. Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders. Brain Sci 2023; 13:1069. [PMID: 37509001 PMCID: PMC10376952 DOI: 10.3390/brainsci13071069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Psychotic disorders are complex disorders with multiple etiologies. While increased dopamine synthesis capacity has been proposed to underlie psychotic episodes, dopamine-independent processes are also involved (less responsive to dopamine receptor-blocking medications). The underlying mechanism(s) of the reduction in antipsychotic responsiveness over time, especially after repeated relapses, remain unclear. Despite the consistent evidence of dopamine overactivity and hippocampal volume loss in schizophrenia, few accounts have been provided based on the interactive effect of dopamine on hippocampal synapse plasticity mediating autobiographical memory processes. The present hypothesis builds upon previous works showing the potential effects of dopamine overactivity on hippocampal-mediated neuroplasticity underlying autobiographical memory, alongside known patterns of autobiographical memory dysfunction in psychosis. We propose that spurious autobiographical memory of psychosis (SAMP) produced during active psychosis may be a key mechanism mediating relapses and treatment non-responsiveness. In a hyperdopaminergic state, SAMP is expected to be generated at an increased rate during active psychosis. Similar to other memories, it will undergo assimilation, accommodation, and extinction processes. However, if SAMP fails to integrate with existing memory, a discontinuity in autobiographical memory may result. Inadequate exposure to normalizing experiences and hyposalience due to overmedication or negative symptoms may also impede the resolution of SAMP. Residual SAMP is hypothesized to increase the propensity for relapse and treatment non-responsiveness. Based on recent findings on the role of dopamine in facilitating hippocampal synapse plasticity and autobiographical memory formation, the SAMP hypothesis is consistent with clinical observations of DUP effects, including the repetition of contents in psychotic relapses as well as the emergence of treatment non-responsiveness after repeated relapses. Clinical implications of the hypothesis highlight the importance of minimizing active psychosis, integrating psychosis memory, avoiding over-medication, and fostering normalizing experiences.
Collapse
Affiliation(s)
- Eric Y H Chen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Stephanie M Y Wong
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Y H Tang
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lauren K S Lei
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Nam Suen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy L M Hui
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Sigvard AK, Bojesen KB, Ambrosen KS, Nielsen MØ, Gjedde A, Tangmose K, Kumakura Y, Edden R, Fuglø D, Jensen LT, Rostrup E, Ebdrup BH, Glenthøj BY. Dopamine Synthesis Capacity and GABA and Glutamate Levels Separate Antipsychotic-Naïve Patients With First-Episode Psychosis From Healthy Control Subjects in a Multimodal Prediction Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:500-509. [PMID: 37519478 PMCID: PMC10382695 DOI: 10.1016/j.bpsgos.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Disturbances in presynaptic dopamine activity and levels of GABA (gamma-aminobutyric acid) and glutamate plus glutamine collectively may have a role in the pathophysiology of psychosis, although separately they are poor diagnostic markers. We tested whether these neurotransmitters in combination improve the distinction of antipsychotic-naïve patients with first-episode psychosis from healthy control subjects. Methods We included 23 patients (mean age 22.3 years, 9 male) and 20 control subjects (mean age 22.4 years, 8 male). We determined dopamine metabolism in the nucleus accumbens and striatum from 18F-fluorodopa (18F-FDOPA) positron emission tomography. We measured GABA levels in the anterior cingulate cortex (ACC) and glutamate plus glutamine levels in the ACC and left thalamus with 3T proton magnetic resonance spectroscopy. We used binominal logistic regression for unimodal prediction when we modeled neurotransmitters individually and for multimodal prediction when we combined the 3 neurotransmitters. We selected the best combination based on Akaike information criterion. Results Individual neurotransmitters failed to predict group. Three triple neurotransmitter combinations significantly predicted group after Benjamini-Hochberg correction. The best model (Akaike information criterion 48.5) carried 93.5% of the cumulative model weight. It reached a classification accuracy of 83.7% (p = .003) and included dopamine synthesis capacity (Ki4p) in the nucleus accumbens (p = .664), GABA levels in the ACC (p = .019), glutamate plus glutamine levels in the thalamus (p = .678), and the interaction term Ki4p × GABA (p = .016). Conclusions Our multimodal approach proved superior classification accuracy, implying that the pathophysiology of patients represents a combination of neurotransmitter disturbances rather than aberrations in a single neurotransmitter. Particularly aberrant interrelations between Ki4p in the nucleus accumbens and GABA values in the ACC appeared to contribute diagnostic information.
Collapse
Affiliation(s)
- Anne K. Sigvard
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Karen S. Ambrosen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Japan
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- FM. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Jauhar S, McCutcheon RA, Veronese M, Borgan F, Nour M, Rogdaki M, Pepper F, Stone JM, Egerton A, Vamvakas G, Turkheimer F, McGuire PK, Howes OD. The relationship between striatal dopamine and anterior cingulate glutamate in first episode psychosis changes with antipsychotic treatment. Transl Psychiatry 2023; 13:184. [PMID: 37253720 PMCID: PMC10229638 DOI: 10.1038/s41398-023-02479-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
The neuromodulator dopamine and excitatory neurotransmitter glutamate have both been implicated in the pathogenesis of psychosis, and dopamine antagonists remain the predominant treatment for psychotic disorders. To date no study has measured the effect of antipsychotics on both of these indices together, in the same population of people with psychosis. Striatal dopamine synthesis capacity (Kicer) and anterior cingulate glutamate were measured using 18F-DOPA positron emission tomography and proton magnetic resonance spectroscopy respectively, before and after at least 5 weeks' naturalistic antipsychotic treatment in people with first episode psychosis (n = 18) and matched healthy controls (n = 20). The relationship between both measures at baseline and follow-up, and the change in this relationship was analyzed using a mixed linear model. Neither anterior cingulate glutamate concentrations (p = 0.75) nor striatal Kicer (p = 0.79) showed significant change following antipsychotic treatment. The change in relationship between whole striatal Kicer and anterior cingulate glutamate, however, was statistically significant (p = 0.017). This was reflected in a significant difference in relationship between both measures for patients and controls at baseline (t = 2.1, p = 0.04), that was not present at follow-up (t = 0.06, p = 0.96). Although we did not find any effect of antipsychotic treatment on absolute measures of dopamine synthesis capacity and anterior cingulate glutamate, the relationship between anterior cingluate glutamate and striatal dopamine synthesis capacity did change, suggesting that antipsychotic treatment affects the relationship between glutamate and dopamine.
Collapse
Affiliation(s)
- Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Matthew Nour
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - James M Stone
- Department of Neuroscience and Imaging, University of Sussex, Brighton and Hove, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - George Vamvakas
- Department of Biostatistics, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- MRC London Institute of Medical Sciences, Imperial College, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
21
|
Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok AH, McCutcheon RA, Jauhar S, Bonoldi I, Gudbrandsen M, Daly E, van Amelsvoort T, Van Den Bree M, Owen MJ, Turkheimer F, Papaleo F, Howes OD. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry 2023; 28:1995-2006. [PMID: 33981004 PMCID: PMC10575769 DOI: 10.1038/s41380-021-01108-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK.
| | - Céline Devroye
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mariasole Ciampoli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Veronese
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Abhishekh H Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Marianne Van Den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| |
Collapse
|
22
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
23
|
Affiliation(s)
- Martin Harrow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas H Jobe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Liping Tong
- Advocate Aurora Health, Downers Grove, IL, USA
| |
Collapse
|
24
|
Genetic evidence for the "dopamine hypothesis of bipolar disorder". Mol Psychiatry 2023; 28:532-535. [PMID: 36198767 DOI: 10.1038/s41380-022-01808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
|
25
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
26
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
28
|
Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry 2022; 27:5144-5153. [PMID: 36071113 PMCID: PMC9772130 DOI: 10.1038/s41380-022-01740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023]
Abstract
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Collapse
|
29
|
Yatham LN, Liddle PF, Gonzalez M, Saraf G, Vafai N, Lam RW, Sossi V. A Positron Emission Tomography Study of Dopamine Transporter Density in Patients With Bipolar Disorder With Current Mania and Those With Recently Remitted Mania. JAMA Psychiatry 2022; 79:1217-1224. [PMID: 36322065 PMCID: PMC9631223 DOI: 10.1001/jamapsychiatry.2022.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
Importance Although dopamine is implicated in the pathophysiology of bipolar disorder (BD), the precise alterations in the dopaminergic system remain unknown. Objective To assess dopamine transporter (DAT) density in the striatum in patients with BD with current and recently remitted mania in comparison to healthy control individuals and its correlation with severity of manic symptoms. Design, Setting, and Participants This cross-sectional study conducted in a tertiary care referral center for mood disorders in Vancouver, British Columbia, Canada, recruited 26 patients with BD (9 with current mania; 17 with recently remitted mania) and 21 matched healthy control individuals. DAT density was measured using positron emission tomography with [11C]d-threo-methylphenidate (MP). The differences between the groups in nondisplaceable binding potential (BPND) for DAT was assessed using statistical parametric mapping. The study was conducted from November 2001 to February 2007 and the data were analyzed from November 2020 to December 2021. Main Outcomes and Measures DAT density as indexed by BPND for MP across groups; manic symptom severity as measured with the Young Mania Rating Scale (YMRS) and correlated with BPND values in patients with BD. Results Of 47 total participants (mean [SD] age, 37.8 [14.4] years), 27 (57.4%) were female; 26 individuals had BD (9 with current mania and 17 with recently remitted mania) and there were 21 healthy control individuals. MP BPND was significantly lower in patients with BD in the right putamen and nucleus accumbens (mean reduction [MR] = 22%; cluster level familywise error [FWE]-corrected P < .001) as well as left putamen and caudate (MR = 24%; cluster level FWE-corrected P < .001). The reduction in BPND was more extensive and pronounced in patients with current mania, while patients with recently remitted mania had lower BPND in the left striatum but not the right. There was a significant negative correlation between YMRS scores and MP BPND in the right striatum in patients with current mania (ρ = -0.93; 95% CI, -0.99 to -0.69; P < .001) and those with recently remitted mania (ρ = 0.64; 95% CI, -0.86 to -0.23; P = .005) but not in the left striatum in either group. Conclusions and Relevance These findings indicate that mania was associated with reduced DAT density and remitted mania was associated with DAT levels that approximated those present in individuals without BD. These results have potential implications for drug development for mania.
Collapse
Affiliation(s)
- Lakshmi N. Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter F. Liddle
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| | - Marjorie Gonzalez
- Department of Nuclear Medicine, Interior Health Authority, Kelowna, British Columbia, Canada
| | - Gayatri Saraf
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Nasim Vafai
- Positron Emission Tomography and Magnetic Resonance Imaging, David Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Raymond W. Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vesna Sossi
- Positron Emission Tomography and Magnetic Resonance Imaging, David Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Phillips ML, Narendran R. Elucidating neurobiological mechanisms of mania: Critical next steps. Eur Neuropsychopharmacol 2022; 65:1-3. [PMID: 36137409 DOI: 10.1016/j.euroneuro.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Affiliation(s)
- M L Phillips
- Department of Psychiatry, University of Pittsburgh, United States
| | - R Narendran
- Department of Psychiatry, University of Pittsburgh, United States
| |
Collapse
|
31
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
de Bartolomeis A, Ciccarelli M, Vellucci L, Fornaro M, Iasevoli F, Barone A. Update on novel antipsychotics and pharmacological strategies for treatment resistant schizophrenia. Expert Opin Pharmacother 2022; 23:2035-2052. [DOI: 10.1080/14656566.2022.2145884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Michele Fornaro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
33
|
Halff EF, Natesan S, Bonsall DR, Veronese M, Garcia-Hidalgo A, Kokkinou M, Tang SP, Riggall LJ, Gunn RN, Irvine EE, Withers DJ, Wells LA, Howes OD. Evaluation of Intraperitoneal [ 18F]-FDOPA Administration for Micro-PET Imaging in Mice and Assessment of the Effect of Subchronic Ketamine Dosing on Dopamine Synthesis Capacity. Mol Imaging 2022; 2022:4419221. [PMID: 36721730 PMCID: PMC9881672 DOI: 10.1155/2022/4419221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/08/2022] [Indexed: 02/05/2023] Open
Abstract
Positron emission tomography (PET) using the radiotracer [18F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [18F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant K i Mod of [18F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values. However, chronic intravenous catheters are technically difficult to maintain for longitudinal studies. Hence, in this study, intraperitoneal administration of [18F]-FDOPA was evaluated as a less-invasive alternative that facilitates longitudinal imaging. Our experiments comprised the following assessments: (i) comparison of [18F]-FDOPA uptake between intravenous and intraperitoneal radiotracer administration and optimisation of the time window used for extended Patlak analysis, (ii) comparison of Ki Mod in a within-subject design of both administration routes, (iii) test-retest evaluation of Ki Mod in a within-subject design of intraperitoneal radiotracer administration, and (iv) validation of Ki Mod estimates by comparing the two administration routes in a mouse model of hyperdopaminergia induced by subchronic ketamine. Our results demonstrate that intraperitoneal [18F]-FDOPA administration resulted in good brain uptake, with no significant effect of administration route on Ki Mod estimates (intraperitoneal: 0.024 ± 0.0047 min-1, intravenous: 0.022 ± 0.0041 min-1, p = 0.42) and similar coefficient of variation (intraperitoneal: 19.6%; intravenous: 18.4%). The technique had a moderate test-retest validity (intraclass correlation coefficient (ICC) = 0.52, N = 6) and thus supports longitudinal studies. Following subchronic ketamine administration, elevated K i Mod as compared to control condition was measured with a large effect size for both methods (intraperitoneal: Cohen's d = 1.3; intravenous: Cohen's d = 0.9), providing further evidence that ketamine has lasting effects on the dopamine system, which could contribute to its therapeutic actions and/or abuse liability.
Collapse
Affiliation(s)
- Els F. Halff
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Sridhar Natesan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - David R. Bonsall
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Italy
| | - Anna Garcia-Hidalgo
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Michelle Kokkinou
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sac-Pham Tang
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Laura J. Riggall
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roger N. Gunn
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Elaine E. Irvine
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Dominic J. Withers
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Lisa A. Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Oliver D. Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
- H. Lundbeck A/S, St Albans AL1 2PS, UK
| |
Collapse
|
34
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
35
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
36
|
Abstract
BACKGROUND Studies that examine course and outcome in psychosis have reported considerable heterogeneity in terms of recovery, remission, employment, symptom presentation, social outcomes, and antipsychotic medication effects. Even with demonstrated heterogeneity in course and outcome, prophylactic antipsychotic maintenance therapy remains the prominent practice, particularly in participants with schizophrenia. Lack of efficacy in maintenance antipsychotic treatment and concerns over health detriments gives cause to re-examine guidelines. METHODS This study was conducted as part of the Chicago follow-up study designed as a naturalistic prospective longitudinal research study to investigate the course, outcome, symptomatology, and effects of antipsychotic medication on recovery and rehospitalization in participants with serious mental illness disorders. A total of 139 participants with 734 observations were included in the analysis. GEE logistic models were applied to adjust for confounding factors measured at index hospitalization and follow-ups. RESULTS Our data show that the majority of participants with schizophrenia or affective psychosis experience future episodes of psychosis at some point during the 20-year follow-up. There was a significant diagnostic difference between groups showing an increase in the number of future episodes of psychosis in participants with schizophrenia. Participants with schizophrenia not on antipsychotics after the first 2 years have better outcomes than participants prescribed antipsychotics. The adjusted odds ratio of not on antipsychotic medication was 5.989 (95% CI 3.588-9.993) for recovery and 0.134 (95% CI 0.070-0.259) for rehospitalization. That is, regardless of diagnosis, after the second year, the absence of antipsychotics predicted a higher probability of recovery and lower probability of rehospitalization at subsequent follow-ups after adjusting for confounders. CONCLUSION This study reports multiple findings that bring into question the use of continuous antipsychotic medications, regardless of diagnosis. Even when the confound by indication for prescribing antipsychotic medication is controlled for, participants with schizophrenia and affective psychosis do better than their medicated cohorts, strongly confirming the importance of exposing the role of aiDSP and antipsychotic drug resistance.
Collapse
Affiliation(s)
- Martin Harrow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas H Jobe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Liping Tong
- Advocoate Aurora Health, Downers Grove, IL, USA
| |
Collapse
|
37
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Jackson TB, Bernard JA. Cerebellar and basal ganglia motor network predicts trait depression and hyperactivity. Front Behav Neurosci 2022; 16:953303. [PMID: 36187378 PMCID: PMC9523104 DOI: 10.3389/fnbeh.2022.953303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
In the human brain, the cerebellum (CB) and basal ganglia (BG) are implicated in cognition-, emotion-, and motor-related cortical processes and are highly interconnected, both to cortical regions via separate, trans-thalamic pathways and to each other via subcortical disynaptic pathways. We previously demonstrated a distinction between cognitive and motor CB-BG networks (CCBN, MCBN, respectively) as it relates to cortical network integration in healthy young adults, suggesting the subcortical networks separately support cortical networks. The CB and BG are also implicated in the pathophysiology of schizophrenia, Parkinson's, and compulsive behavior; thus, integration within subcortical CB-BG networks may be related to transdiagnostic symptomology. Here, we asked whether CCBN or MCBN integration predicted Achenbach Self-Report scores for anxiety, depression, intrusive thoughts, hyperactivity and inactivity, and cognitive performance in a community sample of young adults. We computed global efficiency for each CB-BG network and 7 canonical resting-state networks for all right-handed participants in the Human Connectome Project 1200 release with a complete set of preprocessed resting-state functional MRI data (N = 783). We used multivariate regression to control for substance abuse and age, and permutation testing with exchangeability blocks to control for family relationships. MCBN integration negatively predicted depression and hyperactivity, and positively predicted cortical network integration. CCBN integration predicted cortical network integration (except for the emotional network) and marginally predicted a positive relationship with hyperactivity, indicating a potential dichotomy between cognitive and motor CB-BG networks and hyperactivity. These results highlight the importance of CB-BG interactions as they relate to motivation and symptoms of depression.
Collapse
Affiliation(s)
- T. Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: T. Bryan Jackson
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
39
|
Kaliuzhna M, Kirschner M, Tobler PN, Kaiser S. Comparing adaptive coding of reward in bipolar I disorder and schizophrenia. Hum Brain Mapp 2022; 44:523-534. [PMID: 36111883 PMCID: PMC9842918 DOI: 10.1002/hbm.26078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Deficits in neural processing of reward have been described in both bipolar disorder (BD) and schizophrenia (SZ), but it remains unclear to what extent these deficits are caused by similar mechanisms. Efficient reward processing relies on adaptive coding which allows representing large input spans by limited neuronal encoding ranges. Deficits in adaptive coding of reward have previously been observed across the SZ spectrum and correlated with total symptom severity. In the present work, we sought to establish whether adaptive coding is similarly affected in patients with BD. Twenty-five patients with BD, 27 patients with SZ and 25 healthy controls performed a variant of the Monetary Incentive Delay task during functional magnetic resonance imaging in two reward range conditions. Adaptive coding was impaired in the posterior part of the right caudate in BD and SZ (trend level). In contrast, BD did not show impaired adaptive coding in the anterior caudate and right precentral gyrus/insula, where SZ showed deficits compared to healthy controls. BD patients show adaptive coding deficits that are similar to those observed in SZ in the right posterior caudate. Adaptive coding in BD appeared more preserved as compared to SZ participants especially in the more anterior part of the right caudate and to a lesser extent also in the right precentral gyrus. Thus, dysfunctional adaptive coding could constitute a fundamental deficit in severe mental illnesses that extends beyond the SZ spectrum.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland
| | | | - Philippe N. Tobler
- Laboratory for Social and Neural Systems Research, Department of EconomicsUniversity of ZurichZurichSwitzerland
| | - Stefan Kaiser
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland,Department of Psychiatry, Psychotherapy and PsychosomaticsPsychiatric Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
40
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
41
|
Angelescu I, Kaar SJ, Marques TR, Borgan F, Veronesse M, Sharman A, Sajjala A, Deakin B, Hutchison J, Large C, Howes OD. The effect of AUT00206, a Kv3 potassium channel modulator, on dopamine synthesis capacity and the reliability of [ 18F]-FDOPA imaging in schizophrenia. J Psychopharmacol 2022; 36:1061-1069. [PMID: 36164687 PMCID: PMC9554157 DOI: 10.1177/02698811221122031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Current treatments for schizophrenia act directly on dopamine (DA) receptors but are ineffective for many patients, highlighting the need to develop new treatment approaches. Striatal DA dysfunction, indexed using [18F]-FDOPA imaging, is linked to the pathoetiology of schizophrenia. We evaluated the effect of a novel drug, AUT00206, a Kv3.1/3.2 potassium channel modulator, on dopaminergic function in schizophrenia and its relationship with symptom change. Additionally, we investigated the test-retest reliability of [18F]-FDOPA PET in schizophrenia to determine its potential as a biomarker for drug discovery. METHODS Twenty patients with schizophrenia received symptom measures and [18F]-FDOPA PET scans, before and after being randomised to AUT00206 or placebo groups for up to 28 days treatment. RESULTS AUT00206 had no significant effect on DA synthesis capacity. However, there was a correlation between reduction in striatal dopamine synthesis capacity (indexed as Kicer) and reduction in symptoms, in the AUT00206 group (r = 0.58, p = 0.03). This was not observed in the placebo group (r = -0.15, p = 0.75), although the placebo group may have been underpowered to detect an effect. The intraclass correlation coefficients of [18F]-FDOPA indices in the placebo group ranged from 0.83 to 0.93 across striatal regions. CONCLUSIONS The relationship between reduction in DA synthesis capacity and improvement in symptoms in the AUT00206 group provides evidence for a pharmacodynamic effect of the Kv3 channel modulator. The lack of a significant overall reduction in DA synthesis capacity in the AUT00206 group could be due to variability and the low number of subjects in this study. These findings support further investigation of Kv3 channel modulators for schizophrenia treatment. [18F]-FDOPA PET imaging showed very good test-retest reliability in patients with schizophrenia.
Collapse
Affiliation(s)
- Ilinca Angelescu
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, London, UK
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tiago Reis Marques
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK
| | - Faith Borgan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronesse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Information Engineering, University of Padua, Padua, Italy
| | - Alice Sharman
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Anil Sajjala
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - John Hutchison
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Charles Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK
| |
Collapse
|
42
|
Nour MM, Liu Y, Dolan RJ. Functional neuroimaging in psychiatry and the case for failing better. Neuron 2022; 110:2524-2544. [PMID: 35981525 DOI: 10.1016/j.neuron.2022.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
Psychiatric disorders encompass complex aberrations of cognition and affect and are among the most debilitating and poorly understood of any medical condition. Current treatments rely primarily on interventions that target brain function (drugs) or learning processes (psychotherapy). A mechanistic understanding of how these interventions mediate their therapeutic effects remains elusive. From the early 1990s, non-invasive functional neuroimaging, coupled with parallel developments in the cognitive neurosciences, seemed to signal a new era of neurobiologically grounded diagnosis and treatment in psychiatry. Yet, despite three decades of intense neuroimaging research, we still lack a neurobiological account for any psychiatric condition. Likewise, functional neuroimaging plays no role in clinical decision making. Here, we offer a critical commentary on this impasse and suggest how the field might fare better and deliver impactful neurobiological insights.
Collapse
Affiliation(s)
- Matthew M Nour
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Yunzhe Liu
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
43
|
Zahid U, McCutcheon RA, Borgan F, Jauhar S, Pepper F, Nour MM, Rogdaki M, Osugo M, Murray GK, Hathway P, Murray RM, Egerton A, Howes OD. The effect of antipsychotics on glutamate levels in the anterior cingulate cortex and clinical response: A 1H-MRS study in first-episode psychosis patients. Front Psychiatry 2022; 13:967941. [PMID: 36032237 PMCID: PMC9403834 DOI: 10.3389/fpsyt.2022.967941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Glutamatergic dysfunction is implicated in the pathophysiology of schizophrenia. It is unclear whether glutamatergic dysfunction predicts response to treatment or if antipsychotic treatment influences glutamate levels. We investigated the effect of antipsychotic treatment on glutamatergic levels in the anterior cingulate cortex (ACC), and whether there is a relationship between baseline glutamatergic levels and clinical response after antipsychotic treatment in people with first episode psychosis (FEP). Materials and methods The sample comprised 25 FEP patients; 22 completed magnetic resonance spectroscopy scans at both timepoints. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Results There was no significant change in glutamate [baseline 13.23 ± 2.33; follow-up 13.89 ± 1.74; t(21) = -1.158, p = 0.260], or Glx levels [baseline 19.64 ± 3.26; follow-up 19.66 ± 2.65; t(21) = -0.034, p = 0.973]. There was no significant association between glutamate or Glx levels at baseline and the change in PANSS positive (Glu r = 0.061, p = 0.777, Glx r = -0.152, p = 0.477), negative (Glu r = 0.144, p = 0.502, Glx r = 0.052, p = 0.811), general (Glu r = 0.110, p = 0.607, Glx r = -0.212, p = 0.320), or total scores (Glu r = 0.078, p = 0.719 Glx r = -0.155, p = 0.470). Conclusion These findings indicate that treatment response is unlikely to be associated with baseline glutamatergic metabolites prior to antipsychotic treatment, and there is no major effect of antipsychotic treatment on glutamatergic metabolites in the ACC.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robert A. McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London Centre, London, United Kingdom
| | - Matthew M. Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Hathway
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- H. Lundbeck UK, Valby, Denmark
| |
Collapse
|
44
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
46
|
Connectivity Alterations in Vascular Parkinsonism: A Structural Covariance Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the structural covariance between the striatum and large-scale brain regions in patients with vascular parkinsonism (VP) compared to Parkinson’s disease (PD) and control subjects, and then explore the relationship between brain connectivity and the clinical features of our patients. Forty subjects (13 VP, 15 PD, and 12 age-and-sex-matched healthy controls) were enrolled in this study. They each underwent a careful clinical and neuropsychological evaluation, DAT-SPECT scintigraphy and 3T MRI scan. While there were no differences between PD and VP in the disease duration and severity, nor in terms of the DAT-SPECT evaluations, VP patients had a reduction in structural covariance between the bilateral corpus striatum (both putamen and caudate) and several brain regions, including the insula, thalamus, hippocampus, anterior cingulate cortex and orbito-frontal cortex compared to PD and controls. VP patients also showed lower scores on several neuropsychological tests. Interestingly, in the VP group, structural connectivity alterations were significantly related to cognitive evaluations exploring executive functions, memory, anxiety and depression. This compelling evidence suggests that structural disconnection in the basal ganglia circuits spreading in critical cortical regions may be involved in the pathophysiology of cognitive impairment in VP.
Collapse
|
47
|
Tang F, Liu H, Zhang XJ, Zheng HH, Dai YM, Zheng LY, Yang WH, Du YY, Liu J. Evidence for Dopamine Abnormalities Following Acute Methamphetamine Exposure Assessed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Front Aging Neurosci 2022; 14:865825. [PMID: 35707702 PMCID: PMC9190254 DOI: 10.3389/fnagi.2022.865825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuromelanin-sensitive magnetic resonance imaging (NM-MRI) is a newly developed MRI technique that provides a non-invasive way to indirectly measure of dopamine (DA) function. This study aimed to determine NM concentrations in brain regions following acute methamphetamine (MA) administration using NM-MRI and to explore whether NM-MRI can be used as a biomarker of DA function in non-neurodegenerative diseases.MethodsBaseline NM-MRI, T1-weighted and T2-weighted images were acquired from 27 rats before drug/placebo injection. The control group (n = 11) received acute placebo (Normal saline), while the experimental group (n = 16) received acute MA. NM-MRI scans were performed 5, 30, 60 and 90 min after injection. Regions of interest (ROIs), including the caudate putamen (CP), nucleus accumbens (NAc), hippocampus (HIP), substantia nigra (SN) and crus cerebri (CC), were manually drawn by an experienced radiologist. NM-MRI signal intensity in five brain regions at different time points (baseline and 5, 30, 60, and 90 min) were analyzed.ResultsIn both the control and experimental groups, at each time point (baseline and 5, 30, 60, and 90 min), the SN exhibited significantly higher NM-MRI signal intensity than the other brain regions (P < 0.05). In addition, acute MA administration resulted in a continuous upward trend in NM-MRI signal intensity in each brain region over time. However, there was no such trend over time in the control group. The NM-MRI signal intensity of SN in the experimental group was significantly higher at the 60 and 90 min compared with that in the control group (P values were 0.042 and 0.042 respectively). Within experimental group, the NM-MRI signal intensity of SN was significantly higher at the 60 and 90 min compared with that before MA administration (P values were 0.023 and 0.011 respectively). Increased amplitudes and rates of NM-MRI signal intensity were higher in the SN than in other brain regions after MA administration.ConclusionOur results indicated that NM was mainly deposited in the SN, and the conversion of DA to NM was most significant in the SN after acute MA exposure. Increased DA release induced by acute MA exposure may lead to increased accumulation of NM in multiple brain regions that can be revealed by NM-MRI. NM-MRI may serve as a powerful imaging tool that could have diverse research and clinical applications for detecting pathological changes in drug addiction and related non-neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Jie Zhang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Hui Zheng
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Ming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Li Yun Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Wen Han Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Yao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| |
Collapse
|
48
|
Avram M, Müller F, Rogg H, Korda A, Andreou C, Holze F, Vizeli P, Ley L, Liechti ME, Borgwardt S. Characterizing thalamocortical (dys)connectivity following d-amphetamine, LSD, and MDMA administration. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:885-894. [PMID: 35500840 DOI: 10.1016/j.bpsc.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with psychotic disorders present alterations in thalamocortical intrinsic functional connectivity (iFC) as measured by resting-state functional magnetic resonance imaging (rs-fMRI). Specifically, thalamic iFC is increased with sensorimotor cortices (hyperconnectivity) and decreased with prefrontal-limbic cortices (hypoconnectivity). Intriguingly, psychedelics such as lysergic acid diethylamide (LSD) elicit similar thalamocortical-hyperconnectivity with sensorimotor areas in healthy volunteers. It is unclear whether LSD also induces thalamocortical-hypoconnectivity with prefrontal-limbic cortices as current findings are equivocal. Notably, thalamocortical-hyperconnectivity was associated with psychotic symptoms in patients and substance-induced altered states of consciousness in healthy volunteers. Thalamocortical dysconnectivity is likely evoked by altered neurotransmission, e.g., via dopaminergic excess in psychotic disorders and serotonergic agonism in psychedelic-induced states. It is unclear whether thalamocortical dysconnectivity is also elicited by amphetamine-type substances, broadly releasing monoamines (i.e., dopamine, norepinephrine) but producing fewer perceptual effects than psychedelics. METHODS We administrated LSD, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers and investigated their effects on thalamic iFC with two brain networks (auditory-sensorimotor (ASM) and salience (SAL) - corresponding to sensorimotor and prefrontal-limbic cortices, respectively), using a double-blind, placebo-controlled, cross-over design. RESULTS All active substances elicited ASM-thalamic-hyperconnectivity compared to placebo, despite predominantly distinct pharmacological actions and subjective effects. LSD-induced effects correlated with subjective changes in perception, indicating a link between hyperconnectivity and psychedelic-type perceptual alterations. Unlike d-amphetamine and MDMA, which induced hypoconnectivity with SAL, LSD elicited hyperconnectivity. D-amphetamine and MDMA evoked similar thalamocortical dysconnectivity patterns. CONCLUSIONS Psychedelics, empathogens, and psychostimulants evoke thalamocortical-hyperconnectivity with sensorimotor areas, akin to findings in patients with psychotic disorders.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4012, Switzerland
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Christina Andreou
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|
49
|
The Kraepelian concept of schizophrenia: Dying but not yet dead. Schizophr Res 2022; 242:102-105. [PMID: 34952779 DOI: 10.1016/j.schres.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
|
50
|
Clinical correlation but no elevation of striatal dopamine synthesis capacity in two independent cohorts of medication-free individuals with schizophrenia. Mol Psychiatry 2022; 27:1241-1247. [PMID: 34789848 DOI: 10.1038/s41380-021-01337-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of dopamine systems has been considered a foundational driver of pathophysiological processes in schizophrenia, an illness characterized by diverse domains of symptomatology. Prior work observing elevated presynaptic dopamine synthesis capacity in some patient groups has not always identified consistent symptom correlates, and studies of affected individuals in medication-free states have been challenging to obtain. Here we report on two separate cohorts of individuals with schizophrenia spectrum illness who underwent blinded medication withdrawal and medication-free neuroimaging with [18F]-FDOPA PET to assess striatal dopamine synthesis capacity. Consistently in both cohorts, we found no significant differences between patient and matched, healthy comparison groups; however, we did identify and replicate robust inverse relationships between negative symptom severity and tracer-specific uptake widely throughout the striatum: [18F]-FDOPA specific uptake was lower in patients with a greater preponderance of negative symptoms. Complementary voxel-wise and region of interest analyses, both with and without partial volume correction, yielded consistent results. These data suggest that for some individuals, striatal hyperdopaminergia may not be a defining or enduring feature of primary psychotic illness. However, clinical differences across individuals may be significantly linked to variability in striatal dopaminergic tone. These findings call for further experimentation aimed at parsing the heterogeneity of dopaminergic systems function in schizophrenia.
Collapse
|