1
|
Lu Y, Han L, Wang X, Liu X, Jia X, Lan K, Gao S, Feng Z, Yu L, Yang Q, Cui N, Wei YB, Liu JJ. Association between blood mitochondrial DNA copy number and mental disorders: A bidirectional two-sample mendelian randomization study. J Affect Disord 2024; 366:370-378. [PMID: 39197553 DOI: 10.1016/j.jad.2024.08.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Mitochondria is essential for cellular energy production, oxidative stress, and apoptosis. Mitochondrial DNA (mtDNA) encodes essential proteins for mitochondrial function. Although several studies have explored the association between changes in mtDNA copy number (mtDNA-CN) and risk of mental disorders, the results remain debated. This study used a bidirectional two-sample Mendelian randomization (MR) analysis to examine the genetic causality between mtDNA-CN and mental disorders. METHODS Genome-wide association study (GWAS) data for mtDNA-CN were sourced from UK biobank, involving 383,476 European cases. GWAS data for seven mental disorders-attention deficit/hyperactivity disorder, autism spectrum disorder (ASD), schizophrenia, bipolar disorder, major depressive disorder, anxiety, and obsessive-compulsive disorder-were primarily obtained from the Psychiatric Genomics Consortium. Causal associations were assessed using inverse variance weighting, with sensitivity analyses via the weighted median and MR-Egger methods. Reverse MR considered the seven mental disorders as exposures. All analyses were replicated with additional mtDNA-CN GWAS data from 465,809 individuals in the Heart and Ageing Research in Genomic Epidemiology consortium and the UK Biobank. RESULTS Forward MR observed a 27 % decrease in the risk of ASD per standard deviation increase in genetically determined blood mtDNA-CN (OR = 0.73, 95%CI: 0.58-0.92, p = 0.002), with no causal effects on other disorders. Additionally, reverse MR did not indicate a causal association between any of the mental disorders and mtDNA-CN. Validation analyses corroborated these findings, indicating their robustness. CONCLUSIONS Our study supports the potential causal association between mtDNA-CN and the risk of ASD, suggesting that mtDNA-CN could serve as a promising biomarker for early screening of ASD.
Collapse
Affiliation(s)
- Yan'e Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Lei Han
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Xingxing Wang
- School of Nursing, Peking University, Beijing 100191, China
| | - Xiaotong Liu
- School of Nursing, Peking University, Beijing 100191, China
| | - Xinlei Jia
- School of Nursing, Peking University, Beijing 100191, China
| | - Kunyi Lan
- School of Nursing, Peking University, Beijing 100191, China
| | - Shumin Gao
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Zhendong Feng
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Lulu Yu
- Mental Health Center, the First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei Province 050031, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Naixue Cui
- School of Nursing and Rehabilitation, Shandong University, Shandong Province 250012, China
| | - Ya Bin Wei
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Jia Jia Liu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Thornton V, Chang Y, Chaloemtoem A, Anokhin AP, Bijsterbosch J, Foraker R, Hancock DB, Johnson EO, White JD, Hartz SM, Bierut LJ. Alcohol, smoking, and brain structure: common or substance specific associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24313371. [PMID: 39399056 PMCID: PMC11469368 DOI: 10.1101/2024.09.25.24313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alcohol use and smoking are common substance-use behaviors with well-established negative health effects, including decreased brain health. We examined whether alcohol use and smoking were associated with the same neuroimaging-derived brain measures. We further explored whether the effects of alcohol use and smoking on the brain were additive or interactive. We leveraged a cohort of 36,309 participants with neuroimaging data from the UK Biobank. We used linear regression to determine the association between 354 neuroimaging-derived brain measures and alcohol use defined as drinks per week, pack years of smoking, and drinks per week × pack years smoking interaction. To assess whether the brain associations with alcohol are broadly similar or different from the associations with smoking, we calculated the correlation between z-scores of association for drinks per week and pack years smoking. Results indicated overall moderate positive correlation in the associations across measures representing brain structure, magnetic susceptibility, and white matter tract microstructure, indicating greater similarity than difference in the brain measures associated with alcohol use and smoking. The only evidence of an interaction between drinks per week and pack years smoking was seen in measures representing magnetic susceptibility in subcortical structures. The effects of alcohol use and smoking on brain health appeared to be additive rather than multiplicative for all other brain measures studied. 97% (224/230) of associations with alcohol and 100% (167/167) of the associations with smoking that surpassed a p value threshold are in a direction that can be interpreted to reflect reduced brain health. Our results underscore the similarity of the adverse associations between use of these substances and neuroimaging derived brain measures.
Collapse
Affiliation(s)
- Vera Thornton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yoonhoo Chang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ariya Chaloemtoem
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janine Bijsterbosch
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randi Foraker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Sarah M. Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Wang Z, Wang S, Li H, Wang M, Zhang X, Xu J, Xu Q, Wang J. Causal effect of COVID-19 on longitudinal volumetric changes in subcortical structures: A mendelian randomization study. Heliyon 2024; 10:e37193. [PMID: 39296245 PMCID: PMC11408012 DOI: 10.1016/j.heliyon.2024.e37193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
A few observational neuroimaging investigations have reported subcortical structural changes in the individuals who recovered from the coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the causal relationships between COVID-19 and longitudinal changes of subcortical structures remain unclear. We performed two-sample Mendelian randomization (MR) analyses to estimate putative causal relationships between three COVID-19 phenotypes (susceptibility, hospitalization, and severity) and longitudinal volumetric changes of seven subcortical structures derived from MRI. Our findings demonstrated that genetic liability to SARS-CoV-2 infection had a great long-term impact on the volumetric reduction of subcortical structures, especially caudate. Our investigation may contribute in part to the understanding of the neural mechanisms underlying COVID-19-related neurological and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siqi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Haonan Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mengdong Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
4
|
Zhou D, Wang W, Gu J, Lu Q. Causal effects of sepsis on structural changes in cerebral cortex: A Mendelian randomization investigation. Medicine (Baltimore) 2024; 103:e39404. [PMID: 39252275 PMCID: PMC11383497 DOI: 10.1097/md.0000000000039404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Previous research has shown a strong correlation between sepsis and brain structure. However, whether this relationship represents a causality remains elusive. In this study, we employed Mendelian randomization (MR) to probe the associations of genetically predicted sepsis and sepsis-related death with structural changes in specific brain regions. Genome-wide association study (GWAS) data for sepsis phenotypes (sepsis and sepsis-related death) were obtained from the IEU OpenGWAS. Correspondingly, GWAS data for brain structural traits (volume of the subcortical structure, cortical thickness, and surface area) were derived from the ENIGMA consortium. Inverse variance weighted was mainly utilized to assess the causal effects, while weighted median and MR-Egger regression served as complementary methods. Sensitivity analyses were implemented with Cochran Q test, MR-Egger regression, and MR-PRESSO. In addition, a reverse MR analysis was carried out to assess the possibility of reverse causation. We identified that genetic liability to sepsis was normally significantly associated with a reduced surface area of the postcentral gyrus (β = -35.5280, SE = 13.7465, P = .0096). The genetic liability to sepsis-related death showed a suggestive positive correlation with the surface area of fusiform gyrus (β = 11.0920, SE = 3.6412, P = .0023) and posterior cingulate gyrus (β = 3.6530, SE = 1.6684, P = .0286), While it presented a suggestive negative correlation with surface area of the caudal middle frontal gyrus (β = -11.4586, SE = 5.1501, P = .0261) and frontal pole (β = -1.0024, SE = 0.4329, P = .0206). We also indicated a possible bidirectional causal association between genetic liability to sepsis-related death and the thickness of the transverse temporal gyrus. Sensitivity analyses verified the robustness of the above associations. These findings suggested that genetically determined liability to sepsis might influence the specific brain structure in a causal way, offering new perspectives to investigate the mechanism of sepsis-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dengfeng Zhou
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei Province, China
| | - Weina Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei Province, China
| | - Jiaying Gu
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei Province, China
| | - Qiaofa Lu
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Li Y, Xiang Y, Mou B, Song X. Causal influence of immune factors on the risk of diabetic retinopathy: a mendelian randomization study. Diabetol Metab Syndr 2024; 16:194. [PMID: 39135059 PMCID: PMC11318264 DOI: 10.1186/s13098-024-01441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVES Diabetic retinopathy (DR) is a prevalent microvascular complication in diabetic patients. Various mechanisms have been implicated in the pathogenesis of DR. Previous studies have observed the relationship between immune factors and DR, but the causal relationship has not been determined. METHODS We conducted a two-sample Mendelian randomization (MR) analysis of 731 immune cells and DR, using publicly available genome-wide association study (GWAS) summary statistics, to evaluate potential causal relationships between them. Four types of immune traits were included in the analysis through flow cytometry. GWAS statistics for DR were obtained from the Finngen database, which performed GWAS on 190,594 European individuals (Ncase = 14,584, Ncontrol = 176,010) to assess genetically predicted DR. The primary method used to perform causality analysis was inverse variance weighting (IVW). RESULTS Following false discovery rate (FDR) correction, 11MFI-DR, 5AC-DR, 5RC-DR, and 1MP-DR reached a significant causal association level (PFDR < 0.05). Notably, all AC traits exhibited potential associations with a decreased risk of DR(OR < 1), while a majority of MFI traits, along with the singular MP trait, exhibited potential associations with an increased risk of DR (OR > 1). The highest proportion of T-cell subsets in the final results. CONCLUSION This study elucidates that the progression of DR is intricately influenced by immune responses, thereby confirming the immunological susceptibility of DR. Our findings may offer new targets for diagnosing and treating DR, as well as aid in developing therapeutic strategies from an immunological standpoint.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Ying Xiang
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China
| | - Bo Mou
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Xiusheng Song
- Hubei Minzu University, Enshi, Hubei Province, China.
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China.
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China.
| |
Collapse
|
6
|
Zhang P, Zhang X, Gao B, Gao Y, Pan Y. The impact of metabolic syndrome on the cerebral cortex: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae342. [PMID: 39191665 DOI: 10.1093/cercor/bhae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic syndrome exhibits associations with diverse neurological disorders, and its potential influence on the cerebral cortex may be one of the many potential factors contributing to these adverse outcomes. In this study, we aimed to investigate the causal relationship between metabolic syndrome and changes in cerebral cortex structure using Mendelian randomization analysis. Genome-wide association study data for the 5 components of metabolic syndrome were obtained from individuals of European descent in the UK Biobank. Genome-wide association study data for 34 known cortical functional regions were sourced from the ENIGMA Consortium. Data on Alzheimer's disease, major depression, and anxiety disorder were obtained from the IEU Open genome-wide association study database. The causal links between metabolic syndrome elements and cerebral cortex architecture were evaluated using inverse variance weighting, Mendelian randomization-Egger, and weighted median techniques, with inverse variance weighting as the primary method. Inverse variance weighting, Mendelian randomization Egger, weighted median, simple mode, and weighted mode methods were employed to assess the relationships between metabolic syndrome and neurological diseases (Alzheimer's disease, major depression, and anxiety disorder). Outliers, heterogeneity, and pleiotropy were assessed using Cochran's Q test, MR-PRESSO, leave-one-out analysis, and funnel plots. Globally, no causal link was found between metabolic syndrome and overall cortical thickness or surface area. However, regionally, metabolic syndrome may influence the surface area of specific regions, including the caudal anterior cingulate, postcentral, posterior cingulate, rostral anterior cingulate, isthmus cingulate, superior parietal, rostral middle frontal, middle temporal, insula, pars opercularis, cuneus, and inferior temporal. It may also affect the thickness of the medial orbitofrontal, caudal middle frontal, paracentral, superior frontal, superior parietal, and supramarginal regions. These findings were nominally significant and withstood sensitivity analyses, showing no substantial heterogeneity or pleiotropy. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. This study suggests a potential association between metabolic syndrome and changes in cerebral cortex structure, which may underlie certain neurological disorders. Furthermore, we found an association between metabolic syndrome and the risk of Alzheimer's disease, major depression, and anxiety disorder. Early diagnosis of metabolic syndrome holds significance in preventing these neurological disorders.
Collapse
Affiliation(s)
- Pingxi Zhang
- College of Basic Medical Sciences, Dali University, 22 Wanhua Road, Dali 671000, Yunnan, China
| | - Xin Zhang
- College of Basic Medical Sciences, Dali University, 22 Wanhua Road, Dali 671000, Yunnan, China
| | - Bo Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, 32 Jiashibo Road, Dali 671000, Yunnan, China
| | - Yixuan Gao
- College of Basic Medical Sciences, Dali University, 22 Wanhua Road, Dali 671000, Yunnan, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, 32 Jiashibo Road, Dali 671000, Yunnan, China
| |
Collapse
|
7
|
Xu H, Zou H, Wen Q, Xing X, Xu N, Wu S. Association between endometriosis and arthritis: results from NHANES 1999-2006, genetic correlation analysis, and Mendelian randomization study. Front Immunol 2024; 15:1424648. [PMID: 39136014 PMCID: PMC11317389 DOI: 10.3389/fimmu.2024.1424648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Previous studies reported that endometriosis may have a higher risk of arthritis. However, it remains unclear whether the association between endometriosis and arthritis has genetic correlations, or the relationship is causal. Linkage Disequilibrium Score (LDSC) and Mendelian Randomization (MR) analyses use genetic variation as a natural experiment to explore genetic correlations and causal inferences from observational data, reducing unmeasured confounding factors. Method Participants (aged 20-54 years, n = 2,915) for the cross-sectional study were obtained from the National Health and Nutrition Examination Survey (NHANES). Endometriosis and arthritis were diagnosed based on self-reported by reproductive health and medical condition questionnaire. Weighted multivariable logistic regression was used to explore the relationship between endometriosis and arthritis. LDSC and MR analysis were performed using the genome-wide association study (GWAS) summary statistics to identify the causal association. Result A significant positive association between endometriosis and arthritis was found after multivariable adjustment (OR = 1.89; 95% CI: 1.33, 2.67). When exploring different types of arthritis, a positive association was revealed with rheumatoid arthritis (RA), other types of arthritis, and cases that the arthritis type were unknown, with an OR of 2.07 (95% CI: 1.03, 4.17), 2.78 (95% CI: 1.30, 5.95), and 2.06 (95% CI: 1.36, 3.11), respectively. However, genetic correlation analysis between endometriosis and RA did not reveal any significant findings (all P values > 0.05). Moreover, MR analysis also failed to identify a causal relationship between endometriosis and RA (all P values > 0.05). Conclusion Cross-sectional study identified a significant positive association between endometriosis and arthritis among US women, especially among RA, while findings based on LDSC and MR analysis did not support a genetic correlation or causal role. These findings suggest that clinicians should pay more attention to the coexistence of RA in endometriosis patients and explore the shared pathophysiological mechanisms of these two disorders, with a particular focus on extrinsic factors rather than intrinsic genetic inheritance.
Collapse
Affiliation(s)
- Huanying Xu
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Haoxi Zou
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Qidan Wen
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Xiaoyan Xing
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Ningning Xu
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Suzhen Wu
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| |
Collapse
|
8
|
Galanter M, White WL, Khalsa J, Hansen H. A scoping review of spirituality in relation to substance use disorders: Psychological, biological, and cultural issues. J Addict Dis 2024; 42:210-218. [PMID: 36772834 DOI: 10.1080/10550887.2023.2174785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Spirituality is a construct encompassing a diversity of strongly held beliefs and pursuits related to life's meaning and purpose. Empirical studies in key domains of spirituality related to substance use disorder (SUD) can be valuable in guiding research, and potentially clinical care. OBJECTIVES To conduct a scoping review of research on the psychological, biological, and cultural dimensions of spirituality and their role in relation to SUD. To identify limitations in empirical findings within these domains and identify promising areas for related research. DATA SOURCES, STUDY APPRAISAL, AND SYNTHESIS METHODS Illustrative studies available in the empirical literature are reviewed in order to characterize these three key domains. RESULTS Certain areas of importance stand out: On Psychology, attribution of SUD to a spiritual outlook; spiritual awakening; the relation of spirituality to drug craving; and spirituality in the context of psychedelic-assisted psychotherapy. On Biology, heritability of traits related to shared spiritual experience; neurophysiologic correlates of spiritually related experiences; and correlates in brain imaging; On Culture, spiritual aspects of SUD in different cultural settings; distinctions between spiritual and religious phenomena; roles that international organizations play; and context of acquiring recovery capital. The need for further research in each area is defined. CONCLUSIONS There is utility in examining the diversity of findings in the roles of psychology, biology, and culture in the SUD field. Further research, particularly applying randomization and clinical controls, would be useful in improving the effective application of the construct of spirituality in clinical care.
Collapse
Affiliation(s)
- Marc Galanter
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Jag Khalsa
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - Helena Hansen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Boer OD, El Marroun H, Muetzel RL. Adolescent substance use initiation and long-term neurobiological outcomes: insights, challenges and opportunities. Mol Psychiatry 2024; 29:2211-2222. [PMID: 38409597 DOI: 10.1038/s41380-024-02471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
The increased frequency of risk taking behavior combined with marked neuromaturation has positioned adolescence as a focal point of research into the neural causes and consequences of substance use. However, little work has provided a summary of the links between adolescent initiated substance use and longer-term brain outcomes. Here we review studies exploring the long-term effects of adolescent-initiated substance use with structural and microstructural neuroimaging. A quarter of all studies reviewed conducted repeated neuroimaging assessments. Long-term alcohol use, as well as tobacco use were consistently associated with smaller frontal cortices and altered white matter microstructure. This association was mostly observed in the ACC, insula and subcortical regions in alcohol users, and for the OFC in tobacco users. Long-term cannabis use was mostly related to altered frontal cortices and hippocampal volumes. Interestingly, cannabis users scanned more years after use initiation tended to show smaller measures of these regions, whereas those with fewer years since initiation showed larger measures. Long-term stimulant use tended to show a similar trend as cannabis in terms of years since initiation in measures of the putamen, insula and frontal cortex. Long-term opioid use was mostly associated with smaller subcortical and insular volumes. Of note, null findings were reported in all substance use categories, most often in cannabis use studies. In the context of the large variety in study designs, substance use assessment, methods, and sample characteristics, we provide recommendations on how to interpret these findings, and considerations for future studies.
Collapse
Affiliation(s)
- Olga D Boer
- Department of Psychology, Education and Child Studies - Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Psychology, Education and Child Studies - Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Shi X, Li M, Yao J, Li MD, Yang Z. Alcohol drinking, DNA methylation and psychiatric disorders: A multi-omics Mendelian randomization study to investigate causal pathways. Addiction 2024; 119:1226-1237. [PMID: 38523595 DOI: 10.1111/add.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Whether alcohol-related DNA methylation has a causal effect on psychiatric disorders has not been investigated. Furthermore, a comprehensive investigation into the causal relationship and underlying mechanisms linking alcohol consumption and psychiatric disorders has been lacking. This study aimed to evaluate the causal effect of general alcohol intake and pathological drinking behaviors on psychiatric disorders, alcohol-associated DNA methylation on gene expression and psychiatric disorders, and gene expression on psychiatric disorders. DESIGN Two-sample design Mendelian randomization (MR) analysis. Various sensitivity and validation analyses, including colocalization analysis, were conducted to test the robustness of the results. SETTING Genome-wide association study (GWAS) data mainly from GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetics of DNA Methylation Consortium (GoDMC) and Psychiatric Genomics Consortium (PGC) with European ancestry. PARTICIPANTS The GWAS summary data on general alcohol intake (drinks per week, n = 941 280), pathological drinking behaviors (including alcohol use disorder [AUD, n = 313 959] and problematic alcohol use [PAU, n = 435 563]) and psychiatric disorders (including schizophrenia, major depressive disorder and bipolar disorder, n = 51 710-500 199) were included. Alcohol-related DNA methylation CpG sites (n = 9643) and mQTL data from blood (n = 27 750) and brain (n = 1160), BrainMeta v2 and GTEx V8 eQTL summary data (n = 73-2865) were also included. MEASUREMENTS Genetic variants were selected as instrumental variables for exposures, including drinks per week, AUD, PAU, alcohol-related DNA methylation CpG sites (mQTL) and genes selected (eQTL). FINDINGS Pathological drinking behaviors were associated with an increased risk of psychiatric disorders after removing outliers or controlling for alcohol consumption. MR analysis identified 10 alcohol-related CpG sites with colocalization evidence that were causally associated with psychiatric disorders (P = 1.65 × 10-4-7.52 × 10-22). Furthermore, the expression of genes (RERE, PTK6, GATAD2B, COG8, PDF and GAS5) mapped to these CpG sites in the brain, led by the cortex, were significantly associated with psychiatric disorders (P = 1.19 × 10-2-3.51 × 10-7). CONCLUSIONS Pathological drinking behavior and alcohol-related DNA methylation appear to have a causal effect on psychiatric disorders. The expression of genes regulated by the alcohol-related DNA methylation sites may underpin this association.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Meng Li
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Yan Z, Xu Y, Li K, Liu L. Genetic correlation between smoking behavior and gastroesophageal reflux disease: insights from integrative multi-omics data. BMC Genomics 2024; 25:642. [PMID: 38937676 PMCID: PMC11212162 DOI: 10.1186/s12864-024-10536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Observational studies have preliminarily revealed an association between smoking and gastroesophageal reflux disease (GERD). However, little is known about the causal relationship and shared genetic architecture between the two. This study aims to explore their common genetic correlations by leveraging genome-wide association studies (GWAS) of smoking behavior-specifically, smoking initiation (SI), never smoking (NS), ever smoking (ES), cigarettes smoked per day (CPD), age of smoking initiation(ASI) and GERD. METHODS Firstly, we conducted global cross-trait genetic correlation analysis and heritability estimation from summary statistics (HESS) to explore the genetic correlation between smoking behavior and GERD. Then, a joint cross-trait meta-analysis was performed to identify shared "pleiotropic SNPs" between smoking behavior and GERD, followed by co-localization analysis. Additionally, multi-marker analyses using annotation (MAGMA) were employed to explore the degree of enrichment of single nucleotide polymorphism (SNP) heritability in specific tissues, and summary data-based Mendelian randomization (SMR) was further utilized to investigate potential functional genes. Finally, Mendelian randomization (MR) analysis was conducted to explore the causal relationship between the smoking behavior and GERD. RESULTS Consistent genetic correlations were observed through global and local genetic correlation analyses, wherein SI, ES, and CPD showed significantly positive genetic correlations with GERD, while NS and ASI showed significantly negative correlations. HESS analysis also identified multiple significantly associated loci between them. Furthermore, three novel "pleiotropic SNPs" (rs4382592, rs200968, rs1510719) were identified through cross-trait meta-analysis and co-localization analysis to exist between SI, NS, ES, ASI, and GERD, mapping the genes MED27, HIST1H2BO, MAML3 as new pleiotropic genes between SI, NS, ES, ASI, and GERD. Moreover, both smoking behavior and GERD were found to be co-enriched in multiple brain tissues, with GMPPB, RNF123, and RBM6 identified as potential functional genes co-enriched in Cerebellar Hemisphere, Cerebellum, Cortex/Nucleus accumbens in SI and GERD, and SUOX identified in Caudate nucleus, Cerebellum, Cortex in NS and GERD. Lastly, consistent causal relationships were found through MR analysis, indicating that SI, ES, and CPD increase the risk of GERD, while NS and higher ASI decrease the risk. CONCLUSION We identified genetic loci associated with smoking behavior and GERD, as well as brain tissue sites of shared enrichment, prioritizing three new pleiotropic genes and four new functional genes. Finally, the causal relationship between smoking behavior and GERD was demonstrated, providing insights for early prevention strategies for GERD.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Keke Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024:10.1038/s41380-024-02547-z. [PMID: 38811691 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Deiana G, He J, Cabrera-Mendoza B, Ciccocioppo R, Napolioni V, Polimanti R. Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307989. [PMID: 38854122 PMCID: PMC11160805 DOI: 10.1101/2024.05.27.24307989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3,935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N=33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho=1, p=1.01×10 -5 ). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp=0.38, p=8.9×10 -4 , rho=-0.18±0.07; inverse variance weighting, IVW beta=-0.04, 95%CI=-0.07 - -0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.
Collapse
|
14
|
Zhang X, Wang Z, Zou J, Zhang L, Ning JH, Jiang B, Liang Y, Zhang YZ. Association between physical frailty and cortical structure in middle-aged and elderly people: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1395553. [PMID: 38841102 PMCID: PMC11150765 DOI: 10.3389/fnagi.2024.1395553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Physical weakness is associated with cortical structures, but the exact causes remain to be investigated. Therefore, we utilized Mendelian randomization (MR) analysis to uncover the underlying connection between frailty and cortical structures. Methods The Genome-Wide Association Study (GWAS) on frailty pooled data from publicly available sources such as the UK Biobank and included five indicators of frailty: weakness, walking speed, weight loss, physical activity, and exhaustion. GWAS data on cerebral cortical structure were obtained from the ENIGMA consortium, and we assessed the causal relationship between hereditary frailty and cortical surface area (SA) or cortical thickness (TH). Inverse variance weighting (IVW) was used as the primary estimate, and heterogeneity and multidimensionality were monitored by MR-PRESSO to detect outliers. Additionally, MR-Egger, Cochran's Q test, and weighted median were employed. Results At the aggregate level, there was no causal relationship between frailty and cortical thickness or surface area. At the regional level, frailty was associated with the thickness of the middle temporal lobe, parahippocampus, rostral middle frontal lobe, lower parietal lobe, anterior cingulate gyrus, upper temporal lobe, lateral orbital frontal cortex, pericardial surface area, rostral middle frontal lobe, upper temporal lobe, rostral anterior cingulate gyrus, lower parietal lobe, and upper parietal lobe. These results were nominally significant, and sensitivity analyses did not detect any multidirectionality or heterogeneity, suggesting that the results of our analyses are reliable. Discussion The results of our analyses suggest a potential causal relationship between somatic weakness and multiple regions of cortical structure. However, the specific mechanisms of influence remain to be investigated. Preliminary results from our analysis suggest that the effects of physical frailty on cortical structures are influenced by various factors related to frailty exposure. This relationship has been documented, and it is therefore both feasible and meaningful to build on existing research to explore the clinical significance of the relationship.
Collapse
Affiliation(s)
- Xin Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Zhen Wang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing Zou
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Le Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing-Hua Ning
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan (Cultivation), Dali, Yunnan, China
| | - Yi Liang
- Princess Margaret Cancer Centre, TMDT-MaRS Centre, University Health Network, Toronto, ON, Canada
| | - Yu-Zhe Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
15
|
Wang Q, Song YX, Wu XD, Luo YG, Miao R, Yu XM, Guo X, Wu DZ, Bao R, Mi WD, Cao JB. Gut microbiota and cognitive performance: A bidirectional two-sample Mendelian randomization. J Affect Disord 2024; 353:38-47. [PMID: 38417715 DOI: 10.1016/j.jad.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
PURPOSE Previous studies have suggested a potential association between gut microbiota and neurological and psychiatric disorders. However, the causal relationship between gut microbiota and cognitive performance remains uncertain. METHODS A two-sample Mendelian randomization (MR) study used SNPs linked to gut microbiota (n = 18,340) and cognitive performance (n = 257,841) from recent GWAS data. Inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode were employed. Heterogeneity was assessed via Cochran's Q test for IVW. Results were shown with funnel plots. Outliers were detected through leave-one-out method. MR-PRESSO and MR-Egger intercept tests were conducted to address horizontal pleiotropy influence. LIMITATIONS Limited to European populations, generic level, and potential confounding factors. RESULTS IVW analysis revealed detrimental effects on cognitive perfmance associated with the presence of genus Blautia (P = 0.013, 0.966[0.940-0.993]), Catenibacterium (P = 0.035, 0.977[0.956-0.998]), Oxalobacter (P = 0.043, 0.979[0.960-0.999]). Roseburia (P < 0.001, 0.935[0.906-0.965]), in particular, remained strongly negatively associated with cognitive performance after Bonferroni correction. Conversely, families including Bacteroidaceae (P = 0.043, 1.040[1.001-1.081]), Rikenellaceae (P = 0.047, 1.026[1.000-1.053]), along with genera including Paraprevotella (P = 0.044, 1.020[1.001-1.039]), Ruminococcus torques group (P = 0.016, 1.062[1.011-1.115]), Bacteroides (P = 0.043, 1.040[1.001-1.081]), Dialister (P = 0.027, 1.039[1.004-1.074]), Paraprevotella (P = 0.044, 1.020[1.001-1.039]) and Ruminococcaceae UCG003 (P = 0.007, 1.040[1.011-1.070]) had a protective effect on cognitive performance. CONCLUSIONS Our results suggest that interventions targeting specific gut microbiota may offer a promising avenue for improving cognitive function in diseased populations. The practical application of these findings has the potential to enhance cognitive performance, thereby improving overall quality of life.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yu-Xiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Dong Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun-Gen Luo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Ran Miao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Meng Yu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Guo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - De-Zhen Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Bao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei-Dong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
16
|
Shetty AC, Sivinski J, Cornell J, McCracken C, Sadzewicz L, Mahurkar A, Wang XQ, Colloca L, Lin W, Pilli N, Kane MA, Seneviratne C. Peripheral blood transcriptomic profiling of molecular mechanisms commonly regulated by binge drinking and placebo effects. Sci Rep 2024; 14:10733. [PMID: 38730024 PMCID: PMC11087488 DOI: 10.1038/s41598-024-56900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular responses to alcohol consumption are dynamic, context-dependent, and arise from a complex interplay of biological and external factors. While many have studied genetic risk associated with drinking patterns, comprehensive studies identifying dynamic responses to pharmacologic and psychological/placebo effects underlying binge drinking are lacking. We investigated transcriptome-wide response to binge, medium, and placebo alcohol consumption by 17 healthy heavy social drinkers enrolled in a controlled, in-house, longitudinal study of up to 12 days. Using RNA-seq, we identified 251 and 13 differentially expressed genes (DEGs) in response to binge drinking and placebo, respectively. Eleven protein-coding DEGs had very large effect sizes in response to binge drinking (Cohen's d > 1). Furthermore, binge dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental sequences. Placebo also impacted hsa04060, but only when administered following regular alcohol drinking sessions. Similarly, medium-dose and placebo commonly impacted KEGG pathways of Systemic lupus erythematosus, Neutrophil extracellular trap formation, and Alcoholism based on the sequence of drinking sessions. These findings together indicate the "dose-extending effects" of placebo at a molecular level. Furthermore, besides supporting alcohol dose-specific molecular changes, results suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol.
Collapse
Affiliation(s)
- Amol Carl Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - John Sivinski
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jessica Cornell
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Xing-Qun Wang
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, Placebo Beyond Opinions (PBO) Center, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Chamindi Seneviratne
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Luo Q, Wang J, Ge W, Li Z, Mao Y, Wang C, Zhang L. Exploration of the potential causative genes for inflammatory bowel disease: Transcriptome-wide association analysis, Mendelian randomization analysis and Bayesian colocalisation. Heliyon 2024; 10:e28944. [PMID: 38617957 PMCID: PMC11015108 DOI: 10.1016/j.heliyon.2024.e28944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) poses a complex challenge due to its intricate underlying mechanisms, and curative treatments remain elusive. Consequently, there is an urgent need to identify genes causally associated with IBD. Methods We extracted blood eQTL data from the GTExv8.ALL.Whole_Blood database, genome-wide association studies (GWAS) summary statistics of IBD from the IEU GWAS database, and performed a three-fold analysis protocol, including transcriptome-wide association analysis, Mendelian randomisation analysis, Bayesian colocalisation, and subsequent potential therapeutic agents identification. Results We identified four pathogenic genes, namely CARD9, RTEL1, STMN3 and ARFRP1, that promote the development of IBD, encompassing both ulcerative colitis (UC) and Crohn's disease (CD). Notably, ARFRP1 exhibited the ability to suppress IBD (encompassing UC and CD) development. Regarding drug prediction, cyclophosphamide emerged as a promising novel therapeutic option for IBD, encompassing UC and CD. Conclusion We identified several potential genes related to IBD (UC and CD), including CARD9, RTEL1, STMN3 and ARFRP1, warranting further investigation in functional studies to elucidate underlying disease mechanisms. Additionally, clinical studies exploring the potential of cyclophosphamide as a treatment avenue for IBD are warranted.
Collapse
Affiliation(s)
- Qinghua Luo
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiawen Wang
- Department of Proctology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zihao Li
- Office of the President, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Yuanting Mao
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chen Wang
- Department of Proctology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leichang Zhang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China
| |
Collapse
|
18
|
Ling S, Dai Y, Weng R, Li Y, Wu W, Zhou Z, Zhong Z, Zheng Y. Epidemiologic and genetic associations of female reproductive disorders with depression or dysthymia: a Mendelian randomization study. Sci Rep 2024; 14:5984. [PMID: 38472314 DOI: 10.1038/s41598-024-55993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Observational studies have previously reported an association between depression and certain female reproductive disorders. However, the causal relationships between depression and different types of female reproductive disorders remain unclear in terms of direction and magnitude. We conducted a comprehensive investigation using a two-sample bi-directional Mendelian randomization analysis, incorporating publicly available GWAS summary statistics. Our aim was to establish a causal relationship between genetically predicted depression and the risk of various female reproductive pathological conditions, such as ovarian dysfunction, polycystic ovary syndrome(PCOS), ovarian cysts, abnormal uterine and vaginal bleeding(AUB), endometriosis, leiomyoma of the uterus, female infertility, spontaneous abortion, eclampsia, pregnancy hypertension, gestational diabetes, excessive vomiting in pregnancy, cervical cancer, and uterine/endometrial cancer. We analyzed a substantial sample size, ranging from 111,831 to 210,870 individuals, and employed robust statistical methods, including inverse variance weighted, MR-Egger, weighted median, and MR-PRESSO, to estimate causal effects. Sensitivity analyses, such as Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots, were also conducted to ensure the validity of our results. Furthermore, risk factor analyses were performed to investigate potential mediators associated with these observed relationships. Our results demonstrated that genetic predisposition to depression or dysthymia was associated with an increased risk of developing PCOS (OR = 1.43, 95% CI 1.28-1.59; P = 6.66 × 10-11), ovarian cysts (OR = 1.36, 95% CI 1.20-1.55; P = 1.57 × 10-6), AUB (OR = 1.41, 95% CI 1.20-1.66; P = 3.01 × 10-5), and endometriosis (OR = 1.43, 95% CI 1.27-1.70; P = 2.21 × 10-7) after Bonferroni correction, but no evidence for reverse causality. Our study did not find any evidence supporting a causal or reverse causal relationship between depression/dysthymia and other types of female reproductive disorders. In summary, our study provides evidence for a causal relationship between genetically predicted depression and specific types of female reproductive disorders. Our findings emphasize the importance of depression management in the prevention and treatment of female reproductive disorders, notably including PCOS, ovarian cysts, AUB, and endometriosis.
Collapse
Affiliation(s)
- Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ruoxin Weng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuan Li
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Wenbo Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
19
|
Wang X, Zhu Z, Sun J, Jia L, Cai L, Chen Q, Yang W, Wang Y, Zhang Y, Guo S, Liu W, Yang Z, Zhao P, Wang Z, Lv H. Changes in iron load in specific brain areas lead to neurodegenerative diseases of the central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110903. [PMID: 38036035 DOI: 10.1016/j.pnpbp.2023.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The causes of neurodegenerative diseases remain largely elusive, increasing their personal and societal impacts. To reveal the causal effects of iron load on Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis and multiple sclerosis, we used Mendelian randomisation and brain imaging data from a UK Biobank genome-wide association study of 39,691 brain imaging samples (predominantly of European origin). Using susceptibility-weighted images, which reflect iron load, we analysed genetically significant brain regions. Inverse variance weighting was used as the main estimate, while MR Egger and weighted median were used to detect heterogeneity and pleiotropy. Nine clear associations were obtained. For AD and PD, an increased iron load was causative: the right pallidum for AD and the right caudate, left caudate and right accumbens for PD. However, a reduced iron load was identified in the right and left caudate for multiple sclerosis, the bilateral hippocampus for mixed vascular dementia and the left thalamus and bilateral accumbens for subcortical vascular dementia. Thus, changes in iron load in different brain regions have causal effects on neurodegenerative diseases. Our results are crucial for understanding the pathogenesis and investigating the treatment of these diseases.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zaimin Zhu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, People's Republic of China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Li Jia
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Linkun Cai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China; School of Biological Science and Medical Engineering, Beihang University, No.37 XueYuan Road, Beijing 100191, People's Republic of China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yufan Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Sihui Guo
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing, People's Republic of China; Peking University Aerospace School of Clinical Medicine, Beijing 100049, People's Republic of China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| |
Collapse
|
20
|
Ge YJ, Wu BS, Zhang Y, Chen SD, Zhang YR, Kang JJ, Deng YT, Ou YN, He XY, Zhao YL, Kuo K, Ma Q, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Feng JF, Tan L, Dong Q, Schumann G, Cheng W, Yu JT. Genetic architectures of cerebral ventricles and their overlap with neuropsychiatric traits. Nat Hum Behav 2024; 8:164-180. [PMID: 37857874 DOI: 10.1038/s41562-023-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kevin Kuo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer 79 Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Wu J, Mao Z, Ren Z, Zang W, Tian H, Huang L, Liu H, Liu F, Peng L. Exploring the impact of computer game playing on cognitive function, Alzheimer's disease risk, and brain-derived neurotrophic factor levels: Basic evidence from Mendelian randomization. Digit Health 2024; 10:20552076241256519. [PMID: 38798882 PMCID: PMC11128171 DOI: 10.1177/20552076241256519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The potential positive impact of computer game playing on cognitive function and its potential role in reducing the risk of Alzheimer's disease (AD) has been suggested. However, current observational studies have certain limitations. We utilized Mendelian randomization (MR) alongside extensive genome-wide association study (GWAS) data to examine the relationship between computer game playing, cognitive function, risk of AD, and levels of brain-derived neurotrophic factor (BDNF). Methods We collected datasets on computer game playing, cognition function, risk of AD, and BDNF level from the IEU Open GWAS project. Causal effects were assessed using various MR methods, including inverse variance weighted (IVW), weighted median, MR-Egger, simple mode, and weighted mode. To ensure the accuracy of the results, sensitivity analyses were conducted. Results Our analysis revealed a significant association between computer game playing and cognitive function (β = 0.801, 95% CI: 0.351, 1.328, P = 0.001). There was no statistically significant association between computer game playing and either BDNF level or risk of AD (β = -0.112, 95%CI: -1.315, 1.091, P = 0.855; OR = 1.000, 95% CI: 1.004, 0.997, P = 0.891, respectively). We further confirmed the reliability of our evidence through the MR-Egger intercept test, MR-PRESSO global test, Cochran's Q test, and funnel plots. Conclusion The results of our study indicate that engaging in computer game playing may confer a safeguarding influence on cognitive function. This underscores the potential advantages associated with computer gaming. Nevertheless, given the constraints inherent in our research, further investigation is warranted to substantiate our findings and delve into the underlying mechanisms.
Collapse
Affiliation(s)
- Jinlong Wu
- College of Physical Education, Southwest University, Chongqing, China
| | - Zhenwei Mao
- College of Physical Education, Southwest University, Chongqing, China
| | - Zhanbing Ren
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Wanli Zang
- Postgraduate School, Harbin Sport University, Harbin, China
| | - Haodong Tian
- College of Physical Education, Southwest University, Chongqing, China
| | - Li Huang
- College of Physical Education, Southwest University, Chongqing, China
| | - Haowei Liu
- College of Physical Education, Southwest University, Chongqing, China
| | - Feiyang Liu
- College of Physical Education, Southwest University, Chongqing, China
| | - Li Peng
- College of Physical Education, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Paloczi J, Kim Y. Editorial: Biophysics approaches to investigate multi-organ alcohol-induced damage. Front Mol Biosci 2023; 10:1346518. [PMID: 38170007 PMCID: PMC10759221 DOI: 10.3389/fmolb.2023.1346518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Janos Paloczi
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Youngchan Kim
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford, United Kingdom
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- Advanced Technology Institute, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
23
|
Wang Z, Zou J, Zhang L, Ning J, Zhang X, Jiang B, Liang Y, Zhang Y. The impact of early adversity on the cerebral cortex - a Mendelian randomization study. Front Neurosci 2023; 17:1283159. [PMID: 37965215 PMCID: PMC10641447 DOI: 10.3389/fnins.2023.1283159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background The early adversity is associated with a series of negative outcomes in adulthood, and the impact on the cerebral cortex may be one of the fundamental causes of these adverse consequences in adulthood. In this study, we aim to investigate the causal relationship between early adversity and changes in cerebral cortex structure using Mendelian randomization (MR) analysis. Methods The GWAS summary statistics of 6 early adversity traits were obtained from individuals of European ancestry in the UK Biobank. The GWAS summary statistics of 34 known functional cortical regions were obtained from the ENIGMA Consortium. Causal relationships between the adversity factors and brain cortical structure were assessed using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods, with IVW being the primary evaluation method. Cochran's Q-test, MR-PRESSO, leave-one-out analysis, and funnel plot examination were employed to detect potential heterogeneity and pleiotropy, as well as to identify and exclude outliers. Results At a global level, no causal relationship was found between early adversity and cortical thickness (TH) or surface area (SA) of the brain. However, at the regional level, early adversity was found to potentially influence the TH of the caudal anterior cingulate, superior temporal, entorhinal, paracentral, lateral occipital, banks of the superior temporal sulcus, and supramarginal regions, as well as the SA of the pars triangularis, lateral occipital, parahippocampal, medial orbitofrontal, and isthmus cingulate regions. All findings were nominally significant and passed sensitivity analyses, with no significant heterogeneity or pleiotropy detected. Discussion Our study provides evidence for the association between early adversity and alterations in brain cortical structure, which may serve as a foundation for certain mental disorders. Furthermore, magnetic resonance imaging (MRI) might be considered as a promising tool to aid healthcare professionals in identifying individuals with a history of adverse experiences, allowing for early interventions.
Collapse
Affiliation(s)
- Zhen Wang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing Zou
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Le Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jinghua Ning
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Xin Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan (Cultivation), Dali, Yunnan, China
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, TMDT-MaRS Centre, Toronto, ON, Canada
| | - Yuzhe Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
24
|
Zeng Y, Guo R, Cao S, Yang H. Causal associations between blood lipids and brain structures: a Mendelian randomization study. Cereb Cortex 2023; 33:10901-10908. [PMID: 37718242 DOI: 10.1093/cercor/bhad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023] Open
Abstract
The potential causal association between dyslipidemia and brain structures remains unclear. Therefore, this study aimed to investigate whether circulating lipids are causally associated with brain structure alterations using Mendelian randomization analysis. Genome-wide association study summary statistics of blood lipids and brain structures were obtained from publicly available databases. Inverse-variance weighted method was used as the primary method to assess causality. In addition, four additional Mendelian randomization methods (MR-Egger, weighted median, simple mode, and weighted mode) were applied to supplement inverse-variance weighted. Furthermore, Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis were performed for sensitivity analyses. After Bonferroni corrections, two causal associations were finally identified: elevated non-high-density lipoprotein cholesterol level leads to higher average cortical thickness (β = 0.0066 mm, 95% confidence interval: 0.0045-0.0087 mm, P = 0.001); and elevated high-density lipoprotein cholesterol level leads to higher inferior temporal surface area (β = 18.6077 mm2, 95% confidence interval: 11.9835-25.2320 mm2, P = 0.005). Four additional Mendelian randomization methods indicated parallel results. Sensitivity tests demonstrated the stability. Overall, the present study showed causal relationships between several lipid profiles and specific brain structures, providing new insights into the link between dyslipidemia and neurological disorders.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
25
|
Gao X, Wei T, Xu S, Sun W, Zhang B, Li C, Sui R, Fei N, Li Y, Xu W, Han D. Sleep disorders causally affect the brain cortical structure: A Mendelian randomization study. Sleep Med 2023; 110:243-253. [PMID: 37657176 DOI: 10.1016/j.sleep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND s: Previous studies have reported that patients with sleep disorders have altered brain cortical structures. However, the causality has not been determined. We performed a two-sample Mendelian randomization (MR) to reveal the causal effect of sleep disorders on brain cortical structure. METHODS We included as exposures 11 phenotypes of sleep disorders including subjective and objective sleep duration, insomnia symptom and poor sleep efficiency, daytime sleepiness (narcolepsy)/napping, morning/evening preference, and four sleep breathing related traits from nine European-descent genome-wide association studies (GWASs). Further, outcome variables were provided by ENIGMA Consortium GWAS for full brain and 34 region-specific cortical thickness (TH) and surface area (SA) of grey matter. Inverse-variance weighted (IVW) was used as the primary estimate whereas alternative MR methods were implemented as sensitivity analysis approaches to ensure results robustness. RESULTS At the global level, both self-reported or accelerometer-measured shorter sleep duration decreases the thickness of full brain both derived from self-reported data (βIVW = 0.03 mm, standard error (SE) = 0.02, P = 0.038; βIVW = 0.02 mm, SE = 0.01, P = 0.010). At the functional level, there were 66 associations of suggestive evidence of causality. Notably, one robust evidence after multiple testing correction (1518 tests) suggests the without global weighted SA of superior parietal lobule was influenced significantly by sleep efficiency (βIVW = -285.28 mm2, SE = 68.59, P = 3.2 × 10-5). CONCLUSIONS We found significant evidence that shorter sleep duration, as estimated by self-reported interview and accelerometer measurements, was causally associated with atrophy in the entire human brain.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Shenglong Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Bowen Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Cancan Li
- Department of Epidemiology and Health Statistics, School of Public Halth, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yanru Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Wen Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
26
|
Baranger DAA, Paul SE, Hatoum AS, Bogdan R. Alcohol use and grey matter structure: Disentangling predispositional and causal contributions in human studies. Addict Biol 2023; 28:e13327. [PMID: 37644894 PMCID: PMC10502907 DOI: 10.1111/adb.13327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Alcohol use is a growing global health concern and economic burden. Alcohol involvement (i.e., initiation, use, problematic use, alcohol use disorder) has been reliably associated with broad spectrum grey matter differences in cross-sectional studies. These findings have been largely interpreted as reflecting alcohol-induced atrophy. However, emerging data suggest that brain structure differences also represent pre-existing vulnerability factors for alcohol involvement. Here, we review evidence from human studies with designs (i.e., family-based, genomic, longitudinal) that allow them to assess the plausibility that these correlates reflect predispositional risk factors and/or causal consequences of alcohol involvement. These studies provide convergent evidence that grey matter correlates of alcohol involvement largely reflect predisposing risk factors, with some evidence for potential alcohol-induced atrophy. These conclusions highlight the importance of study designs that can provide causal clues to cross-sectional observations. An integrative model may best account for these data, in which predisposition to alcohol use affects brain development, effects which may then be compounded by the neurotoxic consequences of heavy alcohol use.
Collapse
Affiliation(s)
- David A A Baranger
- Department of Psychiatry, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Sarah E Paul
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| | - Alexander S Hatoum
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
- Artificial Intelligence and the Internet of Things in Medicine Institute, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Shetty AC, Sivinski J, Cornell J, Sadzewicz L, Mahurkar A, Wang XQ, Colloca L, Lin W, Kane MA, Seneviratne C. Peripheral blood transcriptomic profiling indicates molecular mechanisms commonly regulated by binge-drinking and placebo-effects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287501. [PMID: 36993621 PMCID: PMC10055573 DOI: 10.1101/2023.03.21.23287501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Molecular changes associated with alcohol consumption arise from complex interactions between pharmacological effects of alcohol, psychological/placebo context surrounding drinking, and other environmental and biological factors. The goal of this study was to tease apart molecular mechanisms regulated by pharmacological effects of alcohol - particularly at binge-drinking, from underlying placebo effects. Transcriptome-wide RNA-seq analyses were performed on peripheral blood samples collected from healthy heavy social drinkers (N=16) enrolled in a 12-day randomized, double-blind, cross-over human laboratory trial testing three alcohol doses: Placebo, moderate (0.05g/kg (men), 0.04g/kg (women)), and binge (1g/kg (men), 0.9g/kg (women)), administered in three 4-day experiments, separated by minimum of 7-day washout periods. Effects of beverage doses on the normalized gene expression counts were analyzed within each experiment compared to its own baseline using paired-t-tests. Differential expression of genes (DEGs) across experimental sequences in which each beverage dose was administered, as well as responsiveness to regular alcohol compared to placebo (i.e., pharmacological effects), were analyzed using generalized linear mixed-effects models. The 10% False discovery rate-adjusted DEGs varied across experimental sequences in response to all three beverage doses. We identified and validated 22 protein coding DEGs potentially responsive to pharmacological effects of binge and medium doses, of which 11 were selectively responsive to binge dose. Binge-dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental-sequences that it was administered in, and during dose-extending placebo. Medium dose and placebo impacted pathways hsa05322, hsa04613, and hsa05034, in the first two and last experimental sequences, respectively. In summary, our findings add novel, and confirm previously reported data supporting dose-dependent effects of alcohol on molecular mechanisms and suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol. Innovative study designs are required to validate molecular correlates of placebo effects underlying drinking.
Collapse
|
28
|
Zeitlin J, Kotbi N. Case report: Diagnostic challenges in a patient with alcohol use disorder that developed following a stroke. Front Psychiatry 2023; 14:1116922. [PMID: 37124251 PMCID: PMC10130503 DOI: 10.3389/fpsyt.2023.1116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Patients with comorbid neurological and psychiatric diseases often face considerable impairment, causing challenges that pervade many aspects of their lives. Symptoms can be especially taxing when one or more of these conditions is severely disabling, as the resulting disability can make it more challenging to address comorbidities. For clinicians, such patients can be quite difficult to both diagnose and treat given the immense potential for overlap between the underlying psychiatric and neurologic causes of their symptoms-as well as the degree to which they might exacerbate or, conversely, mask one another. These intricate relationships can also obscure the workup of more acute pathologies, such as alcohol withdrawal and delirium. This report details the complex history and clinical challenges in a 54-year-old man who was no longer able to work after developing multiple neurologic deficits from a left MCA stroke a decade earlier. The intellectual and motor disabilities he faced in the aftermath of his stroke were subsequently compounded by a steady increase in alcohol consumption, with his behavior ultimately progressing to severe alcohol use disorder. The coinciding neurologic and psychiatric manifestations obfuscate the workup-and therefore the management-of his major depressive disorder. In pursuit of the optimal approach to address these comorbid conditions and promote recovery, an investigation into possible mechanisms by which they are interconnected revealed several potential neuropsychiatric explanations that suggest targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Jacob Zeitlin
- Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Jacob Zeitlin,
| | - Nabil Kotbi
- Weill Cornell Medical College, New York, NY, United States
- Addiction & Substance Use Rehabilitation, Westchester Behavioral Health Center, White Plains, NY, United States
| |
Collapse
|
29
|
Alkoholkonsum: Welche
Rolle spielen kortikale
Strukturen? SUCHTTHERAPIE 2022. [DOI: 10.1055/a-1930-7266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gibt es eine direkte Verbindung zwischen
kortikalen oder subkortikalen
Makrostrukturen und dem Alkoholkonsumverhalten?
Mavromatis und seine
Arbeitsgruppe sind dieser spannenden
Frage nachgegangen und präsentieren
nun die Ergebnisse einer groß angelegten
Datenanalyse zum Thema. Sie griffen
dabei auf das Verfahren der Mendelschen
Randomisierung zurück und berücksichtigten
die Daten von über
700000 Personen.
Collapse
|