1
|
Jeng SL, Tu MJ, Lin CW, Lin JJ, Tseng HH, Jang FL, Lu MK, Chen PS, Huang CC, Chang WH, Tan HP, Lin SH. Machine learning for prediction of schizophrenia based on identifying the primary and interaction effects of minor physical anomalies. J Psychiatr Res 2024; 172:108-118. [PMID: 38373372 DOI: 10.1016/j.jpsychires.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In the neurodevelopmental model of schizophrenia, minor physical anomalies (MPAs) are considered neurodevelopmental markers of schizophrenia. To date, there has been no research to evaluate the interaction between MPAs. Our study built and used a machine learning model to predict the risk of schizophrenia based on measurements of MPA items and to investigate the potential primary and interaction effects of MPAs. The study included 470 patients with schizophrenia and 354 healthy controls. The models used are classical statistical model, Logistic Regression (LR), and machine leaning models, Decision Tree (DT) and Random Forest (RF). We also plotted two-dimensional scatter diagrams and three-dimensional linear/quadratic discriminant analysis (LDA/QDA) graphs for comparison with the DT dendritic structure. We found that RF had the highest predictive power for schizophrenia (Full-training AUC = 0.97 and 5-fold cross-validation AUC = 0.75). We identified several primary MPAs, such as the mouth region, high palate, furrowed tongue, skull height and mouth width. Quantitative MPA analysis indicated that the higher skull height and the narrower mouth width, the higher the risk of schizophrenia. In the interaction, we further identified that skull height and mouth width, furrowed tongue and skull height, high palate and skull height, and high palate and furrowed tongue, showed significant two-item interactions with schizophrenia. A weak three-item interaction was found between high palate, skull height, and mouth width. In conclusion, we found that the two machine learning methods showed good predictive ability in assessing the risk of schizophrenia using the primary and interaction effects of MPAs.
Collapse
Affiliation(s)
- Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, and Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jun Tu
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wei Lin
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Jia Lin
- Department of Psychiatry, Chi Mei Medical Center, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Lin Jang
- Department of Psychiatry, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Kun Lu
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chun Huang
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Wei-Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Hung-Pin Tan
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Annunziata S, Bulgheroni S, D'Arrigo S, Esposito S, Taddei M, Saletti V, Alfei E, Sciacca FL, Rizzo A, Pantaleoni C, Riva D. CGH Findings in Children with Complex and Essential Autistic Spectrum Disorder. J Autism Dev Disord 2023; 53:615-623. [PMID: 33394245 DOI: 10.1007/s10803-020-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a strong genetic basis. We accurately assessed 209 ASD subjects, categorized in complex (47) and essential (162), and performed array comparative genomic hybridization to identify pathogenic and recurrent Copy Number Variants (CNVs). We found 117 CNVs in 75 patients, 11 classified as pathogenic. The complex ASD subjects have higher frequency of pathogenic CNVs with a diagnostic yield of 12.8%. Familiality, cognitive and verbal abilities, severity of autistic symptoms, neuroimaging and neurophysiological findings are not related to genetic data. This study identifies loci of interest for ASD and highlights the importance of a careful phenotypic characterization, as complex ASD is related to higher rate of pathogenic CNVs.
Collapse
Affiliation(s)
- Silvia Annunziata
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.,Child Neurology and Psychiatry Unit, Brain and Behavioral Sciences Department, University of Pavia, 27100, Pavia, Italy
| | - Sara Bulgheroni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Stefano D'Arrigo
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Matilde Taddei
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Enrico Alfei
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.,Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital ASST Fatebenefratelli-Sacco, 20100, Milan, Italy
| | - Francesca Luisa Sciacca
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Daria Riva
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
3
|
Jameson C, Boulton KA, Silove N, Nanan R, Guastella AJ. Ectodermal origins of the skin-brain axis: a novel model for the developing brain, inflammation, and neurodevelopmental conditions. Mol Psychiatry 2023; 28:108-117. [PMID: 36284159 PMCID: PMC9812765 DOI: 10.1038/s41380-022-01829-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 01/09/2023]
Abstract
Early life development and its divergence is influenced by multiple genetic, neurological, and environmental factors. Atypical neurodevelopment, such as that observed in autism spectrum disorder, likely begins in early gestation during a period of entwined growth between the brain and epithelial barriers of the skin, gastrointestinal tract, and airway. This review coalesces epidemiological and neuroinflammatory evidence linking cutaneous atopic disease with both reduced skin barrier integrity and determinants of neurodivergence. We consider the shared developmental origin of epidermal and neural tissue with related genetic and environmental risk factors to evaluate potential pre- and postnatal modifiers of the skin-brain connection. Initial postnatal skin barrier integrity may provide a useful marker for both cortical integrity and meaningful subgroups of children showing early neurodevelopmental delays. It may also modify known risk factors to neurodevelopment, such as pathogen caused immune system activation. These novel insights of a skin-brain-neurodevelopment connection may advance detection and intervention opportunities.
Collapse
Affiliation(s)
- C. Jameson
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - K. A. Boulton
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - N. Silove
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.413973.b0000 0000 9690 854XChild Development Unit, The Children’s Hospital at Westmead, Westmead, NSW Australia
| | - R. Nanan
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XCharles Perkins Centre Nepean’s and Sydney Medical School Nepean, The University of Sydney, Nepean, Discipline of Paediatrics, University of Sydney, Camperdown, NSW Australia
| | - A. J. Guastella
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
4
|
ŞAHBAZ İ, TAŞDÖNDÜREN E, ÖZCAN ÖÖ, ERGUZEL T, KARAHAN M, KONUK M, TARHAN N. Comparison of Interpupillary Distance, Pupillary Diameter and Corneal Reflex Measured with Plusoptix A09 in Normally Developing Children and Autism. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1088174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Autism Spectrum Disorder (ASD) is a developmental disorder that can present with an abnormality of the autonomic nervous system (ANS symptoms).Method: In this study, 38 eyes of 19 ASD were included with 19 healthy children (control group). Participants were analyzed according to their characteristics. Here, used the Plusoptix A09 devices to measure the difference in pupil size, corneal reflex, and interpupillary distance (IPD) between ASD and healthy children.Results: The mean age±standard deviation (SD) for the autism group was 4,6±2,5 years (range 2-11 years). In the group of normally developing children, the mean age was±SD 5,02±2,6 years (range 2-11 years). The size of the right pupil (p=0,006) and left pupil (p=0,007) was found to be significantly different in the control and experimental groups. IPD (p=0,000) was statistically significant between groups unlike the corneal reflex was not (p=0,173). The p-value is less than 0,05 in all statistical results.Conclusion: As a result, pupil diameter and IPD of children with autism were found to be larger than the control group, but there was no significant difference in corneal reflex. Pupillary measurements reveal differences between people with ASD.
Collapse
|
5
|
Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder. Nat Commun 2022; 13:6463. [PMID: 36309498 PMCID: PMC9617891 DOI: 10.1038/s41467-022-34112-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 02/06/2023] Open
Abstract
Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.
Collapse
|
6
|
Mujeeb Rahman KK, Subashini MM. Identification of Autism in Children Using Static Facial Features and Deep Neural Networks. Brain Sci 2022; 12:brainsci12010094. [PMID: 35053837 PMCID: PMC8773918 DOI: 10.3390/brainsci12010094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complicated neurological developmental disorder that manifests itself in a variety of ways. The child diagnosed with ASD and their parents’ daily lives can be dramatically improved with early diagnosis and appropriate medical intervention. The applicability of static features extracted from autistic children’s face photographs as a biomarker to distinguish them from typically developing children is investigated in this study paper. We used five pre-trained CNN models: MobileNet, Xception, EfficientNetB0, EfficientNetB1, and EfficientNetB2 as feature extractors and a DNN model as a binary classifier to identify autism in children accurately. We used a publicly available dataset to train the suggested models, which consisted of face pictures of children diagnosed with autism and controls classed as autistic and non-autistic. The Xception model outperformed the others, with an AUC of 96.63%, a sensitivity of 88.46%, and an NPV of 88%. EfficientNetB0 produced a consistent prediction score of 59% for autistic and non-autistic groups with a 95% confidence level.
Collapse
Affiliation(s)
- K. K. Mujeeb Rahman
- School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India;
- Department of Biomedical Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - M. Monica Subashini
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| |
Collapse
|
7
|
Pawlak MA, Knol MJ, Vernooij MW, Ikram MA, Adams HHH, Evans TE. Neural correlates of orbital telorism. Cortex 2021; 145:315-326. [PMID: 34781092 DOI: 10.1016/j.cortex.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022]
Abstract
Orbital telorism, the interocular distance, is clinically informative and in extremes is considered a minor physical anomaly. While its extremes, hypo- and hypertelorism, have been linked to disorders often related to cognitive ability, little is known about the neural correlates of normal variation of telorism within the general population. We derived measures of orbital telorism from cranial magnetic resonance imaging (MRI) by calculating the distance between the eyeball center of gravity in two population-based datasets (N = 5,653, N = 29,824; mean age 64.66, 63.75 years). This measure was found to be related to grey matter tissue density within numerous regions of the brain, including, but surprisingly not limited to, the frontal regions, in both positive and negative directions. Additionally, telorism was related to several cognitive functions, such as Purdue pegboard test (Beta, P-value (CI95%) -.02, 1.63 × 10-7 (-.03:-.01)) and fluid intelligence (.02, 4.75 × 10-6 (.01:0.02)), with some relationships driven by individuals with a smaller orbital telorism. This is reflective of the higher prevalence of hypotelorism in developmental disorders, specifically those that accompany lower cognitive lower functioning. This study suggests, despite previous links only made in clinical extremes, that orbital telorism holds some relation to structural brain development and cognitive function in the general population. This relationship is likely driven by shared developmental periods.
Collapse
Affiliation(s)
- Mikolaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders Poznan University of Medical Sciences, Poznan, Poland; Department of Clinical Genetics, Erasmus MC, Rotterdam, CE, the Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, CE, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, CE, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, CE, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, CE, the Netherlands
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, Rotterdam, CE, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, CE, the Netherlands
| | - T E Evans
- Department of Clinical Genetics, Erasmus MC, Rotterdam, CE, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, CE, the Netherlands.
| |
Collapse
|
8
|
Singh RS, Singh KK, Singh SM. Origin of Sex-Biased Mental Disorders: An Evolutionary Perspective. J Mol Evol 2021; 89:195-213. [PMID: 33630117 PMCID: PMC8116267 DOI: 10.1007/s00239-021-09999-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism or sex bias in diseases and mental disorders have two biological causes: sexual selection and sex hormones. We review the role of sexual selection theory and bring together decades of molecular studies on the variation and evolution of sex-biased genes and provide a theoretical basis for the causes of sex bias in disease and health. We present a Sexual Selection-Sex Hormone theory and show that male-driven evolution, including sexual selection, leads to: (1) increased male vulnerability due to negative pleiotropic effects associated with male-driven sexual selection and evolution; (2) increased rates of male-driven mutations and epimutations in response to early fitness gains and at the cost of late fitness; and (3) enhanced female immunity due to antagonistic responses to mutations that are beneficial to males but harmful to females, reducing female vulnerability to diseases and increasing the thresholds for disorders such as autism. Female-driven evolution, such as reproduction-related fluctuation in female sex hormones in association with stress and social condition, has been shown to be associated with increased risk of certain mental disorders such as major depression disorder in women. Bodies have history, cells have memories. An evolutionary framework, such as the Sexual Selection–Sex Hormone theory, provides a historical perspective for understanding how the differences in the sex-biased diseases and mental disorders have evolved over time. It has the potential to direct the development of novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Rama S Singh
- Department of Biology, McMaster University, Hamilton, Canada.
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada.,Krembil Research Institute, University Health Network, Toronto, Canada
| | - Shiva M Singh
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Tsehay B, Shitie D. Minor Physical Anomalies Among Schizophrenic Patients as a Biomarker of Its Developmental Origin in Northwest Ethiopia. Neuropsychiatr Dis Treat 2020; 16:2491-2497. [PMID: 33149590 PMCID: PMC7604434 DOI: 10.2147/ndt.s275582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Although there are highly precise and advanced diagnostic methods, the etiology and pathophysiology of schizophrenia remain poorly understood. There are several theories about schizophrenia origin, among which the neurodevelopmental theory is widely accepted. Our study aimed to assess minor physical anomalies among schizophrenic patients as putative indices of its developmental origin in North West Ethiopia 2018-2019. PATIENTS AND METHODS Institutional-based comparative cross-sectional study design was conducted in Debre Markos comprehensive, specialized hospitals in 190 schizophrenic patients, 190 healthy controls, and 190 1st-degree relatives. Data were collected using standard methods, entered into EpiData version 3.1, and exported to SPSS version 24 for analysis. Descriptive data were analyzed using descriptive statistics, and discriminant function analysis was conducted and a value of 0.03 was taken as the cutoff point for prediction of group status of the study samples. RESULTS Five hundred seventy study samples, male 375 (65.8%), and female 195 (34.2%), were included in this study. The discriminate function 1 and 2 revealed a significant association between groups and all predictors, accounting for 83.5% and 16.5% of between-group variability, respectively. However, closer analysis of the structure matrix revealed longitudinally furrowed tongue, ≥Five palate ridges, high steeples palate, transversely and randomly furrowed tongue, protruding supraorbital ridge as significant predictors. CONCLUSION Depending on predictor variables in this study, minor physical anomalies can serve as a biomarker for early screening of schizophrenic patients and clue for its developmental origin.
Collapse
Affiliation(s)
- Binalfew Tsehay
- Department of Biomedical Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Shitie
- Department of Biomedical Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
10
|
Maniscalco L, Frédérique BB, Roccella M, Matranga D, Tripi G. A Preliminary Study on Cranio-Facial Characteristics Associated with Minor Neurological Dysfunctions (MNDs) in Children with Autism Spectrum Disorders (ASD). Brain Sci 2020; 10:brainsci10080566. [PMID: 32824853 PMCID: PMC7465923 DOI: 10.3390/brainsci10080566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Craniofacial anomalies and minor neurological dysfunction (MNDs) have been identified, in literature, as risk factors for neurodevelopmental disorders. They represent physical indicators of embryonic development suggesting a possible contributory role of complications during early, even pre-conceptional, phases of ontogeny in autism spectrum disorders (ASD). Limited research has been conducted about the co-occurrence of the two biomarkers in children with ASD. This study investigates the associative patterns of cranio-facial anomalies and MNDs in ASD children, and whether these neurodevelopmental markers correlate with intensity of ASD symptoms and overall functioning. Methods. Caucasian children with ASD (n = 33) were examined. Measures were based on five anthropometric cranio-facial indexes and a standardized and detailed neurological examination according to Touwen. Relationships between anthropometric z-scores, MNDs and participant characteristics (i.e., age, cognitive abilities, severity of autistic symptoms measured using the Childhood Autism Rating Scale (CARS) checklist) were assessed. Results. With respect to specific MNDs, significant positive correlations were found between Cephalic Index and Sensory deficits (p-value < 0.001), which did not correlate with CARS score. Importantly, CARS score was positively linked with Intercanthal Index (p-value < 0.001), and negatively associated with posture and muscle tone (p-value = 0.027) and Facial Index (p-value = 0.004). Conclusion. Our data show a link between a specific facial phenotype and anomalies in motor responses, suggesting early brain dysmaturation involving subcortical structures in cerebro-craniofacial development of autistic children. This research supports the concept of a “social brain functional morphology” in autism spectrum disorders.
Collapse
Affiliation(s)
- Laura Maniscalco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-BIND-University of Palermo, 90127 Palermo, Italy;
| | | | - Michele Roccella
- Department of Psychological Sciences, Pedagogical and Education, University of Palermo, 90128 Palermo, Italy;
| | - Domenica Matranga
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
| | - Gabriele Tripi
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
- Department of Childhood Psychiatry for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France
- Correspondence:
| |
Collapse
|
11
|
Mukherjee SB, Neelam, Kapoor S, Sharma S. Identification of Essential, Equivocal and Complex Autism by the Autism Dysmorphology Measure: An Observational Study. J Autism Dev Disord 2020; 51:1550-1561. [PMID: 32767173 DOI: 10.1007/s10803-020-04641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Autism Dysmorphology Measure is designed for non-expert clinicians. It uses an algorithm to assess 12 body regions and categorizes Autism on the number of dysmorphic regions identified; Essential (≤ 3), Equivocal (4-5) or Complex (≥ 6). We evaluated 200 Indian children with Autism (mean age 3.7 years) in a hospital-based cross-sectional study and compared inter-group profiles. We found 31% Essential, 49% Equivocal and 20% Complex Autism. On comparing results with existing literature, it appeared that genetic ancestry and age significantly influenced dysmorphism and hence categorization. No significant differences were observed between complex and essential autism in epilepsy, severity of autism or development, as reported earlier. These shortcomings make the present tool unsuitable for use in young Indian children with Autism.
Collapse
Affiliation(s)
- Sharmila B Mukherjee
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India. .,Kalawati Saran Children's Hospital, Pediatric Office, Room 118, First floor, Bangla Sahib Marg, New Delhi, 110001, India.
| | - Neelam
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Seema Kapoor
- Department of Pediatrics, Maulana Azad Medical College and Associated Lok Nayak Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
12
|
Genovese A, Butler MG. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int J Mol Sci 2020; 21:E4726. [PMID: 32630718 PMCID: PMC7369758 DOI: 10.3390/ijms21134726] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) consists of a genetically heterogenous group of neurobehavioral disorders characterized by impairment in three behavioral domains including communication, social interaction, and stereotypic repetitive behaviors. ASD affects more than 1% of children in Western societies, with diagnoses on the rise due to improved recognition, screening, clinical assessment, and diagnostic testing. We reviewed the role of genetic and metabolic factors which contribute to the causation of ASD with the use of new genetic technology. Up to 40 percent of individuals with ASD are now diagnosed with genetic syndromes or have chromosomal abnormalities including small DNA deletions or duplications, single gene conditions, or gene variants and metabolic disturbances with mitochondrial dysfunction. Although the heritability estimate for ASD is between 70 and 90%, there is a lower molecular diagnostic yield than anticipated. A likely explanation may relate to multifactorial causation with etiological heterogeneity and hundreds of genes involved with a complex interplay between inheritance and environmental factors influenced by epigenetics and capabilities to identify causative genes and their variants for ASD. Behavioral and psychiatric correlates, diagnosis and genetic evaluation with testing are discussed along with psychiatric treatment approaches and pharmacogenetics for selection of medication to treat challenging behaviors or comorbidities commonly seen in ASD. We emphasize prioritizing treatment based on targeted symptoms for individuals with ASD, as treatment will vary from patient to patient based on diagnosis, comorbidities, causation, and symptom severity.
Collapse
Affiliation(s)
| | - Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
13
|
Tian LH, Wiggins LD, Schieve LA, Yeargin-Allsopp M, Dietz P, Aylsworth AS, Elias ER, Hoover-Fong JE, Meeks NJL, Souders MC, Tsai ACH, Zackai EH, Alexander AA, Dowling NF, Shapira SK. Mapping the Relationship between Dysmorphology and Cognitive, Behavioral, and Developmental Outcomes in Children with Autism Spectrum Disorder. Autism Res 2020; 13:1227-1238. [PMID: 32567802 DOI: 10.1002/aur.2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/06/2022]
Abstract
Previous studies investigating the association between dysmorphology and cognitive, behavioral, and developmental outcomes among individuals with autism spectrum disorder (ASD) have been limited by the binary classification of dysmorphology and lack of comparison groups. We assessed the association using a continuous measure of dysmorphology severity (DS) in preschool children aged 2-5 years (322 with ASD and intellectual disability [ID], 188 with ASD without ID, and 371 without ASD from the general population [POP]). In bivariate analyses, an inverse association between DS and expressive language, receptive language, fine motor, and visual reception skills was observed in children with ASD and ID. An inverse association of DS with fine motor and visual reception skills, but not expressive language and receptive language, was found in children with ASD without ID. No associations were observed in POP children. These results persisted after exclusion of children with known genetic syndromes or major morphologic anomalies. Quantile regression models showed that the inverse relationships remained significant after adjustment for sex, race/ethnicity, maternal education, family income, study site, and preterm birth. DS was not associated with autistic traits or autism symptom severity, behaviors, or regression among children with ASD with or without ID. Thus, DS was associated with a global impairment of cognitive functioning in children with ASD and ID, but only with fine motor and visual reception deficits in children with ASD without ID. A better understanding is needed for mechanisms that explain the association between DS and cognitive impairment in children with different disorders. Autism Res 2020, 13: 1227-1238. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We examined whether having more dysmorphic features (DFs) was related to developmental problems among children with autism spectrum disorder (ASD) with or without intellectual disability (ID), and children without ASD from the general population (POP). Children with ASD and ID had more language, movement, and learning issues as the number of DFs increased. Children with ASD without ID had more movement and learning issues as the number of DFs increased. These relationships were not observed in the POP group. Implications are discussed.
Collapse
Affiliation(s)
- Lin H Tian
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lisa D Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marshalyn Yeargin-Allsopp
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia Dietz
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arthur S Aylsworth
- Department of Pediatrics and Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ellen R Elias
- Department of Pediatrics and Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Julie E Hoover-Fong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Naomi J L Meeks
- Department of Pediatrics and Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Margaret C Souders
- Clinical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anne C-H Tsai
- Department of Pediatrics and Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elaine H Zackai
- Clinical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aimee A Alexander
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole F Dowling
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart K Shapira
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Alolaby RR, Jiraanont P, Durbin-Johnson B, Jasoliya M, Tang HT, Hagerman R, Tassone F. Molecular Biomarkers Predictive of Sertraline Treatment Response in Young Children With Autism Spectrum Disorder. Front Genet 2020; 11:308. [PMID: 32346385 PMCID: PMC7174723 DOI: 10.3389/fgene.2020.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Sertraline is one among several selective serotonin reuptake inhibitors (SSRIs) that exhibited improvement of language development in Autism Spectrum Disorder (ASD); however, the molecular mechanism has not been elucidated. A double blind, randomized, 6-month, placebo-controlled, clinical trial of low-dose sertraline in children ages (3–6 years) with ASD was conducted at the UC Davis MIND Institute. It aimed at evaluating the efficacy and benefit with respect to early expressive language development and global clinical improvement. This study aimed to identify molecular biomarkers that might be key players in the serotonin pathway and might be predictive of a clinical response to sertraline. Fifty eight subjects with the diagnosis of ASD were randomized to sertraline or placebo. Eight subjects from the sertraline arm and five from the placebo arm discontinued from the study. Furthermore, four subjects did not have a successful blood draw. Hence, genotypes for 41 subjects (20 on placebo and 21 on sertraline) were determined for several genes involved in the serotonin pathway including the serotonin transporter-linked polymorphic region (5-HTTLPR), the tryptophan hydroxylase 2 (TPH2), and the Brain-Derived Neurotrophic Factor (BDNF). In addition, plasma levels of BDNF, Matrix metallopeptidase 9 (MMP-9) and a selected panel of cytokines were determined at baseline and post-treatment. Intent-to-treat analysis revealed several primary significant correlations between molecular changes and the Mullen Scales of Early Learning (MSEL) and Clinical Global Impression Scale – Improvement (CGI-I) of treatment and control groups but they were not significant after adjustment for multiple testing. Thus, sertraline showed no benefit for treatment of young children with ASD in language development or changes in molecular markers in this study. These results indicate that sertraline may not be beneficial for the treatment of children with ASD; however, further investigation of larger groups as well as longer term follow-up studies are warranted.
Collapse
Affiliation(s)
- Reem Rafik Alolaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Mittal Jasoliya
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Myers L, Anderlid BM, Nordgren A, Lundin K, Kuja-Halkola R, Tammimies K, Bölte S. Clinical versus automated assessments of morphological variants in twins with and without neurodevelopmental disorders. Am J Med Genet A 2020; 182:1177-1189. [PMID: 32162839 DOI: 10.1002/ajmg.a.61545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Physical examinations are recommended as part of a comprehensive evaluation for individuals with neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder. These examinations should include assessment for morphological variants. Previous studies have shown an increase in morphological variants in individuals with NDDs, particularly ASD, and that these variants may be present in greater amounts in individuals with genetic alterations. Unfortunately, assessment for morphological variants can be subjective and time-consuming, and require a high degree of clinical expertise. Therefore, objective, automated methods of morphological assessment are desirable. This study compared the use of Face2Gene, an automated tool to explore facial morphological variants, to clinical consensus assessment, using a cohort of N = 290 twins enriched for NDDs (n = 135 with NDD diagnoses). Agreement between automated and clinical assessments were satisfactory to complete (78.3-100%). In our twin sample, individuals with NDDs did not have greater numbers of facial morphological variants when compared to those with typical development, nor when controlling for shared genetic and environmental factors within twin pairs. Common facial morphological variants in those with and without NDDs were similar and included thick upper lip vermilion, abnormality of the nasal tip, long face, and upslanted palpebral fissure. We conclude that although facial morphological variants can be assessed reliably in NDDs with automated tools like Face2Gene, clinical utility is limited when just exploring the facial region. Therefore, currently, automated assessments may best complement, rather than replace, in-person clinical assessments.
Collapse
Affiliation(s)
- Lynnea Myers
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Lundin
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia
| |
Collapse
|
16
|
Zanolla TA, Perrone E, Fock RA, Bordini D, Brentani HP, Perez ABA, Brunoni D. TRANSLATION, CULTURAL ADAPTATION, AND EVIDENCE OF INSTRUMENT VALIDITY FOR A MORPHOLOGICAL EXAMINATION PERFORMED IN CHILDREN WITH AUTISM SPECTRUM DISORDER. ACTA ACUST UNITED AC 2020; 38:e2018318. [PMID: 31939516 PMCID: PMC6958550 DOI: 10.1590/1984-0462/2020/38/2018318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/13/2019] [Indexed: 11/22/2022]
Abstract
Objective: For every 100 random children diagnosed with autism, at least 20 have morphological abnormalities, often associated with syndromes. Brazil does not have a standardized and validated instrument for morphological physical examination. This study aimed to translate into Brazilian Portuguese and culturally adapt the clinical signs described in the Autism Dysmorphology Measure, as well as validate the instrument in a sample of children with autism. Methods: The original instrument was translated, culturally adapted, and published in full, following traditional procedures for translation, back-translation, and terminology adaptation according to the Nomina Anatomica. The sample included 62 children from a published multicenter study, with intelligence quotient between 50–69, of both genders, with chronological age between 3–6 years. Two clinical geneticists performed the morphological physical examination, which consisted of investigating 82 characteristics assessing 12 body areas. We used Cohen’s Kappa coefficient to evaluate the agreement between the two observers. Results: The final version of the instrument – translated into Brazilian Portuguese and culturally adapted – showed high agreement between the two observers. Conclusions: The translated instrument meets all international criteria, and minor anomalies and their clinical descriptions were standardized and are recognizable for physicians not specialized in genetics.
Collapse
|
17
|
|
18
|
Tripi G, Roux S, Matranga D, Maniscalco L, Glorioso P, Bonnet-Brilhault F, Roccella M. Cranio-Facial Characteristics in Children with Autism Spectrum Disorders (ASD). J Clin Med 2019; 8:jcm8050641. [PMID: 31075935 PMCID: PMC6571684 DOI: 10.3390/jcm8050641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Cranio-facial anomalies frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm. The identification of differences in the facial phenotype of children with Autism Spectrum Disorders (ASD) may reflect alterations in embryologic brain development in children with ASD. Methods: we evaluated 33 caucasian children with ASD using a 2D computerized photogrammetry. Anthropometric euclidean measurements and landmarks located on the soft tissue of the face and head, were based on five cranio-facial indexes. Relationships between anthropometric z-scores and participant characteristics (i.e., age, Global IQ, severity of autistic symptoms measured using the CARS checklist) were assessed. Results: Cephalic index z-score differed significantly from 0 in our ASD group (p = 0.019). Moreover, a significant negative correlation was found between Facial Index z-score and CARS score (p = 0.003); conversely, a positive correlation was found between Interchantal Index z-score and CARS score (p = 0.028). Conclusion: our measurements shows a dolichocephalic head shape which is not correlated with autism severity. Importantly, two craniofacial markers were significantly correlated with autism severity: increased orbital hyperthelorism and decrease of height of the facial midline. These data support previous findings of craniofacial anomalies in autism spectrum disorder suggesting an “ASD facial phenotype” that could be used to improve ASD diagnoses.
Collapse
Affiliation(s)
- Gabriele Tripi
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro"-PROMISE-University of Palermo, 90127 Palermo, Italy.
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France.
| | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France.
| | - Domenica Matranga
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro"-PROMISE-University of Palermo, 90127 Palermo, Italy.
| | - Laura Maniscalco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-BIND-University of Palermo, 90127 Palermo, Italy.
| | - Pasqualino Glorioso
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France.
| | | | - Michele Roccella
- Department of Psychological Sciences, Pedagogical and Education, University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
19
|
A Novel Approach to Dysmorphology to Enhance the Phenotypic Classification of Autism Spectrum Disorder in the Study to Explore Early Development. J Autism Dev Disord 2019; 49:2184-2202. [PMID: 30783897 DOI: 10.1007/s10803-019-03899-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of multiple dysmorphic features in some children with autism spectrum disorder (ASD) might identify distinct ASD phenotypes and serve as potential markers for understanding causes and prognoses. To evaluate dysmorphology in ASD, children aged 3-6 years with ASD and non-ASD population controls (POP) from the Study to Explore Early Development were evaluated using a novel, systematic dysmorphology review approach. Separate analyses were conducted for non-Hispanic White, non-Hispanic Black, and Hispanic children. In each racial/ethnic group, ~ 17% of ASD cases were Dysmorphic compared with ~ 5% of POP controls. The ASD-POP differential was not explained by known genetic disorders or birth defects. In future epidemiologic studies, subgrouping ASD cases as Dysmorphic vs. Non-dysmorphic might help delineate risk factors for ASD.
Collapse
|
20
|
Tordjman S, Cohen D, Anderson G, Botbol M, Canitano R, Coulon N, Roubertoux P. Repint of “Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity”. Neurosci Biobehav Rev 2018; 89:132-150. [DOI: 10.1016/j.neubiorev.2018.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
|
21
|
Dickerson AS, Rotem RS, Christian MA, Nguyen VT, Specht AJ. Potential Sex Differences Relative to Autism Spectrum Disorder and Metals. Curr Environ Health Rep 2018; 4:405-414. [PMID: 28988324 DOI: 10.1007/s40572-017-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This study aims to summarize the current body of literature on the relationship between various toxic metals exposures (i.e., aluminum, antimony, arsenic, beryllium, cadmium, chromium, lead, manganese, and nickel) and autism spectrum disorder (ASD), with a focus on potential sex differences in these associations. RECENT FINDINGS Sex differences in ASD diagnosis and mutagenic effects of toxic exposures indicate that sex differences may play a major part in the causal relationship of any potential associations seen; however, we were only able to find three studies that reported on sex differences in observed associations with toxic metals exposure and ASD. We also found several studies investigating associations between ASD and metals exposures, including 11 on aluminum, 6 on antimony, 15 on arsenic, 5 on beryllium, 17 on cadmium, 11 on chromium, 25 on lead, 14 on manganese, and 13 on nickel with markers of exposure in hair, urine, blood, teeth, fingernails, and air pollution. Results for each metal were conflicting, but studies on cadmium and lead yielded the highest proportion of studies with positive results (72% and 36%, respectively). Based on our examination of existing literature, the current evidence warrants a considerable need for evaluations of sex differences in future studies assessing the association between metals exposures and ASD. Additionally, failure to account for potential sex differences could result in bias and misinterpretation of exposure-disease relationships.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Departments of Epidemiology and Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA. .,Environmental and Occupation Medicine and Epidemiology Division of the Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Street, Landmark Center L3-125, Boston, MA, USA.
| | - Ran S Rotem
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - MacKinsey A Christian
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vy T Nguyen
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Aaron J Specht
- Department Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| |
Collapse
|
22
|
Abstract
Examining sex differences in the brain has been historically contentious but is nonetheless important for advancing mental health for both girls and boys. Unfortunately, females in biomedical research remain underrepresented in most mental health conditions including autism spectrum disorders (ASD), even though equal inclusion of females would improve treatment for girls and yield benefits to boys. This review examines sex differences in the relationship between neuroanatomy and neurogenetics of ASD. Recent findings reveal that girls diagnosed with ASD exhibit more intellectual and behavioral problems compared to their male counterparts, suggesting that girls may be less likely diagnosed in the absence of such problems or that they require a higher mutational load to meet the diagnostic criteria. Thus far, the female biased effect of chromosome 4, 5p15.33, 8p, 9p24.1, 11p12-13, 15q, and Xp22.3 and the male biased effect of 1p31.3, 5q12.3, 7q, 9q33.3, 11q13.4, 13q33.3, 16p11.2, 17q11-21, Xp22.33/Yp11.31, DRD1, NLGN3, MAOA, and SHANK1 deletion have been discovered in ASD. The SNPs of genes such as RYR2, UPP2, and the androgen receptor gene have been shown to have sex-biasing factors in both girls and boys diagnosed with ASD. These sex-related genetic factors may drive sex differences in the neuroanatomy of these girls and boys, including abnormal enlargement in temporal gray and white matter volumes, and atypical reduction in cerebellar gray matter volumes and corpus callosum fibers projecting to the anterior frontal cortex in ASD girls relative to boys. Such factors may also be responsible for the attenuation of brain sexual differentiation in adult men and women with ASD; however, much remains to be uncovered or replicated. Future research should leverage further the association between neuroanatomy and genetics in girls for an integrated and interdisciplinary understanding of ASD.
Collapse
|
23
|
Myers L, Anderlid BM, Nordgren A, Willfors C, Kuja-Halkola R, Tammimies K, Bölte S. Minor physical anomalies in neurodevelopmental disorders: a twin study. Child Adolesc Psychiatry Ment Health 2017; 11:57. [PMID: 29209412 PMCID: PMC5706157 DOI: 10.1186/s13034-017-0195-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/19/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Minor physical anomalies (MPAs) are subtle anatomical deviations in one's appearance and may suggest altered embryogenesis. MPAs have been shown to be more common in neurodevelopmental disorders (NDDs) compared with typical development. Still, further studies are needed on MPAs in NDDs, especially using twins to adjust for confounding familial factors. METHODS Clinical assessments were conducted on 116 twins (61 NDD, 55 controls) from 51 monozygotic and 7 dizygotic pairs to examine MPAs and their association with DSM-5 defined NDDs. Additionally, the relationship between the number of MPAs within twins by zygosity was investigated. RESULTS Within the cohort sample, a specific association was found between MPAs and autism spectrum disorder (ASD) diagnosis (crude odds ratio = 1.29, p = .047; adjusted odds ratios = 1.26-1.33, adjusted p values = .032-.073) and autistic traits (crude β = 3.02, p = .002; adjusted β = 2.28, p = .019), but not NDDs in general or ADHD, nor within-pairs. Identified MPAs in ASD included overweight, hypermobility, pes planus, straight eyebrows, vision impairment, arachnodactyly/long toes, long eyelashes, and microtia. The number of MPAs within all monozygotic pairs was highly correlated (r = .88, p < .001). CONCLUSION MPAs are more frequent in participants with ASD and may be influenced by genetics. The value of MPAs for (early) detection should be further explored, as they might index individuals at increased risk for ASD in particular.
Collapse
Affiliation(s)
- Lynnea Myers
- 0000 0001 2326 2191grid.425979.4Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet & Center for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
| | - Britt-Marie Anderlid
- 0000 0004 1937 0626grid.4714.6Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cDepartment of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- 0000 0004 1937 0626grid.4714.6Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cDepartment of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Willfors
- 0000 0001 2326 2191grid.425979.4Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet & Center for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristiina Tammimies
- 0000 0001 2326 2191grid.425979.4Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet & Center for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
| | - Sven Bölte
- 0000 0001 2326 2191grid.425979.4Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet & Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Gävlegatan 22B, 113 30 Stockholm, Sweden
| |
Collapse
|
24
|
Beaudet AL. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. Bioessays 2017; 39. [PMID: 28703319 DOI: 10.1002/bies.201700012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Could 10-20% of autism be prevented? We hypothesize that nonsyndromic or "essential" autism involves extreme male bias in infants who are genetically normal, but they develop deficiency of carnitine and perhaps other nutrients in the brain causing autism that may be amenable to early reversal and prevention. That brain carnitine deficiency might cause autism is suggested by reports of severe carnitine deficiency in autism and by evidence that TMLHE deficiency - a defect in carnitine biosynthesis - is a risk factor for autism. A gene on the X chromosome (SLC6A14) likely escapes random X-inactivation (a mixed epigenetic and genetic regulation) and could limit carnitine transport across the blood-brain barrier in boys compared to girls. A mixed, common gene variant-environment hypothesis is proposed with diet, minor illnesses, microbiome, and drugs as possible risk modifiers. The hypothesis can be tested using animal models and by a trial of carnitine supplementation in siblings of probands. Perhaps the lack of any Recommended Dietary Allowance for carnitine in infants should be reviewed. Also see the video abstract here: https://youtu.be/BuRH_jSjX5Y.
Collapse
Affiliation(s)
- Arthur L Beaudet
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Flor J, Bellando J, Lopez M, Shui A. Developmental functioning and medical Co-morbidity profile of children with complex and essential autism. Autism Res 2017; 10:1344-1352. [PMID: 28474389 DOI: 10.1002/aur.1779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 11/12/2022]
Abstract
Children with Autism Spectrum Disorders (ASD) may be characterized as "complex" (those with microcephaly and/or dysmorphology) or "essential" (those with neither of these two). Previous studies found subjects in the complex group exhibited lower IQ scores, poorer response to behavioral intervention, more seizures and more abnormal EEGs and brain MRIs compared to the essential group. The objective of this study was to determine if there are differences in complex versus essential subjects based on several developmental/psychological measures as well as certain medical comorbidities. This study utilized data from 1,347 individuals (2-17 years old) well-characterized subjects enrolled in Autism Treatment Network (ATN) Registry. Head circumference measurement and the Autism Dysmorphology Measure (ADM) were used by trained physicians to classify subjects as complex or essential. Significantly lower scores were seen for complex subjects in cognitive level, adaptive behavior and quality of life. Complex subjects showed significantly increased physician-documented GI symptoms and were on a higher number of medications. No significant differences in autism severity scores, behavioral ratings and parent-reported sleep problems were found. After adjusting for multiple comparisons made, adaptive scores remained significantly lower for the complex group, and the complex group used a significantly higher number of medications and had increased GI symptoms. Complex and essential autism subtypes may have distinct developmental and medical correlates and thus underlines the importance of looking for microcephaly and dysmorphology, when evaluating a child with autism. Determining this distinction in autism may have implications in prognosis, identifying medical co-morbidities, directing diagnostic evaluations and treatment interventions. Autism Res 2017, 10: 1344-1352. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jaimie Flor
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.,Biostatistics Center, Massachusetts General Hospital
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.,Biostatistics Center, Massachusetts General Hospital
| | - Maya Lopez
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.,Biostatistics Center, Massachusetts General Hospital
| | - Amy Shui
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.,Biostatistics Center, Massachusetts General Hospital
| |
Collapse
|
26
|
Rubio O, Galera V, Alonso MC. Morphological variability of the earlobe in a Spanish population sample. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:222-235. [PMID: 28416164 DOI: 10.1016/j.jchb.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022]
Abstract
This article shows the morphological variability of the earlobe in a Spanish population of European origin. The frequencies of four lobe characteristics (attachment, contour, modeling, and size) and their degree of expression were studied. The relationship among the characteristics and the differences involving sex and laterality were also considered. The least frequent morphology, and of main use in solving forensic cases, was the very small size with triangle-pulled contour into the skin and crossed-discontinuous modeling. The most frequent morphology, and most clinically useful, was the medium-sized lobe with free-arched contour and eminent or cross-continuous modeling. The characteristics were all symmetric. Size and modeling showed sexual dimorphism. Some characteristics were associated with each other: attachment with contour and modeling and the contour with modeling and size. The least frequent peculiarities were sharp lobe and virgule. The literature is scarce on this matter, practically non-existent for some characteristics, especially modeling and peculiarities. For the first time, the associations of the ear characteristics were analyzed, and this information could be applied to forensic identification.
Collapse
Affiliation(s)
- O Rubio
- University Institute of Research in Police Sciences (IUICP), Faculty of Law, Alcalá University, Libreros, 27, Ground Floor, 28802 Alcalá de Henares, Madrid, Spain; Department of Life Science, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - V Galera
- University Institute of Research in Police Sciences (IUICP), Faculty of Law, Alcalá University, Libreros, 27, Ground Floor, 28802 Alcalá de Henares, Madrid, Spain; Department of Life Science, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain
| | - M C Alonso
- University Institute of Research in Police Sciences (IUICP), Faculty of Law, Alcalá University, Libreros, 27, Ground Floor, 28802 Alcalá de Henares, Madrid, Spain; Department of Physics and Mathematics, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
27
|
Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, Odent S, Tordjman S. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. Int J Mol Sci 2017; 18:E618. [PMID: 28287497 PMCID: PMC5372633 DOI: 10.3390/ijms18030618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Collapse
Affiliation(s)
- Cyrille Robert
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-Salpétrière Hospital, Paris 6 University, 75013 Paris, France.
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy.
| | - Léna Damaj
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Laboratory of Psychology of Perception, University Paris Descartes, 75270 Paris, France.
| |
Collapse
|
28
|
Dinalankara DMR, Miles JH, Nicole Takahashi T, Yao G. Atypical pupillary light reflex in 2–6‐year‐old children with autism spectrum disorders. Autism Res 2017; 10:829-838. [DOI: 10.1002/aur.1745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/20/2016] [Accepted: 12/21/2016] [Indexed: 11/07/2022]
Affiliation(s)
| | - Judith H. Miles
- Thompson Center for Autism and Neurodevelopment Disorders, University of MissouriColumbia Missouri
| | - T. Nicole Takahashi
- Thompson Center for Autism and Neurodevelopment Disorders, University of MissouriColumbia Missouri
| | - Gang Yao
- Department of BioengineeringUniversity of MissouriColumbia Missouri
| |
Collapse
|
29
|
Tordjman S, Cohen D, Coulon N, Anderson GM, Botbol M, Canitano R, Roubertoux PL. Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity. Neurosci Biobehav Rev 2017; 80:210. [PMID: 28153685 DOI: 10.1016/j.neubiorev.2017.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism.
Collapse
Affiliation(s)
- S Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 and Centre Hospitalier Guillaume Régnier, 154 rue de Châtillon, 35200 Rennes, France; Laboratoire Psychologie de la Perception, Université Paris Descartes and CNRS UMR 8158, Paris, France.
| | - D Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, Université Pierre et Marie Curie, Paris, France
| | - N Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes and CNRS UMR 8158, Paris, France
| | - G M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - M Botbol
- Departement Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Bretagne Occidentale, Brest, France
| | - R Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, Siena, Italy
| | - P L Roubertoux
- Aix Marseille Université, GMGF, Inserm, UMR_S 910, 13385, Marseille, France
| |
Collapse
|
30
|
Brugha TS, Spiers N, Bankart J, Cooper SA, McManus S, Scott FJ, Smith J, Tyrer F. Epidemiology of autism in adults across age groups and ability levels. Br J Psychiatry 2016; 209:498-503. [PMID: 27388569 DOI: 10.1192/bjp.bp.115.174649] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/13/2015] [Accepted: 01/21/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The epidemiology of autism in adults has relied on untested projections using childhood research. AIMS To derive representative estimates of the prevalence of autism and key associations in adults of all ages and ability levels. METHOD Comparable clinical diagnostic assessments of 7274 Adult Psychiatric Morbidity Survey participants combined with a population case-register survey of 290 adults with intellectual disability. RESULTS The combined prevalence of autism in adults of all ages in England was 11/1000 (95% CI 3-19/1000). It was higher in those with moderate to profound intellectual disability (odds ratio (OR) = 63.5, 95% CI 27.4-147.2). Male gender was a strong predictor of autism only in those with no or mild intellectual disability (adjusted OR = 8.5, 95% CI 2.0-34.9; interaction with gender, P = 0.03). CONCLUSIONS Few adults with autism have intellectual disability; however, autism is more prevalent in this population. Autism measures may miss more women with autism.
Collapse
Affiliation(s)
- Traolach S Brugha
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Nicola Spiers
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - John Bankart
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Sally-Ann Cooper
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Sally McManus
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Fiona J Scott
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Jane Smith
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| | - Freya Tyrer
- Traolach S. Brugha, MD(NUI) FRCPsych, Nicola Spiers, MSc PhD, Department of Health Sciences, University of Leicester, Leicester; John Bankart, MSc PhD, Department of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent; Sally-Ann Cooper, MD FRCPsych, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow; Sally McManus, MSc, NatCen Social Research, London; Fiona J. Scott, PhD Cpsychol, Jane Smith, MSc, Freya Tyrer, MSc, Department of Health Sciences, University of Leciester, Leciester, UK
| |
Collapse
|
31
|
Niculae AŞ, Pavăl D. From molecules to behavior: An integrative theory of autism spectrum disorder. Med Hypotheses 2016; 97:74-84. [PMID: 27876135 DOI: 10.1016/j.mehy.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/02/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders for which various theories have been proposed. Each theory brings valuable insights and has experimental evidence backing it, yet none provides an overarching explanation for each of the pathological aspects involved in ASD. Here we present an integrative theory of ASD, centered on a sequence of events spanning from the molecular to the behavioral level. We propose that an abnormality in the interplay between retinoic acid and sex hormones predisposes an individual to specific molecular malfunctions. In turn, this molecular syndrome generates an altered brain connectivity between the cerebellum, the midbrain dopaminergic areas, and the prefrontal cortex. Lastly, this disconnection would generate specific behavioral traits traditionally involved in ASD. Therefore, this paper represents a step forward in unifying different levels of pathological features into novel integrated testable hypotheses.
Collapse
Affiliation(s)
- Alexandru-Ştefan Niculae
- The Department of Molecular Sciences, Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Denis Pavăl
- The Department of Molecular Sciences, Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Wong CT, Ussyshkin N, Ahmad E, Rai-Bhogal R, Li H, Crawford DA. Prostaglandin E2promotes neural proliferation and differentiation and regulates Wnt target gene expression. J Neurosci Res 2016; 94:759-75. [DOI: 10.1002/jnr.23759] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
| | - Netta Ussyshkin
- Department of Biology; York University; Toronto Ontario Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Hongyan Li
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| |
Collapse
|
33
|
Clinical Genetic Aspects of ASD Spectrum Disorders. Int J Mol Sci 2016; 17:ijms17020180. [PMID: 26840296 PMCID: PMC4783914 DOI: 10.3390/ijms17020180] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 01/26/2023] Open
Abstract
Early presumptions opined that autism spectrum disorder (ASD) was related to the rearing of these children by emotionally-distant mothers. Advances in the 1960s and 1970s clearly demonstrated the biologic basis of autism with a high heritability. Recent advances have demonstrated that specific etiologic factors in autism spectrum disorders can be identified in 30%–40% of cases. Based on early reports newer, emerging genomic technologies are likely to increase this diagnostic yield to over 50%. To date these investigations have focused on etiologic factors that are largely mono-factorial. The currently undiagnosed causes of ASDs will likely be found to have causes that are more complex. Epigenetic, multiple interacting loci, and four dimensional causes (with timing as a variable) are likely to be associated with the currently unidentifiable cases. Today, the “Why” is more important than ever. Understanding the causes of ASDs help inform families of important issues such as recurrence risk, prognosis, natural history, and predicting associated co-morbid medical conditions. In the current era of emerging efforts in “personalized medicine”, identifying an etiology will be critical in identifying endo-phenotypic groups and individual variations that will allow for tailored treatment for persons with ASD.
Collapse
|
34
|
Tiirikka T, Moilanen JS. Human Chromosome Y and Haplogroups; introducing YDHS Database. Clin Transl Med 2015; 4:60. [PMID: 26061870 PMCID: PMC4477006 DOI: 10.1186/s40169-015-0060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface to the existing data on the identified variants would be in the interest of general public and professionals less familiar with the field. Here we introduce a novel metadatabase YDHS that aims to provide such an interface for Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants. METHODS The database uses ISOGG Y-DNA tree as the source of mutations and haplogroups and by using genomic positions of the mutations the database links them to genes and other biological entities. YDHS contains analysis tools for deeper Y-SNP analysis. RESULTS YDHS addresses the shortage of Y-DNA related databases. We have tested our database using a set of different cases from literature ranging from infertility to autism. The database is at http://www.semanticgen.net/ydhs CONCLUSIONS Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants have not been in the scientific limelight, excluding certain specialized fields like forensics, mainly because there is not much freely available information or it is scattered in different sources. However, as we have demonstrated Y-SNPs do play a role in various cases on the haplogroup level and it is possible to create a free Y-DNA dedicated bioinformatics resource.
Collapse
Affiliation(s)
- Timo Tiirikka
- Department of Clinical Genetics, Oulu University Hospital, PEDEGO Research Unit, University of Oulu, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 23, FI-90029, Oulu, Finland,
| | | |
Collapse
|
35
|
Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav 2015; 47:191-201. [PMID: 25900226 PMCID: PMC4475437 DOI: 10.1016/j.yebeh.2015.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
There is an increasing recognition of clinical overlap in patients presenting with epilepsy and autism spectrum disorder (ASD), and a great deal of new information regarding the genetic causes of both disorders is available. Several biological pathways appear to be involved in both disease processes, including gene transcription regulation, cellular growth, synaptic channel function, and maintenance of synaptic structure. We review several genetic disorders where ASD and epilepsy frequently co-occur, and we discuss the screening tools available for practicing neurologists and epileptologists to help determine which patients should be referred for formal ASD diagnostic evaluation. Finally, we make recommendations regarding the workflow of genetic diagnostic testing available for children with both ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Bo Hoon Lee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Tristram Smith
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex R Paciorkowski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Wong VCN, Fung CKY, Wong PTY. Use of dysmorphology for subgroup classification on autism spectrum disorder in Chinese children. J Autism Dev Disord 2014; 44:9-18. [PMID: 23666520 DOI: 10.1007/s10803-013-1846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Data from 1,261 Chinese Autistic Spectrum Disorder (ASD) patients were evaluated and categorized into dysmorphic (10.79 %) and non-dysmorphic groups (89.21 %) upon physical examination by the presence of dysmorphic features. Abnormal MRI/CT result, IQ scores and epilepsy were significantly associated with the dysmorphic group of ASD children. However, gender, EEG abnormality and family history and recurrence of ASD were not found to be significantly different between group statuses. It is suggested that results collected from the Chinese population generally resembles that found in the Caucasians with ethnical differences still present. Current study supports the result shown in Miles' study (Miles et al. in Am J Med Genet 135A:171-180, 2005), in which heterogeneity subtypes of autism of different genetic origins which could be distinguished by presence of dysmorphic features on the patients.
Collapse
Affiliation(s)
- Virginia C N Wong
- Division of Child Neurology/Developmental Paediatrics/Neurohabilitation, Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China,
| | | | | |
Collapse
|
37
|
Seggers J, Haadsma ML, Bos AF, Heineman MJ, Middelburg KJ, van den Heuvel ER, Hadders-Algra M. Dysmorphic features and developmental outcome of 2-year-old children. Dev Med Child Neurol 2014; 56:1078-84. [PMID: 25040419 DOI: 10.1111/dmcn.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to assess the associations between dysmorphic features and neurological, mental, psychomotor, and behavioural development in order to improve our understanding of aetiological pathways leading to minor developmental problems. METHOD In our cross-sectional study, 272 generally healthy 2-year-olds (143 males, 129 females; median gestational age 39 weeks, [range 30-43wks]), born after a parental history of subfertility either with or without fertility treatment, were examined. Dysmorphic features were classified as abnormalities (clinically relevant or not), minor anomalies, or common variants according to Merks' classification system. Hempel's neurological assessment resulted in a neurological optimality score (NOS) and fluency score. Mental and psychomotor development were assessed with the Dutch version of the Bayley Scales of Infant Development and behavioural development with the Achenbach Child Behaviour Checklist. RESULTS Of the different types of dysmorphic feature, clinically relevant abnormalities were most strongly associated with a lower NOS (difference -2.53, 95% confidence interval [CI] -4.23 to -0.83) and fluency score (difference -0.62, 95% CI -1.1 to -0.15). The presence of one or more abnormalities (clinically relevant or not) or one or more common variants was significantly associated with a lower NOS, and the presence of three or more minor anomalies was associated with lower fluency scores. Dysmorphic features were not associated with mental, psychomotor, or behavioural development. INTERPRETATION As dysmorphic features originate during the first trimester of pregnancy, the association between dysmorphic features and minor alterations in neurodevelopment may suggest an early ontogenetic origin of subtle neurological deviations.
Collapse
Affiliation(s)
- Jorien Seggers
- Developmental Neurology Section, Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B, Ginchat V, Roubertoux P, Barburoth M, Kovess V, Geoffray MM, Xavier J. Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014; 5:53. [PMID: 25136320 PMCID: PMC4120683 DOI: 10.3389/fpsyt.2014.00053] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/02/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Eszter Somogyi
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Nathalie Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Solenn Kermarrec
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Guillaume Bronsard
- Laboratoire de Santé Publique (EA3279), School of Medicine of La Timone, Marseille, France
| | - Olivier Bonnot
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Catherine Weismann-Arcache
- Laboratoire Psychologie et Neurosciences de la Cognition et de l’Affectivité, Université de Rouen, Mont Saint Aignan, France
| | - Michel Botbol
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Bretagne Occidentale, CHU de Brest, Brest, France
| | - Bertrand Lauth
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Vincent Ginchat
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Pierre Roubertoux
- Laboratoire de Génétique Médicale, Génomique Fonctionnelle, INSERM U 910, Université d’Aix-Marseille 2, Marseille, France
| | - Marianne Barburoth
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Viviane Kovess
- Department of Epidemiology and Biostatistics, EHESP School for Public Health, EA 4057 University Paris Descartes, Paris, France
| | - Marie-Maude Geoffray
- Service Universitaire de Psychiatrie de l’Enfant et de l’Adolescent Hospitalier Le Vinatier, Bron, France
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| |
Collapse
|
39
|
Schaafsma SM, Pfaff DW. Etiologies underlying sex differences in Autism Spectrum Disorders. Front Neuroendocrinol 2014; 35:255-71. [PMID: 24705124 DOI: 10.1016/j.yfrne.2014.03.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
The male predominance of Autism Spectrum Disorders (ASD) is one of the best-known, and at the same time, one of the least understood characteristics of these disorders. In this paper we review genetic, epigenetic, hormonal, and environmental mechanisms underlying this male preponderance. Sex-specific effects of Y-linked genes (including SRY expression leading to testicular development), balanced and skewed X-inactivation, genes that escape X-inactivation, parent-of-origin allelic imprinting, and the hypothetical heterochromatin sink are reviewed. These mechanisms likely contribute to etiology, instead of being simply causative to ASD. Environments, both internal and external, also play important roles in ASD's etiology. Early exposure to androgenic hormones and early maternal immune activation comprise environmental factors affecting sex-specific susceptibility to ASD. The gene-environment interactions underlying ASD, suggested here, implicate early prenatal stress as being especially detrimental to boys with a vulnerable genotype.
Collapse
Affiliation(s)
- Sara M Schaafsma
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
Roberts JL, Hovanes K, Dasouki M, Manzardo AM, Butler MG. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services. Gene 2014; 535:70-8. [PMID: 24188901 PMCID: PMC4423794 DOI: 10.1016/j.gene.2013.10.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 01/15/2023]
Abstract
Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009-2012). Of the 215 patients [140 males and 75 females (male/female ratio=1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n=20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n=8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.
Collapse
Key Words
- A2BP1
- ACADL
- ACOXL
- ADIPOQ
- ALS2 chromosome region gene 8
- ALS2CR8
- ANKRD11
- ANOVA
- ASD
- Autism spectrum disorders (ASD)
- BAC
- BCL2-like 11 gene
- BCL2L11
- CACNA1C
- CHRNA7
- CNV
- COBL
- CT
- Chromosomal microarray analysis
- Copy number variant (CNV)
- DLG1
- DLG4
- DNA
- Developmental delay
- EEF1B2
- EEG
- F-box only 45 gene
- FAM117B
- FAT tumor suppressor 1 gene
- FAT1
- FBXO45
- FISH
- FXR2
- FZD5
- GALR1
- GATA zinc finger domain-containing protein 2B gene
- GATAD2B
- GDNF-inducible zinc finger protein 1 gene
- GZF1
- HAX1
- HCLS1-associated protein X1 gene
- HDAC
- IDH1
- IL1RAPL1
- ITPR1
- KLF7
- KNG1
- LINS
- LMNA
- Learning disability
- MAP2
- MBP
- MRPL19
- MYL1
- NADH-ubiquinone oxidoreductase Fe-S protein 1 gene
- NDUFS1
- NLGN2
- NPHP1
- NRXN1
- PAK2
- PARK2
- PMP22
- POLG
- PRPF8
- PTEN
- PTH2R
- RPE
- SACS
- SD
- SH2B adaptor protein 1 gene
- SH2B1
- SH3 and multiple ankyrin repeat domains 3 gene
- SHANK3
- SHOX
- SMARCA4
- STAG2
- SUMF1
- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member gene
- TRAPPC2
- UCSC
- USP6
- University of California, Santa Cruz
- X-linked inhibitor of apoptosis gene
- XIAP
- YWHAE
- ZNF407
- aCGH
- acyl-coA dehydrogenase, long chain gene
- acyl-coA oxidase-like gene
- adipocyte-, C1q-, and collagen domain containing gene
- analysis of variance
- ankyrin repeat domain-containing protein 11 gene
- array comparative genomic hybridization
- ataxin 2-binding protein 1 gene
- autism spectrum disorder
- bacterial artificial chromosome
- calcium channel, voltage dependent, L-type, alpha 1C subunit gene
- cholinergic receptor, neuronal nicotinic, alpha polypeptide 7 gene
- computed tomography
- copy number variant
- cordon-bleu gene
- deoxyribonucleic acid
- discs, large homolog 1 gene
- discs, large homolog 4 gene
- electroencephalogram
- eukaryotic translation elongation factor 1, beta-2 gene
- family with sequence similarity 117, member B gene
- fluorescence in situ hybridization
- fragile X mental retardation, autosomal homolog 2 gene
- frizzled 5 gene
- galanin receptor 1 gene
- histone deacetylase gene
- inositol 1,4,5-triphosphate receptor, type 1 gene
- interleukin 1 receptor accessory protein-like 1 gene
- isocitrate dehydrogenase 1 gene
- kininogen 1 gene
- kruppel-like factor 7 gene
- lamin A gene
- lines homolog gene
- microtubule-associated protein 2 gene
- mitochondrial ribosomal protein L19 gene
- myelin basic protein gene
- myosin, light peptide 1 gene
- nephrocystin 1 gene
- neurexin 1 gene
- neuroligin 2 gene
- parathyroid hormone receptor 2 gene
- parkin gene
- peripheral myelin protein 22 gene
- phosphatase and tensin homolog gene
- polymerase gamma gene
- precursor mRNA-processing factor 8 gene
- protein-activated kinase 2 gene
- ribulose 5-phosphate 3-epimerase gene
- sacsin gene
- short stature homeobox gene
- standard deviation
- stromal antigen 2 gene
- sulfatase-modifying factor 1 gene
- tracking protein particle complex, subunit 2 gene
- tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon isoform gene
- ubiquitin-specific protease 6 gene
- zinc finger protein 407 gene
Collapse
Affiliation(s)
- Jennifer L Roberts
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA
| | | | - Majed Dasouki
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ann M Manzardo
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA
| | - Merlin G Butler
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, The University of Kansas, Medical Center, Kansas City, KS, USA.
| |
Collapse
|
41
|
Schendel DE, Diguiseppi C, Croen LA, Fallin MD, Reed PL, Schieve LA, Wiggins LD, Daniels J, Grether J, Levy SE, Miller L, Newschaffer C, Pinto-Martin J, Robinson C, Windham GC, Alexander A, Aylsworth AS, Bernal P, Bonner JD, Blaskey L, Bradley C, Collins J, Ferretti CJ, Farzadegan H, Giarelli E, Harvey M, Hepburn S, Herr M, Kaparich K, Landa R, Lee LC, Levenseller B, Meyerer S, Rahbar MH, Ratchford A, Reynolds A, Rosenberg S, Rusyniak J, Shapira SK, Smith K, Souders M, Thompson PA, Young L, Yeargin-Allsopp M. The Study to Explore Early Development (SEED): a multisite epidemiologic study of autism by the Centers for Autism and Developmental Disabilities Research and Epidemiology (CADDRE) network. J Autism Dev Disord 2013; 42:2121-40. [PMID: 22350336 DOI: 10.1007/s10803-012-1461-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Study to Explore Early Development (SEED), a multisite investigation addressing knowledge gaps in autism phenotype and etiology, aims to: (1) characterize the autism behavioral phenotype and associated developmental, medical, and behavioral conditions and (2) investigate genetic and environmental risks with emphasis on immunologic, hormonal, gastrointestinal, and sociodemographic characteristics. SEED uses a case-control design with population-based ascertainment of children aged 2-5 years with an autism spectrum disorder (ASD) and children in two control groups-one from the general population and one with non-ASD developmental problems. Data from parent-completed questionnaires, interviews, clinical evaluations, biospecimen sampling, and medical record abstraction focus on the prenatal and early postnatal periods. SEED is a valuable resource for testing hypotheses regarding ASD characteristics and causes.
Collapse
Affiliation(s)
- Diana E Schendel
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chukoskie L, Townsend J, Westerfield M. Motor Skill in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:207-49. [DOI: 10.1016/b978-0-12-418700-9.00007-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Abstract
Inborn errors of metabolism underlying some cases of autism present possibilities for prevention and treatment
Collapse
Affiliation(s)
- Arthur L Beaudet
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological role of the cerebellum in autism. CEREBELLUM (LONDON, ENGLAND) 2012; 11:777-807. [PMID: 22370873 PMCID: PMC3677555 DOI: 10.1007/s12311-012-0355-9] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
Collapse
Affiliation(s)
- S Hossein Fatemi
- University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Assessment and treatment in autism spectrum disorders: a focus on genetics and psychiatry. AUTISM RESEARCH AND TREATMENT 2012; 2012:242537. [PMID: 22934170 PMCID: PMC3420490 DOI: 10.1155/2012/242537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
Abstract
Autism spectrum disorders (ASDs) are neurobehavioral disorders characterized by abnormalities in three behavioral domains including social interaction, impaired communication, and repetitive stereotypic behaviors. ASD affects approximately 1% of children and is on the rise with significant genetic mechanisms underlying these disorders. We review the current understanding of the role of genetic and metabolic factors contributing to ASD with the use of new genetic technology. Fifty percent is diagnosed with chromosomal abnormalities, small DNA deletions/duplications, single-gene conditions, or metabolic disturbances. Genetic evaluation is discussed along with psychiatric treatment and approaches for selection of medication to treat associated challenging behaviors or comorbidities seen in ASD. We emphasize the importance of prioritizing treatment based on target symptom clusters and in what order for individuals with ASD, as the treatment may vary from patient to patient.
Collapse
|
46
|
Tordjman S, Anderson GM, Botbol M, Toutain A, Sarda P, Carlier M, Saugier-Veber P, Baumann C, Cohen D, Lagneaux C, Tabet AC, Verloes A. Autistic disorder in patients with Williams-Beuren syndrome: a reconsideration of the Williams-Beuren syndrome phenotype. PLoS One 2012; 7:e30778. [PMID: 22412832 PMCID: PMC3295800 DOI: 10.1371/journal.pone.0030778] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS), a rare developmental disorder caused by deletion of contiguous genes at 7q11.23, has been characterized by strengths in socialization (overfriendliness) and communication (excessive talkativeness). WBS has been often considered as the polar opposite behavioral phenotype to autism. Our objective was to better understand the range of phenotypic expression in WBS and the relationship between WBS and autistic disorder. METHODOLOGY The study was conducted on 9 French individuals aged from 4 to 37 years old with autistic disorder associated with WBS. Behavioral assessments were performed using Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) scales. Molecular characterization of the WBS critical region was performed by FISH. FINDINGS FISH analysis indicated that all 9 patients displayed the common WBS deletion. All 9 patients met ADI-R and ADOS diagnostic criteria for autism, displaying stereotypies and severe impairments in social interaction and communication (including the absence of expressive language). Additionally, patients showed improvement in social communication over time. CONCLUSIONS The results indicate that comorbid autism and WBS is more frequent than expected and suggest that the common WBS deletion can result in a continuum of social communication impairment, ranging from excessive talkativeness and overfriendliness to absence of verbal language and poor social relationships. Appreciation of the possible co-occurrence of WBS and autism challenges the common view that WBS represents the opposite behavioral phenotype of autism, and might lead to improved recognition of WBS in individuals diagnosed with autism.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Department of Child and Adolescent Psychiatry, Guillaume Regnier Hospital, University of Rennes 1, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gamliel M, Ebstein R, Yirmiya N, Mankuta D. Minor Fetal Sonographic Findings in Autism Spectrum Disorder. Obstet Gynecol Surv 2012; 67:176-86. [DOI: 10.1097/ogx.0b013e31824bb5d6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
McGrew SG, Peters BR, Crittendon JA, Veenstra-VanderWeele J. Diagnostic Yield of Chromosomal Microarray Analysis in an Autism Primary Care Practice: Which Guidelines to Implement? J Autism Dev Disord 2011; 42:1582-91. [DOI: 10.1007/s10803-011-1398-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Angkustsiri K, Krakowiak P, Moghaddam B, Wardinsky T, Gardner J, Kalamkarian N, Hertz-Picciotto I, Hansen RL. Minor physical anomalies in children with autism spectrum disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2011; 15:746-60. [PMID: 21610186 PMCID: PMC4245022 DOI: 10.1177/1362361310397620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE There is clinical heterogeneity among the autism spectrum disorders (ASD). The presence of dysmorphology (minor physical anomalies; MPAs) is one possible tool for defining a clinically relevant subset in ASD. This study employs an adaptation of Miles and Hillman's (2000) classifications by using photographs to identify a subgroup with significant dysmorphology among children with ASD, typical development (TYP), and developmental delay (DD). METHOD Children with ASD, DD, and TYP between 2 and 5 years old were part of the CHARGE Study. Pediatric specialists blinded to diagnostic group classified photographs based on the number of MPAs present: 'dysmorphic' if >3 and 'nondysmorphic' if <3 MPAs. RESULTS Photographs for 324 children were included. Significantly more children with ASD were classified as dysmorphic compared to TYP children (p = .007). In children with ASD, seizures were more prevalent in those rated dysmorphic (p = .005). Frequencies were similar between ASD versus DD (p = .19) after removing those with known syndromes. CONCLUSION Photographic assessment can be used to detect generalized dysmorphology in children who are often difficult to examine. This has clinical relevance, as children with multiple MPAs can be identified through the use of photographs and prioritized for investigation of brain abnormalities and underlying genetic disorders.
Collapse
|
50
|
Craniofacial dysmorphism and developmental disorders among children with chromosomal microdeletions and duplications of unknown significance. J Dev Behav Pediatr 2011; 32:600-4. [PMID: 21918468 DOI: 10.1097/dbp.0b013e31823299d6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Microarray comparative genomic hybridization is an extremely sensitive technology that increasingly identifies deletions and duplications of unknown significance. Our objective was to determine whether children with autism and other developmental delays who have genomic imbalances manifest more craniofacial dysmorphism and have lower cognitive scores than children from the same clinic population who have normal microarrays. METHOD A clinical geneticist, blinded to the history, reviewed photographs for craniofacial dysmorphism. Forty-five (24%) of 187 children who had a microarray had a deletion or duplication >200 kb. Thirty-six of those with abnormal microarrays (11 microdeletions and 25 duplications) had completed their evaluation, which included 3 deletions and 10 duplications of unknown significance. Subjects with and without microarray anomalies did not differ in age, sex, growth parameters, parental age or education level, insurance status, or cognitive scores. RESULTS Twenty-eight (78%) of the 36 children with microarray anomalies had craniofacial dysmorphism as compared with 45% of those with normal microarrays (p = .0005). Among the 13 children with microarray abnormalities of unknown significance, 10 (77%) were dysmorphic, similar to 18 (78%) of 23 who had a genomic imbalance known to affect development. Among the 10 children with dysmorphism and a microarray anomaly of unknown significance, 7 also had an IQ ≤70 and/or a diagnosis of autism. CONCLUSION Microdeletions and duplications not previously known to be associated with human disease were strongly associated with craniofacial dysmorphism, cognitive scores ≤70, and a diagnosis of autism in this clinic population, providing presumptive evidence that these genomic imbalances are clinically significant.
Collapse
|