1
|
Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 27343089 DOI: 10.1007/978-1-4899-7678-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In hypoxia aerobic exercise performance of high-altitude natives is suggested to be superior to that of lowlanders; i.e., for a given altitude natives are reported to have higher maximal oxygen uptake (VO2max). The likely basis for this is a higher pulmonary diffusion capacity, which in turn ensures higher arterial O2 saturation (SaO2) and therefore also potentially a higher delivery of O2 to the exercising muscles. This review focuses on O2 transport in high-altitude Aymara. We have quantified femoral artery O2 delivery, arterial O2 extraction and calculated leg VO2 in Aymara, and compared their values with that of acclimatizing Danish lowlanders. All subjects were studied at 4100 m. At maximal exercise SaO2 dropped tremendously in the lowlanders, but did not change in the Aymara. Therefore arterial O2 content was also higher in the Aymara. At maximal exercise however, fractional O2 extraction was lower in the Aymara, and the a-vO2 difference was similar in both populations. The lower extraction levels in the Aymara were associated with lower muscle O2 conductance (a measure of muscle diffusion capacity). At any given submaximal exercise intensity, leg VO2 was always of similar magnitude in both groups, but at maximal exercise the lowlanders had higher leg blood flow, and hence also higher maximum leg VO2. With the induction of acute normoxia fractional arterial O2 extraction fell in the highlanders, but remained unchanged in the lowlanders. Hence high-altitude natives seem to be more diffusion limited at the muscle level as compared to lowlanders. In conclusion Aymara preserve very high SaO2 during hypoxic exercise (likely due to a higher lung diffusion capacity), but the effect on VO2max is reduced by a lower ability to extract O2 at the muscle level.
Collapse
|
2
|
Brutsaert T. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:101-12. [PMID: 27343091 DOI: 10.1007/978-1-4899-7678-9_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.
Collapse
Affiliation(s)
- Tom Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Caffrey D, Miranda JJ, Gilman RH, Davila-Roman VG, Cabrera L, Dowling R, Stewart T, Bernabe-Ortiz A, Wise R, Leon-Velarde F, Checkley W. A cross-sectional study of differences in 6-min walk distance in healthy adults residing at high altitude versus sea level. EXTREME PHYSIOLOGY & MEDICINE 2014; 3:3. [PMID: 24484777 PMCID: PMC3909455 DOI: 10.1186/2046-7648-3-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
Abstract
Background We sought to determine if adult residents living at high altitude have developed sufficient adaptation to a hypoxic environment to match the functional capacity of a similar population at sea level. To test this hypothesis, we compared the 6-min walk test distance (6MWD) in 334 residents living at sea level vs. at high altitude. Methods We enrolled 168 healthy adults aged ≥35 years residing at sea level in Lima and 166 individuals residing at 3,825 m above sea level in Puno, Peru. Participants completed a 6-min walk test, answered a sociodemographics and clinical questionnaire, underwent spirometry, and a blood test. Results Average age was 54.0 vs. 53.8 years, 48% vs. 43% were male, average height was 155 vs. 158 cm, average blood oxygen saturation was 98% vs. 90%, and average resting heart rate was 67 vs. 72 beats/min in Lima vs. Puno. In multivariable regression, participants in Puno walked 47.6 m less (95% CI -81.7 to -13.6 m; p < 0.01) than those in Lima. Other variables besides age and height that were associated with 6MWD include change in heart rate (4.0 m per beats/min increase above resting heart rate; p < 0.001) and percent body fat (-1.4 m per % increase; p = 0.02). Conclusions The 6-min walk test predicted a lowered functional capacity among Andean high altitude vs. sea level natives at their altitude of residence, which could be explained by an incomplete adaptation or a protective mechanism favoring neuro- and cardioprotection over psychomotor activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, 1800 Orleans St, Suite 9121, Baltimore, MD 21205, USA.
| | | |
Collapse
|
4
|
Weitz CA, Liu JC, He X, Chin CT, Garruto RM. Responses of Han Migrants Compared to Tibetans at High Altitude. Am J Hum Biol 2013; 25:169-78. [DOI: 10.1002/ajhb.22368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 11/08/2022] Open
Affiliation(s)
- Charles A. Weitz
- Department of Anthropology; Temple University; Philadelphia; Pennsylvania; 19122
| | - Ji-Chuan Liu
- Beijing Medical University, Maternal and Children's Hospital; Beijing; People's Republic of China
| | - Xing He
- Department of Maternal and Child Health; Qinghai Bureau of Public Health; Xining; People's Republic of China
| | - Chen-Ting Chin
- Beijing Medical University, Maternal and Children's Hospital; Beijing; People's Republic of China
| | - Ralph M. Garruto
- Department of Anthropology; Binghamton University, State University of New York; Binghamton; New York; 13902
| |
Collapse
|
5
|
Beall CM, Jablonski NG, Steegmann AT. Human Adaptation to Climate: Temperature, Ultraviolet Radiation, and Altitude. Hum Biol 2012. [DOI: 10.1002/9781118108062.ch6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Brutsaert TD. Do high-altitude natives have enhanced exercise performance at altitude? Appl Physiol Nutr Metab 2008; 33:582-92. [PMID: 18461115 DOI: 10.1139/h08-009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natives of high altitude (HA) may have enhanced physical work capacity in hypoxia due to growth and development at altitude or, in the case of indigenous Andean and Himalayan residents, due to population genetic factors that determine higher limits to exercise performance. There is a growing scientific literature in support of both hypotheses, although the specific developmental vs. genetic origins of putative population trait differences remain obscure. Considering whole-body measures of exercise performance, a review of the literature suggests that indigenous HA natives have higher mean maximal oxygen consumption (VO(2) (max)) in hypoxia and smaller VO(2) (max) decrement with increasing hypoxia. At present, there is insufficient information to conclude that HA natives have enhanced work economy or greater endurance capacity, although for the former a number of studies indicate that this may be the case for Tibetans. At the physiological level, supporting the hypothesis of enhanced pulmonary gas exchange efficiency, HA natives have smaller alveolar-arterial oxygen partial pressure difference ((A-a)DO(2)), lower pulmonary ventilation (VE), and likely higher arterial O(2) saturation (SaO(2)) during exercise. At the muscle level, a handful of studies show no differences in fiber-type distributions, capillarity, oxidative enzymes, or the muscle response to training. At the metabolic level, a few studies suggest differences in lactate production/removal and (or) lactate buffering capacity, but more work is needed in this area.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, State University of New York at Albany, Albany, NY 12222, USA.
| |
Collapse
|
7
|
Schell LM, Magnus PD. Is there an elephant in the room? Addressing rival approaches to the interpretation of growth perturbations and small size. Am J Hum Biol 2007; 19:606-14. [PMID: 17636533 DOI: 10.1002/ajhb.20669] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Two interpretations of growth perturbation and small size are commonly applied in human biology: an adaptationist approach in which small size is considered to be an a relatively beneficial adjustment to environmental stressors, and a biomedical approach in which small size is considered nonadaptive, a sign of dysfunction or pathology. These two interpretations conflict, but are used without acknowledging or addressing the conflict. This article reviews the strengths and weaknesses of the two. This exercise does not prove the indisputable superiority of either approach. Considerations of epistemology show that biologists will never be faced with a decisive test of either, much as they might like such clear cut evidence. Nevertheless, it is possible that a gradual decrease in the productivity of one approach will become a sufficient reason to abandon it. Alternatively, if specific areas of application can be distinguished, each approach might continue to be productive in its own domain.
Collapse
Affiliation(s)
- Lawrence M Schell
- Department of Anthropology, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | |
Collapse
|
8
|
Weinstein KJ. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 134:36-49. [PMID: 17503449 DOI: 10.1002/ajpa.20619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Living humans from the highland Andes exhibit antero-posteriorly and medio-laterally enlarged chests in response to high-altitude hypoxia. This study hypothesizes that morphological responses to high-altitude hypoxia should also be evident in pre-Contact Andean groups. Thoracic skeletal morphology in four groups of human skeletons (N = 347) are compared: two groups from coastal regions (Ancón, Peru, n = 79 and Arica, Chile, n = 123) and two groups from high altitudes (San Pedro de Atacama, Chile, n = 102 and Machu Picchu and Cuzco, Peru, n = 43). Osteometric variables that represent proportions of chest width and depth include sternal and clavicular lengths and breadths and rib length, curvature, and area. Each variable was measured relative to body size, transformed into logarithmic indices, and compared across sex-specific groups using ANOVA and Tukey multiple comparison tests. Atacama highlanders have the largest sternal and clavicular proportions and ribs with the greatest area and least amount of curvature, features that suggest an antero-posteriorly deep and mediolaterally wide thoracic skeleton. Ancón lowlanders exhibit proportions indicating narrower and shallower chests. Machu Picchu and Cuzco males cluster with the other highland group in rib curvature and area at the superior levels of the thorax, whereas chest proportions in Machu Picchu and Cuzco females resemble those of lowlanders. The variation in Machu Picchu and Cuzco males and females is interpreted as the result of population migrations. The presence of morphological traits indicative of enlarged chests in some highland individuals suggests that high-altitude hypoxia was an environmental stressor shaping the biology of highland Andean groups during the pre-Contact period.
Collapse
Affiliation(s)
- Karen J Weinstein
- Department of Anthropology, Dickinson College, Carlisle, PA 17013, USA.
| |
Collapse
|
9
|
Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8655-60. [PMID: 17494744 PMCID: PMC1876443 DOI: 10.1073/pnas.0701985104] [Citation(s) in RCA: 498] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Populations native to the Tibetan and Andean Plateaus are descended from colonizers who arrived perhaps 25,000 and 11,000 years ago, respectively. Both have been exposed to the opportunity for natural selection for traits that offset the unavoidable environmental stress of severe lifelong high-altitude hypoxia. This paper presents evidence that Tibetan and Andean high-altitude natives have adapted differently, as indicated by large quantitative differences in numerous physiological traits comprising the oxygen delivery process. These findings suggest the hypothesis that evolutionary processes have tinkered differently on the two founding populations and their descendents, with the result that the two followed different routes to the same functional outcome of successful oxygen delivery, long-term persistence and high function. Assessed on the basis of basal and maximal oxygen consumption, both populations avail themselves of essentially the full range of oxygen-using metabolism as populations at sea level, in contrast with the curtailed range available to visitors at high altitudes. Efforts to identify the genetic bases of these traits have included quantitative genetics, genetic admixture, and candidate gene approaches. These reveal generally more genetic variance in the Tibetan population and more potential for natural selection. There is evidence that natural selection is ongoing in the Tibetan population, where women estimated to have genotypes for high oxygen saturation of hemoglobin (and less physiological stress) have higher offspring survival. Identifying the genetic bases of these traits is crucial to discovering the steps along the Tibetan and Andean routes to functional adaptation.
Collapse
Affiliation(s)
- Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Brutsaert TD. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives. Respir Physiol Neurobiol 2007; 158:151-60. [PMID: 17400521 DOI: 10.1016/j.resp.2007.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/26/2007] [Accepted: 03/03/2007] [Indexed: 11/21/2022]
Abstract
Highland natives show unique breathing patterns and ventilatory responses at altitude, both at rest and during exercise. For many ventilatory traits, there is also significant variation between highland native groups, including indigenous populations in the Andes and Himalaya, and more recent altitude arrivals in places like Colorado. This review summarizes the literature in this area with some focus on partitioning putative population genetic differences from differences acquired through lifelong exposure to hypoxia. Current studies suggest that Tibetans have high resting ventilation (V (E)), and a high hypoxic ventilatory response (HVR), similar to altitude acclimatized lowlanders. Andeans, in contrast, show low resting V (E) and a low or "blunted" HVR, with little evidence that these traits are acquired via lifelong exposure. Resting V (E) of non-indigenous altitude natives is not well documented, but lifelong hypoxic exposure almost certainly blunts HVR in these groups through decreased chemosensitivity to hypoxia in a process known as hypoxic desensitization (HD). Together, these studies suggest that the time course of ventilatory response, and in particular the origin or absence of HD, depends on population genetic background i.e., the allele or haplotype frequencies that characterize a particular population. During exercise, altitude natives have lower V (E) compared to acclimatized lowland controls. Altitude natives also have smaller alveolar-arterial partial pressure differences P(AO2) - P(aO2) during exercise suggesting differences in gas exchange efficiency. Small P(AO2) - P(aO2) in highland natives of Colorado underscores the likely importance of developmental adaptation to hypoxia affecting structural/functional aspects of gas exchange with resultant changes in breathing pattern. However, in Andeans, at least, there is also evidence that low exercise V (E) is determined by genetic background affecting ventilatory control independent of gas exchange. Additional studies are needed to elucidate the effects of gene, environment, and gene-environment interaction on these traits, and these effects are likely to differ widely between altitude native populations.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, 1400 Washington Ave., The University at Albany, SUNY, Albany, NY 12222, United States.
| |
Collapse
|
11
|
Marconi C, Marzorati M, Cerretelli P. Work capacity of permanent residents of high altitude. High Alt Med Biol 2006; 7:105-15. [PMID: 16764524 DOI: 10.1089/ham.2006.7.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tibetan and Andean natives at altitude have allegedly a greater work capacity and stand fatigue better than acclimatized lowlanders. The principal aim of the present review is to establish whether convincing experimental evidence supports this belief and, should this be the case, to analyze the possible underlying mechanisms. The superior work capacity of high altitude natives is not based on differences in maximum aerobic power (V(O2 peak)), mL kg(-1)min(-1)). In fact, average V (O2 peak) of both Tibetan and Andean natives at altitude is only slightly, although not significantly, higher than that of Asian or Caucasian lowlanders resident for more than 1 yr between 3400 and 4700 m (Tibetans, n = 152, vs. Chinese Hans, n = 116: 42.4 +/- 3.4 vs. 39.2 +/- 2.6 mL kg(-1)min(-1), mean +/- SE; Andeans, n = 116, vs. Caucasians, n = 70: 47.1 +/- 1.7 vs. 41.6 +/- 1.2 mL kg(-1)min(-1)). However, compared to acclimatized lowlanders, Tibetans appear to be characterized by a better economy of cycling, walking, and running on a treadmill. This is possibly due to metabolic adaptations, such as increased muscle myoglobin content and antioxidant defense. All together, the latter changes may enhance the efficiency of the muscle oxidative metabolic machinery, thereby supporting a better prolonged submaximal performance capacity compared to lowlanders, despite equal V(O2 peak). With regard to Andeans, data on exercise efficiency is scanty and controversial and, at present, no conclusion can be drawn as to the origin of their superior performance.
Collapse
|
12
|
Abstract
Growth and development under conditions of chronic hypoxia result in a different pattern of growth in Andean highlanders than in lowlanders. Growth at high altitude results in a small (1 to 4 cm) delay in linear growth, with most, if not all, of the delay probably established at or soon after birth. It also results in an enhancement of lung volumes, particularly residual volume, which is 70%-80% larger in highland than lowland children, on average, with the magnitude of the increase being positively related to age. In addition, growth and development under conditions of chronic hypoxia result in a blunted ventilatory response to hypoxia, a 4% to 5% reduction in Sa(O2), and a substantial increase in pulmonary diffusing capacity. Andean highlanders have V(O2 max) similar to that of lowlanders at low altitude, suggesting that they have successfully adapted to their hypoxic environment. It is likely that both developmental and genetic factors influence most, if not all, components of the cardiorespiratory system of Andean highlanders, but the relative importance of each is not clear.
Collapse
Affiliation(s)
- Lawrence P Greksa
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
13
|
Rinne ST, Rodas EJ, Bender BS, Rinne ML, Simpson JM, Galer-Unti R, Glickman LT. Relationship of pulmonary function among women and children to indoor air pollution from biomass use in rural Ecuador. Respir Med 2006; 100:1208-15. [PMID: 16318916 PMCID: PMC3622701 DOI: 10.1016/j.rmed.2005.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 10/04/2005] [Accepted: 10/21/2005] [Indexed: 11/23/2022]
Abstract
Approximately half the world uses biomass fuel for domestic energy, resulting in widespread exposure to indoor air pollution (IAP) from biomass smoke. IAP has been associated with many respiratory diseases, though it is not clear what relationship exists between biomass use and pulmonary function. Four groups containing 20 households each were selected in Santa Ana, Ecuador based on the relative amount of liquid petroleum gas and biomass fuel that they used for cooking. Pulmonary function tests were conducted on each available member of the households 7 years of age. The pulmonary functions of both children (7-15 years) and women (16 years) were then compared between cooking fuel categories using multivariate linear regression, controlling for the effects of age, gender, height, and exposure to tobacco smoke. Among the 80 households, 77 children and 91 women performed acceptable and reproducible spirometry. In multivariate analysis, children living in homes that use biomass fuel and children exposed to environmental tobacco smoke had lower forced vital capacity and lower forced expiratory volume in 1s (P<0.05). However, no significant difference in pulmonary function was observed among women in different cooking categories. Results of this study demonstrate the harmful effects of IAP from biomass smoke on the lung function of children and emphasize the need for public health efforts to decrease exposure to biomass smoke.
Collapse
Affiliation(s)
- Seppo T. Rinne
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Edgar J. Rodas
- Cinterandes Foundation, Faculty of Medicine, University of Azuay, Cuenca, Ecuador
| | - Brooke S. Bender
- Emergency Department, Jacobi Hospital, Albert Einstein School of Medicine, New York, NY, USA
| | - Mikael L. Rinne
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Joshua M. Simpson
- Center for Environmental Research and Conservation, Columbia University, New York, NY, USA
| | - Regina Galer-Unti
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA
| | - Larry T. Glickman
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Cornolo J, Brugniaux JV, Macarlupu JL, Privat C, León-Velarde F, Richalet JP. Autonomic Adaptations in Andean Trained Participants to a 4220-m Altitude Marathon. Med Sci Sports Exerc 2005; 37:2148-53. [PMID: 16331143 DOI: 10.1249/01.mss.0000179901.19280.85] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Both training and chronic hypoxia act on the autonomic nervous system. Because trained Andean high-altitude natives could perform a high-altitude marathon (4220 m above sea level) in 02:27:23 h, we hypothesized that living in chronic hypoxia does not limit the training-induced benefits on the autonomic modulation of the heart. METHODS Trained (N=13) and sedentary (N=11) Andean high-altitude natives performed an active orthostatic test. Eight of the trained subjects repeated the test 6-8 and 20-24 h after the end of a high-altitude marathon. Resting heart rate (HR) and the autonomic modulation of the heart were assessed by time domain and spectral analysis of HR variability (HRV): sympathetic (RR low frequency (LF)) and parasympathetic (RR high frequency (HF)) modulations, and sympathovagal balance (RR-LF:HF ratio). RESULTS Trained subjects exhibited a higher total power of HRV and a lower resting HR (+30%, P<0.005) than sedentary subjects secondary to a higher and dominant parasympathetic modulation on sympathetic activity (RR-HF, RR-LF:HF ratio). At 6-8 h after the marathon, total power of HRV decreased (-69%), whereas resting HR increased from basal level (+22%), mainly because of a rise in sympathetic modulation (RR-LF, RR-LF:HF ratio). From 8 to 24 h of recovery, sympathetic modulation fell (RR-LF, RR-LF:HF ratio) and all HRV parameters were restored. Responses to the active standing position did not change between each recording session. CONCLUSION Living in chronic hypoxia does not limit the training-induced benefits on the autonomic control of the cardiovascular system in Andean high-altitude natives. The sympathetic predominance on the heart observed 6-8 h after the high-altitude marathon disappeared after 1 d of recovery. Therefore, living at high altitude does not impair the autonomic response to training.
Collapse
Affiliation(s)
- Jérémy Cornolo
- University Paris 13, ARPE, Laboratory of Functional and Cellular Responses to Hypoxia, Bobigny, FRANCE
| | | | | | | | | | | |
Collapse
|
15
|
Lundby C, Calbet JAL, van Hall G, Saltin B, Sander M. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1202-8. [PMID: 15191909 DOI: 10.1152/ajpregu.00725.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2was reduced during AH but increased gradually during acclimatization (61 ± 0.7, 69 ± 0.9, and 72 ± 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 ± 0.6 mmHg). Arterial Po2(PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 ± 1.1, 58 ± 1.7, and 62 ± 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2in lowlanders reached levels that were not different from those in high-altitude natives (66 ± 1.2 mmHg). Arterial O2saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 ± 1.4, 76.9 ± 1.7, and 79.3 ± 1.6%, respectively. After 8W, SaO2in lowlanders was not significantly different from that in Aymaras (82.7 ± 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2after 8W: 59 ± 4, 58 ± 4, and 52 ± 4 l·min·l O2−1, respectively. The ventilatory equivalent of O2reached levels not different from that of Aymaras (51 ± 3 l·min·l O2−1). However, increases in exercise alveolar Po2and PaO2with acclimatization had no net effect on alveolar-arterial Po2difference in lowlanders (10 ± 1.3, 11 ± 1.5, and 10 ± 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 ± 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.
Collapse
Affiliation(s)
- Carsten Lundby
- The Copenhagen Muscle Research Centre, Rigshospitalet, Sect. 7652, 9 Blegdamsvej, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
16
|
Brutsaert TD, Parra E, Shriver M, Gamboa A, Palacios JA, Rivera M, Rodriguez I, León-Velarde F. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; 123:390-8. [PMID: 15022366 DOI: 10.1002/ajpa.10319] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, State University of New York at Albany, Albany, New York 12222, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brutsaert TD, Haas JD, Spielvogel H. Absence of Work Efficiency Differences During Cycle Ergometry Exercise in Bolivian Aymara. High Alt Med Biol 2004; 5:41-59. [PMID: 15072716 DOI: 10.1089/152702904322963681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study tested the hypothesis that Andean natives are adapted to high altitude (HA) via high work efficiency during exercise in hypoxia. A total of 186 young males and females were tested in Bolivia, comprising eight different subject groups. Groups were identified based on gender, ancestry (Aymara vs. European), altitude of birth (highlands vs. lowlands), and the altitude where tested (420, 3600, 3850 m). This design allows partitioning of ancestral (i.e., genetic) and developmental effects. To minimize measurement error, subjects were given two submaximal exercise tests on a cycle ergometer (on separate days). Each test consisted of four 5-min work bouts (levels), each separated by a 5-min rest period. For all groups, the oxygen consumption (V(O2))-work rate relationship was not different from the sea-level reference. Gross and net efficiencies (GE and NE) were not different between groups at any work level, with the exception of European men born in the lowlands and acclimatized and tested at 3600 m. These men showed slightly lower V(O2) at high work output, but this may be due to a nonsteady-state V(O2) kinetic, rather than to an altered steady-state V(O2)-work rate relationship per se. There were no significant group differences in delta efficiency (DE). In sum, these results provide no support for the hypothesis of energetic advantage during submaximal work in Andean HA natives. A review and analysis of the literature suggest that the same is true for HA natives in the Himalayas.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, The University at Albany, SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
18
|
Sarton-Miller I, Holman DJ, Spielvogel H. Regression-based prediction of net energy expenditure in children performing activities at high altitude. Am J Hum Biol 2003; 15:554-65. [PMID: 12820197 DOI: 10.1002/ajhb.10162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a simple, non-invasive, and affordable method for estimating net energy expenditure (EE) in children performing activities at high altitude. A regression-based method predicts net oxygen consumption (VO(2)) from net heart rate (HR) along with several covariates. The method is atypical in that, the "net" measures are taken as the difference between exercise and resting VO(2) (DeltaVO(2)) and the difference between exercise and resting HR (DeltaHR); DeltaVO(2) partially corrects for resting metabolic rate and for posture, and DeltaHR controls for inter-individual variation in physiology and for posture. Twenty children between 8 and 13 years of age, born and raised in La Paz, Bolivia (altitude 3,600m), made up the reference sample. Anthropometric measures were taken, and VO(2) was assessed while the children performed graded exercise tests on a cycle ergometer. A repeated-measures prediction equation was developed, and maximum likelihood estimates of parameters were found from 75 observations on 20 children. The final model included the variables DeltaHR, DeltaHR(2), weight, and sex. The effectiveness of the method was established using leave-one-out cross-validation, yielding a prediction error rate of 0.126 for a mean DeltaVO(2) of 0.693 (SD 0.315). The correlation between the predicted and measured DeltaVO(2) was r = 0.917, suggesting that a useful prediction equation can be produced using paired VO(2) and HR measurements on a relatively small reference sample. The resulting prediction equation can be used for estimating EE from HR in free-living children performing habitual activities in the Bolivian Andes.
Collapse
|
19
|
Brutsaert TD. Genetic and environmental adaptation in high altitude natives. Conceptual, methodological, and statistical concerns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 502:133-51. [PMID: 11950135 DOI: 10.1007/978-1-4757-3401-0_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A great number of physiological and anthropological studies have investigated Andean and Himalayan populations native to high altitude (HA). A non-scientific survey of the extant literature reveals a relatively liberal tradition of inferring genetic (evolutionary) adaptation to HA in these groups, often based on limited evidence and/or based on study designs insufficient to fully address the issue. Rather than review the evidence for or against genetic adaptation, and in order to provide some perspective, this paper will review relevant conceptual, methodological, and statistical issues that are germane to the study of HA native human groups. In particular, focus will be on the limitations of the most common research approach which bases evolutionary inference on the comparison of phenotypic mean differences between highland and lowland native populations. The migrant study approach is discussed, as is a relatively new approach based on genetic admixture in hybrid populations.
Collapse
Affiliation(s)
- T D Brutsaert
- Department ofAnthropology, The State University of New York, Albany, USA
| |
Collapse
|
20
|
Affiliation(s)
- Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio 44106-7125; e-mail:
| |
Collapse
|
21
|
Abstract
Some 140 million persons live permanently at high altitudes (>2500 m) in North, Central and South America, East Africa, and Asia. Reviewed here are recent studies which address the question as to whether genetic adaptation to high altitude has occurred. Common to these studies are the use of the oxygen transport system and the passage of time as organizing principles, and the recognition of the multifaceted ways in which genetic factors can influence physiological processes. They differ in terms of study approach and sources of evidence for judging duration of high altitude residence. Migrant, family set, and admixture study designs have been used for comparisons within populations. These collectively demonstrate the existence of genetic influences on physiological characteristics of oxygen transport. Differences in oxygen transport-related traits between Tibetan, Andean and European populations have been interpreted as having demonstrated the existence of genetic influences on high altitude adaptation but there is not consensus as to which groups are the best-adapted. Part of the controversy lies in the kinds of evidence used to assess duration of high altitude habitation. More other information is needed for a fuller appreciation of duration of residence and also features of population history (genetic drift, gene flow) but existing data are consistent with Tibetans having lived at high altitude longer than the other groups studied. Another issue surrounds usage of the term "adaptation." The definition should be based on evolutionary biology and physiological traits linked to indices of differential fertility and/or mortality. Two examples are developed to illustrate such linkages; intrauterine growth restriction (IUGR) at high altitude and the prevalence of Chronic Mountain Sickness (CMS). Interpopulational as well as intrapopulational variation exists in these conditions which appear linked to characteristics of oxygen transport. Both adversely influence survival and appear to be less severe (IUGR) or less common (CMS) among Tibetans than other groups. Thus available evidence suggest that Tibetans are better adapted. Needed, however, are studies which are better controlled for population ancestry, especially in South America, to determine the extent to which Tibetans differ from Andean highlanders. More precise information is also needed regarding the genetic factors underlying characteristics of oxygen transport. Such studies in Tibetan, Andean and Europeans as well as other high altitude populations offers a promising avenue for clarifying the adaptive value of physiological components of oxygen transport and the extent to which such factors differ among high altitude populations.
Collapse
Affiliation(s)
- L G Moore
- Department of Anthropology, University of Colorado at Denver, Denver CO 80217, USA.
| |
Collapse
|
22
|
Brutsaert TD. Limits on inferring genetic adaptation to high altitude in Himalayan and Andean populations. High Alt Med Biol 2001; 2:211-25. [PMID: 11443002 DOI: 10.1089/152702901750265314] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many physiological and anthropological studies have investigated the unique Andean and Himalayan populations that have resided for many hundreds of generations at high altitude (HA). A nonscientific survey of the extant literature reveals a relatively liberal tradition of inferring genetic (evolutionary) adaptation to HA in these groups, often based on limited evidence and/or based on study designs insufficient to fully address the issue. In order to provide some perspective, I review relevant methodological issues that should be considered before evolutionary inference is made. On the whole, this paper takes a conservative stance and cautions against evolutionary inference based on the serious limitations of currently applied research approaches.
Collapse
Affiliation(s)
- T D Brutsaert
- Department of Anthropology, The State University of New York, Albany New York 12222, USA.
| |
Collapse
|
23
|
Rupert JL, Hochachka PW. The evidence for hereditary factors contributing to high altitude adaptation in Andean natives: a review. High Alt Med Biol 2001; 2:235-56. [PMID: 11443004 DOI: 10.1089/152702901750265332] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Humans have occupied the high plateaus and mountain valleys of the Andes and the Himalayas for thousands of years. Although sea level natives can, and often do, travel in these rarefied reaches, there is little doubt that natives born and raised in the "thin" air are better equipped to deal with the reduced availability of oxygen at altitude. What fraction of the hypoxia defense response of high altitude native populations is due to developmental adaptations acquired during growth and what fraction is due to a genetic component reflecting the effects of selective transmission of beneficial genetic variants through hundreds of generations of antecedents is as yet unresolved. This paper summarizes some of the studies that have been undertaken to address this issue in Andean indigenous populations, primarily with respect to those adaptations thought to be involved in the uptake, distribution and utilization of oxygen in children and adults. Specifically, it focuses on changes in chest morphology, pulmonary function, metabolism and hematology. Space constraints preclude extending this review to the large body of literature concerning prenatal and maternal adaptations although this critical stage in development has likely been subject to significant selective pressures. It is apparent that both nature and nurture influence the acquisition of a high altitude phenotype in humans and while there is some evidence for genetic adaptation in Andean highlanders, it is evident that these characteristics are expressed in concert with substantial environment-dependent developmental adjustments.
Collapse
Affiliation(s)
- J L Rupert
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
24
|
Malville NJ, Byrnes WC, Lim HA, Basnyat R. Commercial porters of eastern Nepal: health status, physical work capacity, and energy expenditure. Am J Hum Biol 2001. [PMID: 11466966 DOI: 10.1002/1520-6300(200101/02)13:1%3c44::aid-ajhb1006%3e3.0.co;2-d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The purpose of the study was to compare full-time hill porters in eastern Nepal with part-time casual porters engaged primarily in subsistence farming. The 50 porters selected for this study in Kenja (elevation 1,664 m) were young adult males of Tibeto-Nepali origin. Following standardized interviews, anthropometry, and routine physical examinations, the porters were tested in a field laboratory for physiological parameters associated with aerobic performance. Exercise testing, using a step test and indirect calorimetry, included a submaximal assessment of economy and a maximal-effort graded exercise test. Energy expenditure was measured in the field during actual tumpline load carriage. No statistically significant differences were found between full-time and part-time porters with respect to age, anthropometric characteristics, health, nutritional status, or aerobic power. Mean VO2 peak was 2.38 +/- 0.27 L/min (47.1 +/- 5.3 ml/kg/min). Load-carrying economy did not differ significantly between porter groups. The relationship between VO2 and load was linear over the range of 10-30 kg with a slope of 9 +/- 4 ml O2/min per kg of load. During the field test of actual work performance, porters expended, on average, 348 +/- 68 kcal/hr in carrying loads on the level and 408 +/- 60 kcal/hr in carrying loads uphill. Most porters stopped every 2 min, on average, to rest their loads briefly on T-headed resting sticks (tokmas). The technique of self-paced, intermittent exercise together with the modest increase in energy demands for carrying increasingly heavier loads allows these individuals to regulate work intensity and carry extremely heavy loads without creating persistent medical problems.
Collapse
Affiliation(s)
- N J Malville
- Department of Anthropology, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
25
|
Malville NJ, Byrnes WC, Lim HA, Basnyat R. Commercial porters of eastern Nepal: health status, physical work capacity, and energy expenditure. Am J Hum Biol 2001; 13:44-56. [PMID: 11466966 DOI: 10.1002/1520-6300(200101/02)13:1<44::aid-ajhb1006>3.0.co;2-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The purpose of the study was to compare full-time hill porters in eastern Nepal with part-time casual porters engaged primarily in subsistence farming. The 50 porters selected for this study in Kenja (elevation 1,664 m) were young adult males of Tibeto-Nepali origin. Following standardized interviews, anthropometry, and routine physical examinations, the porters were tested in a field laboratory for physiological parameters associated with aerobic performance. Exercise testing, using a step test and indirect calorimetry, included a submaximal assessment of economy and a maximal-effort graded exercise test. Energy expenditure was measured in the field during actual tumpline load carriage. No statistically significant differences were found between full-time and part-time porters with respect to age, anthropometric characteristics, health, nutritional status, or aerobic power. Mean VO2 peak was 2.38 +/- 0.27 L/min (47.1 +/- 5.3 ml/kg/min). Load-carrying economy did not differ significantly between porter groups. The relationship between VO2 and load was linear over the range of 10-30 kg with a slope of 9 +/- 4 ml O2/min per kg of load. During the field test of actual work performance, porters expended, on average, 348 +/- 68 kcal/hr in carrying loads on the level and 408 +/- 60 kcal/hr in carrying loads uphill. Most porters stopped every 2 min, on average, to rest their loads briefly on T-headed resting sticks (tokmas). The technique of self-paced, intermittent exercise together with the modest increase in energy demands for carrying increasingly heavier loads allows these individuals to regulate work intensity and carry extremely heavy loads without creating persistent medical problems.
Collapse
Affiliation(s)
- N J Malville
- Department of Anthropology, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
26
|
Brutsaert TD, Araoz M, Soria R, Spielvogel H, Haas JD. Higher arterial oxygen saturation during submaximal exercise in Bolivian Aymara compared to European sojourners and Europeans born and raised at high altitude. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 113:169-81. [PMID: 11002203 DOI: 10.1002/1096-8644(200010)113:2<169::aid-ajpa3>3.0.co;2-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arterial oxygen saturation (SaO(2)) was measured at 3,600-3,850 m by pulse oximetry at rest and during submaximal exercise in three study groups: 1) highland Aymara natives of the Bolivian altiplano (n = 25); 2) lowland European/North American sojourners to the highlands with at least 2 months of acclimatization time to 3,600 m (n = 27); and 3) subjects of European ancestry born and raised at 3,600 m (n = 22). Aymara subjects maintained approximately 1 percentage point higher SaO(2) during submaximal work up to 70% of their maximal work capacity, and showed a smaller rate of decline in SaO(2) with increasing work compared to both European study groups. The higher-exercise SaO(2) of Aymara compared to Europeans born and raised at 3,600 m suggests genetic adaptation. The two European study groups, who differed by exposure to high altitude during their growth and development period, did not show any significant difference in either resting or exercise SaO(2). This suggests that the developmental mode of adaptation is less important than the genetic mode of adaptation in determining exercise SaO(2). A weak correlation was detected (across study groups only) between the residual forced vital capacity (FVC) and the residual SaO(2) measured at the highest level of submaximal work output (P = 0.024, R = 0.26). While firm conclusions based on this correlation are problematic, it is suggested that a part of the higher SaO(2) observed in Aymara natives is due to a larger lung volume and pulmonary diffusion capacity for oxygen. Results from this study are compared to similar studies conducted with Tibetan natives, and are interpreted in light of recent quantitative genetic analyses conducted in both the Andes and Himalayas.
Collapse
Affiliation(s)
- T D Brutsaert
- Department of Anthropology, Cornell University, Ithaca, New York, USA.
| | | | | | | | | |
Collapse
|
27
|
Severinghaus JW. Sightings. High Alt Med Biol 2000. [DOI: 10.1089/15270290050074215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|