1
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Lewis DA. Strength of Excitatory Inputs to Layer 3 Pyramidal Neurons During Synaptic Pruning in the Monkey Prefrontal Cortex: Relevance for the Pathogenesis of Schizophrenia. Biol Psychiatry 2023; 94:288-296. [PMID: 36736420 PMCID: PMC10394116 DOI: 10.1016/j.biopsych.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND In schizophrenia, layer 3 pyramidal neurons (L3PNs) of the dorsolateral prefrontal cortex exhibit deficits in markers of excitatory synaptic inputs that are thought to disrupt the patterns of neural network activity essential for cognitive function. These deficits are usually interpreted under Irwin Feinberg's hypothesis of altered synaptic pruning, which postulates that normal periadolescent pruning, thought to preferentially eliminate weak/immature synapses, is altered in schizophrenia. However, it remains unknown whether periadolescent pruning on L3PNs in the primate dorsolateral prefrontal cortex selectively eliminates weak excitatory synapses or uniformly eliminates excitatory synapses across the full distribution of synaptic strengths. METHODS To distinguish between these alternative models of synaptic pruning, we assessed the densities of dendritic spines, the site of most excitatory inputs to L3PNs, and the distributions of excitatory synaptic strengths in dorsolateral prefrontal cortex L3PNs from male and female monkeys across the periadolescent period of synaptic pruning. We used patch-clamp methods in acute brain slices to record miniature excitatory synaptic currents and intracellular filling with biocytin to quantify dendritic spines. RESULTS On L3PNs, dendritic spines exhibited the expected age-related decline in density, but mean synaptic strength and the shape of synaptic strength distributions remained stable with age. CONCLUSIONS The absence of age-related differences in mean synaptic strength and synaptic strength distributions supports the model of a uniform pattern of synaptic pruning across the full range of synaptic strengths. The implications of these findings for the pathogenesis and functional consequences of dendritic spine deficits in schizophrenia are discussed.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Nishihata
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Olga L Krimer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
3
|
Zhou L, Wang K, Xu Y, Dong BB, Wu DC, Wang ZX, Wang XT, Cai XY, Yang JT, Zheng R, Chen W, Shen Y, Wei JS. A patient-derived mutation of epilepsy-linked LGI1 increases seizure susceptibility through regulating K v1.1. Cell Biosci 2023; 13:34. [PMID: 36804022 PMCID: PMC9940402 DOI: 10.1186/s13578-023-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that functional LGI1 is secreted by excitatory neurons, GABAergic interneurons, and astrocytes, and regulates AMPA-type glutamate receptor-mediated synaptic transmission by binding ADAM22 and ADAM23. However, > 40 LGI1 mutations have been reported in familial ADLTE patients, more than half of which are secretion-defective. How these secretion-defective LGI1 mutations lead to epilepsy is unknown. RESULTS We identified a novel secretion-defective LGI1 mutation from a Chinese ADLTE family, LGI1-W183R. We specifically expressed mutant LGI1W183R in excitatory neurons lacking natural LGI1, and found that this mutation downregulated Kv1.1 activity, led to neuronal hyperexcitability and irregular spiking, and increased epilepsy susceptibility in mice. Further analysis revealed that restoring Kv1.1 in excitatory neurons rescued the defect of spiking capacity, improved epilepsy susceptibility, and prolonged the life-span of mice. CONCLUSIONS These results describe a role of secretion-defective LGI1 in maintaining neuronal excitability and reveal a new mechanism in the pathology of LGI1 mutation-related epilepsy.
Collapse
Affiliation(s)
- Lin Zhou
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Kang Wang
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yuxiang Xu
- grid.256922.80000 0000 9139 560XSchool of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Bin-Bin Dong
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Deng-Chang Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhao-Xiang Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Tai Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Yu Cai
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Jin-Tao Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Rui Zheng
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Jian-She Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Somogyi A, Wolf E. Increased Signal Delays and Unaltered Synaptic Input Pattern Recognition in Layer III Neocortical Pyramidal Neurons of the rTg4510 Mouse Model of Tauopathy: A Computer Simulation Study With Passive Membrane. Front Neurosci 2021; 15:721773. [PMID: 34733131 PMCID: PMC8558261 DOI: 10.3389/fnins.2021.721773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal tau proteins are involved in pathology of many neurodegenerative disorders. Transgenic rTg4510 mice express high levels of human tau protein with P301L mutation linked to chromosome 17 that has been associated with frontotemporal dementia with parkinsonism. By 9 months of age, these mice recapitulate key features of human tauopathies, including presence of hyperphosphorylated tau and neurofibrillary tangles (NFTs) in brain tissue, atrophy and loss of neurons and synapses, and hyperexcitability of neurons, as well as cognitive deficiencies. We investigated effects of such human mutant tau protein on neuronal membrane, subthreshold dendritic signaling, and synaptic input pattern recognition/discrimination in layer III frontal transgenic (TG) pyramidal neurons of 9-month-old rTg4510 mice and compared these characteristics to those of wild-type (WT) pyramidal neurons from age-matched control mice. Passive segmental cable models of WT and TG neurons were set up in the NEURON simulator by using three-dimensionally reconstructed morphology and electrophysiological data of these cells. Our computer simulations predict leakage resistance and capacitance of neuronal membrane to be unaffected by the mutant tau protein. Computer models of TG neurons showed only modest alterations in distance dependence of somatopetal voltage and current transfers along dendrites and in rise times and half-widths of somatic Excitatory Postsynaptic Potential (EPSPs) relative to WT control. In contrast, a consistent and statistically significant slowdown was detected in the speed of simulated subthreshold dendritic signal propagation in all regions of the dendritic surface of mutant neurons. Predictors of synaptic input pattern recognition/discrimination remained unaltered in model TG neurons. This suggests that tau pathology is primarily associated with failures/loss in synaptic connections rather than with altered intraneuronal synaptic integration in neurons of affected networks.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
7
|
Georgiev DD, Kolev SK, Cohen E, Glazebrook JF. Computational capacity of pyramidal neurons in the cerebral cortex. Brain Res 2020; 1748:147069. [DOI: 10.1016/j.brainres.2020.147069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
|
8
|
Komulainen E, Varidaki A, Kulesskaya N, Mohammad H, Sourander C, Rauvala H, Coffey ET. Impact of JNK and Its Substrates on Dendritic Spine Morphology. Cells 2020; 9:cells9020440. [PMID: 32074971 PMCID: PMC7072711 DOI: 10.3390/cells9020440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates.
Collapse
Affiliation(s)
- Emilia Komulainen
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, 20500 Turku, Finland; (E.K.); (A.V.); (H.M.); (C.S.)
| | - Artemis Varidaki
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, 20500 Turku, Finland; (E.K.); (A.V.); (H.M.); (C.S.)
| | - Natalia Kulesskaya
- University of Helsinki, Neuroscience Center, 00014 Helsinki, Finland; (N.K.); (H.R.)
| | - Hasan Mohammad
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, 20500 Turku, Finland; (E.K.); (A.V.); (H.M.); (C.S.)
| | - Christel Sourander
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, 20500 Turku, Finland; (E.K.); (A.V.); (H.M.); (C.S.)
| | - Heikki Rauvala
- University of Helsinki, Neuroscience Center, 00014 Helsinki, Finland; (N.K.); (H.R.)
| | - Eleanor T. Coffey
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, 20500 Turku, Finland; (E.K.); (A.V.); (H.M.); (C.S.)
- Correspondence:
| |
Collapse
|
9
|
Jin DZ, Zhao T, Hunt DL, Tillage RP, Hsu CL, Spruston N. ShuTu: Open-Source Software for Efficient and Accurate Reconstruction of Dendritic Morphology. Front Neuroinform 2019; 13:68. [PMID: 31736735 PMCID: PMC6834530 DOI: 10.3389/fninf.2019.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Neurons perform computations by integrating inputs from thousands of synapses-mostly in the dendritic tree-to drive action potential firing in the axon. One fruitful approach to studying this process is to record from neurons using patch-clamp electrodes, fill the recorded neurons with a substance that allows subsequent staining, reconstruct the three-dimensional architectures of the dendrites, and use the resulting functional and structural data to develop computer models of dendritic integration. Accurately producing quantitative reconstructions of dendrites is typically a tedious process taking many hours of manual inspection and measurement. Here we present ShuTu, a new software package that facilitates accurate and efficient reconstruction of dendrites imaged using bright-field microscopy. The program operates in two steps: (1) automated identification of dendritic processes, and (2) manual correction of errors in the automated reconstruction. This approach allows neurons with complex dendritic morphologies to be reconstructed rapidly and efficiently, thus facilitating the use of computer models to study dendritic structure-function relationships and the computations performed by single neurons.
Collapse
Affiliation(s)
- Dezhe Z. Jin
- Department of Physics and Center for Neural Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - David L. Hunt
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Rachel P. Tillage
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
10
|
Duman JG, Mulherkar S, Tu YK, Erikson KC, Tzeng CP, Mavratsas VC, Ho TSY, Tolias KF. The adhesion-GPCR BAI1 shapes dendritic arbors via Bcr-mediated RhoA activation causing late growth arrest. eLife 2019; 8:47566. [PMID: 31461398 PMCID: PMC6713510 DOI: 10.7554/elife.47566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor architecture profoundly impacts neuronal connectivity and function, and aberrant dendritic morphology characterizes neuropsychiatric disorders. Here, we identify the adhesion-GPCR BAI1 as an important regulator of dendritic arborization. BAI1 loss from mouse or rat hippocampal neurons causes dendritic hypertrophy, whereas BAI1 overexpression precipitates dendrite retraction. These defects specifically manifest as dendrites transition from growth to stability. BAI1-mediated growth arrest is independent of its Rac1-dependent synaptogenic function. Instead, BAI1 couples to the small GTPase RhoA, driving late RhoA activation in dendrites coincident with growth arrest. BAI1 loss lowers RhoA activation and uncouples it from dendrite dynamics, causing overgrowth. None of BAI1's known downstream effectors mediates BAI1-dependent growth arrest. Rather, BAI1 associates with the Rho-GTPase regulatory protein Bcr late in development and stimulates its cryptic RhoA-GEF activity, which functions together with its Rac1-GAP activity to terminate arborization. Our results reveal a late-acting signaling pathway mediating a key transition in dendrite development.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Yen-Kuei Tu
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
| | - Kelly C Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Christopher P Tzeng
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Vasilis C Mavratsas
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Rice University, Houston, United States
| | - Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Soluble Aβ Oligomers Impair Dipolar Heterodendritic Plasticity by Activation of mGluR in the Hippocampal CA1 Region. iScience 2018; 6:138-150. [PMID: 30240608 PMCID: PMC6137707 DOI: 10.1016/j.isci.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Soluble Aβ oligomers (oAβs) contribute importantly to synaptotoxicity in Alzheimer disease (AD), but the mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Nearly all studies of the effects of oAβs on hippocampal synaptic plasticity have only examined homosynaptic plasticity. Here we stimulated the Schaffer collaterals and then simultaneously recorded in stratum radiatum (apical dendrites) and stratum oriens (basal dendrites) of CA1 neurons. We found that the apical dendrites are significantly more vulnerable to oAβ-mediated synaptic dysfunction: the heterosynaptic basal dendritic long-term potentiation (LTP) remained unchanged, whereas the homosynaptic apical LTP was impaired. However, the heterosynaptic basal dendritic plasticity induced by either spaced 10-Hz bursts or low-frequency (1-Hz) stimulation was disrupted by oAβs in a mGluR5-dependent manner. These results suggest that different firing patterns in the same neurons may be selectively altered by soluble oAβs in an early phase of AD, before frank neurodegeneration.
Collapse
|
12
|
Kang MJ, Park SY, Han JS. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells. Front Mol Neurosci 2016; 9:110. [PMID: 27840601 PMCID: PMC5083843 DOI: 10.3389/fnmol.2016.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Hippocalcin (Hpca) is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs). When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), and brain-derived neurotrophic factor (BDNF), together with the proneural basic helix loop helix (bHLH) transcription factors NeuroD and neurogenin 1 (Ngn1), increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP), an astrocyte marker, and in branch outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, NeuroD, and Ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727), and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201), suggesting that STAT3 (Ser727) activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and branch outgrowth in HNPCs.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University Seoul, South Korea
| | - Shin-Young Park
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University Seoul, South Korea
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang UniversitySeoul, South Korea; Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang UniversitySeoul, South Korea
| |
Collapse
|
13
|
Deng L, Ruan Y, Chen C, Frye CC, Xiong W, Jin X, Jones K, Sengelaub D, Xu XM. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 2015; 277:103-114. [PMID: 26730519 DOI: 10.1016/j.expneurol.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Abstract
After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline acetyltransferase (ChAT), glycine, and GABA was performed in the T7-9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90% of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10% of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment.
Collapse
Affiliation(s)
- Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute for CNS Regeneration (GHMICR), Jinan University, Guangzhou,China, 510632
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christian Corbin Frye
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kathryn Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
14
|
Smith CA, Holahan MR. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats. PLoS One 2014; 9:e109522. [PMID: 25295592 PMCID: PMC4190087 DOI: 10.1371/journal.pone.0109522] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022] Open
Abstract
Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.
Collapse
|
15
|
Parekh R, Ascoli GA. Quantitative investigations of axonal and dendritic arbors: development, structure, function, and pathology. Neuroscientist 2014; 21:241-54. [PMID: 24972604 DOI: 10.1177/1073858414540216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The branching structures of neurons are a long-standing focus of neuroscience. Axonal and dendritic morphology affect synaptic signaling, integration, and connectivity, and their diversity reflects the computational specialization of neural circuits. Altered neuronal morphology accompanies functional changes during development, experience, aging, and disease. Technological improvements continuously accelerate high-throughput tissue processing, image acquisition, and morphological reconstruction. Digital reconstructions of neuronal morphologies allow for complex quantitative analyses that are unattainable from raw images or two-dimensional tracings. Furthermore, digitized morphologies enable computational modeling of biophysically realistic neuronal dynamics. Additionally, reconstructions generated to address specific scientific questions have the potential for continued investigations beyond the original reason for their acquisition. Facilitating multiple reuse are repositories like NeuroMorpho.Org, which ease the sharing of reconstructions. Here, we review selected scientific literature reporting the reconstruction of axonal or dendritic morphology with diverse goals including establishment of neuronal identity, examination of physiological properties, and quantification of developmental or pathological changes. These reconstructions, deposited in NeuroMorpho.Org, have since been used by other investigators in additional research, of which we highlight representative examples. This cycle of data generation, analysis, sharing, and reuse reveals the vast potential of digital reconstructions in quantitative investigations of neuronal morphology.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
16
|
Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses. Proc Natl Acad Sci U S A 2014; 111:4303-8. [PMID: 24550458 DOI: 10.1073/pnas.1317667111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dentate granule cells exhibit exceptionally low levels of activity and rarely elicit action potentials in targeted CA3 pyramidal cells. It is thus unclear how such weak input from the granule cells sustains adequate levels of synaptic plasticity in the targeted CA3 network. We report that subthreshold potentials evoked by mossy fibers are sufficient to induce synaptic plasticity between CA3 pyramidal cells, thereby complementing the sparse action potential discharge. Repetitive pairing of a CA3-CA3 recurrent synaptic response with a subsequent subthreshold mossy fiber response induced long-term potentiation at CA3 recurrent synapses in rat hippocampus in vitro. Reversing the timing of the inputs induced long-term depression. The underlying mechanism depends on a passively conducted giant excitatory postsynaptic potential evoked by a mossy fiber that enhances NMDA receptor-mediated current at active CA3 recurrent synapses by relieving magnesium block. The resulting NMDA spike generates a supralinear depolarization that contributes to synaptic plasticity in hippocampal neuronal ensembles implicated in memory.
Collapse
|
17
|
Schreiner MJ, Lazaro MT, Jalbrzikowski M, Bearden CE. Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11.2 deletion syndrome. Neuropharmacology 2013; 68:157-73. [PMID: 23098994 PMCID: PMC3677073 DOI: 10.1016/j.neuropharm.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1-2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, microRNA processing, and post-translational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder's association with schizophrenia. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Matthew J. Schreiner
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | - Maria T. Lazaro
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | | | - Carrie E. Bearden
- Department of Psychology, University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| |
Collapse
|
18
|
Kawas LH, Benoist CC, Harding JW, Wayman GA, Abu-Lail NI. Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:428-38. [PMID: 22960190 DOI: 10.1016/j.nano.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Hepatocyte growth factor (HGF), a neurotrophic protein, acting through its tyrosine kinase receptor, Met, facilitates learning and synaptic plasticity. In concert with the role of the HGF/Met system in synaptic plasticity, we demonstrate that Met is localized to brain regions which undergo extensive synaptic remodeling. We demonstrate that Met activation results in an increase in dendritic spine density and functional synapses. Based on these observations, we hypothesized that Met should be associated with post-synaptic elements found on dendritic spines. Thus, the goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons. Using an atomic force microscopy tip decorated with a specific Met antibody, the location of Met was mapped to different cellular compartments of hippocampal pyramidal neurons. Our results indicated that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent on the soma. FROM THE CLINICAL EDITOR The goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons using nanotechnology-based techniques, using an atomic force microscopy tip decorated with a specific Met antibody. The authors demonstrate that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent in the soma of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Leen H Kawas
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
19
|
Buckmaster PS. Mossy cell dendritic structure quantified and compared with other hippocampal neurons labeled in rats in vivo. Epilepsia 2012; 53 Suppl 1:9-17. [PMID: 22612804 DOI: 10.1111/j.1528-1167.2012.03470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mossy cells are likely to contribute to normal hippocampal function and to the pathogenesis of neurologic disorders that involve the hippocampus, including epilepsy. Mossy cells are the least well-characterized excitatory neurons in the hippocampus. Their somatic and dendritic morphology has been described qualitatively but not quantitatively. In the present study rat mossy cells were labeled intracellularly with biocytin in vivo. Somatic and dendritic structure was reconstructed three-dimensionally. For comparison, granule cells, CA3 pyramidal cells, and CA1 pyramidal cells were labeled and analyzed using the same approach. Among the four types of hippocampal neurons, granule cells had the smallest somata, fewest primary dendrites and dendritic branches, and shortest total dendritic length. CA1 pyramidal cells had the most dendritic branches and longest total dendritic length. Mossy cells and CA3 pyramidal cells both had large somata and similar total dendritic lengths. However, mossy cell dendrites branched less than CA3 pyramidal cells, especially close to the soma. These findings suggest that mossy cells have dendritic features that are not identical to any other type of hippocampal neuron. Therefore, electrotonic properties that depend on soma-dendritic structure are likely to be distinct in mossy cells compared to other neurons.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Department of Comparative Medicine, Stanford University,300 Pasteur Drive, Stanford, CA 94305-5342, U.S.A.
| |
Collapse
|
20
|
Ropireddy D, Bachus SE, Ascoli GA. Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections. Neuroscience 2012; 205:91-111. [PMID: 22245503 DOI: 10.1016/j.neuroscience.2011.12.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Integrating hippocampal anatomy from neuronal dendrites to whole system may help elucidate its relation to function. Toward this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 μm voxels with appropriate subregions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm(3), respectively), but displayed substantial rostrocaudal volumetric gradients: CA1 made up more than half of the posterior hippocampus, whereas CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ∼0.4 to ∼1 septo-temporally because of a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and subregion over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ∼0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendrodendritic collision significantly correlated with expression of the membrane repulsion signal Down syndrome cell adhesion molecule (DSCAM). These heterogeneous stereological properties reflect and complement the non-uniform molecular composition, circuit connectivity, and computational function of the hippocampus across its transverse, longitudinal, and laminar organization.
Collapse
Affiliation(s)
- D Ropireddy
- Center for Neural Informatics, Structures, and Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | | |
Collapse
|
21
|
Babus LW, Little EM, Keenoy KE, Minami SS, Chen E, Song JM, Caviness J, Koo SY, Pak DTS, Rebeck GW, Turner RS, Hoe HS. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice. Brain Res 2011; 1415:96-102. [PMID: 21872217 DOI: 10.1016/j.brainres.2011.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn's regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent. We found that Fyn knockout mice trended toward a decrease in dendritic spine density in cortical layers II/III, but not in the hippocampus, at 1 month of age. Additionally, Fyn knockout mice had significantly decreased dendritic spine density in both the cortex and hippocampus at 3 months and 1 year, and Fyn's effect on dendritic spine density was age-dependent in the hippocampus. Moreover, Fyn knockout mice had wider spines at the three time points (1 month, 3 months, 1 year) in the cortex. These findings suggest that Fyn regulates dendritic spine number and morphology over time and provide further support for Fyn's role in maintaining proper synaptic function in vivo.
Collapse
Affiliation(s)
- Lenard W Babus
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ropireddy D, Ascoli GA. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus. Front Neuroinform 2011; 5:5. [PMID: 21779242 PMCID: PMC3132594 DOI: 10.3389/fninf.2011.00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/20/2011] [Indexed: 12/03/2022] Open
Abstract
Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g., with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal cell (PC) extends thousands of synapses over macroscopic distances (∼cm). The contrasting requirements of high-resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these “potential synapses” functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto PC dendrites from the axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons.
Collapse
Affiliation(s)
- Deepak Ropireddy
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | | |
Collapse
|
23
|
Perez-Rosello T, Baker JL, Ferrante M, Iyengar S, Ascoli GA, Barrionuevo G. Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 2011; 31:159-82. [PMID: 21207127 DOI: 10.1007/s10827-010-0303-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/17/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Although associational/commissural (A/C) and perforant path (PP) inputs to CA3b pyramidal cells play a central role in hippocampal mnemonic functions, the active and passive processes that shape A/C and PP AMPA and NMDA receptor-mediated unitary EPSP/EPSC (AMPA and NMDA uEPSP/uEPSC) have not been fully characterized yet. Here we find no differences in somatic amplitude between A/C and PP for either AMPA or NMDA uEPSPs. However, larger AMPA uEPSCs were evoked from proximal than from distal A/C or PP. Given the space-clamp constraints in CA3 pyramidal cells, these voltage clamp data suggest that the location-independence of A/C and PP AMPA uEPSP amplitudes is achieved in part through the activation of voltage dependent conductances at or near the soma. Moreover, similarity in uEPSC amplitudes for distal A/C and PP points to the additional participation of unclamped active conductances. Indeed, the pharmacological blockade of voltage-dependent conductances eliminates the location-independence of these inputs. In contrast, the location-independence of A/C and PP NMDA uEPSP/uEPSC amplitudes is maintained across all conditions indicating that propagation is not affected by active membrane processes. The location-independence for A/C uEPSP amplitudes may be relevant in the recruitment of CA3 pyramidal cells by other CA3 pyramidal cells. These data also suggest that PP excitation represents a significant input to CA3 pyramidal cells. Implication of the passive data on local synaptic properties is further investigated in the companion paper with a detailed computational model.
Collapse
|
24
|
Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA. A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 2010; 31:137-58. [PMID: 21191641 DOI: 10.1007/s10827-010-0304-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/17/2010] [Accepted: 12/14/2010] [Indexed: 02/03/2023]
Abstract
Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.
Collapse
Affiliation(s)
- John L Baker
- Center for Neural Informatics, Structures, & Plasticity, George Mason University, 4400 University Drive, MS 2A1, Fairfax, VA 22030, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The three human alleles of apolipoprotein E (APOE) differentially influence outcome after CNS injury and affect one's risk of developing Alzheimer's disease (AD). It remains unclear how ApoE isoforms contribute to various AD-related pathological changes (e.g., amyloid plaques and synaptic and neuron loss). Here, we systematically examined whether apoE isoforms (E2, E3, E4) exhibit differential effects on dendritic spine density and morphology in APOE targeted replacement (TR) mice, which lack AD pathological changes. Using Golgi staining, we found age-dependent effects of APOE4 on spine density in the cortex. The APOE4 TR mice had significantly reduced spine density at three independent time points (4 weeks, 3 months, and 1 year, 27.7% +/- 7.4%, 24.4% +/- 8.6%, and 55.6% +/- 10.5%, respectively) compared with APOE3 TR mice and APOE2 TR mice. Additionally, in APOE4 TR mice, shorter spines were evident compared with other APOE TR mice at 1 year. APOE2 TR mice exhibited longer spines as well as significantly increased apical dendritic arborization in the cortex compared with APOE4 and APOE3 TR mice at 4 weeks. However, there were no differences in spine density across APOE genotypes in hippocampus. These findings demonstrate that apoE isoforms differentially affect dendritic complexity and spine formation, suggesting a role for APOE genotypes not only in acute and chronic brain injuries including AD, but also in normal brain functions.
Collapse
|
26
|
Rex CS, Colgin LL, Jia Y, Casale M, Yanagihara TK, Debenedetti M, Gall CM, Kramar EA, Lynch G. Origins of an intrinsic hippocampal EEG pattern. PLoS One 2009; 4:e7761. [PMID: 19907647 PMCID: PMC2770848 DOI: 10.1371/journal.pone.0007761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/15/2009] [Indexed: 11/25/2022] Open
Abstract
Sharp waves (SPWs) are irregular waves that originate in field CA3 and spread throughout the hippocampus when animals are alert but immobile or as a component of the sleep EEG. The work described here used rat hippocampal slices to investigate the factors that initiate SPWs and govern their frequency. Acute transection of the mossy fibers reduced the amplitude but not the frequency of SPWs, suggesting that activity in the dentate gyrus may enhance, but is not essential for, the CA3 waves. However, selective destruction of the granule cells and mossy fibers by in vivo colchicine injections profoundly depressed SPW frequency. Reducing mossy fiber release with an mGluR2 receptor agonist or enhancing it with forskolin respectively depressed or increased the incidence of SPWs. Collectively, these results indicate that SPWs can be triggered by constitutive release from the mossy fibers. The waves were not followed by large after-hyperpolarizing potentials and their frequency was not strongly affected by blockers of various slow potassium channels. Antagonists of GABA-B mediated IPSCs also had little effect on incidence. It appears from these results that the spacing of SPWs is not dictated by slow potentials. However, modeling work suggests that the frequency and variance of large mEPSCs from the mossy boutons can account for the temporal distribution of the waves. Together, these results indicate that constitutive release from the mossy fiber terminal boutons regulates the incidence of SPWs and their contribution to information processing in hippocampus.
Collapse
Affiliation(s)
- Christopher S. Rex
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine California, United States of America
| | - Laura L. Colgin
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Yousheng Jia
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Malcolm Casale
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Theodore K. Yanagihara
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Maria Debenedetti
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine California, United States of America
| | - Christine M. Gall
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine California, United States of America
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
| | - Eniko A. Kramar
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Gary Lynch
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine California, United States of America
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Brown KM, Gillette TA, Ascoli GA. Quantifying neuronal size: summing up trees and splitting the branch difference. Semin Cell Dev Biol 2008; 19:485-93. [PMID: 18771743 DOI: 10.1016/j.semcdb.2008.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
Neurons vary greatly in size, shape, and complexity depending on their underlying function. Overall size of neuronal trees affects connectivity, area of influence, and other biophysical properties. Relative distributions of neuronal extent, such as the difference between subtrees at branch points, are also critically related to function and activity. This review covers neuromorphological research that analyzes shape and size to elucidate their functional role for different neuron types. We also introduce a novel morphometric, "caulescence", capturing the extent to which trees exhibit a main path. Neuronal tree types differ vastly in caulescence, suggesting potential neurocomputational correlates of this property.
Collapse
Affiliation(s)
- Kerry M Brown
- Center for Neural Informatics, Structure, & Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, Mail Stop 2A1 George Mason University, Fairfax, VA 22030, USA
| | | | | |
Collapse
|
28
|
L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 2008; 3:866-76. [PMID: 18451794 DOI: 10.1038/nprot.2008.51] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
L-Measure (LM) is a freely available software tool for the quantitative characterization of neuronal morphology. LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions. This report illustrates several LM protocols: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of approximately 20 neurons. The tool is available at http://krasnow.gmu.edu/cn3 for either online use on any Java-enabled browser and platform or download for local execution under Windows and Linux.
Collapse
|
29
|
Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB. Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 2008; 18:411-24. [PMID: 18189311 DOI: 10.1002/hipo.20404] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is thought that CA3 pyramidal neurons communicate mainly through bursts of spikes rather than so-called trains of regular firing action potentials. Reports of both burst firing and nonburst firing CA3 cells suggest that they may fire with more than one output pattern. With the use of whole-cell recording methods we studied the firing properties of rat hippocampal pyramidal neurons in vitro within the CA3b subregion and found three distinct types of firing patterns. Approximately 37% of cells were regular firing where spikes generated by minimal current injection (rheobase) were elicited with a short latency and with stronger current intensities trains of spikes exhibited spike frequency adaptation (SFA). Another 46% of neurons exhibited a delayed onset at rheobase with a weakly-adapting firing pattern upon stronger stimulation. The remaining 17% of cells showed a burst-firing pattern, though only elicited in response to strong current injection and spontaneous bursts were never observed. Control experiments indicated that the distinct firing patterns were not due to our particular slicing methods or recording techniques. Finally, computer modeling was used to identify how relative differences in K+ conductances, specifically K(C), K(M), and K(D), between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.
Collapse
Affiliation(s)
- Peter Hemond
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ascoli GA. Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics 2008; 5:154-60. [PMID: 17917126 DOI: 10.1007/s12021-007-0010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The computer-assisted three-dimensional reconstruction of neuronal morphology is becoming an increasingly popular technique to quantify the arborization patterns of dendrites and axons. The resulting digital files are suitable for comprehensive morphometric analyses as well as for building anatomically realistic compartmental models of membrane biophysics and neuronal electrophysiology. The digital tracings acquired in a lab for a specific purpose can be often re-used by a different research group to address a completely unrelated scientific question, if the original investigators are willing to share the data. Since reconstructing neuronal morphology is a labor-intensive process, data sharing and re-analysis is particularly advantageous for the neuroscience and biomedical communities. Here we present numerous cases of "success stories" in which digital reconstructions of neuronal morphology were shared and re-used, leading to additional, independent discoveries and publications, and thus amplifying the impact of the "source" study for which the data set was first collected. In particular, we overview four main applications of this kind of data: comparative morphometric analyses, statistical estimation of potential synaptic connectivity, morphologically accurate electrophysiological simulations, and computational models of neuronal shape and development.
Collapse
Affiliation(s)
- Giorgio A Ascoli
- Krasnow Inst. for Advanced Study and Neuroscience Program, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
31
|
Chacron MJ, Maler L, Bastian J. Feedback and feedforward control of frequency tuning to naturalistic stimuli. J Neurosci 2006; 25:5521-32. [PMID: 15944380 PMCID: PMC5053810 DOI: 10.1523/jneurosci.0445-05.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.
Collapse
Affiliation(s)
- Maurice J Chacron
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
32
|
Abstract
Neurons have significant potential for the homeostatic regulation of a broad range of functional features, from gene expression to synaptic excitability. In this article, we show that dendritic morphology may also be under intrinsic homeostatic control. We present the results from a statistical analysis of a large collection of digitally reconstructed neurons, demonstrating that fluctuations in dendritic size in one given portion of a neuron are systematically counterbalanced by the remaining dendrites in the same cell. As a result, the total dendritic measure (e.g., number of branches, length, and surface area) of each neuron in a given morphological class is, on average, significantly less random than would be expected if trees (and their parts) were regulated independently during development. This observation is general across scales that range from gross basal/apical subdivisions to individual branches and bifurcations, and its statistical significance is robust among various brain regions, cell types, and experimental conditions. Given the pivotal dendritic role in signal integration, synaptic plasticity, and network connectivity, these findings add a dimension to the functional characterization of neuronal homeostasis.
Collapse
Affiliation(s)
- Alexei V Samsonovich
- Krasnow Institute for Advanced Study and Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | | |
Collapse
|
33
|
Alpár A, Ueberham U, Brückner MK, Arendt T, Gärtner U. The expression of wild-type human amyloid precursor protein affects the dendritic phenotype of neocortical pyramidal neurons in transgenic mice. Int J Dev Neurosci 2005; 24:133-40. [PMID: 16384682 DOI: 10.1016/j.ijdevneu.2005.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 11/27/2022] Open
Abstract
The current study addresses the morphoregulatory effects of human amyloid precursor protein expression on neocortical pyramidal cells in vivo. For this purpose, a transgenic mouse line was used that expresses wild-type human amyloid precursor protein (APP) at levels similar to endogenous mouse APP. This strain does not develop Alzheimer's disease-related pathology which allowed to study effects of APP or APP cleavage products but excluded the influence of amyloid deposits. Commissural projecting pyramidal neurons of layers II/III within the primary somatosensory cortex were retrogradely labelled by injection of biotinylated dextran amine into the corpus callosum. In transgenic mice, computer-aided morphometric analysis revealed an increase in the surface area of proximal and intermediate basal dendritic segments resulting from an enlarged diameter. On the other hand, the length of the same segments was reduced. Both basal and apical dendrites were characterized by a higher dendritic density within the proximal and intermediate fields. Although the total spatial extension of basal and apical dendrites remained unchanged, a moderate withdrawal of arbors is suggested. The results implicate a physiological function for APP in regulatory mechanisms of neuronal morphogenesis.
Collapse
Affiliation(s)
- Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University Medical School, Tuzoltó u. 58, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
34
|
Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 2005; 163:78-90. [PMID: 15913801 DOI: 10.1016/j.bbr.2005.04.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/22/2022]
Abstract
An enriched environment consists of a combination of enhanced social relations, physical exercise and interactions with non-social stimuli that leads to behavioral and neuronal modifications. In the present study, we analyzed the behavioral effects of environmental complexity on different facets of spatial function, and we assessed dendritic arborisation and spine density in a cortical area mainly involved in the spatial learning, as the parietal cortex. Wistar rat pups (21 days old) were housed in enriched conditions (10 animals in a large cage with toys and a running wheel), or standard condition (two animals in a standard cage, without objects). At the age of 3 months, both groups were tested in the radial maze task and Morris water maze (MWM). Morphological analyses on layer-III pyramidal neurons of parietal cortex were performed in selected animals belonging to both experimental groups. In the radial maze task, enriched animals exhibited high performance levels, by exploiting procedural competencies and working memory abilities. Furthermore, when the requirements of the context changed, they promptly reorganized their strategies by shifting from prevalently using spatial procedures to applying mnesic competencies. In the Morris water maze, enriched animals more quickly acquired tuned navigational strategies. Environmental enrichment provoked increased dendritic arborisation as well as increased density of dendritic spines in layer-III parietal pyramidal neurons.
Collapse
Affiliation(s)
- Maria Giuseppa Leggio
- Department of Psychology, University of Rome La Sapienza, Via dei Marsi 78, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. ACTA ACUST UNITED AC 2005; 33:517-33. [PMID: 15906159 DOI: 10.1007/s11068-004-0514-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.
Collapse
Affiliation(s)
- Nicholas A DiProspero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Samsonovich AV, Ascoli GA. Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus 2005; 15:166-83. [PMID: 15390156 DOI: 10.1002/hipo.20041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic structure is traditionally characterized by distributions and interrelations of morphometric parameters, such as Sholl-like plots of the number of branches versus dendritic path distance. However, how much of a given morphology is effectively captured by any statistical description is generally unknown. In this work, we assemble a small number of standard geometrical parameters measured from experimental data in a simple stochastic algorithm to describe the dendrograms of hippocampal pyramidal cells. The model, consistent with the hidden Markov framework, is feedforward, local, and causal. It relies on two "hidden" local variables: the expected number of terminal tips in a given subtree, and the current path distance from the soma. The algorithm generates dendrograms that statistically reproduce all morphological essentials of dendrites observed in real neurons, including the distributions of branching and termination points, branch lengths, membrane area, topological asymmetry, and (assuming passive membrane parameters within physiological range) electrotonic characteristics. Thus, this algorithm and the small number of its morphometric parameters constitute a remarkably complete description of the dendrograms of hippocampal pyramidal cells. Specifically, it is found that CA3 and CA1 basal dendrites and CA3 apical dendrites can each be described as homogeneous morphological classes. In contrast, the accurate generation of CA1 apical dendrites necessitates the separate sampling of two types of branches, main and oblique, suggesting their derivations from different developmental mechanisms (terminal and interstitial growth, respectively). We further offer a plausible biophysical interpretation of the model hidden variables, relating them to microtubules and other intracellular resources.
Collapse
Affiliation(s)
- Alexei V Samsonovich
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA
| | | |
Collapse
|
37
|
Kole MHP, Czéh B, Fuchs E. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress. Hippocampus 2004; 14:742-51. [PMID: 15318332 DOI: 10.1002/hipo.10212] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well understood. We tested the hypothesis that chronic stress affects the input-output characteristics and excitability of CA3 pyramidal cells. Somatic whole-cell current-clamp recording with parallel intracellular biocytin labeling was performed on CA3 neurons from in vitro hippocampal slices from male tree shrews, which were collected after 28 days of psychosocial stress exposure and compared to recordings obtained from control animals. Post hoc morphometric analysis of biocytin-labeled CA3 cells revealed branch regression, by fewer dendritic crossings and length, limited to a distance of approximately 280-340 microm from the soma only. The results from whole-cell recording indicate that chronic stress surprisingly reduced the apparent membrane time constant and input resistance 20-25%, accompanied by increased amplitude of the hyperpolarization-induced voltage "sag." All active membrane properties, including depolarization-induced action potential kinetics, complex spiking patterns, and afterhyperpolarization voltages, were indistinguishable from control recordings. Although linear association analysis confirmed that differences in geometry, such as apical length or branch number, were correlated to functional variability in properties of the AP current and voltage threshold, these changes were too marginal to be reflected in the group differences. However, the individual adrenal hormone status was associated significantly with the selective changes in subthreshold excitability. Taken together, the data provide evidence that despite long-term stress induces morphological changes, upregulates cortisol release and shifts the intrinsic membrane properties, the efficacy of somatic excitability of CA3 pyramidal neurons is largely preserved.
Collapse
Affiliation(s)
- Maarten H P Kole
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | |
Collapse
|
38
|
Kole MHP, Costoli T, Koolhaas JM, Fuchs E. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress. Neuroscience 2004; 125:337-47. [PMID: 15062977 DOI: 10.1016/j.neuroscience.2004.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
The negative impact of chronic stress at the structure of apical dendrite branches of cornu ammonis 3 (CA3) pyramidal neurons is well established. However, there is no information available on the CA3 dendritic organization related to short-lasting stress, which suffices to produce long-term habituation or sensitization of anxiety behaviors and neuroendocrine responses. Here, we tested the effects evoked by brief stress on the arrangements of CA3 pyramidal neuron dendrites, and the activity-dependent properties of the commissural-associational (C/A) excitatory postsynaptic potentials (EPSPs). Adult male rats were socially defeated followed by 3 weeks without further treatment or as comparison exposed to a regimen of a social defeat every second day for the same time period. We assessed CA3 pyramidal neurons with somatic whole-cell recording and neurobiotin application in acute hippocampal slices. The results from morphometric analysis of post hoc reconstructions demonstrated that CA3 dendrites from repeatedly stressed rats were reduced in surface area and length selectively at the apical cone (70% of control, approximately 280 microm from the soma). Brief stress, however, produced a similar decrease in apical dendritic length (77% of control, approximately 400 microm from the soma), accompanied by an increased length (167% of control) and branch complexity at the basal cone. The structural changes of the dendrites significantly influenced signal propagation by shortening the onset latency of EPSPs and increasing input resistance (r=0.45, P<0.01), of which the first was significantly changed in repeatedly stressed animals. Both brief and repeated stress long-lastingly impaired long-term potentiation of C/A synapses to a similar degree (P<0.05). These data indicate that the geometric plasticity of CA3 dendrites is dissociated from repetition of aversive experiences. A double social conflict suffices to drive a dynamic reorganization, by site-selective elimination and de novo growth of dendrite branches over the course of weeks after the actual experience.
Collapse
Affiliation(s)
- M H P Kole
- Clinical Neurobiology Laboratory, German Primate Center, Goettingen, Germany.
| | | | | | | |
Collapse
|
39
|
Rose PK, Cushing S. Relationship between morphoelectrotonic properties of motoneuron dendrites and their trajectory. J Comp Neurol 2004; 473:562-81. [PMID: 15116391 DOI: 10.1002/cne.20137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution and geometry of the dendritic trees of spinal motoneurons obey several well-established rules. Some of these rules are based on systematic relationships between quantitative geometrical features (e.g., total dendritic length) and the three-dimensional trajectory followed by dendrites from their origin to their termination. Because dendritic geometry partially determines the transmission of current and voltage signals generated by synapses on the dendritic tree, our goal was to compare the efficacy of signal transmission by dendritic trajectories that followed different directions. To achieve this goal, we constructed detailed compartmental models of the dendritic trees of three intracellularly stained biventer cervicis/complexus (BCCM) motoneurons and calculated the electronic properties of 361 dendritic paths. Each trajectory was classified according to its orientation, e.g., rostral, rostral-dorsal-lateral. The attenuation of current and voltage signals en route to the soma was strongly related to trajectory orientation. Trajectories with similar attenuation factors formed functional subunits that were arranged in distinct domains within the ventral horn. Changes in R(m) or R(i) had little effect on which trajectories belonged to each functional subunit. However, differences in the efficacy of signal transmission between subunits increased during high network activity (mimicked by decreases in R(m)). The most efficient subunit delivered two times more current and four times more voltage to the soma than the least efficient subunit. These results indicate that the input-output properties of motoneurons depend on the direction of the path taken by dendrites from their origin at the cell body to their terminals.
Collapse
Affiliation(s)
- P K Rose
- Canadian Institutes for Health Research Group in Sensory-Motor Systems, Department of Physiology, Center for Neuroscience, Queen's University, Kingston, Ontario K71 3N6, Canada.
| | | |
Collapse
|
40
|
Scorcioni R, Lazarewicz MT, Ascoli GA. Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. J Comp Neurol 2004; 473:177-93. [PMID: 15101088 DOI: 10.1002/cne.20067] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dendritic trees of hippocampal pyramidal cells play important roles in the establishment and regulation of network connectivity, synaptic plasticity, and firing dynamics. Several laboratories routinely reconstruct CA3 and CA1 dendrites to correlate their three-dimensional structure with biophysical, electrophysiological, and anatomical observables. To integrate and assess the consistency of the quantitative data available to the scientific community, we exhaustively analyzed 143 completely reconstructed neurons intracellularly filled and digitized in five different laboratories from 10 experimental conditions. Thirty morphometric parameters, including the most common neuroanatomical measurements, were extracted from all neurons. A consistent fraction of parameters (11 of 30) was significantly different between CA3 and CA1 cells. A considerably large number of parameters was also found that discriminated among neurons within the same morphological class, but reconstructed in different laboratories. These interlaboratory differences (8 of 30 parameters) far outweighed the differences between experimental conditions within a single lab, such as aging or preparation method (at most two significant parameters). The set of morphometrics separating anatomical regions and that separating reconstructing laboratories were almost entirely nonoverlapping. CA3 and CA1 neurons could be distinguished by global quantities such as branch order and Sholl distance. Differences among laboratories were largely due to local variables such as branch diameter and local bifurcation angles. Only one parameter (a ratio of branch diameters) separated both morphological classes and reconstructing laboratories. Compartmental simulations of electrophysiological activity showed that both differences between anatomical classes and reconstructing laboratories could dramatically affect the firing rate of these neurons under different experimental conditions.
Collapse
Affiliation(s)
- Ruggero Scorcioni
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | | | | |
Collapse
|
41
|
Wossink J, Karst H, Mayboroda O, Joëls M. Morphological and functional properties of rat dentate granule cells after adrenalectomy. Neuroscience 2002; 108:263-72. [PMID: 11734359 DOI: 10.1016/s0306-4522(01)00414-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After complete adrenalectomy, part of the granule cells in the dentate gyrus undergo apoptosis. Findings on morphological changes in non-apoptotic granule cells, though, have been equivocal. In the present study we examined the dendritic trees of dentate granule cells 7 days after adrenalectomy or sham operation, and tested the hypothesis that changes in dendritic trees have considerable consequences for ionic currents, as measured in the soma with whole cell recording. For the latter, we focussed on voltage-gated calcium currents, which are partly generated in distal dendrites. All cells were passively filled with a fluorescent dye via the patch pipette while recording calcium currents; subsequently the cells were three-dimensionally reconstructed with the use of a confocal microscope. In sham-operated rats, dendritic trees of cells with a soma located in the inner part of the granule cell layer (facing the hilus) were significantly smaller than trees of cells located in the outer part of the layer. Neurons from rats that had extremely low (undetectable-0.3 microg/dl) circulating levels of corticosterone displayed very small and simple dendritic trees compared to cells from adrenalectomized rats that still had residual levels of corticosterone (0.6-1.0 microg/dl), regardless of the location of their soma. Despite the observation that simple dendritic trees were seen in rats where corticosterone was extremely low, the whole cell calcium current amplitude recorded from the soma of these cells was not reduced compared to the remaining cells from adrenalectomized or sham-operated rats. Our data indicate that in the absence of corticosterone dendritic trees of dentate granule cells display atrophy but that this does not necessarily reduce ionic currents measured in the soma.
Collapse
Affiliation(s)
- J Wossink
- Swammerdam Institute of Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Urban NN, Henze DA, Barrionuevo G. Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus 2002; 11:408-17. [PMID: 11530845 DOI: 10.1002/hipo.1055] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mossy fiber pathway has long been considered to provide the major source of excitatory input to pyramidal cells of hippocampal area CA3. In this review we describe anatomical and physiological properties of this pathway that challenge this view. We argue that the mossy fiber pathway does not provide the main input to CA3 pyramidal cells, and that the short-term plasticity and amplitude variance of mossy fiber synapses may be more important features than their long-term plasticity or absolute input strength.
Collapse
Affiliation(s)
- N N Urban
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
43
|
Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. J Neurosci 2002. [PMID: 11717344 DOI: 10.1523/jneurosci.21-23-09112.2001] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in Huntington's disease exhibit selective morphological and subcellular alterations in the striatum and cortex. The link between these neuronal changes and behavioral abnormalities is unclear. We investigated relationships between essential neuronal changes that predict motor impairment and possible involvement of the corticostriatal pathway in developing behavioral phenotypes. We therefore generated heterozygote mice expressing the N-terminal one-third of huntingtin with normal (CT18) or expanded (HD46, HD100) glutamine repeats. The HD mice exhibited motor deficits between 3 and 10 months. The age of onset depended on an expanded polyglutamine length; phenotype severity correlated with increasing age. Neuronal changes in the striatum (nuclear inclusions) preceded the onset of phenotype, whereas cortical changes, especially the accumulation of huntingtin in the nucleus and cytoplasm and the appearance of dysmorphic dendrites, predicted the onset and severity of behavioral deficits. Striatal neurons in the HD mice displayed altered responses to cortical stimulation and to activation by the excitotoxic agent NMDA. Application of NMDA increased intracellular Ca(2+) levels in HD100 neurons compared with wild-type neurons. Results suggest that motor deficits in Huntington's disease arise from cumulative morphological and physiological changes in neurons that impair corticostriatal circuitry.
Collapse
|
44
|
Henze DA, McMahon DBT, Harris KM, Barrionuevo G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol 2002; 87:15-29. [PMID: 11784726 DOI: 10.1152/jn.00394.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms generating giant miniature excitatory postsynaptic currents (mEPSCs) were investigated at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse in vitro. These giant mEPSCs have peak amplitudes as large as 1,700 pA (13.6 nS) with a mean maximal mEPSC amplitude of 366 +/- 20 pA (mean +/- SD; 5 nS; n = 25 cells). This is compared with maximal mEPSC amplitudes of <100 pA typically observed at other cortical synapses. We tested the hypothesis that giant mEPSCs are due to synchronized release of multiple vesicles across the release sites of single MF boutons by directly inducing vesicular release using secretagogues. If giant mEPSCs result from simultaneous multivesicular release, then secretagogues should increase the frequency of small mEPSCs selectively. We found that hypertonic sucrose and spermine increased the frequency of both small and giant mEPSCs. The peptide toxin secretagogues alpha-latrotoxin and pardaxin failed to increase the frequency of giant mEPSCs, but the possible lack of tissue penetration of the toxins make these results equivocal. Because a multiquantal release mechanism is likely to be mediated by a spontaneous increase in presynaptic calcium concentration, a monoquantal mechanism is further supported by results that giant mEPSCs were not affected by manipulations of extracellular or intracellular calcium concentrations. In addition, reducing the temperature of the bath to 15 degrees C failed to desynchronize the rising phases of giant mEPSCs. Together these data suggest that the giant mEPSCs are generated via a monovesicular mechanism. Three-dimensional analysis through serial electron microscopy of the MF boutons revealed large clear vesicles (50 to 160 nm diam) docked presynaptically at the MF synapse in sufficient numbers to account for the amplitude and frequency of giant mEPSCs recorded electrophysiologically. It is concluded that release of the contents of a single large clear vesicle generates giant mEPSCs at the MF to CA3 pyramidal cell synapse.
Collapse
Affiliation(s)
- Darrell A Henze
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
45
|
González-Burgos G, Barrionuevo G. Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. J Neurophysiol 2001; 86:1671-84. [PMID: 11600631 DOI: 10.1152/jn.2001.86.4.1671] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of voltage-dependent channels in shaping subthreshold excitatory postsynaptic potentials (EPSPs) in neocortical layer 5 pyramidal neurons from rat medial prefrontal cortex (PFC) was investigated using patch-clamp recordings from visually identified neurons in brain slices. Small-amplitude EPSPs evoked by stimulation of superficial layers were not affected by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonopentanoic acid but were abolished by the AMPA receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione, suggesting that they were primarily mediated by AMPA receptors. AMPA receptor-mediated EPSPs (AMPA-EPSPs) evoked in the apical dendrites were markedly enhanced, or increased in peak and duration, at depolarized holding potentials. Enhancement of AMPA-EPSPs was reduced by loading the cells with lidocaine N-ethylbromide (QX-314) and by local application of the Na(+) channel blocker tetrodotoxin (TTX) to the soma but not to the middle/proximal apical dendrite. In contrast, blockade of Ca(2+) channels by co-application of Cd(2+) and Ni(2+) to the soma or apical dendrite did not affect the AMPA-EPSPs. Like single EPSPs, EPSP trains were shaped by Na(+) but not Ca(2+) channels. EPSPs simulated by injecting synaptic-like current into proximal/middle apical dendrite (simEPSPs) were enhanced at depolarized holding potentials similarly to AMPA-EPSPs. Extensive blockade of Ca(2+) channels by bath application of the Cd(2+) and Ni(2+) mixture had no effects on simEPSPs, whereas bath-applied TTX removed the depolarization-dependent EPSP amplification. Inhibition of K(+) currents by 4-aminopyridine (4-AP) and TEA increased the TTX-sensitive EPSP amplification. Moreover, strong inhibition of K(+) currents by high concentrations of 4-AP and TEA revealed a contribution of Ca(2+) channels to EPSPs that, however, seemed to be dependent on Na(+) channel activation. Our results indicate that in layer 5 pyramidal neurons from PFC, Na(+), and K(+) voltage-gated channels shape EPSPs within the voltage range that is subthreshold for somatic action potentials.
Collapse
Affiliation(s)
- G González-Burgos
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
46
|
Tsutsui H, Oka Y. Effects of characteristic dendritic tip geometry on the electrical properties of teleost thalamic neurons. J Neurophysiol 2001; 85:2289-92. [PMID: 11353041 DOI: 10.1152/jn.2001.85.5.2289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Of the factors that characterize the properties and functions of neurons, dendritic geometry is one of the most critical. We used simulations employing the multi-compartment model to study the effects of dendritic tip geometry on the electrical properties of the "large cell" in a teleost thalamic nucleus from the corpus glomerulosum. We demonstrated a dramatic geometrical "boosting" effect; passive propagation of the synaptic inputs from the dendritic tip to the soma through the dendritic stalk is less attenuated in cells with larger tips.
Collapse
Affiliation(s)
- H Tsutsui
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Kanagawa 238-0225, Japan
| | | |
Collapse
|
47
|
Lőrincz A, Szirtes G, Takács B, Buzsáki G. Independent component analysis of temporal sequences forms place cells. Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Abstract
The hippocampal mossy fiber pathway between the granule cells of the dentate gyrus and the pyramidal cells of area CA3 has been the target of numerous scientific studies. Initially, attention was focused on the mossy fiber to CA3 pyramidal cell synapse because it was suggested to be a model synapse for studying the basic properties of synaptic transmission in the CNS. However, the accumulated body of research suggests that the mossy fiber synapse is rather unique in that it has many distinct features not usually observed in cortical synapses. In this review, we have attempted to summarize the many unique features of this hippocampal pathway. We also have attempted to reconcile some discrepancies that exist in the literature concerning the pharmacology, physiology and plasticity of this pathway. In addition we also point out some of the experimental challenges that make electrophysiological study of this pathway so difficult.Finally, we suggest that understanding the functional role of the hippocampal mossy fiber pathway may lie in an appreciation of its variety of unique properties that make it a strong yet broadly modulated synaptic input to postsynaptic targets in the hilus of the dentate gyrus and area CA3 of the hippocampal formation.
Collapse
Affiliation(s)
- D A Henze
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
49
|
|
50
|
Luhmann HJ, Schubert D, Kötter R, Staiger JF. Cellular morphology and physiology of the perinatal rat cerebral cortex. Dev Neurosci 1999; 21:298-309. [PMID: 10575253 DOI: 10.1159/000017379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular morphology and electrophysiology of the rat neocortex between embryonic day (E) 18 and postnatal day (P) 3 was studied in vitro by extracellular biocytin injections and whole-cell recordings, respectively. Most neurons were characterized by a small number of short-range dendrites and a main axon that was directed towards the white matter. Biocytin injections into the marginal zone and the cortical plate labeled far-reaching connections extending up to 2 mm in horizontal direction, indicating the existence of a dense network of long-range intrinsic projections in the neonatal cortex. Action potentials could be elicited as early as E18 and repetitive firing could first be observed at P0. Electrical stimulation of the immature cortex at various positions elicited polyphasic and long-lasting (up to 1 s) excitatory postsynaptic potentials and currents, which were significantly reduced in amplitude by a selective N-methyl-D-aspartate receptor antagonist. Our data indicate that the perinatal cortex manifests the structural and functional conditions for powerful excitatory interactions, which increase the likelihood for the generation of epileptiform activity during this developmental period.
Collapse
Affiliation(s)
- H J Luhmann
- Institute of Neurophysiology, University of Düsseldorf, Germany.
| | | | | | | |
Collapse
|