1
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Voytenko S, Shanbhag S, Wenstrup J, Galazyuk A. Intracellular recordings reveal integrative function of the basolateral amygdala in acoustic communication. J Neurophysiol 2023; 129:1334-1343. [PMID: 37098994 PMCID: PMC10202475 DOI: 10.1152/jn.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 04/27/2023] Open
Abstract
The amygdala, a brain center of emotional expression, contributes to appropriate behavior responses during acoustic communication. In support of that role, the basolateral amygdala (BLA) analyzes the meaning of vocalizations through the integration of multiple acoustic inputs with information from other senses and an animal's internal state. The mechanisms underlying this integration are poorly understood. This study focuses on the integration of vocalization-related inputs to the BLA from auditory centers during this processing. We used intracellular recordings of BLA neurons in unanesthetized big brown bats that rely heavily on a complex vocal repertoire during social interactions. Postsynaptic and spiking responses of BLA neurons were recorded to three vocal sequences that are closely related to distinct behaviors (appeasement, low-level aggression, and high-level aggression) and have different emotional valence. Our novel findings are that most BLA neurons showed postsynaptic responses to one or more vocalizations (31 of 46) but that many fewer neurons showed spiking responses (8 of 46). The spiking responses were more selective than postsynaptic potential (PSP) responses. Furthermore, vocal stimuli associated with either positive or negative valence were similarly effective in eliciting excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs), and spiking responses. This indicates that BLA neurons process both positive- and negative-valence vocal stimuli. The greater selectivity of spiking responses than PSP responses suggests an integrative role for processing within the BLA to enhance response specificity in acoustic communication.NEW & NOTEWORTHY The amygdala plays an important role in social communication by sound, but little is known about how it integrates diverse auditory inputs to form selective responses to social vocalizations. We show that BLA neurons receive inputs that are responsive to both negative- and positive-affect vocalizations but their spiking outputs are fewer and highly selective for vocalization type. Our work demonstrates that BLA neurons perform an integrative function in shaping appropriate behavioral responses to social vocalizations.
Collapse
Affiliation(s)
- Sergiy Voytenko
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Sharad Shanbhag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| | - Jeffrey Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| | - Alexander Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| |
Collapse
|
3
|
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V, Meis S. ProBDNF Dependence of LTD and Fear Extinction Learning in the Amygdala of Adult Mice. Cereb Cortex 2021; 32:1350-1364. [PMID: 34470044 DOI: 10.1093/cercor/bhab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Harish Vuyyuru
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
4
|
Morikawa S, Katori K, Takeuchi H, Ikegaya Y. Brain-wide mapping of presynaptic inputs to basolateral amygdala neurons. J Comp Neurol 2021; 529:3062-3075. [PMID: 33797073 DOI: 10.1002/cne.25149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
The basolateral amygdala (BLA), a region critical for emotional processing, is the limbic hub that is connected with various brain regions. BLA neurons are classified into different subtypes that exhibit differential projection patterns and mediate distinct emotional behaviors; however, little is known about their presynaptic input patterns. In this study, we employed projection-specific monosynaptic rabies virus tracing to identify the direct monosynaptic inputs to BLA subtypes. We found that each neuronal subtype receives long-range projection input from specific brain regions. In contrast to their specific axonal projection patterns, all BLA neuronal subtypes exhibited relatively similar input patterns. This anatomical organization supports the idea that the BLA is a central integrator that associates sensory information in different modalities with valence and sends associative information to behaviorally relevant brain regions.
Collapse
Affiliation(s)
- Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Katori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Social Cooperation Program of Evolutional Chemical Safety Assessment System, LECSAS, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Enomoto S, Kato TA. Involvement of microglia in disturbed fear memory regulation: Possible microglial contribution to the pathophysiology of posttraumatic stress disorder. Neurochem Int 2020; 142:104921. [PMID: 33232758 DOI: 10.1016/j.neuint.2020.104921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Microglia, immune cells in the brain, play a crucial role in brain inflammation and synaptic plasticity by releasing inflammatory mediators and neurotrophic factors as well as, phagocytosing synaptic elements. Recent studies have shown peripheral inflammation, immune alteration in the brain are associated with post-traumatic stress disorder (PTSD) in humans. Several preclinical studies using Pavlovian fear conditioning have suggested that microglia are involved in fear memory dysregulation and altered fear neuronal networks. Microglial priming resulting from previous stressful experiences may also have an effect. This review will introduce the current knowledge of microglial contribution to disturbed fear memory regulation, a fundamental feature of PTSD.
Collapse
Affiliation(s)
- Shingo Enomoto
- Self Defense Force, Fukuoka Hospital, 1-61 Kokura Higashi, Kasuga-Si, Fukuoka, 816-0826, Japan; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382:161-172. [PMID: 32845430 PMCID: PMC7529623 DOI: 10.1007/s00441-020-03260-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current understanding of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
Collapse
|
7
|
Tasaka GI, Feigin L, Maor I, Groysman M, DeNardo LA, Schiavo JK, Froemke RC, Luo L, Mizrahi A. The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron 2020; 107:566-579.e7. [PMID: 32473095 DOI: 10.1016/j.neuron.2020.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 11/24/2022]
Abstract
Mother-infant bonding develops rapidly following parturition and is accompanied by changes in sensory perception and behavior. Here, we study how ultrasonic vocalizations (USVs) are represented in the brain of mothers. Using a mouse line that allows temporally controlled genetic access to active neurons, we find that the temporal association cortex (TeA) in mothers exhibits robust USV responses. Rabies tracing from USV-responsive neurons reveals extensive subcortical and cortical inputs into TeA. A particularly dominant cortical source of inputs is the primary auditory cortex (A1), suggesting strong A1-to-TeA connectivity. Chemogenetic silencing of USV-responsive neurons in TeA impairs auditory-driven maternal preference in a pup-retrieval assay. Furthermore, dense extracellular recordings from awake mice reveal changes of both single-neuron and population responses to USVs in TeA, improving discriminability of pup calls in mothers compared with naive females. These data indicate that TeA plays a key role in encoding and perceiving pup cries during motherhood.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Libi Feigin
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Maor
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Groysman
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Laura A DeNardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jennifer K Schiavo
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, and Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, and Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
9
|
Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Sci Rep 2019; 9:19610. [PMID: 31873139 PMCID: PMC6928164 DOI: 10.1038/s41598-019-56092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies have examined the feedback pathway from the amygdala to the auditory cortex in conjunction with the feedforward pathway from the auditory cortex to the amygdala. However, these connections have not been fully characterized. Here, to visualize the comprehensive connectivity between the auditory cortex and amygdala, we injected cholera toxin subunit b (CTB), a bidirectional tracer, into multiple subfields in the mouse auditory cortex after identifying the location of these subfields using flavoprotein fluorescence imaging. After injecting CTB into the secondary auditory field (A2), we found densely innervated CTB-positive axon terminals that were mainly located in the lateral amygdala (La), and slight innervations in other divisions such as the basal amygdala. Moreover, we found a large number of retrogradely-stained CTB-positive neurons in La after injecting CTB into A2. When injecting CTB into the primary auditory cortex (A1), a small number of CTB-positive neurons and axons were visualized in the amygdala. Finally, we found a near complete absence of connections between the other auditory cortical fields and the amygdala. These data suggest that reciprocal connections between A2 and La are main conduits for communication between the auditory cortex and amygdala in mice.
Collapse
|
10
|
Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN, LeDoux JE, Lhakhang T, Tsirigos A, Heguy A, Klann E. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. eLife 2019; 8:e51607. [PMID: 31825308 PMCID: PMC6924958 DOI: 10.7554/elife.51607] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | | | - Robert Sears
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkUnited States
| | - Zachary Deane
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Rahul N Kanadia
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph E LeDoux
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
| | - Tenzin Lhakhang
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
| | - Aristotelis Tsirigos
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
- Department of PathologyNew York University School of MedicineNew YorkUnited States
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkUnited States
- Genome Technology CenterNew York University School of MedicineNew YorkUnited States
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkUnited States
| |
Collapse
|
11
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
12
|
Smith PH, Uhlrich DJ, Manning KA. Evaluation of medial division of the medial geniculate (MGM) and posterior intralaminar nucleus (PIN) inputs to the rat auditory cortex, amygdala, and striatum. J Comp Neurol 2019; 527:1478-1494. [PMID: 30689207 DOI: 10.1002/cne.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
The medial division of the medial geniculate (MGM) and the posterior intralaminar nucleus (PIN) are association nuclei of the auditory thalamus. We made tracer injections in these nuclei to evaluate/compare their presynaptic terminal and postsynaptic target features in auditory cortex, amygdala and striatum, at the light and electron microscopic levels. Cortical labeling was concentrated in Layer 1 but in other layers distribution was location-dependent. In cortical areas designated dorsal, primary and ventral (AuD, Au1, AuV) terminals deep to Layer 1 were concentrated in infragranular layers and sparser in the supragranular and middle layers. In ectorhinal cortex (Ect), distributions below Layer 1 changed with concentrations in supragranular and middle layers. In temporal association cortex (TeA) terminal distributions below Layer 1 was intermediate between AuV/1/D and Ect. In amygdala and striatum, terminal concentrations were higher in striatum but not as dense as in cortical Layer 1. Ultrastructurally, presynaptic terminal size was similar in amygdala, striatum or cortex and in all cortical layers. Postsynaptically MGM/PIN terminals everywhere synapsed on spines or small distal dendrites but as a population the postsynaptic structures in cortex were larger than those in the striatum. In addition, primary cortical targets of terminals were larger in primary cortex than in area Ect. Thus, although postsynaptic size may play some role in changes in synaptic influence between areas it appears that terminal size is not a variable used for that purpose. In auditory cortex, cortical subdivision-dependent changes in the terminal distribution between cortical layers may also play a role.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
13
|
Grosso A, Cambiaghi M, Milano L, Renna A, Sacco T, Sacchetti B. Region- and Layer-Specific Activation of the Higher Order Auditory Cortex Te2 after Remote Retrieval of Fear or Appetitive Memories. Cereb Cortex 2018; 27:3140-3151. [PMID: 27252348 DOI: 10.1093/cercor/bhw159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory cortex is involved in encoding sounds which have acquired an emotional-motivational charge. However, the neural circuitry engaged by emotional memory processes in the auditory cortex is poorly understood. In this study, we investigated the layers and regions that are recruited in the higher order auditory cortex Te2 by a tone previously paired to either fear or appetitive stimuli in rats. By tracking the protein coded by the immediate early gene zif268, we found that fear memory retrieval engages layers II-III in most regions of Te2. These results were neither due to an enhanced fear state nor to fear-evoked motor responses, as they were absent in animals retrieving an olfactory fear memory. These layers were also activated by appetitive auditory memory retrieval. Strikingly, layer IV was recruited by fear, but not appetitive memories, whereas layer V activity was related to the behavioral responses displayed to the CS. In addition to revealing the layers and regions that are recruited in the Te2 by either fear or appetitive remote memories, our study also shows that the neural circuitry within the Te2 that processes and stores emotional memories varies on the basis of the affective motivational charge of tones.
Collapse
Affiliation(s)
- Anna Grosso
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Tiziana Sacco
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy.,National Institute of Neuroscience-Turin, I-10125 Turin, Italy
| |
Collapse
|
14
|
Manassero E, Renna A, Milano L, Sacchetti B. Lateral and Basal Amygdala Account for Opposite Behavioral Responses during the Long-Term Expression of Fearful Memories. Sci Rep 2018; 8:518. [PMID: 29323226 PMCID: PMC5765149 DOI: 10.1038/s41598-017-19074-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
Memories of fearful events can be maintained throughout the lifetime of animals. Here we showed that lesions of the lateral nucleus (LA) performed shortly after training impaired the retention of long-term memories, assessed by the concomitant measurement of two dissociable defensive responses, freezing and avoidance in rats. Strikingly, when LA lesions were performed four weeks after training, rats did not show freezing to a learned threat stimulus, but they were able to direct their responses away from it. Similar results were found when the central nucleus (CeA) was lesioned four weeks after training, whereas lesions of the basal nucleus (BA) suppressed avoidance without affecting freezing. LA and BA receive parallel inputs from the auditory cortex, and optogenetic inhibition of these terminals hampered both freezing and avoidance. We therefore propose that, at variance with the traditional serial flow of information model, long-term fearful memories recruit two parallel circuits in the amygdala, one relying on the LA-to-CeA pathway and the other relying solely on BA, which operate independently and mediate distinct defensive responses.
Collapse
Affiliation(s)
- Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy. .,National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
15
|
Sato F, Uemura Y, Kanno C, Tsutsumi Y, Tomita A, Oka A, Kato T, Uchino K, Murakami J, Haque T, Tachibana Y, Yoshida A. Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience 2017; 365:158-178. [PMID: 28993238 DOI: 10.1016/j.neuroscience.2017.09.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Little is known about how proprioceptive signals arising from muscles reach to higher brain regions such as the cerebral cortex. We have recently shown that a particular thalamic region, the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM), receives the proprioceptive signals from jaw-closing muscle spindles (JCMSs) in rats. In this study, we further addressed how the orofacial thalamic inputs from the JCMSs were transmitted from the thalamus (VPMcvm) to the cerebral cortex in rats. Injections of a retrograde and anterograde neuronal tracer, wheat-germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), into the VPMcvm demonstrated that the thalamic pathway terminated mainly in a rostrocaudally narrow area in the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of the secondary somatosensory cortex (dGIrvs2). We also electrophysiologically confirmed that the dGIrvs2 received the proprioceptive inputs from JCMSs. To support the anatomical evidence of the VPMcvm-dGIrvs2 pathway, injections of a retrograde neuronal tracer Fluorogold into the dGIrvs2 demonstrated that the thalamic neurons projecting to the dGIrvs2 were confined in the VPMcvm and the parvicellular part of ventral posterior nucleus. In contrast, WGA-HRP injections into the lingual nerve area of core VPM demonstrated that axon terminals were mainly labeled in the core regions of the primary and secondary somatosensory cortices, which were far from the dGIrvs2. These results suggest that the dGIrvs2 is a specialized cortical region receiving the orofacial proprioceptive inputs. Functional contribution of the revealed JCMSs-VPMcvm-dGIrvs2 pathway to Tourette syndrome is also discussed.
Collapse
Affiliation(s)
- Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yume Uemura
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chiharu Kanno
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akiko Tomita
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takafumi Kato
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuro Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jumpei Murakami
- Division of Special Care Dentistry, Dental Hospital, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tahsinul Haque
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of Systrem Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, García Del Molino LC, Fitzgerald G, Ram K, He M, Levine JM, Mitra P, Huang ZJ, Wang XJ, Osten P. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism. Cell 2017; 171:456-469.e22. [PMID: 28985566 PMCID: PMC5870827 DOI: 10.1016/j.cell.2017.09.020] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/10/2017] [Accepted: 09/13/2017] [Indexed: 01/25/2023]
Abstract
The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions.
Collapse
Affiliation(s)
- Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA; College of Medicine, Penn State University, Hershey, PA, 17033, USA
| | | | - Kith Pradhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Mihail Bota
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Greg Fitzgerald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Keerthi Ram
- Healthcare Technology Innovation Centre, IIT Madras, Chennai, India
| | - Miao He
- Institute of Brain Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jesse Maurica Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, NY, 10003, USA; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
17
|
Cambiaghi M, Renna A, Milano L, Sacchetti B. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval. Front Behav Neurosci 2017; 11:138. [PMID: 28790901 PMCID: PMC5524669 DOI: 10.3389/fnbeh.2017.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023] Open
Abstract
Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy.,Institute of NeuroscienceTurin, Italy
| |
Collapse
|
18
|
Chavez C, Zaborszky L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2017; 27:2335-2347. [PMID: 27073229 DOI: 10.1093/cercor/bhw091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) release in the cortex is critical for learning, memory, attention, and plasticity. Here, we explore the cholinergic and noncholinergic projections from the basal forebrain (BF) to the auditory cortex using classical retrograde and monosynaptic viral tracers deposited in electrophysiologically identified regions of the auditory cortex. Cholinergic input to both primary (A1) and nonprimary auditory cortical (belt) areas originates in a restricted area in the caudal BF within the globus pallidus (GP) and in the dorsal part of the substantia innominata (SId). On the other hand, we found significant differences in the proportions of cholinergic and noncholinergic projection neurons to primary and nonprimary auditory areas. Inputs to A1 projecting cholinergic neurons were restricted to the GP, caudate-putamen, and the medial part of the medial geniculate body, including the posterior intralaminar thalamic group. In addition to these areas, afferents to belt-projecting cholinergic neurons originated from broader areas, including the ventral secondary auditory cortex, insular cortex, secondary somatosensory cortex, and the central amygdaloid nucleus. These findings support a specific BF projection pattern to auditory cortical areas. Additionally, these findings point to potential functional differences in how ACh release may be regulated in the A1 and auditory belt areas.
Collapse
Affiliation(s)
- Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Skelly MJ, Ariwodola OJ, Weiner JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 2016; 113:231-240. [PMID: 27720769 DOI: 10.1016/j.neuropharm.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - O J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
20
|
Cho JH, Huang BS, Gray JM. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex. Sci Rep 2016; 6:31753. [PMID: 27557751 PMCID: PMC4997356 DOI: 10.1038/srep31753] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022] Open
Abstract
The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity.
Collapse
Affiliation(s)
- Jin-Hyung Cho
- Harvard Medical School, Genetics Department, 77 Ave Louis Pasteur NRB Room 356, Boston, Massachusetts 02115, USA
| | - Ben S Huang
- Harvard Medical School, Genetics Department, 77 Ave Louis Pasteur NRB Room 356, Boston, Massachusetts 02115, USA.,University of California at Los Angeles, David Geffen School of Medicine, Department of Neurology, 710 Westwood Plaza, Los Angeles, California 90095, USA
| | - Jesse M Gray
- Harvard Medical School, Genetics Department, 77 Ave Louis Pasteur NRB Room 356, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Kondo H, Zaborszky L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J Comp Neurol 2016; 524:2503-15. [PMID: 26780730 PMCID: PMC4900916 DOI: 10.1002/cne.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/02/2015] [Accepted: 01/13/2016] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that the basal forebrain (BF) modulates cortical activation via its projections to the entire cortical mantle. However, the organization of these projections is only partially understood or, for certain areas, unknown. In this study, we examined the topographic organization of cholinergic and noncholinergic projections from the BF to the perirhinal, postrhinal, and entorhinal cortex by using retrograde tracing combined with choline acetyltransferase (ChAT) immunohistochemistry in rats. The perirhinal and postrhinal cortex receives major cholinergic and noncholinergic input from the caudal BF, including the caudal globus pallidus and substantia innominata and moderate input from the horizontal limb of the diagonal band, whereas the entorhinal cortex receives major input from the rostral BF, including the medial septum and the vertical and horizontal limbs of the diagonal band. In the perirhinal cases, cholinergic projection neurons are distributed more caudally in the caudal globus pallidus than noncholinergic projection neurons. Compared with the perirhinal cases, the distribution of cholinergic and noncholinergic neurons projecting to the postrhinal cortex shifts slightly caudally in the caudal globus pallidus. The distribution of cholinergic and noncholinergic neurons projecting to the lateral entorhinal cortex extends more caudally in the BF than to the medial entorhinal cortex. The ratio of ChAT-positive projection neurons to total projection neurons is higher in the perirhinal/postrhinal cases (26-48%) than in the entorhinal cases (13-30%). These results indicate that the organization of cholinergic and noncholinergic projections from the BF to the parahippocampal cortex is more complex than previously described. J. Comp. Neurol. 524:2503-2515, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
22
|
Chomiak T, Hung J, Nguyen MD, Hu B. Somato-dendritic decoupling as a novel mechanism for protracted cortical maturation. BMC Biol 2016; 14:48. [PMID: 27328836 PMCID: PMC4916537 DOI: 10.1186/s12915-016-0270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Both human and animal data indicate that disruption of the endogenously slow maturation of temporal association cortical (TeA) networks is associated with abnormal higher order cognitive development. However, the neuronal mechanisms underlying the endogenous maturation delay of the TeA are poorly understood. RESULTS Here we report a novel form of developmental plasticity that is present in the TeA. It was found that deep layer TeA neurons, but not hippocampal or primary visual neurons, exist in a protracted 'embryonic-like' state through a mechanism involving reduced somato-dendritic communication and a non-excitable somatic membrane. This mechanism of neural inactivity is present in intact tissue and shows a remarkable transition into an active somato-dendritically coupled state. The quantity of decoupled cells diminishes in a protracted and age-dependent manner, continuing into adolescence. CONCLUSIONS Based on our data, we propose a model of neural plasticity through which protracted compartmentalization and decoupling in somato-dendritic signalling plays a key role in controlling how excitable neurons are incorporated into recurrent cortical networks independent of neurogenesis.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Johanna Hung
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Minh Dang Nguyen
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
23
|
Agster KL, Tomás Pereira I, Saddoris MP, Burwell RD. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents. Hippocampus 2016; 26:1213-30. [PMID: 27101786 DOI: 10.1002/hipo.22600] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/17/2023]
Abstract
This is the second of two studies detailing the subcortical connections of the perirhinal (PER), the postrhinal (POR) and entorhinal (EC) cortices of the rat. In the present study, we analyzed the subcortical efferents of the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA). Anterograde tracers were injected into these five regions, and the resulting density of fiber labeling was quantified in an extensive set of subcortical structures. Density and topography of fiber labeling were quantitatively assessed in 36 subcortical areas, including olfactory structures, claustrum, amygdala nuclei, septal nuclei, basal ganglia, thalamic nuclei, and hypothalamic structures. In addition to reporting the density of labeled fibers, we incorporated a new method for quantifying the size of anterograde projections that takes into account the volume of the target subcortical structure as well as the density of fiber labeling. The PER, POR, and EC displayed unique patterns of projections to subcortical areas. Interestingly, all regions examined provided strong input to the basal ganglia, although the projections arising in the PER and LEA were stronger and more widespread. PER areas 35 and 36 exhibited similar pattern of projections with some differences. PER area 36 projects more heavily to the lateral amygdala and much more heavily to thalamic nuclei including the lateral posterior nucleus, the posterior complex, and the nucleus reuniens. Area 35 projects more heavily to olfactory structures. The LEA provides the strongest and most widespread projections to subcortical structures including all those targeted by the PER as well as the medial and posterior septal nuclei. POR shows fewer subcortical projections overall, but contributes substantial input to the lateral posterior nucleus of the thalamus. The MEA projections are even weaker. Our results suggest that the PER and LEA have greater influence over olfactory, amygdala, and septal nuclei, whereas PER area 36 and the POR have greater influence over thalamic nuclei. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kara L Agster
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Inês Tomás Pereira
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Michael P Saddoris
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Rebecca D Burwell
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Lee CM, Osman AF, Volgushev M, Escabí MA, Read HL. Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields. J Neurophysiol 2016; 115:1886-904. [PMID: 26843599 DOI: 10.1152/jn.00784.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/29/2016] [Indexed: 11/22/2022] Open
Abstract
Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences. Spike rate, relative synchrony, and first-spike latency metrics have previously been used to quantify neural sensitivities to temporal sound cues; however, such metrics do not measure absolute spike timing of sustained responses to sound shape. To address this, in this study we quantify two forms of spike-timing precision, jitter, and reliability. In all three fields, we find that jitter decreases logarithmically with increase in the basis spline (B-spline) cutoff frequency used to shape the sound envelope. In contrast, reliability decreases logarithmically with increase in sound envelope modulation frequency. In A1, jitter and reliability vary independently, whereas in ventral cortical fields, jitter and reliability covary. Jitter time scales increase (A1 < VAF < cSRAF) and modulation frequency upper cutoffs decrease (A1 > VAF > cSRAF) with ventral progression from A1. These results suggest a transition from independent encoding of shape and periodicity sound cues on short time scales in A1 to a joint encoding of these same cues on longer time scales in ventral nonprimary cortices.
Collapse
Affiliation(s)
- Christopher M Lee
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Ahmad F Osman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; and
| | - Maxim Volgushev
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Monty A Escabí
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; and Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut
| | - Heather L Read
- Department of Psychology, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; and
| |
Collapse
|
25
|
Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear. J Comp Neurol 2016; 524:2418-39. [PMID: 26779765 DOI: 10.1002/cne.23960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β-hydroxylase (DβH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Amanda B Rostkowski
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Janice H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
26
|
Ito T, Bishop DC, Oliver DL. Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 2015; 91:22-34. [PMID: 26497006 DOI: 10.1007/s12565-015-0308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan. .,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan.
| | - Deborah C Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|
27
|
Abstract
Decades of research has identified the brain areas that are involved in fear, fear extinction, anxiety and related defensive behaviours. Newly developed genetic and viral tools, optogenetics and advanced in vivo imaging techniques have now made it possible to characterize the activity, connectivity and function of specific cell types within complex neuronal circuits. Recent findings that have been made using these tools and techniques have provided mechanistic insights into the exquisite organization of the circuitry underlying internal defensive states. This Review focuses on studies that have used circuit-based approaches to gain a more detailed, and also more comprehensive and integrated, view on how the brain governs fear and anxiety and how it orchestrates adaptive defensive behaviours.
Collapse
Affiliation(s)
- Philip Tovote
- 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. [2]
| | - Jonathan Paul Fadok
- 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. [2]
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
28
|
Yao JD, Bremen P, Middlebrooks JC. Transformation of spatial sensitivity along the ascending auditory pathway. J Neurophysiol 2015; 113:3098-111. [PMID: 25744891 DOI: 10.1152/jn.01029.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 11/22/2022] Open
Abstract
Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, sound-level-tolerant responses to ipsilateral sounds. We surveyed the auditory pathway in anesthetized rats to identify the brain level(s) at which level-tolerant spatial sensitivity arises. Noise-burst stimuli were varied in horizontal sound location and in sound level. Neurons in the central nucleus of the inferior colliculus (ICc) displayed contralateral tuning at low sound levels, but tuning was degraded at successively higher sound levels. In contrast, neurons in the nucleus of the brachium of the inferior colliculus (BIN) showed sharp, level-tolerant spatial sensitivity. The ventral division of the medial geniculate body (MGBv) contained two discrete neural populations, one showing broad sensitivity like the ICc and one showing sharp sensitivity like A1. Dorsal, medial, and shell regions of the MGB showed fairly sharp spatial sensitivity, likely reflecting inputs from A1 and/or the BIN. The results demonstrate two parallel brainstem pathways for spatial hearing. The tectal pathway, in which sharp, level-tolerant spatial sensitivity arises between ICc and BIN, projects to the superior colliculus and could support reflexive orientation to sounds. The lemniscal pathway, in which such sensitivity arises between ICc and the MGBv, projects to the forebrain to support perception of sound location.
Collapse
Affiliation(s)
- Justin D Yao
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - Peter Bremen
- Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - John C Middlebrooks
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California; Department of Cognitive Sciences, University of California at Irvine, Irvine, California; Department of Biomedical Engineering, University of California at Irvine, Irvine, California
| |
Collapse
|
29
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Bergstrom HC, Johnson LR. An organization of visual and auditory fear conditioning in the lateral amygdala. Neurobiol Learn Mem 2014; 116:1-13. [DOI: 10.1016/j.nlm.2014.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
31
|
Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front Syst Neurosci 2014; 8:191. [PMID: 25339873 PMCID: PMC4188029 DOI: 10.3389/fnsys.2014.00191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.
Collapse
Affiliation(s)
- Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, Affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, University of Wisconsin Madison, WI, USA
| |
Collapse
|
32
|
Hishida R, Kudoh M, Shibuki K. Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice. Neurosci Res 2014; 87:49-55. [DOI: 10.1016/j.neures.2014.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
33
|
Stehberg J, Dang PT, Frostig RD. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 2014; 8:93. [PMID: 25309339 PMCID: PMC4174042 DOI: 10.3389/fnana.2014.00093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/23/2014] [Indexed: 11/23/2022] Open
Abstract
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Phat T Dang
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Department of Biomedical Engineering, University of California, Irvine Irvine, CA, USA ; The Center for the Neurobiology of Learning and Memory, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
34
|
Unal G, Paré JF, Smith Y, Paré D. Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol 2014; 522:1915-28. [PMID: 24285470 PMCID: PMC3984626 DOI: 10.1002/cne.23511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
The present study was undertaken to shed light on the synaptic organization of the rat basolateral amygdala (BLA). The BLA contains multiple types of GABAergic interneurons that are differentially connected with extrinsic afferents and other BLA cells. Previously, it was reported that parvalbumin immunoreactive (PV(+) ) interneurons receive strong excitatory inputs from principal BLA cells but very few cortical inputs, implying a prevalent role in feedback inhibition. However, because prior physiological studies indicate that cortical afferents do trigger feedforward inhibition in principal cells, the present study aimed to determine whether a numerically important subtype of interneurons, expressing calbindin (CB(+) ), receives cortical inputs. Rats received injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex. Light and electron microscopic observations of the relations between cortical inputs and BLA neurons were performed in the lateral (LA) and basolateral (BL) nuclei. Irrespective of the injection site (perirhinal or temporal neocortex) and target nucleus (LA or BL), ~90% of cortical axon terminals formed asymmetric synapses with dendritic spines of principal BLA neurons, while 10% contacted the dendritic shafts of presumed interneurons, half of which were CB(+) . Given the previously reported pattern of CB coexpression among GABAergic interneurons of the BLA, these results suggest that a subset of PV-immunonegative cells that express CB, most likely the somatostatin-positive interneurons, are important mediators of cortically evoked feedforward inhibition in the BLA.
Collapse
Affiliation(s)
- Gunes Unal
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| | - Jean-Francois Paré
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Denis Paré
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| |
Collapse
|
35
|
A mesoscale connectome of the mouse brain. Nature 2014; 508:207-14. [PMID: 24695228 DOI: 10.1038/nature13186] [Citation(s) in RCA: 1607] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
Collapse
|
36
|
Kim D, Paré D, Nair SS. Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 2013; 20:421-30. [PMID: 23864645 PMCID: PMC3718199 DOI: 10.1101/lm.030262.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/21/2013] [Indexed: 11/24/2022]
Abstract
The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is critically involved in fear conditioning. To address this question, we developed a large-scale biophysical model of the LA that could reproduce earlier findings regarding the cellular correlates of fear conditioning in LA. We then conducted model experiments that examined whether fear memories depend on (1) training-induced increases in the responsiveness of thalamic and cortical neurons projecting to LA, (2) plasticity at the synapses they form in LA, and/or (3) plasticity at synapses between LA neurons. These tests revealed that training-induced increases in the responsiveness of afferent neurons are required for fear memory formation. However, once the memory has been formed, this factor is no longer required because the efficacy of the synapses that thalamic and cortical neurons form with LA cells has augmented enough to maintain the memory. In contrast, our model experiments suggest that plasticity at synapses between LA neurons plays a minor role in maintaining the fear memory.
Collapse
Affiliation(s)
- Dongbeom Kim
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | - Satish S. Nair
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
37
|
Bartlett EL. The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. BRAIN AND LANGUAGE 2013; 126:29-48. [PMID: 23725661 PMCID: PMC3707394 DOI: 10.1016/j.bandl.2013.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
The auditory thalamus, or medial geniculate body (MGB), is the primary sensory input to auditory cortex. Therefore, it plays a critical role in the complex auditory processing necessary for robust speech perception. This review will describe the functional organization of the thalamus as it relates to processing acoustic features important for speech perception, focusing on thalamic nuclei that relate to auditory representations of language sounds. The MGB can be divided into three main subdivisions, the ventral, dorsal, and medial subdivisions, each with different connectivity, auditory response properties, neuronal properties, and synaptic properties. Together, the MGB subdivisions actively and dynamically shape complex auditory processing and form ongoing communication loops with auditory cortex and subcortical structures.
Collapse
|
38
|
Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Prog Neurobiol 2013. [DOI: 10.1016/j.pneurobio.2012.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Horie M, Meguro R, Hoshino K, Ishida N, Norita M. Neuroanatomical study on the tecto-suprageniculate-dorsal auditory cortex pathway in the rat. Neuroscience 2013; 228:382-94. [DOI: 10.1016/j.neuroscience.2012.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/10/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
|
40
|
Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats. Neuroscience 2012; 219:214-33. [DOI: 10.1016/j.neuroscience.2012.05.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
|
41
|
What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012; 50:3122-40. [PMID: 22841990 PMCID: PMC3500694 DOI: 10.1016/j.neuropsychologia.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/26/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
Abstract
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity).
Collapse
|
42
|
Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y. Auditory thalamic reticular nucleus of the rat: Anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 2012; 520:1457-80. [DOI: 10.1002/cne.22805] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Tomita A, Kato T, Sato F, Haque T, Oka A, Yamamoto M, Ono T, Bae YC, Maeda Y, Sessle BJ, Yoshida A. Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, especially to trigeminal sensory nuclear complex, in rats. Neuroscience 2011; 200:166-85. [PMID: 22079440 DOI: 10.1016/j.neuroscience.2011.10.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
The primary somatosensory cortex (S1) projects to the thalamus and brainstem somatosensory nuclei and modulates somatosensory information ascending to the S1 itself. However, the projections from the S1 to the brainstem second-order somatosensory neuron pools have not been fully studied. To address this in rats, we first revealed the somatotopic representation of orofacial areas in the S1 by recording cortical surface potentials evoked by stimulation of the lingual, mental, infraorbital, and frontal nerves. We then examined the morphology of descending projections from the electrophysiologically defined orofacial S1 areas to the pons and medulla after injections of an anterograde tracer, biotinylated dextranamine (BDA), into the orofacial S1 areas. BDA-labeled axon terminals were seen mostly in the trigeminal sensory nuclear complex (TSNC) and had a strong contralateral predominance. They also showed a somatotopic arrangement in dorsoventral and superficial-deep directions within almost all rostrocaudal TSNC levels, and in a rostrocaudal direction within the trigeminal caudal subnucleus. In the principal nucleus (Vp) or oral subnucleus (Vo) of TSNC, the BDA-labeled axon terminals showed a somatotopic arrangement closely matched to that of the electrophysiologically defined projection sites of orofacial primary afferents; these projection sites were marked by injections of a retrograde tracer, Fluorogold (FG), into the Vp or Vo. The FG injections labeled a large number of S1 neurons, with a strong contralateral predominance, in a somatotopic manner, which corresponded to that presented in the electrophysiologically defined orofacial S1 areas. The present results suggest that the orofacial S1 projections to somatotopically matched regions of trigeminal second-order somatosensory neuron pools may allow the orofacial S1 to accurately modulate orofacial somatosensory transmission to higher brain centers including the orofacial S1 itself.
Collapse
Affiliation(s)
- A Tomita
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ho JWT, Narduzzo KE, Outram A, Tinsley CJ, Henley JM, Warburton EC, Brown MW. Contributions of area Te2 to rat recognition memory. Learn Mem 2011; 18:493-501. [PMID: 21700715 DOI: 10.1101/lm.2167511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ablations and local intracerebral infusions were used to determine the role of rat temporal association cortex (area Te2) in object recognition memory, so that this role might be compared with that of the adjacent perirhinal cortex (PRH). Bilateral lesions of Te2 impaired recognition memory measured by preferential exploration of a novel rather than a familiar object at delays ≥20 min but not after a 5-min delay. Local infusion bilaterally into Te2 of (1) CNQX to block AMPA/kainate receptors or (2) lidocaine to block axonal transmission or (3) AP5, an NMDA receptor antagonist, impaired recognition memory after a 24-h but not a 20-min delay. In PRH all these manipulations impair recognition memory after a 20-min as well as a 24-h delay. UBP302, a GluK1 kainate receptor antagonist, impaired recognition memory after a 24-h but not a 20-min delay, contrasting with its action in PRH where it impairs only shorter-term (20 min) recognition memory. Also in contrast to PRH, infusion of the muscarinic receptor antagonist scopolamine was without effect. The Te2 impairments could not readily be ascribed to perceptual deficits. Hence, Te2 is essential for object recognition memory at delays >5 or 20 min. Thus, at long delays both area Te2 and PRH are necessary for object recognition memory.
Collapse
Affiliation(s)
- Jonathan Weng-Thim Ho
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Amygdalar connections in the lesser hedgehog tenrec. Brain Struct Funct 2011; 217:141-64. [PMID: 21638204 DOI: 10.1007/s00429-011-0328-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
The present study analyses the overall extrinsic connectivity of the non-olfactory amygdala (Ay) in the lesser hedgehog tenrec. The data were obtained from tracer injections into the lateral and intermediate portions of the Ay as well as several non-amygdalar brain regions. Both the solitary and the parabrachial nucleus receive descending projections from the central nucleus of the Ay, but only the parabrachial nucleus appears to project to the Ay. There is one prominent region in the ventromedial hypothalamus connected reciprocally with the medial and central Ay. Amygdalar afferents clearly arise from the dorsomedial thalamus, the subparafascicular nuclei and the medial geniculate complex (GM). Similar to other subprimate species, the latter projections originate in the dorsal and most caudal geniculate portions and terminate in the dorsolateral Ay. Unusual is the presence of amygdalo-projecting cells in the marginal geniculate zone and their virtual absence in the medial GM. As in other species, amygdalo-striatal projections mainly originate in the basolateral Ay and terminate predominantly in the ventral striatum. Given the poor differentiation of the tenrec's neocortex, there is a remarkable similarity with regard to the amygdalo-cortical connectivity between tenrec and rat, particularly as to prefrontal, limbic and somatosensorimotor areas as well as the rhinal cortex throughout its length. The tenrec's isocortex dorsomedial to the caudal rhinal cortex, on the other hand, may not be connected with the Ay. An absence of such connections is expected for primary auditory and visual fields, but it is unusual for their secondary fields.
Collapse
|
46
|
Banks MI, Uhlrich DJ, Smith PH, Krause BM, Manning KA. Descending projections from extrastriate visual cortex modulate responses of cells in primary auditory cortex. Cereb Cortex 2011; 21:2620-38. [PMID: 21471557 DOI: 10.1093/cercor/bhr048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary sensory cortical responses are modulated by the presence or expectation of related sensory information in other modalities, but the sources of multimodal information and the cellular locus of this integration are unclear. We investigated the modulation of neural responses in the murine primary auditory cortical area Au1 by extrastriate visual cortex (V2). Projections from V2 to Au1 terminated in a classical descending/modulatory pattern, with highest density in layers 1, 2, 5, and 6. In brain slices, whole-cell recordings revealed long latency responses to stimulation in V2L that could modulate responses to subsequent white matter (WM) stimuli at latencies of 5-20 ms. Calcium responses imaged in Au1 cell populations showed that preceding WM with V2L stimulation modulated WM responses, with both summation and suppression observed. Modulation of WM responses was most evident for near-threshold WM stimuli. These data indicate that corticocortical projections from V2 contribute to multimodal integration in primary auditory cortex.
Collapse
Affiliation(s)
- Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
47
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
48
|
Van Daele DJ, Fazan VPS, Agassandian K, Cassell MD. Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons. Neuroscience 2011; 177:93-113. [PMID: 21211549 DOI: 10.1016/j.neuroscience.2010.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 01/23/2023]
Abstract
As the central nucleus (CE) is the only amygdaloid nucleus to send axons to the pons and medulla, it is thought to be involved in the expression of conditioned responses by accessing hindbrain circuitry generating stereotypic responses to aversive stimuli. Responses to aversive oral stimuli include gaping and tongue protrusion generated by central pattern generators and other premotor neurons in the ponto-medullary reticular formation. We investigated central nucleus connections with the reticular formation by identifying premotor reticular formation neurons through the retrograde trans-synaptic transport of pseudorabies virus (PRV) inoculated into masseter, genioglossus, thyroarytenoid or inferior constrictor muscles in combination with anterograde labeling of CE axons with biotinylated dextran amine. Three dimensional mapping of PRV infected premotor neurons revealed specific clusters of these neurons associated with different oro-laryngo-pharyngeal muscles, particularly in the parvicellular reticular formation. CE axon terminals were concentrated in certain parvicellular clusters but overall putative contacts were identified with premotor neurons associated with all four oro-laryngo-pharyngeal muscles investigated. We also mapped the retrograde trans-synaptic spread of PRV through the various nuclei of the amygdaloid complex. Medial CE was the first amygdala structure infected (4 days post-inoculation) with trans-synaptic spread to the lateral CE and the caudomedial parvicellular basolateral nucleus by day 5 post-inoculation. Infected neurons were only very rarely found in the lateral capsular CE and the lateral nucleus and then at only the latest time points. The data demonstrate that the CE is directly connected with clusters of reticular premotor neurons that may represent complex pattern generators and/or switching elements for the generation of stereotypic oral and laryngo-pharyngeal movements during aversive oral stimulation. Serial connections through the amygdaloid complex linked with the oro-laryngo-pharyngeal musculature appear quite distinct from those believed to sub-serve fear responses, suggesting there are distinct "channels" for the acquisition and expression of particular conditioned behaviors.
Collapse
Affiliation(s)
- D J Van Daele
- Department of Otolaryngology-Head & Neck Surgery, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
49
|
Lee CC, Sherman SM. On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear Res 2010; 276:79-87. [PMID: 21184817 DOI: 10.1016/j.heares.2010.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/24/2023]
Abstract
Auditory forebrain pathways exhibit several morphological and physiological properties that underlie their specific neurobiological roles in auditory processing. Anatomically, such projections can be distinguished by their terminal size, arborization patterns, and postsynaptic dendritic locations. These structural features correlate with several postsynaptic physiological properties, such as EPSP amplitude, short-term plasticity, and postsynaptic receptor types. Altogether, these synaptic properties segregate into two main classes that are associated with either primarily information-bearing (Class 1) or modulatory (Class 2) roles, and have been used to delineate the principle routes of information flow through the auditory midbrain, thalamus, and cortex. Moreover, these synaptic properties engender as yet unexplored issues regarding the neuronal processing of auditory information, such as the convergent integration and long-term plasticity of auditory forebrain inputs.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
50
|
Smith PH, Manning KA, Uhlrich DJ. Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. J Comp Neurol 2010; 518:3679-700. [PMID: 20653029 DOI: 10.1002/cne.22411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence indicates that visual stimuli influence cells in the primary auditory cortex. To evaluate potential sources of this visual input and how they enter into the circuitry of the auditory cortex, we examined axonal terminations in the primary auditory cortex from nonprimary extrastriate visual cortex (V2M, V2L) and from the multimodal thalamic suprageniculate nucleus (SG). Gross biocytin/biotinylated dextran amine (BDA) injections into the SG or extrastriate cortex labeled inputs terminating primarily in superficial and deep layers. SG projects primarily to layers I, V, and VI while V2M and V2L project primarily to layers I and VI, with V2L also targeting layers II/III. Layer I inputs differ in that SG terminals are concentrated superficially, V2L are deeper, and V2M are equally distributed throughout. Individual axonal reconstructions document that single axons can 1) innervate multiple layers; 2) run considerable distances in layer I; and 3) run preferentially in the dorsoventral direction similar to isofrequency axes. At the electron microscopic level, SG and V2M terminals 1) are the same size regardless of layer; 2) are non-gamma-aminobutyric acid (GABA)ergic; 3) are smaller than ventral medial geniculate terminals synapsing in layer IV; 4) make asymmetric synapses onto dendrites/spines that 5) are non-GABAergic and 6) are slightly larger in layer I. Thus, both areas provide a substantial feedback-like input with differences that may indicate potentially different roles.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53705, USA.
| | | | | |
Collapse
|