1
|
Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci 2020; 21:ijms21228811. [PMID: 33233865 PMCID: PMC7699963 DOI: 10.3390/ijms21228811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a mental disorder that affects approximately 1-2% of the population and develops in early adulthood. The disease is characterized by positive, negative, and cognitive symptoms. A large percentage of patients with schizophrenia have a treatment-resistant disease, and the risk of developing adverse effects is high. Many researchers have attempted to introduce new antipsychotic drugs to the clinic, but most of these treatments failed, and the diversity of schizophrenic symptoms is one of the causes of disappointing results. The present review summarizes the results of our latest papers, showing that the simultaneous activation of two receptors with sub-effective doses of their ligands induces similar effects as the highest dose of each compound alone. The treatments were focused on inhibiting the increased glutamate release responsible for schizophrenia arousal, without interacting with dopamine (D2) receptors. Ligands activating metabotropic receptors for glutamate, GABAB or muscarinic receptors were used, and the compounds were administered in several different combinations. Some combinations reversed all schizophrenia-related deficits in animal models, but others were active only in select models of schizophrenia symptoms (i.e., cognitive or negative symptoms).
Collapse
|
2
|
de Beaurepaire R. A Review of the Potential Mechanisms of Action of Baclofen in Alcohol Use Disorder. Front Psychiatry 2018; 9:506. [PMID: 30459646 PMCID: PMC6232933 DOI: 10.3389/fpsyt.2018.00506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Baclofen, a GABA-B receptor agonist, is a promising treatment for alcohol use disorder (AUD). Its mechanism of action in this condition is unknown. GABA-B receptors interact with many biological systems potentially involved in AUD, including transduction pathways and neurotransmitter systems. Preclinical studies have shown that GABA-B receptors are involved in memory storage and retrieval, reward, motivation, mood and anxiety; neuroimaging studies in humans show that baclofen produces region-specific alterations in cerebral activity; GABA-B receptor activation may have neuroprotective effects; baclofen also has anti-inflammatory properties that may be of interest in the context of addiction. However, none of these biological effects fully explain the mechanism of action of baclofen in AUD. Data from clinical studies have provided a certain number of elements which may be useful for the comprehension of its mechanism of action: baclofen typically induces a state of indifference toward alcohol; the effective dose of baclofen in AUD is extremely variable from one patient to another; higher treatment doses correlate with the severity of the addiction; many of the side effects of baclofen resemble those of alcohol, raising the possibility that baclofen acts as a substitution drug; usually, however, there is no tolerance to the effects of baclofen during long-term AUD treatment. In the present article, the biological effects of baclofen are reviewed in the light of its clinical effects in AUD, assuming that, in many instances, clinical effects can be reliable indicators of underlying biological processes. In conclusion, it is proposed that baclofen may suppress the Pavlovian association between cues and rewards through an action in a critical part of the dopaminergic network (the amygdala), thereby normalizing the functional connectivity in the reward network. It is also proposed that this action of baclofen is made possible by the fact that baclofen and alcohol act on similar brain systems in certain regions of the brain.
Collapse
|
3
|
Maccioni P, Lorrai I, Contini A, Leite-Morris K, Colombo G. Microinjection of baclofen and CGP7930 into the ventral tegmental area suppresses alcohol self-administration in alcohol-preferring rats. Neuropharmacology 2017; 136:146-158. [PMID: 29050951 DOI: 10.1016/j.neuropharm.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023]
Abstract
Systemic administration of the orthosteric agonist, baclofen, and several positive allosteric modulators (PAMs) of the GABAB receptor has repeatedly been reported to decrease operant oral alcohol self-administration in rats. The aim of the present study was to evaluate the contribution of the mesolimbic dopamine system to the reducing effect of baclofen and GABAB PAMs on the reinforcing properties of alcohol. To this end, baclofen or the GABAB PAM CGP7930 were microinjected into the ventral tegmental area (VTA) of selectively bred, Sardinian alcohol-preferring (sP) rats trained to self-administer alcohol. Baclofen (0, 0.03, 0.1, and 0.3 μg) or CGP7930 (0, 5, 10, and 20 μg) were microinjected via indwelling unilateral guide cannula aiming at the left hemisphere of the VTA. Treatment with baclofen resulted in a dose-related suppression of the number of lever-responses for alcohol and the amount of self-administered alcohol. No dose of baclofen altered rat motor-performance, evaluated by the inverted screen test immediately before the self-administration session. Treatment with CGP7930 halved the number of lever-responses for alcohol and amount of self-administered alcohol, with no effect on rat motor-performance. Site-specificity was investigated testing the effect of microinjection of baclofen and CGP7930 into the left hemisphere of deep mesencephalic nucleus: compared to vehicle, neither 0.3 μg baclofen nor 20 μg CGP7930 altered lever-responding for alcohol and amount of self-administered alcohol. Collectively, the results of the present study suggest the involvement of GABAB receptors located in the VTA in the mediation of alcohol reinforcing properties in sP rats. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA I-09042, Italy
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA I-09042, Italy
| | - Andrea Contini
- Department of Biomedical Sciences, University of Sassari, Sassari, SS I-07100, Italy
| | - Kimberly Leite-Morris
- Departments of Psychiatry, Pharmacology and Experimental Therapeutics, Boston University School of Medicine, VA Boston Healthcare System, Research Service, Boston, MA 02130, USA
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, CA I-09042, Italy.
| |
Collapse
|
4
|
Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, Bass CE, Bettler B, Morales M, Bonci A. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci 2017; 20:438-448. [DOI: 10.1038/nn.4482] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
|
5
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Mowery TM, Sarin RM, Elliott KS, E Garraghty P. Nerve injury-induced changes in GABA(A) and GABA(B) sub-unit expression in area 3b and cuneate nucleus of adult squirrel monkeys: further evidence of developmental recapitulation. Brain Res 2011; 1415:63-75. [PMID: 21880301 DOI: 10.1016/j.brainres.2011.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/24/2011] [Accepted: 07/30/2011] [Indexed: 11/27/2022]
Abstract
The primate somatosensory system provides an excellent model system with which to investigate adult neural plasticity. Here, we report immunohistochemical staining data for the GABA(A) α1, GABA(B)R1a, and GABA(B)R1b receptor subunits in somatosensory area 3b, and cuneate nucleus one week after median nerve compression in adult squirrel monkeys. We find a significant decrease in GABA(A) α1 subunit staining across all cortical layers and within both soma and neuropil of the deprived cortical and brainstem regions. The GABA(B) staining showed an opposing shift in deprived regions, with a significant increase in presynaptic GABA(B)R1a staining, and a significant decrease in postsynaptic GABA(B)R1b staining in deprived regions of the cortex and brainstem. These changes in receptor subunit expression generate patterns that are very similar to those reported in the neonate. Furthermore, the similarities between brainstem and cortical expression suggest conserved forms of adult plasticity in these two regions. Taken together these results, along with the results from our previous paper investigating AMPA subunit expression in these same animals, support the hypothesis that deprived neurons enter a previously hidden state of developmental recapitulation that serves to prime the brain for NMDA receptor mediated receptive field reorganization.
Collapse
Affiliation(s)
- Todd M Mowery
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
7
|
|
8
|
The distribution of gamma-hydroxybutyrate-induced Fos expression in rat brain: comparison with baclofen. Neuroscience 2008; 158:441-55. [PMID: 18996447 DOI: 10.1016/j.neuroscience.2008.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 11/05/2008] [Indexed: 11/20/2022]
Abstract
gamma-Hydroxybutyrate (GHB) is a euphoric, prosocial and sleep inducing drug that binds with high affinity to its own GHB receptor site and also more weakly to GABA(B) receptors. GHB is efficacious in the treatment of narcolepsy and alcoholism, but heavy use can lead to dependence and withdrawal. Many effects of GHB (sedation, hypothermia, catalepsy) are mimicked by GABA(B) receptor agonists (e.g. baclofen). However other effects (euphoric and prosocial effects and a therapeutic effect in narcolepsy) are not. The present study used Fos immunohistochemistry to assess the neural activation produced in rat brain by medium to high doses of GHB (250, 500 and 1000 mg/kg) and a high dose of baclofen (10 mg/kg) that produced similar sedation to 500 mg/kg GHB. Results showed many common regions of activation with these two drugs including the supraoptic, paraventricular, median preoptic and ventral premammillary nuclei of the hypothalamus, the central nucleus of the amygdala, Edinger-Westphal nucleus, lateral parabrachial nucleus, locus coeruleus, and nucleus of the solitary tract. GHB (500 mg/kg), but not baclofen (10 mg/kg), induced significant Fos expression in the median raphe nucleus and lateral habenula, while a higher dose of GHB (1000 mg/kg) induced additional Fos expression in the islands of Calleja, dentate gyrus (polymorphic layer) and arcuate nucleus, and in various regions implicated in rapid and non-rapid eye movement sleep (laterodorsal tegmental nucleus, tuberomammillary nucleus and the ventrolateral and anterodorsal preoptic nuclei). Surprisingly, Fos immunoreactivity was not observed with either GHB or baclofen in reward-relevant regions such as the nucleus accumbens, striatum and ventral tegmental area. Overall these results indicate a distinctive signature of brain activation with GHB that may be only partly due to GABA(B) receptor effects. This confirms a unique neuropharmacological profile for GHB and indicates key neural substrates that may underlie its characteristic influence on sleep, body temperature, sociability and endocrine function.
Collapse
|
9
|
Abstract
The majority of neurons in the basal ganglia utilize GABA as their principal neurotransmitter and, as a consequence, most basal ganglia neurons receive extensive GABAergic inputs derived from multiple sources. In order to understand the diverse roles of GABA in the basal ganglia it is necessary to define the precise localization of GABA receptors in relation to known neuron subtypes and known afferents. In this chapter, we summarize data on the ultrastructural localization of ionotropic GABA(A) receptors and metabotropic GABA(B) receptors in the basal ganglia. In each of the regions of the basal ganglia that have been studied, GABA(A) receptor subunits are located primarily at symmetrical synapses formed by GABAergic boutons, where they display a several-hundred-fold enrichment over extrasynaptic sites. In contrast, GABA(B) receptors are widely distributed at synaptic and extrasynaptic sites on both presynaptic and postsynaptic membranes. Presynaptic GABA(B) receptors are localized on striatopallidal, striatonigral and pallidonigral afferent terminals, as well as glutamatergic terminals derived from the cortex, thalamus and subthalamic nucleus. It is concluded that fast GABA transmission mediated by GABA(A) receptors in the basal ganglia occurs primarily at synapses whereas GABA transmission mediated by GABA(B) receptors is more complex, involving receptors located at presynaptic, postsynaptic and extrasynaptic sites.
Collapse
Affiliation(s)
- Justin Boyes
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | | |
Collapse
|
10
|
Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP. GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience 2005; 136:1083-95. [PMID: 16226840 DOI: 10.1016/j.neuroscience.2005.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/06/2005] [Accepted: 07/01/2005] [Indexed: 12/12/2022]
Abstract
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- C J Lacey
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | | | | | | | | | | |
Collapse
|
11
|
Nyíri G, Szabadits E, Cserép C, Mackie K, Shigemoto R, Freund TF. GABABand CB1cannabinoid receptor expression identifies two types of septal cholinergic neurons. Eur J Neurosci 2005; 21:3034-42. [PMID: 15978014 DOI: 10.1111/j.1460-9568.2005.04146.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Septohippocampal cholinergic neurons play key roles in learning and memory processes, and in the generation of hippocampal theta rhythm. The range of receptors for endogenous modulators expressed on these neurons is unclear. Here we describe GABA(B) 1a/b receptor (GABA(B)R) and type 1 cannabinoid receptor (CB(1)R) expression in rat septal cholinergic [i.e. choline acetyltransferase (ChAT)-positive] cells. Using double immunofluorescent staining, we found that almost two-thirds of the cholinergic cells in the rat medial septum were GABA(B)R positive, and that these cells had significantly larger somata than did GABA(B)R-negative cholinergic neurons. We detected CB(1)R labelling in somata after axonal protein transport was blocked by colchicine. In these animals about one-third of the cholinergic cells were CB(1)R positive. These cells again had larger somata than CB(1)R-negative cholinergic neurons. The analyses confirmed that the size of GABA(B)R-positive and CB(1)R-positive cholinergic cells were alike, and all CB(1)R-positive cholinergic cells were GABA(B)R positive as well. CB(1)R-positive cells were invariably ChAT positive. All retrogradely labelled septohippocampal cholinergic cells were positive for GABA(B)R and at least half of them also for CB(1)R. These data shed light on the existence of at least two cholinergic cell types in the medial septum: one expresses GABA(B)R and CB(1)R, has large somata and projects to the hippocampus, whereas the other is negative for GABA(B)R and CB(1)R and has smaller somata. The results also suggest that cholinergic transmission in the hippocampus is fine-tuned by endocannabinoid signalling.
Collapse
Affiliation(s)
- Gábor Nyíri
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Szigony u. 43., Hungary.
| | | | | | | | | | | |
Collapse
|
12
|
Charara A, Pare JF, Levey AI, Smith Y. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 2005; 131:917-33. [PMID: 15749345 DOI: 10.1016/j.neuroscience.2004.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
GABA-A and GABA-B receptors mediate differential effects in the CNS. To better understand the role of these receptors in regulating pallidal functions, we compared their subcellular and subsynaptic localization in the external and internal segments of the globus pallidus (GPe and GPi) in monkeys, using pre- and post-embedding immunocytochemistry with antibodies against GABA-A (alpha1, beta2/3 subunits) and GABA-BR1 receptor subtype. Our results demonstrate that GABA-A and GABA-B receptors display a differential pattern of subcellular and subsynaptic localization in both segments of the globus pallidus. The majority of GABA-BR1 immunolabeling is intracellular, whereas immunoreactivity for GABA-A receptor subunits is mostly bound to the plasma membrane. A significant proportion of both GABA-BR1 and GABA-A receptor immunolabeling is extrasynaptic, but GABA-A receptor subunits also aggregate in the main body of putative GABAergic symmetric synapses established by striatal- and pallidal-like terminals. GABA-BR1 immunoreactivity is expressed presynaptically in putative glutamatergic terminals, while GABA-A alpha1 and beta2/3 receptor subunits are exclusively post-synaptic and often coexist at individual symmetric synapses in both GPe and GPi. In conclusion, our findings corroborate the concept that ionotropic and metabotropic GABA receptors are located to subserve different effects in pallidal neurons. Although the aggregation of GABA-A receptors at symmetric synapses is consistent with their role in fast inhibitory synaptic transmission, the extrasynaptic distribution of both GABA-A and GABA-B receptors provides a substrate for complex modulatory functions that rely predominantly on the spillover of GABA.
Collapse
Affiliation(s)
- A Charara
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
13
|
Charara A, Galvan A, Kuwajima M, Hall RA, Smith Y. An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution. J Comp Neurol 2004; 476:65-79. [PMID: 15236467 DOI: 10.1002/cne.20210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Functional gamma-aminobutyric acid (GABA)(B) receptors are heterodimers made up of GABA(B) R1 and GABA(B) R2 subunits. The subcellular localization of GABA(B) R2 receptors remains poorly known in the central nervous system. Therefore, we performed an ultrastructural analysis of the localization of GABA(B) R2 receptor immunoreactivity in the monkey basal ganglia. Furthermore, to characterize better the neuronal sites at which GABA(B) R1 and GABA(B) R2 may interact to form functional receptors, we compared the relative distribution of immunoreactivity of the two GABA(B) receptors in various basal ganglia nuclei. Light to moderate GABA(B) R2 immunoreactivity was found in cell bodies and neuropil elements in all basal ganglia nuclei. At the electron microscope level, GABA(B) R2 immunoreactivity was commonly expressed postsynaptically, although immunoreactive preterminal axonal segments were also frequently encountered, particularly in the globus pallidus and substantia nigra, where they accounted for the third of the total number of GABA(B) R2-containing elements. A few labeled terminals that displayed the ultrastructural features of glutamatergic boutons were occasionally found in most basal ganglia nuclei, except for the subthalamic nucleus, which was devoid of GABA(B) R2-immunoreactive boutons. The relative distribution of GABA(B) R2 immunoreactivity in the monkey basal ganglia was largely consistent with that of GABA(B) R1, but some exceptions were found, most noticeably in the globus pallidus and substantia nigra, which contained a significantly larger proportion of presynaptic elements labeled for GABA(B) R1 than GABA(B) R2. These findings suggest the possible coexistence and heterodimerization of GABA(B) R1 and GABA(B) R2 at various pre- and postsynaptic sites, but also raise the possibility that the formation of functional GABA(B) receptors in specific compartments of basal ganglia neurons relies on mechanisms other than GABA(B) R1/R2 heterodimerization.
Collapse
Affiliation(s)
- Ali Charara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
14
|
Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004; 84:835-67. [PMID: 15269338 DOI: 10.1152/physrev.00036.2003] [Citation(s) in RCA: 646] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA(B) receptors are broadly expressed in the nervous system and have been implicated in a wide variety of neurological and psychiatric disorders. The cloning of the first GABA(B) receptor cDNAs in 1997 revived interest in these receptors and their potential as therapeutic targets. With the availability of molecular tools, rapid progress was made in our understanding of the GABA(B) system. This led to the surprising discovery that GABA(B) receptors need to assemble from distinct subunits to function and provided exciting new insights into the structure of G protein-coupled receptors (GPCRs) in general. As a consequence of this discovery, it is now widely accepted that GPCRs can exist as heterodimers. The cloning of GABA(B) receptors allowed some important questions in the field to be answered. It is now clear that molecular studies do not support the existence of pharmacologically distinct GABA(B) receptors, as predicted by work on native receptors. Advances were also made in clarifying the relationship between GABA(B) receptors and the receptors for gamma-hydroxybutyrate, an emerging drug of abuse. There are now the first indications linking GABA(B) receptor polymorphisms to epilepsy. Significantly, the cloning of GABA(B) receptors enabled identification of the first allosteric GABA(B) receptor compounds, which is expected to broaden the spectrum of therapeutic applications. Here we review current concepts on the molecular composition and function of GABA(B) receptors and discuss ongoing drug-discovery efforts.
Collapse
Affiliation(s)
- Bernhard Bettler
- Pharmazentrum, Dept. of Clinical-Biological Sciences, Institute of Physiology, Univ. of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
15
|
Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM. Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 2004; 470:339-56. [PMID: 14961561 DOI: 10.1002/cne.20005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GABA(B) receptor is a G-protein linked metabotropic receptor that is comprised of two major subunits, GABA(B)R1 and GABA(B)R2. In this study, the cellular distribution of the GABA(B)R1 and GABA(B)R2 subunits was investigated in the normal human basal ganglia using single and double immunohistochemical labeling techniques on fixed human brain tissue. The results showed that the GABA(B) receptor subunits GABA(B)R1 and GABA(B)R2 were both found on the same neurons and followed the same distribution patterns. In the striatum, these subunits were found on the five major types of interneurons based on morphology and neurochemical labeling (types 1, 2, 3, 5, 6) and showed weak labeling on the projection neurons (type 4). In the globus pallidus, intense GABA(B)R1 and GABA(B)R2 subunit labeling was found in large pallidal neurons, and in the substantia nigra, both pars compacta and pars reticulata neurons were labeled for both receptor subunits. Studies investigating the colocalization of the GABA(A) alpha(1) subunit and GABA(B) receptor subunits showed that the GABA(A) receptor alpha(1) subunit and the GABA(B)R1 subunit were found together on GABAergic striatal interneurons (type 1 parvalbumin, type 2 calretinin, and type 3 GAD neurons) and on neurons in the globus pallidus and substantia nigra pars reticulata. GABA(B)R1 and GABA(B)R2 were found on substantia nigra pars compacta neurons but the GABA(A) receptor alpha(1) subunit was absent from these neurons. The results of this study provide the morphological basis for GABAergic transmission within the human basal ganglia and provides evidence that GABA acts through both GABA(A) and GABA(B) receptors. That is, GABA acts through GABA(B) receptors, which are located on most of the cell types of the striatum, globus pallidus, and substantia nigra. GABA also acts through GABA(A) receptors containing the alpha(1) subunit on specific striatal GABAergic interneurons and on output neurons of the globus pallidus and substantia nigra pars reticulata.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Boyes J, Bolam JP. The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra. Eur J Neurosci 2004; 18:3279-93. [PMID: 14686901 DOI: 10.1111/j.1460-9568.2003.03076.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory effects of GABA within the substantia nigra (SN) are mediated in part by metabotropic GABA(B) receptors. To better understand the mechanisms underlying these effects, we have examined the subcellular localization of the GABA(B) receptor subunits, GABA(B1) and GABA(B2), in SN neurons and afferents using pre-embedding immunocytochemistry combined with anterograde or retrograde labelling. In both the SN pars compacta (SNc) and pars reticulata (SNr), GABA(B1) and GABA(B2) showed overlapping, but distinct, patterns of immunolabelling. GABA(B1) was more strongly expressed by putative dopaminergic neurons in the SNc than by SNr projection neurons, whereas GABA(B2) was mainly expressed in the neuropil of both regions. Immunogold labelling for GABA(B1) and GABA(B2) was localized in presynaptic and postsynaptic elements throughout the SN. The majority of labelling was intracellular or was associated with extrasynaptic sites on the plasma membrane. In addition, labelling for both subunits was found on the presynaptic and postsynaptic membranes at symmetric, putative GABAergic synapses, including those formed by anterogradely labelled striatonigral and pallidonigral terminals. Labelling was also observed on the presynaptic membrane and at the edge of the postsynaptic density at asymmetric, putative excitatory synapses. Double immunolabelling, using the vesicular glutamate transporter 2, revealed the glutamatergic nature of many of the immunogold-labelled asymmetric synapses. The widespread distribution of GABA(B) subunits in the SNc and SNr suggests that GABA(B)-mediated effects in these regions are likely to be more complex than previously described, involving presynaptic autoreceptors and heteroreceptors, and postsynaptic receptors on different populations of SN neurons.
Collapse
Affiliation(s)
- Justin Boyes
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, UK
| | | |
Collapse
|
17
|
López-Bendito G, Shigemoto R, Kulik A, Vida I, Fairén A, Luján R. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 2004; 14:836-48. [PMID: 15382254 DOI: 10.1002/hipo.10221] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABAB) play modulatory roles in central synaptic transmission and are involved in controlling neuronal migration during development. We used immunohistochemical methods to elucidate the expression pattern as well as the cellular and the precise subcellular localization of the GABA(B1a/b) and GABAB2 subunits in the rat hippocampus during prenatal and postnatal development. At the light microscopic level, both GABA(B1a/b) and GABAB2 were expressed in the hippocampal primordium from embryonic day E14. During postnatal development, immunoreactivity for GABA(B1a/b) and GABAB2 was distributed mainly in pyramidal cells, with discrete GABA(B1a/b)-immunopositive cell bodies of interneurons present throughout the hippocampus. Using double immunofluorescence, we demonstrated that during the second week of postnatal development, GABA(B1a/b) but not GABAB2 was expressed in glial cells throughout the hippocampal formation. At the electron microscopic level, GABA(B1a/b) and GABAB2 showed a similar distribution pattern during postnatal development. Thus, at all ages the two receptor subunits were located postsynaptically in dendritic spines and shafts at extrasynaptic and perisynaptic sites in both pyramidal and nonpyramidal cells. We further demonstrated that the two subunits were localized presynaptically along the extrasynaptic plasma membrane of axon terminals and along the presynaptic active zone in both asymmetrical and, to a lesser extent, symmetrical synapses. These results suggest that GABAB receptors are widely expressed in the hippocampus throughout development and that GABA(B1a/b) and GABAB2 form both pre- and postsynaptic receptors.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 2003. [PMID: 14657159 DOI: 10.1523/jneurosci.23-35-11026.2003] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabotropic GABA(B) receptors mediate slow inhibitory effects presynaptically and postsynaptically. Using preembedding immunohistochemical methods combined with quantitative analysis of GABA(B) receptor subunit immunoreactivity, this study provides a detailed description of the cellular and subcellular localization of GABA(B1a/b) and GABA(B2) in the rat hippocampus. At the light microscopic level, an overlapping distribution of GABA(B1a/b) and GABA(B2) was revealed in the dendritic layers of the hippocampus. In addition, expression of the GABA(B1a/b) subunit was found in somata of CA1 pyramidal cells and of a subset of GABAergic interneurons. At the electron microscopic level, immunoreactivity for both subunits was observed on presynaptic and, more abundantly, on postsynaptic elements. Presynaptically, subunits were mainly detected in the extrasynaptic membrane and occasionally over the presynaptic membrane specialization of putative glutamatergic and, to a lesser extent, GABAergic axon terminals. Postsynaptically, the majority of GABA(B) receptor subunits were localized to the extrasynaptic plasma membrane of spines and dendritic shafts of principal cells and shafts of interneuron dendrites. Quantitative analysis revealed enrichment of GABA(B1a/b) around putative glutamatergic synapses on spines and an even distribution on dendritic shafts of pyramidal cells contacted by GABAergic boutons. The association of GABA(B) receptors with glutamatergic synapses at both presynaptic and postsynaptic sides indicates their intimate involvement in the modulation of glutamatergic neurotransmission. The dominant extrasynaptic localization of GABA(B) receptor subunits suggests that their activation is dependent on spillover of GABA requiring simultaneous activity of populations of GABAergic cells as it occurs during population oscillations or epileptic seizures.
Collapse
|
19
|
Slugg RM, Zheng SX, Fang Y, Kelly MJ, Rønnekleiv OK. Baclofen inhibits guinea pig magnocellular neurones via activation of an inwardly rectifying K+ conductance. J Physiol 2003; 551:295-308. [PMID: 12813153 PMCID: PMC2343136 DOI: 10.1113/jphysiol.2003.041319] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The GABAB receptors GABAB-R1 and GABAB-R2 have been cloned in several mammalian species, and the functional receptor has been shown to exist as a heterodimeric complex. We have cloned guinea pig GABAB-R1 and GABAB-R2 receptor sequences and, using in situ hybridization and immunocytochemistry for vasopressin (AVP), we found that GABAB-R1 and -R2 receptors are expressed in vasopressin neurones of the supraoptic (SON) and paraventricular nuclei (PVN). Therefore, we used both sharp electrode and whole-cell patch recording techniques to examine the effects of the selective GABAB agonist baclofen on SON and PVN magnocellular neurones and to determine the coupling of the GABAB receptor to effector pathways. Recordings were made in coronal hypothalamic slices from both female (ovariectomized) and male guinea pigs. In the presence of tetrodotoxin (TTX), baclofen hyperpolarized (DeltaVmax = 5.6 mV, EC50 = 2.3 microM) SON magnocellular neurones (n = 27) under current clamp, or induced an outward current that reversed at EK (DeltaImax = 24.2 pA) in PVN magnocellular neurones (n = 33) under voltage clamp. Seventeen of the 24 biocytin-labelled SON magnocellular neurones were identified as AVP neurones, and ten of the 33 biocytin-labelled PVN neurones were identified as AVP or neurophysin-containing neurones, although all of the cells were clustered in the vasopressin-rich core. In the absence of TTX, baclofen activated an outward K+ current that hyperpolarized SON and PVN neurones and significantly reduced their firing rate. The outward current showed inward rectification and was blocked by the K+ channel blocker barium and the GABAB receptor antagonist CGP 35348. Therefore, GABAB receptors are coupled to inwardly rectifying K+ channels in SON and PVN magnocellular neurones and may play a prominent role in modulating phasic bursting activity in guinea pig vasopressin neurones.
Collapse
Affiliation(s)
- Robert M Slugg
- Department of Physiology and Pharmacology, L334, Oregon Health Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
20
|
Princivalle AP, Richards DA, Duncan JS, Spreafico R, Bowery NG. Modification of GABA(B1) and GABA(B2) receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS). Epilepsy Res 2003; 55:39-51. [PMID: 12948615 DOI: 10.1016/s0920-1211(03)00090-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we have investigated GABA(B) receptor expression in somatosensory cortex (S1) and the ventrobasal (VB) and reticular (Rt) thalamic nuclei of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), which represent an animal model for the human absence epilepsy. We focused our attention on the thalamocortical network because it has been demonstrated that absence seizures are generated in this specific circuit, which is under the control of several inhibitory, e.g. GABA, and excitatory systems. Autoradiography data obtained with the GABA(B) receptor antagonist [3H]CGP62349 did not show any differences in Kd or Bmax values between control rats and GAERS. In situ hybridisation (ISH) results showed a significant increase in messenger RNA for GABA(B1) in the S1 and a decrease in the VB thalamic nucleus but not in the Rt thalamic nucleus. By contrast the immunocytochemical data revealed an increased expression of both GABA(B1) and GABA(B2) receptor subunits in all the regions examined, somatosensory cerebral cortex, VB thalamus and Rt nucleus in GAERS compared to controls. The main finding was an up-regulation of GABA(B) receptor protein in the corticothalamic circuit in GAERS compared to controls.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epilepsy, Absence/genetics
- Epilepsy, Absence/metabolism
- Male
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Mutant Strains
- Rats, Wistar
- Receptors, GABA
- Receptors, GABA-A
- Receptors, GABA-B/biosynthesis
- Receptors, GABA-B/genetics
- Somatosensory Cortex/chemistry
- Somatosensory Cortex/metabolism
- Thalamus/chemistry
- Thalamus/metabolism
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Pharmacology, Division of Neuroscience, University of Birmingham, The Medical School, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
22
|
Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 2003; 463:67-96. [PMID: 12600703 DOI: 10.1016/s0014-2999(03)01275-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A multitude of mechanisms are involved in the control of emotion and in the response to stress. These incorporate mediators/targets as diverse as gamma-aminobutyric acid (GABA), excitatory amino acids, monoamines, hormones, neurotrophins and various neuropeptides. Behavioural models are indispensable for characterization of the neuronal substrates underlying their implication in the etiology of anxiety, and of their potential therapeutic pertinence to its management. Of considerable significance in this regard are conflict paradigms in which the influence of drugs upon conditioned (trained) behaviours is examined. For example, the Vogel conflict test, which was introduced some 30 years ago, measures the ability of drugs to release the drinking behaviour of water-deprived rats exposed to a mild aversive stimulus ("punishment"). This model, of which numerous procedural variants are discussed herein, has been widely used in the evaluation of potential anxiolytic agents. In particular, it has been exploited in the characterization of drugs interacting with GABAergic, glutamatergic and monoaminergic networks, the actions of which in the Vogel conflict test are summarized in this article. More recently, the effects of drugs acting at neuropeptide receptors have been examined with this model. It is concluded that the Vogel conflict test is of considerable utility for rapid exploration of the actions of anxiolytic (and anxiogenic) drugs. Indeed, in view of its clinical relevance, broader exploitation of the Vogel conflict test in the identification of novel classes of anxiolytic agents, and in the determination of their mechanisms of action, would prove instructive.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| | | |
Collapse
|
23
|
Serrats J, Artigas F, Mengod G, Cortés R. GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. J Neurochem 2003; 84:743-52. [PMID: 12562519 DOI: 10.1046/j.1471-4159.2003.01557.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used double-label in situ hybridization techniques to examine the cellular localization of GABAB receptor mRNA in relation to serotonin transporter mRNA and glutamic acid decarboxylase mRNA in the rat dorsal raphe, median raphe and raphe magnus nuclei. The degree of cellular co-localization of these markers notably varied among the different nuclei. In the dorsal raphe, cell bodies showing GABAB receptor mRNA were very abundant, the 85% being also labelled for serotonin transporter mRNA, and a low proportion (5%) showing glutamic acid decarboxylase mRNA. In the median raphe, the level of co-expression of GABAB receptor mRNA with serotonin transporter mRNA was significantly lower. Some cells were also identified that contained GABAB receptor mRNA in the absence of either one of the other mRNA species studied. Our results support the presence of GABAB receptors in serotonergic as well as GABAergic neurones in the dorsal and median raphe, providing the anatomical basis for the reported dual inhibitory/disinhibitory effect of the GABAB agonist baclofen on serotonergic function.
Collapse
Affiliation(s)
- Jordi Serrats
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC (IDIBAPS), Rosselló 161, E-08036-Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Princivalle AP, Duncan JS, Thom M, Bowery NG. GABA(B1a), GABA(B1b) AND GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy. Neuroscience 2003; 122:975-84. [PMID: 14643764 DOI: 10.1016/j.neuroscience.2003.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the mRNA expression of the two GABA(B1) receptor isoforms and the GABA(B2) subunit, in human postmortem control hippocampal sections and in sections resected from epilepsy patients using quantitative in situ hybridisation autoradiography. Utilising human control hippocampal sections it was shown that the oligonucleotides employed were specific to the receptor. Hippocampal slices from surgical specimens obtained from patients with hippocampal sclerosis and temporal lobe epilepsy were compared with neurologically normal postmortem control subjects for neuropathology and GABA(B) mRNA expression. Neuronal loss was observed in most of the hippocampal subregions, but in the subiculum no significant difference was detected. The localisation of GABA(B1a) and GABA(B1b) isoform mRNAs in human control hippocampal sections supported and extended earlier studies using the GABA(B1) pan probe, which does not distinguish between the two GABA(B1) isoforms. Moreover, the GABA(B2) mRNA location confirmed the heterodimerisation of the receptor. Thus, although there was an apparent correlation between GABA(B1b) and GABA(B2), GABA(B1a) exhibited no such relationship. GABA(B1b) and GABA(B2) showed a similar intensity of expression whilst GABA(B1a) displayed a lower hybridisation signal. Comparison of the expression of the three mRNAs between control and epileptic subjects showed significant decreases or increases in different hippocampal subregions.GABA(B) isoforms and subunit mRNA expression per remaining neuron was significantly increased in the hilus and dentate gyrus. These results demonstrate that altered GABA(B) receptor mRNA expression occurs in human TLE; possibly the observed changes may also serve to counteract ongoing hyperexcitability.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Epilepsy, Temporal Lobe/genetics
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/pathology
- Female
- Gene Expression Regulation/physiology
- Genetic Variation/physiology
- Hippocampus/metabolism
- Hippocampus/pathology
- Humans
- Male
- Middle Aged
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, GABA/biosynthesis
- Receptors, GABA/genetics
- Receptors, GABA-B/biosynthesis
- Receptors, GABA-B/genetics
Collapse
Affiliation(s)
- A P Princivalle
- Department of Pharmacology, Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
25
|
Bäckberg M, Collin M, Ovesjö ML, Meister B. Chemical coding of GABA(B) receptor-immunoreactive neurones in hypothalamic regions regulating body weight. J Neuroendocrinol 2003; 15:1-14. [PMID: 12535164 DOI: 10.1046/j.1365-2826.2003.00843.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gamma-aminobutyric acid (GABA) interacts with hypothalamic neuronal pathways regulating feeding behaviour. GABA has been reported to stimulate feeding via both ionotropic GABA(A) and metabotropic GABA(B) receptors. The functional form of the GABA(B) receptor is a heterodimer consisting of GABA(B) receptor-1 (GABA(B)R1) and GABA(B) receptor-2 (GABA(B)R2) proteins. Within the heterodimer, the GABA-binding site is localized to GABA(B)R1. In the present study, we used an antiserum to the GABA(B)R1 protein in order to investigate the cellular localization of GABA(B)R1-immunoreactive neurones in discrete hypothalamic regions implicated in the control of body weight. The colocalization of GABA(B)R1 immunoreactivity with different chemical messengers that regulate food intake was analysed. GABA(B)R1-immunoreactive cell bodies were found in the periventricular, paraventricular (PVN), supraoptic, arcuate, ventromedial hypothalamic, dorsomedial hypothalamic, tuberomammillary nuclei and lateral hypothalamic area (LHA). Direct double-labelling showed that glutamic acid decarboxylase (GAD)-positive terminals were in close contact with GABA(B)R1-containing cell bodies located in all these regions. In the ventromedial part of the arcuate nucleus, GABA(B)R1-immunoreactive cell bodies were found to contain neuropeptide Y, agouti-related peptide (AGRP) and GAD. In the ventrolateral part of the arcuate nucleus, GABA(B)R1-immunoreactive cell bodies were shown to contain pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript. In the LHA, GABA(B)R1 immunoreactivity was present in both melanin-concentrating hormone- and orexin-containing cell populations. In the tuberomammillary nucleus, GABA(B)R1-immunoreactive cell bodies expressed histidine decarboxylase, a marker for histamine-containing neurones. In addition, GAD and AGRP were found to be colocalized in some nerve terminals surrounding GABA(B)R1-immunoreactive cell bodies in the parvocellular part of the PVN. The results may provide a morphological basis for the understanding of how GABA regulates the hypothalamic control of food intake and body weight via GABA(B) receptors.
Collapse
Affiliation(s)
- M Bäckberg
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:1-47. [PMID: 11837891 DOI: 10.1016/s0074-7696(02)13011-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations. Two types of GAD appear to have significant physiological roles. GABA functions appear to be triggered by binding of GABA to its ionotropic receptors, GABA(A) and GABA(C), which are ligand-gated chloride channels, and its metabotropic receptor, GABA(B). The physiological, pharmacological, and molecular characteristics of GABA(A) receptors are well documented, and diversity in the pharmacologic properties of the receptor subtypes is important clinically. In addition to its role in neural development, GABA appears to be involved in a wide variety of physiological functions in tissues and organs outside the brain.
Collapse
|
27
|
Li DP, Pan YZ, Pan HL. Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Res 2001; 920:151-8. [PMID: 11716821 DOI: 10.1016/s0006-8993(01)03055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both inhibitory GABAergic and excitatory glutamatergic inputs to supraoptic nucleus (SON) neurons can influence the release of vasopressin and oxytocin. Acetylcholine is known to excite SON neurons and to increase vasopressin release. The functional significance of cholinergic receptors, located at the presynaptic nerve terminals, in the regulation of the excitability of SON neurons is not fully known. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the inhibitory GABAergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slice were identified microscopically, and the spontaneous miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the whole-cell voltage-clamp technique. The mIPSCs were abolished by the GABA(A) receptor antagonist, bicuculline (10 microM). Acetylcholine (100 microM) significantly reduced the frequency of mIPSCs of SON neurons from 3.59+/-0.36 to 1.62+/-0.20 Hz (n=37), but did not alter the amplitude and the decay time constant of mIPSCs. Furthermore, the nicotinic receptor antagonist, mecamylamine (10 microM, n=13), eliminated the inhibitory effect of acetylcholine on mIPSCs of SON neurons. The muscarinic receptor antagonist, atropine (100 microM), did not alter significantly the effect of acetylcholine on mIPSCs in most of the 17 SON neurons studied. These results suggest that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by inhibition of presynaptic GABA release. Activation of presynaptic nicotinic receptors located in the GABAergic terminals plays a major role in the cholinergic regulation of the inhibitory GABAergic input to SON neurons.
Collapse
Affiliation(s)
- D P Li
- Department of Anesthesiology, H187, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
28
|
Berthele A, Platzer S, Weis S, Conrad B, Tölle TR. Expression of GABA(B1) and GABA(B2) mRNA in the human brain. Neuroreport 2001; 12:3269-75. [PMID: 11711869 DOI: 10.1097/00001756-200110290-00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GABA(B) receptors are widely expressed in the CNS. The distribution of the recently cloned GABA(B1) receptor is highly concordant with GABA(B) ligand binding sites, but experiments with transfected cell lines indicate that GABA(B1) has to heterodimerize with GABA(B2) to gain the functionality of a native GABA(B) receptor. Using in situ hybridization we investigated the expression of GABA(B1) and GABA(B2) mRNAs in the human brain. Both transcripts were detectable in prefrontal cortex, hippocampus and cerebellum with no apparent mismatch. A distinct expression of GABA(B1) was detected in putative Bergmann glia. In the human striatum GABA(B1) mRNA was expressed in moderate amounts, whereas the GABA(B2) mRNA signal was not clearly above background. According to our data, the current concept on GABA(B) receptor composition needs re-evaluation, at least for certain brain structures.
Collapse
Affiliation(s)
- A Berthele
- Department of Neurology, Technical University, Moehlstrasse 28, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
30
|
McDermott CM, Abrahams TP, Partosoedarso E, Hyland N, Ekstrand J, Monroe M, Hornby PJ. Site of action of GABA(B) receptor for vagal motor control of the lower esophageal sphincter in ferrets and rats. Gastroenterology 2001; 120:1749-62. [PMID: 11375956 DOI: 10.1053/gast.2001.24849] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Stimulation of gamma-aminobutyric acid B metabotropic receptors (GBRs) by baclofen reduces the incidence of transient lower esophageal sphincter (LES) relaxations. The GBR effect may be a result of a central site of action in the dorsal vagal complex, where upper gastrointestinal vagal reflexes are integrated. Therefore, we first localized GBR immunostaining in the dorsal vagal complex. Next, we tested the hypothesis that baclofen modulates LES motor tone via GBR expressed by vagal efferent neurons. METHODS An antibody against the human GBR1b isoform was characterized and used for immunocytochemistry in rats and ferrets. Functional studies involved microinjection of L-glutamate into the caudal dorsal motor nucleus of the vagus to evoke an LES relaxation in decerebrate unanesthetized ferrets. RESULTS In both species, GBR1b was expressed in preganglionic motor neurons and, in ferrets, the receptor was highly expressed in identified LES-projecting preganglionic neurons. GBR1b immunostaining was also pronounced in the subnucleus centralis of the nucleus tractus solitarius. This distribution implicates GBR in control of the esophageal phase of swallowing at the level of the central program generator. In functional studies, centrally evoked LES relaxation (-73% +/- 8% mm Hg) was significantly attenuated after 7 micromol/kg intravenous baclofen (-37% +/- 10%; N = 5). CONCLUSIONS These data all suggest that GBR agonists inhibit LES relaxation via a site of action associated with vagal motor outflow to the LES.
Collapse
Affiliation(s)
- C M McDermott
- Department of Pharmacology and Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
32
|
Ong J, Bexis S, Marino V, Parker DA, Kerr DI, Froestl W. Comparative activities of the enantiomeric GABA(B) receptor agonists CGP 44532 and 44533 in central and peripheral tissues. Eur J Pharmacol 2001; 412:27-37. [PMID: 11166733 DOI: 10.1016/s0014-2999(00)00945-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In neocortical slices maintained in Mg(2+)-free Krebs medium, the gamma-aminobutyric acid (GABA(B)) receptor agonists baclofen, (3-amino-2(S)-hydroxypropyl)methylphosphinic acid (CGP 44532), and its (R)-enantiomer CGP 44533 depressed the frequency of spontaneous discharges in a concentration-dependent manner (EC(50)=10, 6.5, and 50 microM, respectively). These effects were reversibly antagonised by the GABA(B) receptor antagonist (+)-(S)-5,5 dimethylmorpholinyl-2-acetic acid (Sch 50911) (3, 10, and 30 microM) (average pA(2) value=6.0+/-0.2). In neocortical wedges, baclofen, CGP 44532 and CGP 44533 elicited concentration-dependent hyperpolarisations (the EC(50)s were 14, 7.5 and 16 microM, respectively) sensitive to Sch 50911 (1, 5, 10 microM) (average pA(2) value=6.0+/-0.1), whilst they also depressed ileal electrically elicited cholinergic twitch contractions (EC(50)=11, 7, and 50 microM) that were antagonised by Sch 50911 (average pA(2) value=6.0+/-0.1). In electrically stimulated brain slices preloaded with [3H]GABA, baclofen, CGP 44532 and CGP 44533 decreased [3H]GABA release (IC(50)=5, 0.45, and 10 microM); this effect was reversed by Sch 50911 (50 microM). It is concluded that CGP 44532 is a far more potent agonist at GABA(B) autoreceptors than at central or peripheral heteroreceptors.
Collapse
Affiliation(s)
- J Ong
- Department of Anaesthesia and Intensive Care, The University of Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Jackson GL, Wood SG, Kuehl DE. A gamma-aminobutyric acidB agonist reverses the negative feedback effect of testosterone on gonadotropin-releasing hormone and luteinizing hormone secretion in the male sheep. Endocrinology 2000; 141:3940-5. [PMID: 11089523 DOI: 10.1210/endo.141.11.7754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infusion of baclofen, a GABA(B) agonist, into the medial basal hypothalamus (MBH) of castrated rams rapidly increases LH pulse amplitude without altering pulse frequency. The objectives of this study were to determine whether baclofen infusion increased LH in testosterone (T)-treated and intact rams, the increased LH was due to increased GnRH release, and FSH secretion also was increased. In the first experiment we tested the main effects and interaction of baclofen and T on FSH and LH pulse patterns in castrated rams (n = 7). In the second experiment we determined whether baclofen affected GnRH and LH pulses in intact males. Microdialysis guide cannulae were implanted bilaterally into the MBH. After recovery of the animal from surgery, the MBH was perfused using concentric microdialysis probes (2-mm tip) with artificial cerebrospinal fluid (aCSF) for a 3-h control period followed by either aCSF or 1 mM baclofen for 4 h. Blood samples were taken at 10-min intervals. T suppressed mean LH concentrations (10.4 +/- 1.3 vs. 3.3 +/- 1.3 ng/ml) such that LH pulses were undetectable in some T-treated animals during the control period. The change (control period vs. drug infusion period) in mean LH was greater in response to baclofen than in response to aCSF and was not altered by T. The baclofen x T interaction was nonsignificant. Mean FSH was decreased by T, but was not altered by baclofen. In the second experiment hypophyseal portal blood was collected coincident with microdialysis. Infusion of baclofen into the MBH of intact males (n = 7) resulted within 1 h in the onset of frequent and robust GnRH pulses (0.10/h before baclofen vs. 1.57/h after baclofen) that were followed either immediately or gradually by coincident LH pulses. One interpretation is that baclofen acts downstream of the site of action of T. GABA(B) receptors may regulate pulse amplitude in both the presence and absence of T and regulate pulse frequency by modulating the inhibitory effect of T.
Collapse
Affiliation(s)
- G L Jackson
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA.
| | | | | |
Collapse
|
34
|
Smith Y, Charara A, Hanson JE, Paquet M, Levey AI. GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 2000; 196 ( Pt 4):555-76. [PMID: 10923987 PMCID: PMC1468097 DOI: 10.1046/j.1469-7580.2000.19640555.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate and GABA neurotransmission is mediated through various types of ionotropic and metabotropic receptors. In this review, we summarise some of our recent findings on the subcellular and subsynaptic localisation of GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex of monkeys. Polyclonal antibodies that specifically recognise GABA(B)R1, mGluR1a and mGluR5 receptor subtypes were used for immunoperoxidase and pre-embedding immunogold techniques at the light and electron microscope levels. Both subtypes of group I mGluRs were expressed postsynaptically in striatal projection neurons and interneurons where they aggregate perisynaptically at asymmetric glutamatergic synapses and symmetric dopaminergic synaptic junctions. Moreover, they are also strongly expressed in the main body of symmetric synapses established by putative intrastriatal GABAergic terminals. In the globus pallidus, both receptor subtypes are found postsynaptically in the core of striatopallidal GABAergic synapses and perisynaptically at subthalamopallidal glutamatergic synapses. Finally, extrasynaptic labelling was commonly seen in the globus pallidus and the striatum. Moderate to intense GABA(B)R1 immunoreactivity was observed in the striatopallidal complex. At the electron microscope level, GABA(B)R1 immunostaining was commonly found in neuronal cell bodies and dendrites. Many striatal dendritic spines also displayed GABA(B)R1 immunoreactivity. Moreover, GABA(B)R1-immunoreactive axons and axon terminals were frequently encountered. In the striatum, GABA(B)R1-immunoreactive boutons resembled terminals of cortical origin, while in the globus pallidus, subthalamic-like terminals were labelled. Pre-embedding immunogold data showed that postsynaptic GABA(B)R1 receptors are concentrated at extrasynaptic sites on dendrites, spines and somata in the striatopallidal complex, perisynaptically at asymmetric synapses and in the main body of symmetric striatopallidal synapses in the GPe and GPi. Consistent with the immunoperoxidase data, immunoparticles were found in the presynaptic grid of asymmetric synapses established by cortical- and subthalamic-like glutamatergic terminals. These findings indicate that both GABA and glutamate metabotropic receptors are located to subserve various modulatory functions of the synaptic transmission in the primate striatopallidal complex. Furthermore, their pattern of localisation raises issues about their roles and mechanisms of activation in normal and pathological conditions. Because of their 'modulatory' functions, these receptors are ideal targets for chronic drug therapies in neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Y Smith
- Division of Neuroscience, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.
| | | | | | | | | |
Collapse
|
35
|
Billinton A, Ige AO, Wise A, White JH, Disney GH, Marshall FH, Waldvogel HJ, Faull RL, Emson PC. GABA(B) receptor heterodimer-component localisation in human brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:111-24. [PMID: 10814837 DOI: 10.1016/s0169-328x(00)00047-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recombinant cell lines, functional GABA(B) receptors are only formed by the heterodimerisation between two related G-protein coupled receptor proteins GABA(B)R1 (GBR1) and GABA(B)R2 (GBR2), whilst the individual GBR1 or GBR2 do not produce fully functional receptors. To determine whether the heterodimerisation occurs in vivo, novel polyclonal antibodies targeting the C termini of GBR1 and GBR2, were raised in different species, characterised, and used to determine the relative localisation of the reported heterodimer components in human brain tissue, using immunohistochemistry. The use of different species for the raising of the antisera allowed double immunofluorescent labelling of the receptors as an indication of GBR1/GBR2 receptor co-localisation in human brain. The presence of both proteins is reported in cerebellum, hippocampus, cortex, thalamus and basal ganglia. Regions of the brainstem including pons and medulla, also express GBR1 and GBR2 protein. The double immunofluorescence demonstrated that GBR1 and GBR2 are co-localised in the human cerebellar cortex. Together these results suggest the widespread distribution of GABA(B) receptors in human brain, and that GABA(B) receptors GBR1 and GBR2 can exist in the same cell, and therefore may function as a heterodimer in the human brain.
Collapse
Affiliation(s)
- A Billinton
- Department of Neurobiology, Babraham Institute, Babraham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liang F, Hatanaka Y, Saito H, Yamamori T, Hashikawa T. Differential expression of ?-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000124)416:4<475::aid-cne5>3.0.co;2-v] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Ambardekar AV, Ilinsky IA, Forestl W, Bowery NG, Kultas-Ilinsky K. Distribution and properties of GABA(B) antagonist [3H]CGP 62349 binding in the rhesus monkey thalamus and basal ganglia and the influence of lesions in the reticular thalamic nucleus. Neuroscience 1999; 93:1339-47. [PMID: 10501458 DOI: 10.1016/s0306-4522(99)00282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GABA(B) receptors are believed to be associated with the efferents of the nucleus reticularis thalami, which is implicated in the regulation of activity in the thalamocortical-corticothalamic circuit and plays a role in absence seizures. Yet, the distribution of GABA(B) receptors in the thalamus has only been studied in the rat, and there is no comparable information in primates. The potent GABA(B) receptor antagonist [3H]CGP 62349 was used to study the distribution and binding properties of the receptor in control monkeys and those with small ibotenic acid lesions in the anterodorsal segment of the nucleus reticularis thalami. Eight-micrometer-thick cryostat sections of the fresh frozen brains were incubated in the presence of varying concentrations of the ligand. Autoradiographs were analysed using a quantitative image analysis technique, and binding parameters were calculated for select thalamic nuclei as well as basal ganglia structures present in the same sections. The overall number of GABA(B) binding sites in the monkey thalamus and basal ganglia was several-fold higher than previously reported values for the rat. In the thalamus, the receptors were distributed rather uniformly and the binding densities and affinities were high (Bmax range of 245.5-437.9 fmol/ mg of tissue, Kd range of 0.136-0.604 nM). In the basal ganglia, the number of binding sites and the affinities were lower (Bmax range of 51.1-244.2 fmol/mg of tissue; K(d) range of 0.416-1.394 nM), and the differences between nuclei were more pronounced, with striatum and substantia nigra pars compacta displaying the highest binding densities. Seven days post-lesion, a 20-30% decrease in Bmax values (P < 0.05) was found in the nuclei receiving input from the lesioned nucleus reticularis thalami sector (the mediodorsal nucleus and densicellular and magnocellular parts of the ventral anterior nucleus) without changes in affinity. No significant changes were detected in any other structures. The results of the lesioning experiments suggest that a portion of thalamic GABA(B) receptors is in a presynaptic location on the nucleus reticularis thalami efferents. The overall distribution pattern in the thalamus also suggests a partial association of GABA(B) receptors with corticothalamic terminals presynaptically.
Collapse
Affiliation(s)
- A V Ambardekar
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|