1
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Mayor D, Tymianski M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 2017; 134:178-188. [PMID: 29203179 DOI: 10.1016/j.neuropharm.2017.11.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, neurotransmitters shape neuronal networks and control several cellular and synaptic functions. In the mammalian central nervous system (CNS), excitatory and inhibitory neurotransmission are mediated in large part by glutamate and gamma-aminobutyric acid (GABA), which are excitatory and inhibitory neurotransmitters, respectively. Glutamate and GABA also play crucial roles in neurological disorders such as cerebral ischemia. Glutamate in particular causes excitotoxicity, known as one of the hallmark mechanisms in the pathophysiology of cerebral ischemic injury for more than thirty years. Excitotoxicity occurs due to excessive glutamate release leading to overactivation of postsynaptic glutamate receptors, which evokes a downstream cascade that eventually leads to neuronal dysfunction and degeneration. Also, a reduction in GABA receptor response after ischemia impedes these inhibitory effectors from attenuating excitotoxicity and thereby further enabling the excitotoxic insult. This review focuses on the mechanisms by which glutamate and GABA mediate excitotoxicity and ischemic injury. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Diana Mayor
- Division of Fundamental Neurobiology, Krembil Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Michael Tymianski
- Division of Fundamental Neurobiology, Krembil Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Neurosurgery, University of Toronto, Toronto, Ontario, M5G 1LG, Canada.
| |
Collapse
|
3
|
Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I. The role of non-synaptic extracellular glutamate. Brain Res Bull 2012; 93:17-26. [PMID: 23149167 DOI: 10.1016/j.brainresbull.2012.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Although there are some mechanisms which allow the direct crossing of substances between the cytoplasm of adjacent cells (gap junctions), most substances use the extracellular space to diffuse between brain cells. The present work reviews the behavior and functions of extracellular glutamate (GLU). There are two extracellular pools of glutamate (GLU) in the brain, a synaptic pool whose functions in the excitatory neurotransmission has been widely studied and an extrasynaptic GLU pool although less known nonetheless is gaining attention among a growing number of researchers. Evidence accumulated over the last years shows a number of mechanisms capable of releasing glial GLU to the extracellular medium, thus modulating neurons, microglia and oligodendrocytes, and regulating the immune response, cerebral blood flow, neuronal synchronization and other brain functions. This new scenario is expanding present knowledge regarding the role of GLU in the brain under different physiological and pathological conditions. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | |
Collapse
|
4
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|
5
|
Doan BT, Autret G, Mispelter J, Méric P, Même W, Montécot-Dubourg C, Corrèze JL, Szeremeta F, Gillet B, Beloeil JC. Simultaneous two-voxel localized (1)H-observed (13)C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:94-104. [PMID: 19289293 DOI: 10.1016/j.jmr.2009.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
(13)C spectroscopy combined with the injection of (13)C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of (13)C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4T: a bi-voxel (1)H-((13)C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel (1)H-((13)C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U-(13)C glucose, two (1)H-((13)C) spectra of distinct (4x4x4mm(3)) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two (1)H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The (1)H-((13)C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel (1)H-((13)C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions.
Collapse
Affiliation(s)
- Bich-Thuy Doan
- Laboratoire de RMN biologique, ICSN-CNRS, UPR, 2301, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 2008; 55:289-309. [PMID: 18639906 DOI: 10.1016/j.neuropharm.2008.05.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/27/2022]
Abstract
In cerebral ischemia survival of neurons, astrocytes, oligodendrocytes and endothelial cells is threatened during energy deprivation and/or following re-supply of oxygen and glucose. After a brief summary of characteristics of different cells types, emphasizing the dependence of all on oxidative metabolism, the bioenergetics of focal and global ischemia is discussed, distinguishing between events during energy deprivation and subsequent recovery attempt after re-circulation. Gray and white matter ischemia are described separately, and distinctions are made between mature and immature brains. Next comes a description of bioenergetics in individual cell types in culture during oxygen/glucose deprivation or exposure to metabolic inhibitors and following re-establishment of normal aerated conditions. Due to their expression of NMDA and non-NMDA receptors neurons and oligodendrocytes are exquisitely sensitive to excitotoxicity by glutamate, which reaches high extracellular concentrations in ischemic brain for several reasons, including failing astrocytic uptake. Excitotoxicity kills brain cells by energetic exhaustion (due to Na(+) extrusion after channel-mediated entry) combined with mitochondrial Ca(2+)-mediated injury and formation of reactive oxygen species. Many (but not all) astrocytes survive energy deprivation for extended periods, but after return to aerated conditions they are vulnerable to mitochondrial damage by cytoplasmic/mitochondrial Ca(2+) overload and to NAD(+) deficiency. Ca(2+) overload is established by reversal of Na(+)/Ca(2+) exchangers following Na(+) accumulation during Na(+)-K(+)-Cl(-) cotransporter stimulation or pH regulation, compensating for excessive acid production. NAD(+) deficiency inhibits glycolysis and eventually oxidative metabolism, secondary to poly(ADP-ribose)polymerase (PARP) activity following DNA damage. Hyperglycemia can be beneficial for neurons but increases astrocytic death due to enhanced acidosis.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| |
Collapse
|
7
|
Guillemin GJ, Brew BJ. Chronic HIV infection leads to an Alzheimer's disease like illness. Involvement of the kynurenine pathway. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. ACTA ACUST UNITED AC 2006; 6:315-328. [PMID: 18059978 DOI: 10.1016/j.cnr.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Associated Dementia (HAD) is a significant consequence of HIV infection. Although multiple inflammatory factors contribute to this chronic, progressive dementia, excitotoxic damage appears to be an underlying mechanism in the neurodegenerative process. Excitotoxicity is a cumulative effect of multiple processes occurring in the CNS during HAD. The overstimulation of glutamate receptors, an increased vulnerability of neurons, and disrupted astrocyte support each potentiate excitotoxic damage to neurons. Recent evidence suggests that poorly controlled generation of glutamate by phosphate-activated glutaminase may contribute to the neurotoxic state typical of HAD as well as other neurodegenerative disorders. Glutaminase converts glutamine, a widely available substrate throughout the CNS to glutamate. Inflammatory conditions may precipitate unregulated activity of glutaminase, a potentially important mechanism in HAD pathogenesis.
Collapse
Affiliation(s)
- Nathan B Erdmann
- The laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880
| | | | | |
Collapse
|
9
|
Mena FV, Baab PJ, Zielke CL, Huang Y, Zielke HR. Formation of extracellular glutamate from glutamine: exclusion of pyroglutamate as an intermediate. Brain Res 2005; 1052:88-96. [PMID: 16004974 DOI: 10.1016/j.brainres.2005.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/18/2022]
Abstract
A 4.6-fold increase in interstitial glutamate was observed following the reverse microdialysis of 5 mM glutamine into the rat hippocampus. Two possible mechanisms of glutamine hydrolysis were examined: (a) an enzymatic glutaminase activity and (b) a non-enzymatic mechanism. Injection of 14C-glutamine at the site of microdialysis followed by microdialysis with artificial cerebral spinal fluid allowed isolation of 14C-glutamine (63%), 14C-glutamate (14%), and a compound tentatively identified as pyroglutamate (22%). In this study, we determined if non-enzymatic pyroglutamate formation from glutamine contributed to the synthesis of glutamate. Pyroglutamate is in chemical equilibrium with glutamate, although under physiological conditions, the chemical equilibrium is strongly in the direction of pyroglutamate. In vitro stability studies indicated that 14C-glutamine and 14C-pyroglutamate are not subject to significant non-enzymatic breakdown at pH 6.5-7.5 at 37 degrees C for up to 8 h. Reverse microdialysis with 1 mM pyroglutamate did not increase interstitial glutamate levels. Following injection of 14C-pyroglutamate and microdialysis, radioactivity was recovered in 14C-pyroglutamate (88%) and 14C-glutamine (11%). Less than 1% of the radioactivity was recovered as glutamate. Our data do not support a role of pyroglutamate as an intermediate in the formation of extracellular glutamate following the infusion of glutamine. However, it confirms that pyroglutamate, a known constituent in brain, is actively metabolized in brain cells and contributes to glutamine in the interstitial space.
Collapse
Affiliation(s)
- Fernando V Mena
- Department of Pediatrics, University of Maryland School of Medicine, Bressler Research Building, Room 10-035, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | | | | | | | | |
Collapse
|
10
|
Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Zielke R, Kang J, Nedergaard M. An astrocytic basis of epilepsy. Nat Med 2005; 11:973-81. [PMID: 16116433 PMCID: PMC1850946 DOI: 10.1038/nm1277] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/11/2005] [Indexed: 12/21/2022]
Abstract
Hypersynchronous neuronal firing is a hallmark of epilepsy, but the mechanisms underlying simultaneous activation of multiple neurons remains unknown. Epileptic discharges are in part initiated by a local depolarization shift that drives groups of neurons into synchronous bursting. In an attempt to define the cellular basis for hypersynchronous bursting activity, we studied the occurrence of paroxysmal depolarization shifts after suppressing synaptic activity using tetrodotoxin (TTX) and voltage-gated Ca(2+) channel blockers. Here we report that paroxysmal depolarization shifts can be initiated by release of glutamate from extrasynaptic sources or by photolysis of caged Ca(2+) in astrocytes. Two-photon imaging of live exposed cortex showed that several antiepileptic agents, including valproate, gabapentin and phenytoin, reduced the ability of astrocytes to transmit Ca(2+) signaling. Our results show an unanticipated key role for astrocytes in seizure activity. As such, these findings identify astrocytes as a proximal target for the treatment of epileptic disorders.
Collapse
Affiliation(s)
- Guo-Feng Tian
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Hooman Azmi
- Department of Neurosurgery, UMDNJ, New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Takahiro Takano
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Qiwu Xu
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Weiguo Peng
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jane Lin
- Department of Pathology, New York Medical College, Valhalla, New York 10595, USA
| | - NancyAnn Oberheim
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Nanhong Lou
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ron Zielke
- Department of Pediatrics, University of Maryland, 655 W Baltimore Street, Baltimore, Maryland 21201, USA
| | - Jian Kang
- Department of Cell Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Maiken Nedergaard
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Abstract
Astrocytes are multifunctional cells that interact with neurons and other astrocytes in signaling and metabolic functions, and their resistance to pathophysiological conditions can help restrict loss of tissue after an ischemic event provided adequate nutrients are supplied to support their requirements. Astrocytes have substantial oxidative capacity and mechanisms to upregulate glycolytic capability when respiration is impaired. An astrocytic enzyme that synthesizes a powerful activator of glycolysis is not present in neurons, endowing astrocytes with the ability to sustain ATP production under restrictive conditions. The monocarboxylic acid transporter (MCT) isoforms predominating in astrocytes are optimized to facilitate very large increases in lactate flux as lactate concentration increases within (1-3 mM) and above (>3 mM) the normal range. In sharp contrast, the major neuronal MCT serves as a barrier to increased transmembrane transport as lactate rises above 1 mM, restricting both entry and efflux. Lactate can serve as fuel during recovery from ischemia but direct evidence that lactate is oxidized by neurons (vs. astrocytes) to maintain synaptic function is lacking. Astrocytes have critical roles in regulation of ionic homeostasis and control of extracellular glutamate levels, and spreading depression associated with ischemia places high demands on energy supplies in astrocytes and contributes to metabolic exhaustion and demise. Disruption of Ca2+ homeostasis, generation of oxygen free radicals and nitric oxide, and mitochondrial depolarization contribute to astrocyte death during and after a metabolic insult. Novel pharmaceutical agents targeted to astrocytes and hyperoxic therapy that restores penumbral oxygen level during energy failure might improve postischemic outcome.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
12
|
Abstract
It is a major recent finding that astrocytes can influence synaptic activity by release of glutamate, but many other glutamate-mediated activities are also controlled by astrocytes. Even the most obvious neuronal function of glutamate - its release as a transmitter - is regulated by astrocytes; these cells are needed for formation of precursors for glutamate synthesis, for reuptake of released transmitter, and for disposal of excess glutamate. Without astrocytic involvement, normal function of glutamatergic neurons is not possible, as exemplified by almost instantaneous abrogation of normal vision and learning upon inhibition of astrocyte-specific metabolic pathways. In addition, astrocytes are essential for production of the neuroprotectant glutathione, yet they can also contribute to neuronal death during ischemia by maintaining glutamine synthesis, enabling neuronal formation of neurotoxic glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, P.R. China.
| | | |
Collapse
|
13
|
Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 2005; 57:226-35. [PMID: 15668975 DOI: 10.1002/ana.20380] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interictal brain energy metabolism and glutamate-glutamine cycling are impaired in epilepsy and may contribute to seizure generation. We used the zero-flow microdialysis method to measure the extracellular levels of glutamate, glutamine, and the major energy substrates glucose and lactate in the epileptogenic and the nonepileptogenic cortex and hippocampus of 38 awake epileptic patients during the interictal period. Depth electrodes attached to microdialysis probes were used to identify the epileptogenic and the nonepileptogenic sites. The epileptogenic hippocampus had surprisingly high basal glutamate levels, low glutamine/glutamate ratio, high lactate levels, and indication for poor glucose utilization. The epileptogenic cortex had only marginally increased glutamate levels. We propose that interictal energetic deficiency in the epileptogenic hippocampus could contribute to impaired glutamate reuptake and glutamate-glutamine cycling, resulting in persistently increased extracellular glutamate, glial and neuronal toxicity, increased lactate production together with poor lactate and glucose utilization, and ultimately worsening energy metabolism. Our data suggest that a different neurometabolic process underlies the neocortical epilepsies.
Collapse
Affiliation(s)
- Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de Oliveira DL, Horn JF, Rodrigues JM, Frizzo MES, Moriguchi E, Souza DO, Wofchuk S. Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 2004; 1018:48-54. [PMID: 15262204 DOI: 10.1016/j.brainres.2004.05.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/25/2022]
Abstract
Quinolinic acid (QA) has been used as a model for experimental overstimulation of the glutamatergic system. Glutamate uptake is the main mechanism involved in the maintenance of extracellular glutamate below toxic levels. Guanosine systemically administered prevents quinolinic acid-induced seizures in adult mice and increases basal glutamate uptake by cortical astrocyte culture and slices from young rats. The immature brain differs from the adult brain in its susceptibility to seizures, seizure characteristics, and responses to antiepileptic drugs (AED). Here we investigated the effect of guanosine p.o. on QA-induced seizures in young rats (P12-14) and upon ex vivo glutamate uptake by cortical slices from these animals. I.c.v. infusion of 250 nmol QA induced seizures in all animals and decreased glutamate uptake. I.p. injection of MK-801 and phenobarbital 30 min before QA administration prevented seizures in all animals. Guanosine (7.5 mg/kg) 75 min before QA prevented seizures in 50% of animals as well as prevented the decrease of glutamate uptake in the protected animals. To investigate if the anticonvulsive effect of guanosine was specific for QA-induced seizures, the picrotoxin-induced seizures model was also performed. Pretreatment with phenobarbital i.p. (60 mg/kg-30 min) prevented picrotoxin-induced seizures in all animals, whereas guanosine p.o. (7.5 mg/kg-75 min) and MK-801 i.p. (0.5 mg/kg-30 min) had no effect. Thus, guanosine protection on the QA-induced seizures in young rats and on the decrease of glutamate uptake showed some specificity degree towards the QA-induced toxicity. This points that guanosine could be considered for treatments of epilepsy, and possibly other neurological disorders in children.
Collapse
Affiliation(s)
- Diogo Losch de Oliveira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90.035.003 Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Guillemin GJ, Smythe GA, Veas LA, Takikawa O, Brew BJ. A beta 1-42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport 2004; 14:2311-5. [PMID: 14663182 DOI: 10.1097/00001756-200312190-00005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We hypothesized that the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly the excitotoxin quinolinic acid (QUIN), may play an important role in the pathogenesis of Alzheimer's disease (AD). In this study, we demonstrated that aggregated amyloid peptide A beta 1-42 induced indoleamine 2,3-dioxygenase (IDO) expression and resulted in a significant increase in production of QUIN by human primary macrophages and microglia. In contrast, A beta 1-40 and prion peptide (PrP) 106-126 did not induce any significant increase in QUIN production. These data imply that local QUIN production may be one of the factors involved in the pathogenesis of neuronal damage in AD.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
| | | | | | | | | |
Collapse
|
16
|
Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer's disease. Redox Rep 2003; 7:199-206. [PMID: 12396664 DOI: 10.1179/135100002125000550] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The kynurenine pathway (KP) is a major route of L-tryptophan catabolism leading to production of a number of biologically active molecules. Among them, the neurotoxin quinolinic acid (QUIN), is considered to be involved in the pathogenesis of a number of inflammatory neurological diseases. Alzheimer's disease is the major dementing disorder of the elderly that affects over 20 million peoples world-wide. Most of the approaches to explain the pathogenesis of Alzheimer's disease focus on the accumulation of amyloid beta peptide (A beta), in the form of insoluble deposits leading to formation of senile plaques, and on the formation of neurofibrillary tangles composed of hyperphosphorylated Tau protein. Accumulation of A beta is believed to be an early and critical step in the neuropathogenesis of Alzheimer's disease. There is now evidence for the KP being associated with Alzheimer's disease. Disturbances of the KP have already been described in Alzheimer's disease. Recently, we demonstrated that A beta 1-42, a cleavage product of amyloid precursor protein, induces production of QUIN, in neurotoxic concentrations, by macrophages and, more importantly, microglia. Senile plaques in Alzheimer's disease are associated with evidence of chronic local inflammation (especially activated microglia) A major aspect of QUIN toxicity is lipid peroxidation and markers of lipid peroxidation are found in Alzheimer's disease. Together, these data imply that QUIN may be one of the critical factors in the pathogenesis of neuronal damage in Alzheimer's disease. This review describes the multiple correlations between the KP and the neuropathogenesis of Alzheimer's disease and highlights more particularly the aspects of QUIN neurotoxicity, emphasizing its roles in lipid peroxidation and the amplification of the local inflammation.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology and Department of Neurology, St Vincent's Hospital and University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
17
|
Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. QUINOLINIC ACID IN THE PATHOGENESIS OF ALZHEIMER’S DISEASE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:167-76. [PMID: 15206729 DOI: 10.1007/978-1-4615-0135-0_19] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We propose that the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly quinolinic acid (QUIN), may play an important role in the pathogenesis of Alzheimer's disease (AD). In this study, we demonstrated that after 72 hours amyloid peptide (Abeta) 1-42 induced indoleamine 2,3-dioxygenase (IDO) expression and in a significant increase in production of QUIN by human macrophages and microglia. In contrast, Abeta11-40 and Prion peptide (PrP) 106-126 did not induce any significant increase in QUIN production. We also investigated the potential modulatory effect of QUIN and kynurenic acid (KYNA) on Abeta11-42 and Abeta1-40 aggregation. After 24 and 120 hours, we did not observe any significant difference in the level of aggregation compared to the control (Abeta alone). Abeta has been shown to induce IL1-beta mRNA expression by human foetal astrocytes and macrophages. We demonstrate that QUIN has the same effect. Interestingly, IL-1beta has been found in association with plaques in AD. All together these data imply that QUIN may be, locally, one of the factors involved in the pathogenesis of neuronal damage in AD.
Collapse
|
18
|
Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002. [PMID: 11880527 DOI: 10.1523/jneurosci.22-05-01967.2002] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate whether, and by means of which mechanisms, the adenosine A2A receptor antagonist SCH 58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] exerted neuroprotective effects in a rat model of Huntington's disease. In a first set of experiments, SCH 58261 (0.01 and 1 mg/kg) was administered intraperitoneally to Wistar rats 20 min before the bilateral striatal injection of quinolinic acid (QA) (300 nmol/1 microl). SCH 58261 (0.01 but not 1 mg/kg, i.p.) did reduce significantly the effects of QA on motor activity, electroencephalographic changes, and striatal gliosis. Because QA acts by both increasing glutamate outflow and directly stimulating NMDA receptors, a second set of experiments was performed to evaluate whether SCH 58261 acted by preventing the presynaptic and/or the postsynaptic effects of QA. In microdialysis experiments in naive rats, striatal perfusion with QA (5 mm) enhanced glutamate levels by approximately 500%. Such an effect of QA was completely antagonized by pretreatment with SCH 58261 (0.01 but not 1 mg/kg, i.p.). In primary striatal cultures, bath application of QA (900 microm) significantly increased intracellular calcium levels, an effect prevented by the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. In this model, bath application of SCH 58261 (15-200 nm) tended to potentiate QA-induced calcium increase. We conclude the following: (1) the adenosine A2A receptor antagonist SCH 58261 has neuroprotective effects, although only at low doses, in an excitotoxic rat model of HD, and (2) the inhibition of QA-evoked glutamate outflow seems to be the major mechanism underlying the neuroprotective effects of SCH 58261.
Collapse
|
19
|
Tkác I, Keene CD, Pfeuffer J, Low WC, Gruetter R. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo (1)H NMR spectroscopy. J Neurosci Res 2001; 66:891-8. [PMID: 11746416 DOI: 10.1002/jnr.10112] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrastriatal injection of quinolinic acid (QA) provides an animal model of Huntington disease. In vivo (1)H NMR spectroscopy was used to measure the neurochemical profile non-invasively in seven animals 5 days after unilateral injection of 150 nmol of QA. Concentration changes of 16 metabolites were measured from 22 microl volume at 9.4 T. The increase of glutamine ((+25 +/- 14)%, mean +/- SD, n = 7) and decrease of glutamate (-12 +/- 5)%, N-acetylaspartate (-17 +/- 6)%, taurine (-14 +/- 6)% and total creatine (-9 +/- 3%) were discernible in each individual animal (P < 0.005, paired t-test). Metabolite concentrations in control striata were in excellent agreement with biochemical literature. The change in glutamate plus glutamine was not significant, implying a shift in the glutamate-glutamine interconversion, consistent with a metabolic defect at the level of neuronal-glial metabolic trafficking. The most significant indicator of the lesion, however, were the changes in glutathione ((-19 +/- 9)%, P < 0.002)), consistent with oxidative stress. From a comparison with biochemical literature we conclude that high-resolution in vivo (1)H NMR spectroscopy accurately reflects the neurochemical changes induced by a relatively modest dose of QA, which permits one to longitudinally follow mitochondrial function, oxidative stress and glial-neuronal metabolic trafficking as well as the effects of treatment in this model of Huntington disease.
Collapse
Affiliation(s)
- I Tkác
- Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
20
|
Welbourne T, Nissim I. Regulation of mitochondrial glutamine/glutamate metabolism by glutamate transport: studies with (15)N. Am J Physiol Cell Physiol 2001; 280:C1151-9. [PMID: 11287328 DOI: 10.1152/ajpcell.2001.280.5.c1151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We focused on the role of plasma membrane glutamate uptake in modulating the intracellular glutaminase (GA) and glutamate dehydrogenase (GDH) flux and in determining the fate of the intracellular glutamate in the proximal tubule-like LLC-PK(1)-F(+) cell line. We used high-affinity glutamate transport inhibitors D-aspartate (D-Asp) and DL-threo-beta-hydroxyaspartate (THA) to block extracellular uptake and then used [(15)N]glutamate or [2-(15)N]glutamine to follow the metabolic fate and distribution of glutamine and glutamate. In monolayers incubated with [2-(15)N]glutamine (99 atom %excess), glutamine and glutamate equilibrated throughout the intra- and extracellular compartments. In the presence of 5 mM D-Asp and 0.5 mM THA, glutamine distribution remained unchanged, but the intracellular glutamate enrichment decreased by 33% (P < 0.05) as the extracellular enrichment increased by 39% (P < 0.005). With glutamate uptake blocked, intracellular glutamate concentration decreased by 37% (P < 0.0001), in contrast to intracellular glutamine concentration, which remained unchanged. Both glutamine disappearance from the media and the estimated intracellular GA flux increased with the fall in the intracellular glutamate concentration. The labeled glutamate and NH formed from [2-(15)N]glutamine and recovered in the media increased 12- and 3-fold, respectively, consistent with accelerated GA and GDH flux. However, labeled alanine formation was reduced by 37%, indicating inhibition of transamination. Although both D-Asp and THA alone accelerated the GA and GDH flux, only THA inhibited transamination. These results are consistent with glutamate transport both regulating and being regulated by glutamine and glutamate metabolism in epithelial cells.
Collapse
Affiliation(s)
- T Welbourne
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA.
| | | |
Collapse
|