1
|
Jin S, He L, Yang C, He X, Chen H, Feng Y, Tang W, Li J, Liu D, Li T. Crosstalk between trace elements and T-cell immunity during early-life health in pigs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1994-2005. [PMID: 37300752 DOI: 10.1007/s11427-022-2339-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/20/2023] [Indexed: 06/12/2023]
Abstract
With gradual ban on the use of antibiotics, the deficiency and excessive use of trace elements in intestinal health is gaining attention. In mammals, trace elements are essential for the development of the immune system, specifically T-cell proliferation, and differentiation. However, there remain significant gaps in our understanding of the effects of certain trace elements on T-cell immune phenotypes and functions in pigs. In this review, we summarize the specificity, development, subpopulations, and responses to pathogens of porcine T cells and the effects of functional trace elements (e.g., iron, copper, zinc, and selenium) on intestinal T-cell immunity during early-life health in pigs. Furthermore, we discuss the current trends of research on the crosstalk mechanisms between trace elements and T-cell immunity. The present review expands our knowledge of the association between trace elements and T-cell immunity and provides an opportunity to utilize the metabolism of trace elements as a target to treat various diseases.
Collapse
Affiliation(s)
- Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
| | - Chenbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Xinmiao He
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yanzhong Feng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Tiejun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
| |
Collapse
|
2
|
“Ferrocrinology”—Iron Is an Important Factor Involved in Gluco- and Lipocrinology. Nutrients 2022; 14:nu14214693. [DOI: 10.3390/nu14214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
“Ferrocrinology” is the term used to describe the study of iron effects on the functioning of adipose tissue, which together with muscle tissue makes the largest endocrine organ in the human body. By impairing exercise capacity, reducing AMP-activated kinase activity, and enhancing insulin resistance, iron deficiency can lead to the development of obesity and type 2 diabetes mellitus. Due to impaired browning of white adipose tissue and reduced mitochondrial iron content in adipocytes, iron deficiency (ID) can cause dysfunction of brown adipose tissue. By reducing ketogenesis, aconitase activity, and total mitochondrial capacity, ID impairs muscle performance. Another important aspect is the effect of ID on the impairment of thermogenesis due to reduced binding of thyroid hormones to their nuclear receptors, with subsequently impaired utilization of norepinephrine in tissues, and impaired synthesis and distribution of cortisol, which all make the body’s reactivity to stress in ID more pronounced. Iron deficiency can lead to the development of the most common endocrinopathy, autoimmune thyroid disease. In this paper, we have discussed the role of iron in the cross-talk between glucocrinology, lipocrinology and myocrinology, with thyroid hormones acting as an active bystander.
Collapse
|
3
|
Iron: Not Just a Passive Bystander in AITD. Nutrients 2022; 14:nu14214682. [PMID: 36364944 PMCID: PMC9658435 DOI: 10.3390/nu14214682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is the most prevalent autoimmune disease all over the world and the most frequent cause of hypothyroidism in areas of iodine sufficiency. The pathogenesis of AITD is multifactorial and depends on complex interactions between genetic and environmental factors, with epigenetics being the crucial link. Iron deficiency (ID) can reduce the activities of thyroid peroxidase and 5′-deiodinase, inhibit binding of triiodothyronine to its nuclear receptor, and cause slower utilization of T3 from the serum pool. Moreover, ID can disturb the functioning of the immune system, increasing the risk of autoimmune disorders. ID can be responsible for residual symptoms that may persist in patients with AITD, even if their thyrometabolic status has been controlled. The human lifestyle in the 21st century is inevitably associated with exposure to chemical compounds, pathogens, and stress, which implies an increased risk of autoimmune disorders and thyroid dysfunction. To summarize, in our paper we discuss how iron deficiency can impair the functions of the immune system, cause epigenetic changes in human DNA, and potentiate tissue damage by chemicals acting as thyroid disruptors.
Collapse
|
4
|
Szklarz M, Gontarz-Nowak K, Matuszewski W, Bandurska-Stankiewicz E. Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11990. [PMID: 36231287 PMCID: PMC9565681 DOI: 10.3390/ijerph191911990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the 21st century the heart is facing more and more challenges so it should be brave and iron to meet these challenges. We are living in the era of the COVID-19 pandemic, population aging, prevalent obesity, diabetes and autoimmune diseases, environmental pollution, mass migrations and new potential pandemic threats. In our article we showed sophisticated and complex regulations of iron metabolism. We discussed the impact of iron metabolism on heart diseases, treatment of heart failure, diabetes and obesity. We faced the problems of constant stress, climate change, environmental pollution, migrations and epidemics and showed that iron is really essential for heart metabolism in the 21st century.
Collapse
|
5
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
6
|
Liang Q, Zhao Q, Hao X, Wang J, Ma C, Xi X, Kang W. The Effect of Flammulina velutipes Polysaccharide on Immunization Analyzed by Intestinal Flora and Proteomics. Front Nutr 2022; 9:841230. [PMID: 35155543 PMCID: PMC8832141 DOI: 10.3389/fnut.2022.841230] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Proteomics and intestinal flora were used to determine the mechanism of immune modulatory effects of Flammulina velutipes polysaccharide on immunosuppressed mice. The results showed that compared with the model group, F. velutipes polysaccharide could increase thymus and spleen indices and improve thymus tissue structure in mice; IL-2 and IL-4 contents were significantly increased and IL-6 and TNF-α contents were significantly decreased; serum acid phosphatase (ACP), lactate dehydrogenase (LDH) and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); in the liver, superoxide dismutase (SOD) and catalase (CAT) activities were increased (P < 0.001), while malondialdehyde (MDA) content was decreased (P < 0.001). Proteomics discovered that F. velutipes polysaccharides may exert immune modulatory effects by participating in signaling pathways such as immune diseases, transport and catabolism, phagosomes and influenza A, regulating the immune-related proteins Transferrin receptor protein 1 (TFRC) and Radical S-adenosyl methionine domain-containing protein 2 (RSAD2), etc. Gut microbial studies showed that F. velutipes polysaccharides could increase the abundance of intestinal flora and improve the flora structure. Compared to the model group, the content of short-chain fatty acids (SCFAs) and the relative abundance of SCFA-producers Bacteroides and Alloprevotella were increased in the F. velutipes polysaccharide administration group, while Lachnospiraceae_NK4A136_group and f_Lachnospiraceae_Unclassified decreased in relative abundance. Thus, F. velutipes polysaccharide may play an immunomodulatory role by regulating the intestinal environment and improving the balance of flora.
Collapse
Affiliation(s)
- Qiongxin Liang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Qingchun Zhao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Xuting Hao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jinmei Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- *Correspondence: Changyang Ma
| | - Xuefeng Xi
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- College of Physical Education, Henan University, Kaifeng, China
- Xuefeng Xi
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- Wenyi Kang
| |
Collapse
|
7
|
Wen S, Sha Y, Li Y, Rui Z, Si C, Zhou Y, Yan F, Wang B, Hu J, Han X, Shi D. Serum Iron and Ferritin Levels Are Correlated with Complement C3. Biol Trace Elem Res 2021; 199:2482-2488. [PMID: 32935207 DOI: 10.1007/s12011-020-02379-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Iron is one of the most important trace elements in the body, and its homeostasis is essential to the normal function of the immune system. Complement component C3, which is the converging of three main pathways of complement system activation, plays a key role in the innate immunity. However, the relationship between iron homeostasis and complement C3 remains unknown. The aim of our study was to analyze the relationship between serum iron and ferritin level and complement C3 and C4. A total of 590 healthy individuals were recruited in our study. Higher serum complement C3 level (p < 0.001) was found in individuals with higher serum ferritin level (> 104.0 μg/L). Moreover, serum iron level and serum ferritin level were positively correlated with complement C3 (r = 0.133, p = 0.001; r = 0.221, p < 0.001) and complement C4 (r = 0.117, p = 0.004; r = 0.123, p = 0.003). The linear regression analysis displayed that both serum iron level and serum ferritin level were linearly correlated with serum complement C3 level (adjusted beta: 2.382, 95% CI: 0.841-3.923; adjusted beta: 42.911, 95% CI: 29.070-56.751). To explore the relationship between iron homeostasis and complement C3 further, the serum samples from C3-/- mice and the wild-type (WT) control mice were obtained. Significantly lower serum iron level and higher ferritin level were found in C3-/- mice than those in WT mice (p < 0.001; p < 0.001), indicating that complement C3 might influence iron distribution and utilization. Overall, these data suggested that serum iron and ferritin levels were correlated with complement C3. The deficiency of complement C3 may disrupt the regular iron metabolism in the body.
Collapse
Affiliation(s)
- Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yeqin Sha
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yinling Li
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhilian Rui
- Department of Laboratory Medicine, Liyang People's Hospital, Liyang, 213300, Jiangsu, China
| | - Chenhong Si
- Department of Pediatrics, Liyang Women and Children Health Hospital, Liyang, 213000, Jiangsu, China
| | - Yuning Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Fengfeng Yan
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Bicheng Wang
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jingming Hu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xu Han
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
8
|
Aksan A, Farrag K, Aksan S, Schroeder O, Stein J. Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Front Immunol 2021; 12:635899. [PMID: 33777027 PMCID: PMC7991591 DOI: 10.3389/fimmu.2021.635899] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency, with or without anemia, is the most frequent hematological manifestation in individuals with cancer, and is especially common in patients with colorectal cancer. Iron is a vital micronutrient that plays an essential role in many biological functions, in the context of which it has been found to be intimately linked to cancer biology. To date, however, whereas a large number of studies have comprehensively investigated and reviewed the effects of excess iron on cancer initiation and progression, potential interrelations of iron deficiency with cancer have been largely neglected and are not well-defined. Emerging evidence indicates that reduced iron intake and low systemic iron levels are associated with the pathogenesis of colorectal cancer, suggesting that optimal iron intake must be carefully balanced to avoid both iron deficiency and iron excess. Since iron is vital in the maintenance of immunological functions, insufficient iron availability may enhance oncogenicity by impairing immunosurveillance for neoplastic changes and potentially altering the tumor immune microenvironment. Data from clinical studies support these concepts, showing that iron deficiency is associated with inferior outcomes and reduced response to therapy in patients with colorectal cancer. Here, we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical evidence of its role in tumorigenesis, cancer progression and treatment response. and highlight the importance of adequate iron supplementation to limit these outcomes.
Collapse
Affiliation(s)
- Aysegül Aksan
- Institute of Nutritional Science, Justus-Liebig University, Giessen, Germany.,Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
| | - Karima Farrag
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Sami Aksan
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Oliver Schroeder
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Jürgen Stein
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| |
Collapse
|
9
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
10
|
Briguglio M, Hrelia S, Malaguti M, De Vecchi E, Lombardi G, Banfi G, Riso P, Porrini M, Romagnoli S, Pino F, Crespi T, Perazzo P. Oral Supplementation with Sucrosomial Ferric Pyrophosphate Plus L-Ascorbic Acid to Ameliorate the Martial Status: A Randomized Controlled Trial. Nutrients 2020; 12:nu12020386. [PMID: 32024027 PMCID: PMC7071340 DOI: 10.3390/nu12020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Altered martial indices before orthopedic surgery are associated with higher rates of complications and greatly affect the patient’s functional ability. Oral supplements can optimize the preoperative martial status, with clinical efficacy and the patient’s tolerability being highly dependent on the pharmaceutical formula. Patients undergoing elective hip/knee arthroplasty were randomized to be supplemented with a 30-day oral therapy of sucrosomial ferric pyrophosphate plus L-ascorbic acid. The tolerability was 2.7% among treated patients. Adjustments for confounding factors, such as iron absorption influencers, showed a relevant response limited to older patients (≥ 65 years old), whose uncharacterized Hb loss was averted upon treatment with iron formula. Older patients with no support lost −2.8 ± 5.1%, while the intervention group gained +0.7 ± 4.6% of circulating hemoglobin from baseline (p = 0.019). Gastrointestinal diseases, medications, and possible dietary factors could affect the efficacy of iron supplements. Future opportunities may consider to couple ferric pyrophosphate with other nutrients, to pay attention in avoiding absorption disruptors, or to implement interventions to obtain an earlier martial status optimization at the population level.
Collapse
Affiliation(s)
- Matteo Briguglio
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Giuseppe Banfi
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Marisa Porrini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Sergio Romagnoli
- Joint Replacement Department, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
| | - Fabio Pino
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| | - Tiziano Crespi
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| | - Paolo Perazzo
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| |
Collapse
|
11
|
Smith AD, Panickar KS, Urban JF, Dawson HD. Impact of Micronutrients on the Immune Response of Animals. Annu Rev Anim Biosci 2019; 6:227-254. [PMID: 29447473 DOI: 10.1146/annurev-animal-022516-022914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamins and minerals (micronutrients) play an important role in regulating and shaping an immune response. Deficiencies generally result in inadequate or dysregulated cellular activity and cytokine expression, thereby affecting the immune response. Decreased levels of natural killer, granulocyte, and phagocytic cell activity and T and B cell proliferation and trafficking are associated with inadequate levels of micronutrients, as well as increased susceptibility to various adverse health conditions, including inflammatory disorders, infection, and altered vaccine efficacy. In addition, most studies of micronutrient modulation of immune responses have been done in rodents and humans, thus limiting application to the health and well-being of livestock and companion animals. This exploratory review elucidates the role of vitamins and minerals on immune function and inflammatory responses in animals (pigs, dogs, cats, horses, goats, sheep, and cattle), with reference to rodents and humans.
Collapse
Affiliation(s)
- Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hills Pet Nutrition Center, Topeka, Kansas 66617, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| |
Collapse
|
12
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
13
|
Abstract
OBJECTIVE To consider the key implications of iron deficiency for biochemical and physiological functions beyond erythropoiesis. METHODS PubMed was searched for relevant journal articles published up to August 2017. RESULTS Anemia is the most well-recognized consequence of persisting iron deficiency, but various other unfavorable consequences can develop either before or concurrently with anemia. Mitochondrial function can be profoundly disturbed since iron is a cofactor for heme-containing enzymes and non-heme iron-containing enzymes in the mitochondrial electron transport chain. Biosynthesis of heme and iron-sulfur clusters in the mitochondria is inhibited, disrupting synthesis of compounds such as hemoglobin, myoglobin, cytochromes and nitric oxide synthase. The physiological consequences include fatigue, lethargy, and dyspnea; conversely, iron repletion in iron-deficient individuals has been shown to improve exercise capacity. The myocardium, with its high energy demands, is particularly at risk from the effects of iron deficiency. Randomized trials have found striking improvements in disease severity in anemic but also non-anemic chronic heart failure patients with iron deficiency after iron therapy. In vitro and pre-clinical studies have demonstrated that iron is required by numerous enzymes involved in DNA replication and repair, and for normal cell cycle regulation. Iron is also critical for immune cell growth, proliferation, and differentiation, and for specific cell-mediated effector pathways. Observational studies have shown that iron-deficient individuals have defective immune function, particularly T-cell immunity, but more evidence is required. Pre-clinical models have demonstrated abnormal myelogenesis, brain cell metabolism, neurotransmission, and hippocampal formation in iron-deficient neonates and young animals. In humans, iron deficiency anemia is associated with poorer cognitive and motor skills. However, the impact of iron deficiency without anemia is less clear. CONCLUSION The widespread cellular and physiological effects of iron deficiency highlight the need for early detection and treatment of iron deficiency, both to ameliorate these non-erythropoietic effects, and to avoid progression to iron deficiency anemia.
Collapse
Affiliation(s)
| | - Ali T Taher
- b American University of Beirut Medical Center , Beirut , Lebanon
| |
Collapse
|
14
|
Hassan TH, Badr MA, Karam NA, Zkaria M, El Saadany HF, Abdel Rahman DM, Shahbah DA, Al Morshedy SM, Fathy M, Esh AMH, Selim AM. Impact of iron deficiency anemia on the function of the immune system in children. Medicine (Baltimore) 2016; 95:e5395. [PMID: 27893677 PMCID: PMC5134870 DOI: 10.1097/md.0000000000005395] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/10/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
The importance of iron deficiency as a public health problem is based ultimately on the seriousness of its consequences on health. The most extensively investigated consequences of iron deficiency involve work performance and immune function. The significance of the effects on work performance is generally accepted. In contrast, data on the influence of iron deficiency on immune function are often perceived as being confusing and contradictory.We aimed to evaluate the effect of iron deficiency anemia on humoral, cellular, nonspecific immunity, and also the effect on the cytokines that are the key factors of many immunologic steps.Forty children with iron deficiency anemia and 20 age and sex-matched healthy children were included. All children were subjected to full medical history, thorough clinical examination, complete blood count, iron indices (serum iron, serum total iron-binding capacity, serum ferritin, and transferrin saturation), immunoglobulin assay (IgA, IgG, and IgM), interleukin (IL)-6 serum level, study of T-lymphocyte subsets, and evaluation of phagocytic function of macrophages and oxidative burst activity of neutrophils.Patients had significantly lower IgG levels, IL-6, phagocytic activity, and oxidative burst of neutrophils than controls, although there was no significant difference between patients and controls with regard to other immunoglobulins and CD4/CD8 ratio. There was significantly positive correlation between serum iron and IL-6 serum level.We concluded that humoral, nonspecific immunity (phagocytic activity and oxidative burst), and the IL-6 are influenced in patients with iron deficiency anemia. Study of these abnormalities after correction of iron deficiency is strongly needed.
Collapse
|
15
|
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu Rev Nutr 2016; 36:241-73. [PMID: 27146016 DOI: 10.1146/annurev-nutr-071715-050939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Ingrid Wahl Moen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jakob Bondo Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
16
|
Jarosz Ł, Kwiecień M, Marek A, Grądzki Z, Winiarska-Mieczan A, Kalinowski M, Laskowska E. Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens. Res Vet Sci 2016; 107:68-74. [PMID: 27473977 DOI: 10.1016/j.rvsc.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
Abstract
Because little is known about the impact of chelated (Fe-Gly, Fe-Gly+F) and inorganic (FeSO4, FeSO4+F) iron products on immune response parameters in broiler chickens, the objective of the study was to determine the effects of inorganic and organic forms of iron on selected parameters of the cell-mediated immune response in broiler chickens by assessing the percentage of CD3(+)CD4(+), CD3(+)CD8(+), CD25(+), and MHC Class II lymphocytes, as well as the CD4(+)/CD8(+) ratio and IL-2 concentration in the peripheral blood. The experiments were conducted using 50day-old Ross 308 roosters. The test material was peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. The results obtained indicate that the use of iron chelates in the diet of broiler chickens may stimulate cellular defense mechanisms. As a result of the experiment an increase was observed in the percentage of Th1, mainly T CD4(+) and T CD8(+). It was also noted that application of chelated iron can increase production of T CD8(+) cytotoxic cells and IL-2, which promotes the body's natural response to developing inflammation. There were no changes in T CD4(+), T CD8(+), T CD25(+) or MHC II lymphocyte subpopulations in the chickens following application of the inorganic form of iron.
Collapse
Affiliation(s)
- Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland.
| | - Małgorzata Kwiecień
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marcin Kalinowski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Ewa Laskowska
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
17
|
|
18
|
Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model. Cytokine 2014; 65:175-83. [DOI: 10.1016/j.cyto.2013.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023]
|
19
|
Abstract
Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6-8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood-brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.
Collapse
|
20
|
Djordjevich DM, De Luka SR, Milovanovich ID, Janković S, Stefanović S, Vesković-Moračanin S, Cirković S, Ilić AŽ, Ristić-Djurović JL, Trbovich AM. Hematological parameters' changes in mice subchronically exposed to static magnetic fields of different orientations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 81:98-105. [PMID: 22627015 DOI: 10.1016/j.ecoenv.2012.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 06/01/2023]
Abstract
Static magnetic fields (SMFs) are time independent fields whose intensity can be spatially dependent. This study investigates influence of subchronic continuous exposure to upward and downward directed SMF on hematological parameters and spleen cellularity in mice. The experiment is performed on the Northern hemisphere; consequently, the vertical component of geomagnetic field is directed downward. Male, Swiss-Webster, 6 weeks old mice were exposed to the vertically declining SMF. Mice were divided in three groups and continuously exposed or not exposed for 28 days to the SMF characterized by the averaged field of 16 mT and averaged field gradient of 10 mT/cm. Differently oriented SMF did not alter hemoglobin and hematocrit content among the groups. However, the groups exposed to the upward and downward fields had statistically significant higher levels of serum transferrin compared to the control. Moreover, spleen cellularity in animals in the downward group was significantly higher compared to the upward and control group. In addition, spleen lymphocytes in both of the exposed groups were significantly higher than in the control group. In contrast, spleen granulocytes in the exposed groups were significantly lower than in the control group. Significant decrease was also observed in brain and liver iron content with concomitant increase of iron in serum and spleen in exposed animals. Subchronic continuous exposure to 16 mT SMF caused lymphocyte and granulocyte redistribution between spleen and blood. This distribution is typical for stress induced hematological changes. These results suggest that observed changes were not due to an unspecific stress response, but that they were rather caused by specific adaptation to subchronic SMF exposure.
Collapse
Affiliation(s)
- Drago M Djordjevich
- Department of Pathological Physiology, School of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fafowora MV, Atanu FO, Sanya O, Olorunsogo OO, Erukainure OL. Effect of oral coadministration of artesunate with ferrous sulfate on rat liver mitochondrial membrane permeability transition. Drug Chem Toxicol 2011; 34:318-23. [DOI: 10.3109/01480545.2010.547498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Iron deficiency, but not underfeeding reduces the secretion of interferon-gamma by mitogen-activated murine spleen cells. Cytokine 2010; 52:230-7. [PMID: 20850986 DOI: 10.1016/j.cyto.2010.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/16/2010] [Indexed: 11/20/2022]
Abstract
Interferon-gamma (IFN-γ), a cytokine primarily secreted by T and natural killer cells regulates cell-mediated and innate immunity. Iron deficiency, a public health problem in children impairs immune function. To determine whether reduced IFN-γ contributes to impaired immunity, we measured IFN-γ in supernatants of activated (2.5 μg/ml concanavalin A, 50 ng/ml anti-CD3 antibody) spleen cells from control (C), iron-deficient (ID), pair-fed (PF), and iron-replete mice for 3 (R3) and 14 days (R14) (11-12/group). Except for iron content, the low iron (5 ppm) and control (50 ppm) diets had identical composition. Mean indices of iron status after 51 days of feeding were as follows: C=PF≈R14>R3>ID (p<0.01). Iron deficiency, but not pairfeeding reduced IFN-γ concentration in mitogen-treated cells by 30-43% (p<0.05); iron repletion improved it. Reduced IFN-γ was not simply due to differences in IL-12 (IFN-γ inducer), percentage of CD3+ T cells, or impaired cell proliferation because these indices were not always decreased. It was likely due to a defect in T cell activation that leads to IFN-γ gene expression. IFN-γ positively correlated with indicators of iron status, body, and thymus weights (r=0.238-0.472; p<0.05). Reduced IFN-γ secretion during iron deficiency may affect response to infections.
Collapse
|
23
|
Pterins as sensors of response to the application of Fe3+ -dextran in piglets. SENSORS 2010; 10:890-900. [PMID: 22315574 PMCID: PMC3270875 DOI: 10.3390/s100100890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/30/2009] [Accepted: 01/14/2010] [Indexed: 11/16/2022]
Abstract
The aim of the presented study was to assess the effect of a single administration of Fe(3+)-dextran on immune cell counts and pterin biomolecule production as novel sensors of the piglets' immune system activation, and to determine concentrations of cortisol, a traditional hormonal biosensor of the stress response. Pterins (neopterin and biopterin) in the piglets' blood serum were analyzed by separation using reversed-phase HPLC. A single dose of Fe(3+)-dextran produced a special stress situation in the piglets' organism which manifested itself by an increased production of neopterin (p < 0.05) and biopterin (p < 0.01) in the experimental piglets. Changes in cortisol concentrations and leukocyte counts were influenced by handling stress and were not specifically correlated to iron dextran application. Iron concentrations in the internal environment of the experimental piglets' group were higher by an order of magnitude compared with the controls, and the highest serum concentrations of iron (p < 0.01) were reached 24 h following Fe(3+)-dextran administration. The data presented offer a new perspective on the evaluation of stress situations in the animal organism and, not least importantly, extends the rather modest current list of references on the role of pterins in livestock animals.
Collapse
|
24
|
Abstract
Iron is critical in nearly all cell functions and the ability of a cell, tissue and organism to procure this metal is obligatory for survival. Iron is necessary for normal immune function, and relative iron deficiency is associated with mild immunosuppression. Concentrations of this metal in excess of those required for function can present both an oxidative stress and elevate risks for infection. As a result, the human has evolved to have a complex mechanism of regulating iron and limiting its availability. This homoeostasis can be disrupted. Autoimmune diseases and gout often present with abnormal iron homoeostasis, thus supporting a participation of the metal in these injuries. We review the role of iron in normal immune function and discuss both clinical evidence of altered iron homoeostasis in autoimmune diseases and gout as well as possible implications of both depletion and supplementation of this metal in this patient population. We conclude that altered iron homoeostasis may represent a purposeful response to inflammation that could have theoretical anti-inflammatory benefits. We encourage physicians to avoid routine iron supplementation in those without depleted iron stores.
Collapse
Affiliation(s)
- Joshua F Baker
- Division of Rheumatology, Department of Medicine, 5 Maloney Building, Suite 504, 3600 Spruce Street, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
25
|
Effect of iron deficiency anemia and its treatment on cell mediated immunity. Indian J Hematol Blood Transfus 2009; 25:70-7. [PMID: 23100979 DOI: 10.1007/s12288-009-0017-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022] Open
Abstract
Iron deficiency anemia (IDA) is one of the most prevalent micronutrient deficiencies particularly in the developing countries. While there is evidence of an altered immune profile in iron deficiency, the exact immunoregulatory role of iron is not known. Knowledge particularly in children, who are vulnerable to iron deficiency and infection, is lacking. We aimed to study the effects of IDA and its treatment with oral iron supplementation on cell-mediated immunity. The levels of T-lymphocytes, their CD4(+), CD8(+) and CD1a(+) subsets, transferrin receptor (CD71) and serum ferritin were evaluated in 40 iron-deficient and 40 healthy children. The impact of oral iron supplementation for three months on the same parameters was also noted in children with IDA. The level of mature T-lymphocytes (CD4(+) and CD8(+)) was significantly lower (P<0.001) while that of the immature T-cells (CD1a(+)) was significantly higher (p<0.001) in IDA children compared to the control. The mature T-cell count was significantly improved after iron therapy. In spite of significant reduction in the immature T-cells (CD1a(+)) level after iron supplementation, it was significantly higher than the control. The present study demonstrated that T-lymphocytes maturation was defective in IDA and improved partially after 3 months of iron supplementation. Therefore, longer time of iron therapy may be required to induce complete maturation of T-lymphocytes.
Collapse
|
26
|
Abstract
Iron is an essential micronutrient for the growth and function of all cells. It is, therefore, an attractive target for chemotherapeutic compounds. Numerous studies in vitro and in vivo provide evidence that iron chelators may be effective antitumor agents. Lipophilic iron chelators that are readily cell permeable and can bind intracellular iron stores may selectively kill cancer cells without damaging normal cells. In this review we discuss the role of iron in cellular processes and how these processes differ between normal and neoplastic cells. We also review the effects on normal and cancer cell growth of several lipophilic iron chelators.
Collapse
Affiliation(s)
- Paula M B Pahl
- University of Colorado Health Sciences Center, Department of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
27
|
Long KZ, Rosado JL, Fawzi W. The Comparative Impact of Iron, the B-Complex Vitamins, Vitamins C and E, and Selenium on Diarrheal Pathogen Outcomes Relative to the Impact Produced by Vitamin A and Zinc. Nutr Rev 2008; 65:218-32. [PMID: 17566548 DOI: 10.1111/j.1753-4887.2007.tb00299.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Micronutrient supplementation offers one of the most cost-effective means of improving the health and survival of children in developing countries. However, the effects of supplementation with single micronutrients on diarrhea are not always consistent, and supplementation with multi-micronutrient supplements can have negative effects. These inconsistencies may result from the failure to consider the diverse etiological agents that cause diarrhea and the unique effects each micronutrient has on the immune response to each of these agents. This review examines the separate effects that supplementation with the B-complex vitamins, vitamin C, vitamin E, selenium, and iron have on diarrheal disease-related outcomes. Supplementation with iron may increase the risk of infection by invasive diarrheal pathogens, while supplementation with the remaining micronutrients may reduce this risk. These differences may be due to distinct regulatory effects each micronutrient has on the pathogen-specific immune response, as well as on the virulence of specific pathogens. The findings of these studies suggest that micronutrient supplementation of children must take into account the pathogens prevalent within communities as reflected by their diarrheal disease burdens. The effectiveness of combining multiple micronutrients into one supplement must also be reconsidered.
Collapse
Affiliation(s)
- Kurt Z Long
- Harvard School of Public Health, Department of Nutrition, Harvard School of Public Health, 1663 Tremont Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
28
|
Abstract
Microminerals including copper and iron are essential to immunity and health in human beings. The development of powerful tools in analytical cell biology and molecular genetics has facilitated efforts to identify specific cellular and molecular functions of trace elements in the maturation, activation and functions of host defence mechanisms. Selected recent reports about the role of copper and iron nutrition on immune functions are critically analysed here. Effects of trace element supplementation on infectious morbidity are also reviewed. While micromineral deficiencies, in general, may have widespread effects on nearly all components of immune response, these effects can be reversed by supplementation. However, the conflicting effects of iron deficiency and iron supplementationin vitroon the defensive systems reveals the urgent need for further additional information on thein vivosituation. In the elderly, vaccination against respiratory infections is likely to protect only 30–70 % of the population. However, it may be possible to modulate immune function and ultimately reduce the severity of infections through micronutrient supplementation. Thus, microminerals contribute to the maintenance of the balance between immunity and health in humans.
Collapse
|
29
|
Artac H, Coskun M, Karadogan I, Yegin O, Yesilipek A. Transferrin receptor in proliferation of T lymphocytes in infants with iron deficiency. Int J Lab Hematol 2007; 29:310-5. [PMID: 17617082 DOI: 10.1111/j.1365-2257.2006.00848.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to contribute to clarify the mechanism of cellular immune insufficiency occurring during iron deficiency. We studied the expression of the transferrin receptor (TfR) which is called as CD71, on the surface of T lymphocytes in infants with iron deficiency (with and without anemia). A total of 33 infants, aged between 7 and 26 months were included in this study. These subjects were divided into three groups: (i) latent iron deficiency (LID) (group 1), (ii) iron deficiency anemia (IDA) (group 2), and (iii) healthy infants (group 3). Both CD3 levels and CD71 expression of T lymphocytes were analysed by flow cytometry before and after phytohaemagglutinin (PHA) stimulation. The percentage of CD3(+) lymphocytes in infants with IDA was lower than that in controls after PHA stimulation (mean +/- SD, 48.6 +/-10.5% vs. 70.7 +/-7.8%, P < 0.001). The TfR expression of T lymphocytes (CD3 + CD71%) increased in all three groups after PHA stimulation (P < 0.001). No significant difference was seen among the three groups with respect to CD3 + CD71%. Although there was a reduction in the proliferative capacity of T lymphocytes in infants with IDA, their ability to express transferrin receptor on T-lymphocyte cell surface was normal.
Collapse
Affiliation(s)
- H Artac
- Division of Immunology and Allergy, Department of Pediatrics, Meram Medical Faculty, Selcuk University, Konya, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Feng J, Ma W, Xu Z, Wang Y, Liu J. Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2007.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Kuvibidila SR, Velez M, Yu L, Warrier RP, Baliga BS. Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes. Br J Nutr 2007. [DOI: 10.1079/bjn2002576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fe availability is critical for optimal lymphocyte proliferation; however, the minimum required levels are unknown. Such information is valuable when assessingin vitroimmune responses in Fe-deficient subjects, because serum (Fe) added to the culture medium may replete lymphocytes. To address this issue, splenic lymphocytes obtained from seventeen 3-month-old C57BL/6 mice were incubated without and with 1 mg/l concanavalin A or 50 μg/l anti-CD3 antibody in media that contained between 0·113 and 9·74 μmol Fe/l. Fe was provided by either fetal calf serum (FCS, 0–100 ml/l), newborn calf serum (NBCS, 0–100 ml/l), or NBCS (10 ml/l) plus ferric ammonium citrate. As expected, the rate of DNA synthesis increased with Fe levels (P<0·01). Maximum DNA synthesis was obtained with 2·26 μmol Fe/l (50 ml FCS/l) for concanavalin A and 0·895 μmol/l (20 ml FCS/l) for anti-CD3-treated cells. In serum-free media (0·113 μmol Fe/l), the proliferative responses to concanavalin A were below the background, while they rose 5·5-fold in anti-CD3-treated cells (P<0·05). In apotransferrin-supplemented media (0·13 μmol Fe/l), the proliferative responses to concanavalin A and anti-CD3 antibody were 18·6 and 71 %, respectively, of that obtained with 4·66 μmol Fe/l (100 ml FCS/l). Interleukin 2 secretion also followed the same trend as lymphocyte proliferation. Since differences between both mitogens persisted after FCS was substituted with NBCS, we can rule out an effect on ribonucleotide reductase activity, or by other serum growth factors. We speculate an Fe effect at an early step of T-cell activation. Data suggest that the minimum Fe concentration required for lymphocyte proliferation varies with the mitogen.
Collapse
|
32
|
Raje CI, Kumar S, Harle A, Nanda JS, Raje M. The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 2006; 282:3252-61. [PMID: 17121833 DOI: 10.1074/jbc.m608328200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The reticuloendothelial system plays a major role in iron metabolism. Despite this, the manner in which macrophages handle iron remains poorly understood. Mammalian cells utilize transferrin-dependent mechanisms to acquire iron via transferrin receptors 1 and 2 (TfR1 and TfR2) by receptor-mediated endocytosis. Here, we show for the first time that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is localized on human and murine macrophage cell surface. The expression of this surface GAPDH is regulated by the availability of iron in the medium. We further demonstrate that this GAPDH interacts with transferrin and the GAPDH-transferrin complex is subsequently internalized into the early endosomes. Our work sheds new light on the mechanisms involved in regulation of iron, vital for controlling numerous diseases and maintaining normal immune function. Thus, we propose an entirely new avenue for investigation with respect to transferrin uptake and regulation mechanisms in macrophages.
Collapse
|
33
|
Abstract
Iron and copper are essential nutrients, excesses or deficiencies of which cause impaired cellular functions and eventually cell death. The metabolic fates of copper and iron are intimately related. Systemic copper deficiency generates cellular iron deficiency, which in humans results in diminished work capacity, reduced intellectual capacity, diminished growth, alterations in bone mineralization, and diminished immune response. Copper is required for the function of over 30 proteins, including superoxide dismutase, ceruloplasmin, lysyl oxidase, cytochrome c oxidase, tyrosinase and dopamine-beta-hydroxylase. Iron is similarly required in numerous essential proteins, such as the heme-containing proteins, electron transport chain and microsomal electron transport proteins, and iron-sulfur proteins and enzymes such as ribonucleotide reductase, prolyl hydroxylase phenylalanine hydroxylase, tyrosine hydroxylase and aconitase. The essentiality of iron and copper resides in their capacity to participate in one-electron exchange reactions. However, the same property that makes them essential also generates free radicals that can be seriously deleterious to cells. Thus, these seemingly paradoxical properties of iron and copper demand a concerted regulation of cellular copper and iron levels. Here we review the most salient characteristics of their homeostasis.
Collapse
Affiliation(s)
- Miguel Arredondo
- Nutrition and Food Technology Institute, University of Chile, Casilla 13811, Santiago, Chile
| | | |
Collapse
|
34
|
Jorgenson LA, Sun M, O'Connor M, Georgieff MK. Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 2005; 15:1094-102. [PMID: 16187331 DOI: 10.1002/hipo.20128] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Late fetal and early postnatal iron deficiency (ID) is a common condition that causes learning and memory impairments in humans while they are iron deficient and following iron repletion. Rodent models of fetal ID demonstrate significant short- and long-term hippocampal structural and biochemical abnormalities that may predispose hippocampal area CA1 to abnormal electrophysiology. Rat pups made iron deficient during the fetal and early postnatal period were assessed for basal synaptic transmission, paired-pulse facilitation (PPF), and long-term potentiation (LTP) in CA1 at postnatal days (P)15 and P30 while iron deficient and at P65 following iron repletion. Our results showed no differences in basal synaptic transmission between iron sufficient and iron deficient pups at P15 or P30, but the ID group did fail to demonstrate the expected developmental increase in synaptic strength by P65 (P < 0.05). Similarly, PPF ratios from iron deficient slices also failed to demonstrate the characteristic developmental changes seen in the iron sufficient group (P < 0.001). Iron deficient slices retained a developmentally immature P15 pattern of LTP expression at P30 and after iron repletion, and LTP expression was lower (P < 0.05) in the iron deficient group at P65. Thus, ID in the fetal and early postnatal period delays or abolishes the developmental maturation of electrophysiological components of synaptic efficacy and plasticity, resulting in abnormalities beyond the period of deficiency. These findings provide a functional corroboration to previous structural and biochemical abnormalities found in the iron deficient rat hippocampus and provide a potential model for learning and memory deficits seen in humans exposed to fetal and early postnatal ID.
Collapse
Affiliation(s)
- Lyric A Jorgenson
- Graduate Program in Neuroscience, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
35
|
Jorgenson LA, Wobken JD, Georgieff MK. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 2004; 25:412-20. [PMID: 14966382 DOI: 10.1159/000075667] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/15/2003] [Indexed: 11/19/2022] Open
Abstract
Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30-40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.
Collapse
Affiliation(s)
- Lyric A Jorgenson
- Department of Pediatrics, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minn., USA
| | | | | |
Collapse
|
36
|
Ahluwalia N, Sun J, Krause D, Mastro A, Handte G. Immune function is impaired in iron-deficient, homebound, older women. Am J Clin Nutr 2004; 79:516-21. [PMID: 14985230 DOI: 10.1093/ajcn/79.3.516] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aging is often associated with a dysregulation of immune function. Iron deficiency may further impair immunity in older adults. Published reports on iron deficiency and immune response in humans are inconsistent. Most studies are focused on young children in developing countries and are often confounded by comorbid conditions, infections, and nutrient deficiencies. OBJECTIVE Our objective was to determine the relation of iron status with immune function in homebound older women, who often have impairments in both iron status and immune response. The subjects were selected according to rigorous exclusion criteria for disease, infection, and deficiencies in key nutrients known to affect immunocompetence. DESIGN Seventy-two homebound elderly women provided blood for comprehensive evaluation of iron status and cell-mediated and innate immunity. Women were classified as iron-deficient or iron-sufficient on the basis of multiple abnormal iron status test results. Groups were compared with respect to lymphocyte subsets, phagocytosis, oxidative burst capacity, and T cell proliferation upon stimulation with mitogens. RESULTS In iron-deficient women, T cell proliferation upon stimulation with concanavalin A and phytohemagglutinin A was only 40-50% of that in iron-sufficient women. Phagocytosis did not differ significantly between the 2 groups, but respiratory burst was significantly less (by 28%) in iron-deficient women than in iron-sufficient women. CONCLUSIONS Iron deficiency is associated with impairments in cell-mediated and innate immunity and may render older adults more vulnerable to infections. Further prospective studies using similar exclusion criteria for disease, infection, and concomitant nutrient deficiencies are needed for simultaneous examination of the effects of iron deficiency on immune response and morbidity.
Collapse
Affiliation(s)
- Namanjeet Ahluwalia
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
37
|
Kuvibidila S, Warrier RP, Surendra Baliga B. An overview of the role of iron in T cell activation. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/jtra.10047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Kuvibidila S, Yu L, Ode D, Velez M, Gardner R, Warrier RP. Effects of iron deficiency on the secretion of interleukin-10 by mitogen-activated and non-activated murine spleen cells. J Cell Biochem 2003; 90:278-86. [PMID: 14505344 DOI: 10.1002/jcb.10627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin (IL)-10 plays crucial regulatory roles in immune responses by inhibiting the secretion of several cytokines (IL-2, IL-12, interferon-gamma (IFN-gamma)) and lymphocyte proliferation. Iron deficiency, a public health problem for children, alters these immune responses. To determine whether these changes are related to altered IL-10 secretion, we measured IL-10 in 24 and 48 h supernatant of spleen cell cultures from iron deficient (ID), control (C), pairfed (PF), and ID mice fed the control diet (iron repletion) for 3 (R3) and 14 (R14) days (d, n = 12/group). Mean levels of hemoglobin, hematocrit, and liver iron stores varied as follows: C approximately equal PF approximately equal R14 > R3 > ID (P < 0.01). Mean baseline IL-10 levels of ID mice tended to be higher than those of other groups (P > 0.05, ANOVA). Mean IL-10 levels secreted by concanavalin A (Con A) and antibody raised against cluster of differentiation molecule 3 (anti-CD3)-treated cells (+/-background) were lower in ID than in C (48 h) and iron replete mice (P < 0.05). Underfeeding also reduced IL-10 secretion by anti-CD3-treated cells (48 h, P < 0.05). Lymphocyte proliferative responses to anti-CD3 +/- anti-CD28 antibodies were lower in ID than in C and PF mice, and they were corrected by iron repletion (P < 0.05). IL-10 levels negatively correlated with indicators of iron status (r <or= -0.285) and lymphocyte proliferation (r <or= -0.379 [r <or= -0.743 for ID mice]), but positively correlated with IFN-gamma levels (r <or= 0.47; P < 0.05). Data suggest that iron deficiency has a generalized deleterious effect on cells that secrete both cytokines. Reduced IL-10 secretion by activated cells does not overcome the inhibition of lymphocyte proliferation due to other factors of T cell activation that are regulated by iron.
Collapse
Affiliation(s)
- Solo Kuvibidila
- Department of Pediatrics, Division of Research, Louisiana State University Health Sciences Center, Research Institute for Children, 1542 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Kuvibidila SR, Porretta C. Iron deficiency and in vitro iron chelation reduce the expression of cluster of differentiation molecule (CD)28 but not CD3 receptors on murine thymocytes and spleen cells. Br J Nutr 2003; 90:179-89. [PMID: 12844390 DOI: 10.1079/bjn2003864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cluster of differentiation molecule (CD)3 and CD28 receptors play crucial roles in T-lymphocyte proliferation. Fe deficiency in man and animals impairs T-lymphocyte proliferation by unknown mechanisms. To test the hypothesis that reduced CD3 and CD28 expression is one of them, thymocytes and splenocytes from control (C; n 24), Fe-deficient (ID; n 24), pair-fed (PF; n 24), and ID mice that were Fe-repleted for 3 (R3; n 24) or 14 d (R14; n 12) were labelled with anti-CD3-fluorescein isothiocyanate and anti-CD28-phycoerythrin antibodies. Positive cells were analysed by flow cytometry. Significant differences were observed among groups in the mean levels of haemoglobin and liver Fe stores (C=PF=R14>R3>ID; P<0.005). While Fe deficiency slightly increased the percentage of CD3+ splenocytes, it reduced that of CD28+ thymocytes in mice with thymus atrophy and splenomegaly (P<0.05). These changes were corrected by Fe repletion. CD28 mean fluorescence intensity (FI) was lower and CD3 FI was higher in lymphocytes from R3 and ID, especially those with splenomegaly, than in those from R14 and PF mice (P<0.05). In vitro Fe chelation by deferoxamine (60 min) significantly decreased CD28 expression (P<0.05), and slightly increased that of CD3 (P>0.05). Spleen cell proliferative responses to concanavalin A and anti-CD3+/-anti-CD28 were reduced by Fe deficiency (ID</=R3<C=PF<R14; P<0.05); and they correlated with FI and percentages of CD3+ and CD28+ cells (r< or =0.69; P<0.05). Indicators of Fe status negatively correlated with CD3 FI (r-0.23), but positively correlated with CD28 FI (r< or =0.44; P<0.05). Data suggest that altered CD28 expression may contribute to reduced T-cell proliferation during Fe deficiency.
Collapse
Affiliation(s)
- Solo R Kuvibidila
- Department of Pediatrics, Division of Hematology/Oncology, Box T8-1, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans LA 70112, USA.
| | | |
Collapse
|
40
|
Abstract
Although it is widely recognized that essential trace elements are required for the differentiation, activation and performance of numerous functions of immune cells, the specific roles of these inorganic micronutrients in these processes remain largely undefined. New insights about the participation of zinc, iron and copper in the selection, maturation and early activation events of the immune cells have been gained by judicious use of available tools in analytical cell biology, molecular genetics and array technology. Also, randomly controlled clinical and community trials demonstrate that zinc supplementation can enhance immunocompetence and decrease the incidence and severity of some infections in individuals with diagnosed or suspected mild zinc deficiency. These exciting results provide an impetus to evaluate the potential benefits of supplementation programs for individuals and groups with suboptimal trace element status as a cost-effective means of reducing the risk of infectious diseases.
Collapse
Affiliation(s)
- Mark L Failla
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Kuvibidila SR, Porretta C. Differential effects of iron deficiency on the expression of CD80 and CD86 co-stimulatory receptors in mitogen-treated and untreated murine spleen cells. J Cell Biochem 2003; 86:571-82. [PMID: 12210763 DOI: 10.1002/jcb.10206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction of CD28 and its ligands (CD80, CD86) on antigen presenting cells and that of TCR/CD3-MHC are required for T lymphocyte activation. To determine whether impaired lymphocyte proliferation associated with iron deficiency is due to reduced expression of these ligands, spleen cells obtained from eight to nine C57BL/6 mice/group of iron deficient (ID), iron replete (R), control (C), pair-fed (PF), and high iron (HI) mice were labeled with anti-CD80-fluorescein isothiocyante (FITC) and anti-CD86-FITC. Diets differed only in iron concentration: 5, 50, and 125 mg/kg for the ID, C, and HI, respectively. Mean levels of hemoglobin and liver iron stores of ID and R mice were less than 50% those of C mice (P < 0.005). In non-activated and concanavalin A-treated cultures, significant differences were observed among groups in the percentage of CD80 + cells: ID>R > C = PF = HI (P < 0.05). The same trend was observed for CD86 + cells (P > 0.05). Fluorescence intensity (FI) of either marker did not significantly change by iron status. In vitro iron chelation by deferoxamine (20, 200 microg/ml) for 1, 2, and 24 h increased FI of both markers on unactivated B and T cells (P < 0.05). However, it had no effect on FI of either marker of mitogen-treated cells presumably because the maximum levels are achieved by the mitogen. Lymphocyte proliferative responses to mitogens positively and significantly correlated with CD80 and CD86 FI (r = 0.41-0.59) but negatively correlated with the percentages of CD80 + cells (r = -0.48) (P < 0.05). Data suggest that impaired lymphocyte proliferation associated with iron deficiency is not due to reduced CD80 and CD86 expression.
Collapse
Affiliation(s)
- Solo R Kuvibidila
- Department of Pediatrics, Division of Hematology/Oncology, Section of Pulmonary Medicine, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
42
|
Kuvibidila SR, Porretta C, Surendra Baliga B, Leiva LE. Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron-deficient mice. Br J Nutr 2001; 86:157-62. [PMID: 11502228 DOI: 10.1079/bjn2001366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron deficiency induces thymus atrophy in laboratory animals and very likely in humans by unknown mechanisms. The atrophy is associated with impaired cell-mediated immunity. In this study, we tested the hypothesis that thymus atrophy is a result of increased apoptosis and reduced thymocyte proliferation. Thymocytes were obtained from twenty-seven control, twenty-seven pairfed, twenty-seven iron-deficient (ID) mice; twelve and fourteen ID mice that received the control diet (0.9 mmol/kg versus 0.09 mmol/kg for the ID diet) for 1 d (repletion, R1) and 3 d (R3), respectively. Cell cycle analysis and apoptosis were studied by flow cytometry using propidium iodide staining and terminal deoxyuridine nick end labeling of DNA breaks assay respectively. When mice were killed, haemoglobin, haematocrit, and liver iron stores of ID, R1, and R3 mice were 25-40 % of those of control and pairfed mice Absolute and relative thymus weights and thymocyte numbers were 19 to 68 % lower in ID, R1, and R3 than in control and pairfed groups We found no significant difference among groups in the percentage of cells undergoing apoptosis. A higher percentage of thymocytes from ID and R1 mice than those of control, pairfed, and R3 mice were in the resting phase of the normal cell cycle Conversely, a lower percentage of thymocytes from ID and R1 mice than those from control, pairfed, and R3 mice were in the DNA synthesis phase and late phase of DNA synthesis and onset of mitosis (G2-M) Indicators of iron status positively correlated (r 0.3 to 0.56) with the percentage of thymocytes in the G2-M phase Results suggest that reduced cell proliferation but not increased apoptosis is the cause of thymus atrophy associated with iron deficiency.
Collapse
Affiliation(s)
- S R Kuvibidila
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans LA 70112, USA.
| | | | | | | |
Collapse
|
43
|
Kuvibidila SR, Porretta C, Baliga BS. Iron deficiency alters the progression of mitogen-treated murine splenic lymphocytes through the cell cycle. J Nutr 2001; 131:2028-33. [PMID: 11435525 DOI: 10.1093/jn/131.7.2028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The influence of iron deficiency on the progression of mitogen-treated splenic lymphocytes through the cell cycle was studied in 16 control, 16 pair-fed, 15 iron-deficient (ID) and 16 ID mice that were repleted for up to 3 d (R3). The test and control diets differed only in iron concentrations (0.09 vs. 0.9 mmol/kg). When mice were killed (68 d of feeding), the hemoglobin concentration and liver iron stores of ID and R3 mice were <50% those of control mice (P < 0.05). Iron deficiency did not reduce the percentage of CD3(+) cells, but decreased CD3(+) cells/mg spleen (P < 0.05). In concanavalin A-treated and nonactivated cultures, there were no significant differences among groups in the percentages of cells in resting phase of the cell cycle (G0) to cell cycle initiation phase (G1), DNA synthesis phase (S) and exit from the S phase (G2) to mitosis phase (M) phases. In anti-CD3 and anti-CD3/anti-CD28-treated cultures, higher percentages of lymphocytes from ID and R3 mice than those from control and pair-fed mice were in the G0--G1 phase (P < 0.05). Conversely, lower percentages of activated cells from ID and R mice than those from control and pair-fed mice were in S and G2--M phases (P < 0.05). Incubation of lymphocytes with mitogens decreased the percentages of cells in G0--G1 phase from 90% to 80% in control and pair-fed but not in ID and R3 mice (P < 0.05). In activated cells, indices of iron status negatively correlated with the percentages of cells in G0--G1 (r = -0.306 to -0.597) but positively with those in S (r = 0.166--0.511) and G2--M phases (r = 0.265-0.59; P < 0.05). Data suggest that altered cell cycle progression likely contributes to impaired lymphocyte proliferation usually associated with iron deficiency.
Collapse
Affiliation(s)
- S R Kuvibidila
- Department of Pediatrics, Divisions of Hematology/Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
44
|
Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001; 131:568S-579S; discussion 580S. [PMID: 11160590 DOI: 10.1093/jn/131.2.568s] [Citation(s) in RCA: 593] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The estimated prevalence of iron deficiency in the world suggests that there should be widespread negative consequences of this nutrient deficiency in both developed and developing countries. In considering the reality of these estimates, the Belmont Conference seeks to reconsider the accepted relationships of iron status to physiological, biochemical and neurological outcomes. This review focuses on the biological processes that we believe are the basis for alterations in the immune system, neural systems, and energy metabolism and exercise. The strength of evidence is considered in each of the domains and the large gaps in knowledge of basic biology or iron-dependent processes are identified. Iron is both an essential nutrient and a potential toxicant to cells; it requires a highly sophisticated and complex set of regulatory approaches to meet the demands of cells as well as prevent excess accumulation. It is hoped that this review of the more basic aspects of the biology of iron will set the stage for subsequent in-depth reviews of the relationship of iron to morbidity, mortality and functioning of iron-deficient individuals and populations.
Collapse
Affiliation(s)
- J L Beard
- Nutrition Department, College of Human Development, The Pennsylvania State State University, University Park, PA 16802, USA
| |
Collapse
|
45
|
Abstract
Fe plays a critical role in the immune system and defence against infection. However, many aspects of the way in which Fe influences these processes at the molecular and cellular level are unclear. The present review summarizes the role of Fe in lymphocyte activation and proliferation, and discusses how Fe is handled by macrophages.
Collapse
Affiliation(s)
- J H Brock
- Department of Immunology, Western Infirmary, Glasgow G11 6NT, UK.
| | | |
Collapse
|