1
|
Franke VL, Breitling J, Ladd ME, Bachert P, Korzowski A. 31 P MRSI at 7 T enables high-resolution volumetric mapping of the intracellular magnesium ion content in human lower leg muscles. Magn Reson Med 2022; 88:511-523. [PMID: 35381111 DOI: 10.1002/mrm.29231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The non-invasive determination of the free magnesium ion concentration ([Mg2+ free ]) using 31 P MRSI in vivo is of interest in research on various pathologies, e.g. diabetes. The purpose of this study was to demonstrate the potential of 31 P MRSI at 7 T to enable volumetric, high-resolution mapping of [Mg2+ free ]. METHODS 3D 31 P MRSI datasets from the lower leg of three healthy volunteers were acquired at B0 = 7 T with a nominal spatial resolution of (8 × 8 × 16) mm3 in 56 min. Volumetric [Mg2+ free ] maps were calculated based on the quantified local chemical shift difference between the α- and β-resonance of adenosine triphosphate (ATP) considering also local pH values. Mean [Mg2+ free ] values from three different muscle groups were compared. To demonstrate the potential of reducing the measurement time, the analysis was repeated on the acquired MRSI data retrospectively reconstructed with fewer averages. RESULTS The generated [Mg2+ free ] maps revealed local differences, and mean [Mg2+ free ] values of (1.08 ± 0.03) mM were found in the tibialis anterior, (0.91 ± 0.04) mM in the soleus and (0.98 ± 0.03) mM in the gastrocnemius medialis. The time-reduced 28-min scan resulted in comparable [Mg2+ free ] maps, and mean values being in agreement with the values from the 56-min scan. CONCLUSION 31 P MRSI at 7 T enables volumetric, high-resolution mapping of free magnesium ion content in human lower leg muscles. The measurement time of the 31 P MRSI acquisition can be reduced to 28 min, opening the potential to apply volumetric [Mg2+ free ] mapping for the investigation of pathologies with altered magnesium homeostasis.
Collapse
Affiliation(s)
- Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Richter J, Rabe D, Duysen K, Melchert UH, Oltmanns KM. Lactate infusion increases brain energy content during euglycemia but not hypoglycemia in healthy men. NMR IN BIOMEDICINE 2019; 32:e4167. [PMID: 31468650 DOI: 10.1002/nbm.4167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A special characteristic of the brain is the usage of lactate as alternative fuel instead of glucose to preserve its energy homeostasis. This physiological function is valid for sufficient cerebral glucose supply, as well as presumably during hypoglycemia, given that exogenous lactate infusion suppresses hormonal counterregulation. However, it is not yet clarified whether this effect is mediated by the use of lactate as an alternative cerebral energy substrate or any other mechanism. We hypothesized that under conditions of limited access to glucose (ie, during experimental hypoglycemia) lactate infusion would prevent hypoglycemia-induced neuroenergetic deficits in a neuroprotective way. In a randomized, double-blind, crossover study, lactate vs placebo infusion was compared during hyperinsulinemic-hypoglycemic clamps in 16 healthy young men. We measured the cerebral high-energy phosphate content - ie, adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate (Pi) levels - by 31 P-magnetic resonance spectroscopy as well as the neuroendocrine stress response. During euglycemia, lactate infusion increased ATP/Pi as well as PCr/Pi ratios compared with baseline values and placebo infusion. During hypoglycemia, there were no differences between the lactate and the placebo condition in both ratios. Hormonal counterregulation was significantly diminished upon lactate infusion. Our data demonstrate an elevated cerebral high-energy phosphate content upon lactate infusion during euglycemia, whereas there was no such effect during experimental hypoglycemia. Nevertheless, lactate infusion suppressed hypoglycemic hormonal counterregulation. Lactate thus adds to cerebral energy provision during euglycemia and may contribute to an increase in ATP reserves, which in turn protects the brain against neuroglucopenia under recurrent hypopglycemic conditions, eg, in diabetic patients.
Collapse
Affiliation(s)
- Juliane Richter
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Doerte Rabe
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kai Duysen
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Uwe H Melchert
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kerstin M Oltmanns
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| |
Collapse
|
4
|
Pronin IN, Zakharova NE, Podoprigora AE, Batalov AI, Tyurina AN, Mertsalova MP, Fadeeva LM, Golanov AV, Postnov AA, Rodionov PV, Potapov AA. [Phosphorus (P) magnetic resonance spectroscopy for evaluation of brain tissue metabolism and measuring non-invasive pH. A study involving 23 volunteers. Part I]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 83:5-10. [PMID: 31166312 DOI: 10.17116/neiro2019830215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evaluation of brain metabolism is an important part in examination of brain lesions. Phosphorus magnetic resonance spectroscopy opens up great opportunities for studying the energy metabolism and allows noninvasive examination of metabolic processes occurring both in healthy and in pathologic brain tissue by obtaining a spectrum of phosphorus-containing metabolites involved in the turnover of cell membrane phospholipids. The technique presented in this paper was used to conduct 31P MR spectroscopy and to estimate the ratio between the peaks of the main metabolites and intracellular pH of the healthy brain tissue of 23 volunteers in the age group under 30 years old in clinical settings. Based on the recorded stable phosphorus spectra of metabolites of the healthy brain tissue, the value of intracellular pH (6.963±0.044) and the ratio of the main PME/PDE peaks (1.17±0.20) were calculated. The database was created to subsequently analyze the metabolic changes in brain tissue spectra in norm and in pathology, as well as the intracellular pH variations that have diagnostic and prognostic value.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Institute, Moscow, Russia; National Research Nuclear University 'MEPhI', Moscow, Russia
| | - P V Rodionov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
5
|
Lutz NW, Bernard M. Multiparametric quantification of heterogeneity of metal ion concentrations, as demonstrated for [Mg 2+] by way of 31P MRS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 294:71-82. [PMID: 30015125 DOI: 10.1016/j.jmr.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/18/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Magnesium(II) is the second most abundant intracellular cation in mammals. Non-invasive 31P MRS is currently used to measure intracellular free Mg2+ levels in studies of magnesium deficiency disorders. However, this technique only provides one [Mg2+] value for a given tissue volume (or voxel), based on the chemical shift of the ATP-β (or NTP-β) resonance. We present here an approach for quantifying tissue heterogeneity in regard to [Mg2+], by way of multiple 31P MRS-derived descriptors characterizing the statistical intra-volume distribution of free [Mg2+] values. Our novel paradigm exploits the fact that the lineshape of the ATP-β 31P MRS resonance reflects the statistical distribution of [Mg2+] values within the observed volume (or voxel). Appropriate lineshape analysis reveals multiple quantitative statistical parameters (descriptors) characterizing the [Mg2+] distribution. First, the ATP-β 31P MRS resonance is transformed into a [Mg2+] curve that is used to construct a histogram with our specially developed algorithms. From this histogram, at least eight [Mg2+] descriptors are computed: weighted mean concentration and median concentration, standard deviation of concentration, range of concentration, concentration mode(s), concentration kurtosis, concentration skewness, and concentration entropy. Comprehensive evaluation based on in silico and experimental models demonstrates the validity of this new method. This basic feasibility study should open new avenues for future in vivo studies in physiology and medicine.
Collapse
Affiliation(s)
- Norbert W Lutz
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| | - Monique Bernard
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| |
Collapse
|
6
|
[Technique of proton and phosphorous MR spectroscopy]. Radiologe 2018; 57:428-437. [PMID: 28331946 DOI: 10.1007/s00117-017-0240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance spectroscopy (MRS) is an important non-invasive method that can reveal the concentration and spatial distribution of particular biochemically relevant tissue metabolites. STANDARD RADIOLOGICAL METHODS Proton MRS is routinely applicable in the clinical setting providing good quality results even with a moderate magnetic field strength of 1.5 T. Relative values of metabolite concentrations are mostly used for the assessment of metabolic disorders. METHODICAL INNOVATIONS Absolute quantification of metabolites can be achieved by means of internal or external reference scans. Phosphorous MRS extends the range of detectable molecules to energy and cell membrane metabolism. PERFORMANCE The lower detection limit of metabolite concentrations is in the range of some mmol/kg. Depending on the magnetic field strength, MRS enables a spatial resolution of a few milliliters. ACHIEVEMENTS The use of phosphorous MRS is considerably limited because higher field strengths of at least 3.0 T and additional expensive hardware for signal processing are required.
Collapse
|
7
|
Liu Y, Gu Y, Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. Quant Imaging Med Surg 2017; 7:707-726. [PMID: 29312876 PMCID: PMC5756783 DOI: 10.21037/qims.2017.11.03] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/11/2017] [Indexed: 01/11/2023]
Abstract
Many human diseases are caused by an imbalance between energy production and demand. Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide the unique opportunity for in vivo assessment of several fundamental events in tissue metabolism without the use of ionizing radiation. Of particular interest, phosphate metabolites that are involved in ATP generation and utilization can be quantified noninvasively by phosphorous-31 (31P) MRS/MRI. Furthermore, 31P magnetization transfer (MT) techniques allow in vivo measurement of metabolic fluxes via creatine kinase (CK) and ATP synthase. However, a major impediment for the clinical applications of 31P-MRS/MRI is the prohibitively long acquisition time and/or the low spatial resolution that are necessary to achieve adequate signal-to-noise ratio. In this review, current 31P-MRS/MRI techniques used in basic science and clinical research are presented. Recent advances in the development of fast 31P-MRS/MRI methods are also discussed.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Stovell MG, Yan JL, Sleigh A, Mada MO, Carpenter TA, Hutchinson PJA, Carpenter KLH. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications. Front Neurol 2017; 8:426. [PMID: 28955291 PMCID: PMC5600917 DOI: 10.3389/fneur.2017.00426] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with “spin,” e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin–spin interactions (J-coupling). The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA), creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP), is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites.31 P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr). ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH.13 C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%), 13C MRS is typically performed following administration of 13C-enriched substrates, which permits tracking of the metabolic fate of the infused 13C in the brain over time, and calculation of metabolic rates in a range of biochemical pathways, including glycolysis, the tricarboxylic acid cycle, and glutamate–glutamine cycling. The advent of new hyperpolarization techniques to transiently boost signal in 13C-enriched MRS in vivo studies shows promise in this field, and further developments are expected.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiun-Lin Yan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Marius O Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Chen C, Stephenson MC, Peters A, Morris PG, Francis ST, Gowland PA. 31 P magnetization transfer magnetic resonance spectroscopy: Assessing the activation induced change in cerebral ATP metabolic rates at 3 T. Magn Reson Med 2017; 79:22-30. [PMID: 28303591 PMCID: PMC5706641 DOI: 10.1002/mrm.26663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Purpose In vivo 31P magnetic resonance spectroscopy (MRS) magnetization transfer (MT) provides a direct measure of neuronal activity at the metabolic level. This work aims to use functional 31P MRS‐MT to investigate the change in cerebral adenosine triphosphate (ATP) metabolic rates in healthy adults upon repeated visual stimuli. Methods A magnetization saturation transfer sequence with narrowband selective saturation of γ‐ATP was developed for 31P MT experiments at 3 T. Results Using progressive saturation of γ‐ATP, the intrinsic T1 relaxation times of phosphocreatine (PCr) and inorganic phosphate (Pi) at 3 T were measured to be 5.1 ± 0.8 s and 3.0 ± 1.4 s, respectively. Using steady‐state saturation of γ‐ATP, a significant 24% ± 14% and 11% ± 7% increase in the forward creatine kinase (CK) pseudo‐first‐order reaction rate constant, k1, was observed upon visual stimulation in the first and second cycles, respectively, of a paradigm consisting of 10‐minute rest followed by 10‐minute stimulation, with the measured baseline k1 being 0.35 ± 0.04 s−1. No significant changes in forward ATP synthase reaction rate, PCr/γ‐ATP, Pi/γ‐ATP, and nicotinamide adenine dinucleotide/γ‐ATP ratios, or intracellular pH were detected upon stimulation. Conclusion This work demonstrates the potential of studying cerebral bioenergetics using functional 31P MRS‐MT to determine the change in the forward CK reaction rate at 3 T. Magn Reson Med 79:22–30, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Chen Chen
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Mary C Stephenson
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Andrew Peters
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| |
Collapse
|
10
|
Bulakbasi N, Kocaoglu M, Sanal H, Tayfun C. Efficacy of in vivo31Phosphorus Magnetic Resonance Spectroscopy in Differentiation and Staging of Adult Human Brain Tumors. Neuroradiol J 2016; 20:646-55. [DOI: 10.1177/197140090702000608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/09/2007] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the efficacy of 31P magnetic resonance spectroscopy (31P-MRS) in the differentiation and staging of brain tumors. Fifteen volunteers and 44 patients with brain tumors (14 meningiomas, 13 low- and 17 high-grade gliomas) were prospectively evaluated by 31P-MRS. The pH (r=0.493, p<0.001), [Mg+2] (r=0.850, p<0.001) PME/α-ATP (r=0.776, p<0.001), PDE/α-ATP (r=-0.569, p<0.001) and (PCr+β-ATP)/Pi ratios were well correlated with tumor differentiation. High-grade gliomas had significantly higher pH (r=0.912, p<0.001) and [Mg+2] (r=0.855, p<0.001) and PME/α-ATP (r=0.894, p<0.001) ratio, and lower PCr/α-ATP (r= −0.959, p<0.001), Pi/α-ATP (r= −0.788, p<0.001) and PDE/α-ATP ratios (r=−0.968, p<0.001) than those of low-grade gliomas. Changes in 31P-MRS parameters by the degree of malignancy are good indicators of increased anaerobic metabolism and hypoxia of tumoral tissue to compensate intratumoral energy deficiency. 31P-MRS parameters are very useful for grading and differentiation of brain tumors.
Collapse
Affiliation(s)
- N. Bulakbasi
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - M. Kocaoglu
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - H.T. Sanal
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - C. Tayfun
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| |
Collapse
|
11
|
Deelchand DK, Nguyen TM, Zhu XH, Mochel F, Henry PG. Quantification of in vivo ³¹P NMR brain spectra using LCModel. NMR IN BIOMEDICINE 2015; 28:633-41. [PMID: 25871439 PMCID: PMC4438275 DOI: 10.1002/nbm.3291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 05/05/2023]
Abstract
Quantification of (31)P NMR spectra is commonly performed using line-fitting techniques with prior knowledge. Currently available time- and frequency-domain analysis software includes AMARES (in jMRUI) and CFIT respectively. Another popular frequency-domain approach is LCModel, which has been successfully used to fit both (1)H and (13)C in vivo NMR spectra. To the best of our knowledge LCModel has not been used to fit (31)P spectra. This study demonstrates the feasibility of using LCModel to quantify in vivo (31)P MR spectra, provided that adequate prior knowledge and LCModel control parameters are used. Both single-voxel and MRSI data are presented, and similar results are obtained with LCModel and with AMARES. This provides a new method for automated, operator-independent analysis of (31)P NMR spectra.
Collapse
Affiliation(s)
| | - Tra-My Nguyen
- INSERM UMR S975, Brain and Spine Institute, Hospital La Salpêtrière, Paris, France
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Fanny Mochel
- INSERM UMR S975, Brain and Spine Institute, Hospital La Salpêtrière, Paris, France
- University Pierre and Marie Curie, Paris, France
- AP-HP, Department of Genetics, Hospital La Salpêtrière, Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Widespread pH abnormalities in patients with malformations of cortical development and epilepsy: a phosphorus-31 brain MR spectroscopy study. Brain Dev 2014; 36:899-906. [PMID: 24485900 DOI: 10.1016/j.braindev.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Neuroimaging studies demonstrate that not only the lesions of malformations of cortical development (MCD) but also the normal-appearing parenchyma (NAP) present metabolic impairments, as revealed with (1)H-MRS. We have previously detected biochemical disturbances in MCD lesions with phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Our hypothesis is that pH abnormalities extend beyond the visible lesions. METHODS Three-dimensional 31P-MRS at 3.0 T was performed in 37 patients with epilepsy and MCD, and in 31 matched-control subjects. The patients were assigned into three main MCD subgroups: cortical dysplasia (n=10); heterotopia (n=14); schizencephaly/polymicrogyria (n=13). Voxels (12.5 cm3) were selected in five homologous regions containing NAP: right putamen; left putamen; frontoparietal parasagittal cortex; right centrum semiovale; and left centrum semiovale. Robust methods of quantification were applied, and the intracellular pH was calculated with the chemical shifts of inorganic phosphate (Pi) relative to phosphocreatine (PCr). RESULTS In comparison to controls and considering a Bonferroni adjusted p-value <0.01, MCD patients presented significant reduction in intracellular pH in the frontoparietal parasagittal cortex (6.985±0.022), right centrum semiovale (7.004±0.029), and left centrum semiovale (6.995±0.030), compared to controls (mean values±standard deviations of 7.087±0.048, 7.096±0.042, 7.088±0.045, respectively). Dunnet and Dunn tests demonstrated that the differences in pH values remained statistically significant in all MCD subgroups. No significant differences were found for the putamina. CONCLUSION The present study demonstrates widespread acidosis in the NAP, and reinforces the idea that MCD visible lesions are only the tip of the iceberg.
Collapse
|
13
|
(31)P-MRS using visual stimulation protocols with different durations in healthy young adult subjects. Neurochem Res 2014; 39:2343-50. [PMID: 25227748 DOI: 10.1007/s11064-014-1433-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Phosphorus magnetic resonance spectroscopy ((31)P-MRS) combined with visual stimulation in functional experiments allows the non-invasive dynamic study of brain energy metabolism. (31)P-MRS has been applied to several diseases and to healthy subjects, but works have shown variable findings and non-reproducible results, possibly caused by low numbers of subjects combined with different stimulation paradigms. In the present work, we used (31)P-MRS at 3 T with two different visual stimulation protocols with different block duration ("short" and "long") to evaluate metabolic changes under different workloads in 38 healthy subjects. We found a 15 % (short protocol-blocks of 1.5 min stimulation) and 3 % (long protocol-blocks of 5 min stimulation) increase in the inorganic phosphate (Pi) to α-adenosine triphosphate (α-ATP) ratio, and a 5 % (short protocol) and 2 % (long protocol) decrease in the nicotinamide adenine nucleotide (NADH + NAD(+)) to α-ATP ratio. The NADH + NAD(+) results are, to the best of our knowledge, the first functional magnetic resonance spectroscopy in vivo assessment of these compounds, but their interpretation is difficult since they cannot be separately quantified at 3 T. Our results show that longer stimulations produce smaller concentration changes in Pi/α-ATP and (NADH + NAD(+))/α-ATP ratios, which suggests a possible adaptation effect during longer stimulations that leads metabolic concentrations towards the initial equilibrium.
Collapse
|
14
|
Zhang Y, Guo X, Wu A. Association between a novel mutation in SLC20A2 and familial idiopathic basal ganglia calcification. PLoS One 2013; 8:e57060. [PMID: 23437308 PMCID: PMC3577762 DOI: 10.1371/journal.pone.0057060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/17/2013] [Indexed: 01/30/2023] Open
Abstract
Familial idiopathic basal ganglia calcification (FIBGC) is a rare, autosomal dominant disorder involving bilateral calcification of the basal ganglia. To identify gene mutations related to a Chinese FIBGC lineage, we evaluated available individuals in the family using CT scans. DNA was extracted from the peripheral blood of available family members, and both exonic and flanking intronic sequences of the SLC20A2 gene were amplified by PCR and then sequenced. Non-denaturing polyacrylamide gel electrophoresis (PAGE) was used to confirm the presence of mutations. Allele imbalances of the SLC20A2 gene or relative quantity of SLC20A2 transcripts were evaluated using qRT-PCR. A novel heterozygous single base-pair deletion (c.510delA) within the SLC20A2 gene was identified. This deletion mutation was found to co-segregate with basal ganglia calcification in all of the affected family members but was not detected in unaffected individuals or in 167 unrelated Han Chinese controls. The mutation will cause a frameshift, producing a truncated SLC20A2 protein with a premature termination codon, most likely leading to the complete loss of function of the SLC20A2 protein. This mutation may also lead to a reduction in SLC20A2 mRNA expression by approximately 30% in cells from affected individuals. In conclusion, we identified a novel mutation in SLC20A2 that is linked to FIBGC. In addition to the loss of function at the protein level, decreasing the expression of SLC20A2 mRNA may be another mechanism that can regulate SLC20A2 function in IBGC individuals. We propose that the regional expression pattern of SLC20A1 and SLC20A2 might explain the unique calcification pattern observed in FIBGC patients.
Collapse
Affiliation(s)
- Yang Zhang
- Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xianan Guo
- Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Anhua Wu
- Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Chmelík M, Kukurová IJ, Gruber S, Krššák M, Valkovič L, Trattnig S, Bogner W. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI. Magn Reson Med 2012; 69:1233-44. [PMID: 22714782 DOI: 10.1002/mrm.24363] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/24/2022]
Abstract
A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.
Collapse
Affiliation(s)
- M Chmelík
- MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Andrade CS, Otaduy MCG, Valente KDR, Maia DF, Park EJ, Valério RMF, Tsunemi MH, Leite CC. Phosphorus magnetic resonance spectroscopy in malformations of cortical development. Epilepsia 2011; 52:2276-84. [PMID: 21973076 DOI: 10.1111/j.1528-1167.2011.03281.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate phospholipid metabolism in patients with malformations of cortical development (MCDs). METHODS Thirty-seven patients with MCDs and 31 control subjects were studied using three-dimensional phosphorus magnetic resonance spectroscopy ((31)P-MRS) at 3.0 T. The voxels in the lesions and in the frontoparietal cortex of the control subjects were compared (the effective volumes were 12.5 cm(3)). Robust quantification methods were applied to fit the time-domain data to the following resonances: phosphoethanolamine (PE); phosphocholine (PC); inorganic phosphate (Pi); glycerophosphoethanolamine (GPE); glycerophosphocholine (GPC); phosphocreatine (PCr); and α-, β-, and γ-adenosine triphosphate (ATP). We also estimated the total ATP (ATP(t) = α-+β-+γ-ATP), phosphodiesters (PDE = GPC+GPE), phosphomonoesters (PME = PE+PC), and the PME/PDE, PCr/ATP(t) and PCr/Pi ratios. The magnesium (Mg(2+)) levels and pH values were calculated based on PCr, Pi, and β-ATP chemical shifts. KEY FINDINGS Compared to controls and assuming that a p-value < 0.05 indicates statistical significance, the patients with MCDs exhibited significantly lower pH values and higher Mg(2+) levels. In addition, the patients with MCDs had lower GPC and PDE and an increased PME/PDE ratio. SIGNIFICANCE Mg(2+) and pH are important in the regulation of bioenergetics and are involved in many electrical activity pathways in the brain. Our data support the idea that neurometabolic impairments occur during seizure onset and propagation. The GPC, PDE, and PME/PDE abnormalities also demonstrate that there are membrane turnover disturbances in patients with MCDs.
Collapse
Affiliation(s)
- Celi S Andrade
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmoller A, Hass T, Strugovshchikova O, Melchert UH, Scholand-Engler HG, Peters A, Schweiger U, Hohagen F, Oltmanns KM. Evidence for a relationship between body mass and energy metabolism in the human brain. J Cereb Blood Flow Metab 2010; 30:1403-10. [PMID: 20389303 PMCID: PMC2949217 DOI: 10.1038/jcbfm.2010.48] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral energy metabolism has been suggested to have an important function in body weight regulation. We therefore examined whether there is a relationship between body mass and adenosine triphosphate (ATP) metabolism in the human brain. On the basis of our earlier findings indicating a neuroprotective preferential energy supply of the brain, as compared with peripheral muscle on experimentally induced hypoglycemia, we examined whether this physiological response is preserved also in low-weight and obese participants. We included 45 healthy male subjects with a body mass index (BMI) ranging from 17 to 44 kg/m(2). Each participant underwent a hypoglycemic glucose-clamp intervention, and the ATP metabolism, that is, the content of high-energy phosphates phosphocreatine (PCr) and ATP, was measured repeatedly by (31)phosphor magnetic resonance spectroscopy ((31)P-MRS) in the cerebral cortex and skeletal muscle. Results show an inverse correlation between BMI and high-energy phosphate content in the brain (P<0.01), whereas there was no such relationship found between skeletal muscle and BMI. The hypoglycemic clamp intervention did not affect the ATP metabolism in both tissues. Our data show an inverse correlation between BMI and cerebral high-energy phosphate content in healthy humans, suggesting a close relationship between energetic supply of the brain and body weight regulation.
Collapse
Affiliation(s)
- André Schmoller
- Department of Psychiatry and Psychotherapy, University of Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Walton JR. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 2007; 101:1275-84. [PMID: 17662457 DOI: 10.1016/j.jinorgbio.2007.06.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/14/2007] [Accepted: 06/01/2007] [Indexed: 11/21/2022]
Abstract
In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (p<0.05) in neocortical/limbic homogenates prepared from cognitively-damaged and control rat brains, respectively. Thus, PP2A activity in cognitively-damaged brains was 41% of control value. Staining results showed: (1) aluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.
Collapse
Affiliation(s)
- J R Walton
- Australian Institute for Biomedical Research, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Du F, Zhu XH, Qiao H, Zhang X, Chen W. Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med 2007; 57:103-14. [PMID: 17191226 DOI: 10.1002/mrm.21107] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ATP metabolism is controlled mainly by ATP synthase (ATP(ase)) and creatine kinase (CK) reactions that regulate cerebral ATP production, transportation, and utilization. These coupled reactions constitute a chemical exchange metabolic network of PCr<-->ATP<-->Pi characterized by two forward and two reverse reaction fluxes, which can be studied noninvasively by in vivo (31)P MRS combined with magnetization transfer (MT). However, it is still debated whether current MT approaches can precisely determine all of these fluxes. We developed and tested a modified in vivo (31)P MT approach based on a multiple single-site saturation (MSS) technique to study the entire PCr<-->ATP<-->Pi network in human occipital lobe at 7T. Our results reveal that 1) the MSS MT approach can explicitly determine all four reaction fluxes with a minimal number of (31)P spectra; 2) the three-spin exchange model accurately determines reverse reaction fluxes, resulting in equal forward and reverse fluxes for both CK and ATP(ase) reactions; and 3) the ATP synthesis rate (8.8 +/- 1.9 micromol/g/min, N = 11) measured in the human brain reflects cerebral oxidative phosphorylation. The MSS MT approach should provide an important modality for noninvasively studying the essential roles of ATP metabolism in brain bioenergetics, function, and diseases.
Collapse
Affiliation(s)
- Fei Du
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
20
|
Friedman SD, Jensen JE, Frederick BB, Artru AA, Renshaw PF, Dager SR. Brain changes to hypocapnia using rapidly interleaved phosphorus-proton magnetic resonance spectroscopy at 4 T. J Cereb Blood Flow Metab 2007; 27:646-53. [PMID: 16896347 DOI: 10.1038/sj.jcbfm.9600383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial controversy persists in the literature concerning the physiologic consequences hypocapnia, or low partial pressure of carbon dioxide (PaCO(2)). Invasive animal studies have demonstrated large pH increases (>0.25 U), phosphocreatine (PCr) decreases (>30%), and adenosine triphosphate (ATP) decreases (>10%) after hyperventilation (HV) (20 mm Hg PaCO(2)). However, using magnetic resonance spectroscopy, HV studies in awake humans have demonstrated only small pH changes ( approximately 0.05 U) and no changes in PCr or ATP. It remains important to ascertain whether this failure to detect PCr changes in human studies reflects a true absence of changes, or a limitation in data fidelity. The present study used a rapidly interleaved phosphorus-proton spectroscopy acquisition from large samples at high magnetic field (4 T), to measure pH, PCr, inorganic phosphate, beta-ATP, and lactate changes with high temporal and signal sensitivity. Five of six subjects had usable data. During 20 mins HV, PaCO(2) reached a minimum at 16 mins (17 mm Hg); however, the maximum pH change (+0.047) peaked earlier (14 mins). Maximal lactate increases were measured at 15 mins. By 10 mins, maximum changes were observed for PCr (-3.4%) and inorganic phosphate (+6.4%). No changes in beta-ATP were observed. The peak in pH, despite continued decreases in PaCO(2), suggests active buffering during HV. These data, and the small magnitude of early PCr and inorganic phosphate changes, do not support substantial energy compromise during HV. Other mitigating factors, such as anesthesia-induced deregulation of the cerebrovasculature, might have contributed to the exaggerated metabolic changes observed in previous animal investigations.
Collapse
Affiliation(s)
- Seth D Friedman
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98105, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Landis CS, Yamanouchi K, Zhou H, Mohan S, Roy-Chowdhury N, Shafritz DA, Koretsky A, Roy-Chowdhury J, Hetherington HP, Guha C. Noninvasive evaluation of liver repopulation by transplanted hepatocytes using 31P MRS imaging in mice. Hepatology 2006; 44:1250-8. [PMID: 17058269 DOI: 10.1002/hep.21382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocyte transplantation (HT) is being explored as a substitute for liver transplantation for the treatment of liver diseases. For the clinical application of HT, a preparative regimen that allows preferential proliferation of transplanted cells in the host liver and a noninvasive method to monitor donor cell engraftment, proliferation, and immune rejection would be useful. We describe an imaging method that employs the creatine kinase (CK) gene as a marker of donor hepatocytes. Creatine kinase is unique among marker genes, because it is normally expressed in brain and muscle tissues and is therefore not immunogenic. Preferential proliferation of transplanted CK-expressing hepatocytes was induced by preparative hepatic irradiation and expression of hepatocyte growth factor using a recombinant adenoviral vector. CK is normally not expressed in mouse liver and its expression by the donor cells led to the production of phosphocreatine in the host liver, permitting (31)P magnetic resonance spectroscopic imaging of liver repopulation by engrafted hepatocytes. In conclusion, this study combined a noninvasive imaging technique to assess donor hepatocyte proliferation with a preparative regimen of partial liver irradiation that allowed regional repopulation of the host liver. Our results provide groundwork for future development of clinical protocols for HT.
Collapse
Affiliation(s)
- Charles S Landis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI. 8-hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 2006; 128:344-50. [PMID: 16390164 DOI: 10.1021/ja056523u] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the key role of magnesium in many fundamental biological processes, knowledge about its intracellular regulation is still scarce, due to the lack of appropriate detection methods. Here, we report the spectroscopic and photochemical characterization of two diaza-18-crown-6 hydroxyquinoline derivatives (DCHQ) and we propose their application in total Mg(2+) assessment and in confocal imaging as effective Mg(2+) indicators. DCHQ derivatives 1 and 2 bind Mg(2+) with much higher affinity than other available probes (K(d) = 44 and 73 microM, respectively) and show a strong fluorescence increase upon binding. Remarkably, fluorescence output is not significantly affected by other divalent cations, most importantly Ca(2+), or by pH changes within the physiological range. Evidence is provided on the use of fluorometric data to derive total cellular Mg(2+) content, which is consistent with atomic absorption data. Furthermore, we show that DCHQ compounds can be effectively employed to map intracellular ion distribution and movements in live cells by confocal microscopy. A clear staining pattern consistent with known affinities of Mg(2+) for biological ligands is shown; moreover, changes in the fluorescence signal could be tracked following stimuli known to modify intracellular Mg(2+) concentration. These findings suggest that DCHQ derivatives may serve as new tools for the study of Mg(2+) regulation, allowing sensitive and straightforward detection of both static and dynamic signals.
Collapse
Affiliation(s)
- Giovanna Farruggia
- Dipartimento di Biochimica G. Moruzzi, Via Irnerio 48, Università degli Studi di Bologna, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Walton JR. Aluminum in hippocampal neurons from humans with Alzheimer's disease. Neurotoxicology 2006; 27:385-94. [PMID: 16458972 DOI: 10.1016/j.neuro.2005.11.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/28/2005] [Accepted: 11/07/2005] [Indexed: 11/29/2022]
Abstract
Using a staining technique developed in 2004, we examined hippocampal tissue from autopsy-confirmed cases of Alzheimer's disease (AD) and controls. The stain disclosed aluminum in cells and subcellular structure. All pyramidal neurons in these aged specimens appeared to exhibit at least some degree of aluminum staining. Many displayed visible aluminum only in their nucleolus. At the other extreme were neurons that stained for aluminum throughout their nucleus and cytoplasm. The remainder exhibited intermediate degrees of staining. On the basis of their aluminum staining patterns, all pyramidal neurons could be classified into stages that indicated two distinct neuropathological processes, either (1) progressive increase of nuclear aluminum (often accompanied by granulovacuolar degeneration with granules that stain for aluminum) or (2) formation of neurofibrillary tangles (NFTs) in regions of aluminum-rich cytoplasm, especially in AD brain tissue. In the latter process, intraneuronal NFTs appeared to displace nuclei and then enucleate the affected neurons during the course of their transformation into extracellular NFTs. Given that the NFTs we observed in human neurons always developed in conjunction with cytoplasmic aluminum, we hypothesize that aluminum plays an important role in their formation and should therefore be reconsidered as a causative factor for AD.
Collapse
Affiliation(s)
- J R Walton
- Australian Institute for Biomedical Research, Sydney, NSW 2204, Australia.
| |
Collapse
|
24
|
Iotti S, Frassineti C, Sabatini A, Vacca A, Barbiroli B. Quantitative mathematical expressions for accurate in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:164-77. [PMID: 15953473 DOI: 10.1016/j.bbabio.2005.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Magnetic Resonance Spectroscopy affords the possibility of assessing in vivo the thermodynamic status of living tissues. The main thermodynamic variables relevant for the knowledge of the health of living tissues are: DeltaG of ATP hydrolysis and cytosolic [ADP], the latter as calculated from the apparent equilibrium constant of the creatine kinase reaction. In this study we assessed the stoichiometric equilibrium constant of the creatine kinase reaction by in vitro (31)P NMR measurements and computer calculations resulting to be: logK(CK)=8.00+/-0.07 at T=310 K and ionic strength I=0.25 M. This value refers to the equilibrium: PCr(2-)+ADP(3-)+ H(+)=Cr+ATP(4-). We also assessed by computer calculation the stoichiometric equilibrium constant of ATP hydrolysis obtaining the value: logK(ATP-hyd)=-12.45 at T=310 K and ionic strength I=0.25 M, which refers to the equilibrium: ATP(4-)+H(2)O=ADP(3-)+PO(4)(3-)+2H(+). Finally, we formulated novel quantitative mathematical expressions of DeltaG of ATP hydrolysis and of the apparent equilibrium constant of the creatine kinase reaction as a function of total [PCr], pH and pMg, all quantities measurable by in vivo (31)P MRS. Our novel mathematical expressions allow the in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle taking into account pH and pMg changes occurring in living tissues both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Stefano Iotti
- Biochimica Clinica, Dipartimento di Medicina Clinica e Biotecnologia Applicata "D. Campanacci", Università di Bologna, Via Massarenti, 9, 40138 Bologna, Italy.
| | | | | | | | | |
Collapse
|
25
|
Kirilyuk IA, Bobko AA, Khramtsov VV, Grigor'ev IA. Nitroxides with two pK values—useful spin probes for pH monitoring within a broad range. Org Biomol Chem 2005; 3:1269-74. [PMID: 15785817 DOI: 10.1039/b418707e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 4-dialkylamino-2,5-dihydroimidazole nitroxides with pyridine-4-yl, 4-dimethylaminophenyl or 4-hydroxyphenyl groups in position 2 of the imidazole ring were prepared using the reaction of RMgBr with corresponding 5-dialkylamino-4,4-dimethyl-4H-imidazole 3-oxides. The EPR spectra of the nitroxides were shown to be pH-sensitive due to consecutive protonation of the amidino moiety and the basic group(s) at position 2 of the imidazole ring. The 5,5-dimethyl-4-(dimethylamino)-2-ethyl-2-pyridine-4-yl-2,5-dihydro-1H-imidazol-1-oxyl showed a monotonic increase in the isotropic nitrogen hyperfine (hfi) coupling constant alpha(N) of 1 .4 G over a pH range from 2 to 6.5. Such a broad range of pH-sensitivity could be useful for many biophysical and biomedical applications, including pH-monitoring in the stomach.
Collapse
Affiliation(s)
- Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Academician Lavrent'ev 9, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
26
|
Zhou J, Wilson DA, Sun PZ, Klaus JA, Van Zijl PCM. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004; 51:945-52. [PMID: 15122676 DOI: 10.1002/mrm.20048] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA.
| | | | | | | | | |
Collapse
|
27
|
Lei H, Ugurbil K, Chen W. Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 2003; 100:14409-14. [PMID: 14612566 PMCID: PMC283605 DOI: 10.1073/pnas.2332656100] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taking advantage of the high NMR detection sensitivity and the large chemical shift dispersion offered by ultra-high field strength of 7 T, the effect of magnetization transfer on inorganic phosphate (Pi) resonance during saturation of gamma-ATP resonance, mediated by the ATP synthesis reaction, was observed noninvasively in the human primary visual cortex by using in vivo 31P magnetic resonance spectroscopy. The unidirectional flux from Pi to ATP was measured by using progressive saturation transfer experiments. The cerebral ATP synthesis rate in the human primary visual cortex measured by 31P magnetic resonance spectroscopy in this study was 12.1 +/- 2.8 micromol ATP/g per min, which agreed well with the value that was calculated indirectly from the cerebral metabolic rate of glucose consumption reported previously.
Collapse
Affiliation(s)
- Hao Lei
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, 2021 Sixth Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
28
|
Boska MD, Welch KMA, Barker PB, Nelson JA, Schultz L. Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes. Neurology 2002; 58:1227-33. [PMID: 11971091 DOI: 10.1212/wnl.58.8.1227] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Previous single voxel (31)P MRS pilot studies of migraine patients have suggested that disordered energy metabolism or Mg(2+) deficiencies may be responsible for hyperexcitability of neuronal tissue in migraine patients. These studies were extended to include multiple brain regions and larger numbers of patients by multislice (31)P MR spectroscopic imaging. METHODS Migraine with aura (MWA), migraine without aura (MwoA), and hemiplegic migraine patients were studied between attacks by (31)P MRS imaging using a 3-T scanner. RESULTS Results were compared with those in healthy control subjects without headache. In MwoA, consistent increases in phosphodiester concentration [PDE] were measured in most brain regions, with a trend toward increase in [Mg(2+)] in posterior brain. In MWA, phosphocreatine concentration ([PCr]) was decreased to a minor degree in anterior brain regions and a trend toward decreased [Mg(2+)] was observed in posterior slice 1, but no consistent changes were found in phosphomonoester concentration [PME], [PDE], inorganic phosphate concentration ([Pi]), or pH. In hemiplegic migraine patients, [PCr] had a tendency to be lower, and [Mg(2+)] was significantly lower than in the posterior brain regions of control subjects. Trend analysis showed a significant decrease of brain [Mg(2+)] and [PDE] in posterior brain regions with increasing severity of neurologic symptoms. CONCLUSIONS Overall, the results support no substantial or consistent abnormalities of energy metabolism, but it is hypothesized that disturbances in magnesium ion homeostasis may contribute to brain cortex hyperexcitability and the pathogenesis of migraine syndromes associated with neurologic symptoms. In contrast, migraine patients without a neurologic aura may exhibit compensatory changes in [Mg(2+)] and membrane phospholipids that counteract cortical excitability.
Collapse
Affiliation(s)
- M D Boska
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
29
|
Uttecht S, Thulborn KR. Software for efficient visualization and analysis of multiple, large, multi-dimensional data sets from magnetic resonance imaging. Comput Med Imaging Graph 2002; 26:73-89. [PMID: 11818187 DOI: 10.1016/s0895-6111(01)00031-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comprehensive magnetic resonance imaging (MRI) protocols create multiple, large, multi-dimensional data sets that are challenging to review and interpret in an efficient manner. We report on a program called CliniViewer that uses a common data file format to display all files originating from the scanner and other post-processing programs in an integrated display matrix. The five rows of images and maps have general themes of Anatomic Images, Echo-Planar Images, Parametric Maps (derived from echo-planar images), Metabolic Images, and Non-Image Data, respectively. Each row of the matrix contains related image windows of individual MR acquisitions or maps derived from such acquisitions.An interpreter can quickly screen all images and then select any image from the display to create a separate daughter window incorporating a set of analysis tools for in-depth examination. Given that the images can be acquired in the same co-registered planes without moving the subject, regional analysis can be performed simultaneously across multiple MR image types and the corresponding maps, thereby integrating anatomic features with parametric properties. Color can be used to highlight parametric values that fall outside normal ranges to quickly identify abnormalities on each map. CliniViewer is an efficient environment for analyzing multiple images and maps from comprehensive clinical imaging protocols, aiding the neuroradiologist in providing an integrated interpretation of all available MR data for efficient clinical decision making. CliniViewer is compared to AnalyzeAVW and NIH Image, two popular MR image analysis tools. CliniViewer allows efficient clinical analysis of multiple images and maps from comprehensive clinical imaging protocols.
Collapse
Affiliation(s)
- Steve Uttecht
- Department of Electrical Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
30
|
Moore CM, Frederick BB, Renshaw PF. Brain biochemistry using magnetic resonance spectroscopy: relevance to psychiatric illness in the elderly. J Geriatr Psychiatry Neurol 2000; 12:107-17. [PMID: 10593699 DOI: 10.1177/089198879901200304] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic resonance spectroscopy (MRS) allows for the noninvasive study of cerebral biochemistry. It has been used to investigate cerebral metabolic changes associated with mental illness in vivo and in vitro. In this review, we will discuss the application of MRS to psychiatric illness in the elderly. Following a brief description of the basic principles of MRS, the use of phosphorus (31P) and proton (1H) MRS to enable a better understanding of normal brain aging, dementia (Alzheimer's disease, multiple subcortical infarct dementia, Down syndrome, frontotemporal dementia, vascular dementia, age-associated memory impairment, and other dementias), major depression, and electroconvulsive therapy is detailed.
Collapse
Affiliation(s)
- C M Moore
- Brain Imaging Center, McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | |
Collapse
|
31
|
Abstract
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.
Collapse
Affiliation(s)
- C Boesch
- Department of Clinical Research, University of Bern, Switzerland
| |
Collapse
|