1
|
Aziziha H, Hassanpour S, Zendehdel M. Lutein Exerts Antioxidant and Neuroprotective Role on Schizophrenia-Like Behaviours in Mice. Int J Dev Neurosci 2025; 85:e10407. [PMID: 39723598 DOI: 10.1002/jdn.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Schizophrenia is an esteemed neuropsychiatric condition delineated by the manifestation which role of the N-methyl-D-aspartate receptor (NMDAR) is important. Lutein administration exhibits protective effects via NMDA receptors. Thus, the main goal of this research was to investigate how lutein can possibly act as an antioxidant and provide protection for the brain against schizophrenia-like behaviours in mice. In total, 24 male mice were divided into four experimental groups: control, ketamine (20 mg/kg, i.p), lutein (10 mg/kg, i.p) and a mix of ketamine (20 mg/kg, i.p) and lutein (10 mg/kg, i.p). Lutein was given to the mice for 30 days, while ketamine was given from Days 16 to 30 to create a model of schizophrenia in the animals. After giving drugs, schizophrenia-like behaviours were evaluated with novel object recognition test (NORT), tail suspension test (TST), forced swimming test (FST) and open field tests. Furthermore, the amounts of brain malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were assessed. The findings showed a noteworthy decrease in the crossings during the open field test and increase in immobility duration in the TST and FST as a result of ketamine administration (p < 0.05). Prior administration of lutein showed a decrease in the detrimental effects of ketamine on the open field assay, along with a reduction in immobility duration in the TST and FST experiments (p < 0.05). Administration of ketamine caused a notable reduction in the discrimination index, while pretreatment with lutein was associated with a rise in the discrimination index (p < 0.05). Furthermore, the administration of ketamine significantly increased the levels of MDA in both cortical and subcortical regions, which were then reduced by lutein pretreatment (p < 0.05). Moreover, ketamine use led to a significant decrease in tissue SOD, GPx and CAT levels in both cortical and subcortical brain regions in mice (p < 0.05). Nonetheless, lutein pretreatment significantly enhanced SOD, GPx and CAT levels in cortical and subcortical regions (p < 0.05). These results indicate that lutein may have protective effects on the brain to improve behavioural problems.
Collapse
Affiliation(s)
- Helia Aziziha
- Graduate Student, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Ahuja T, Begum F, Kumar G, Shenoy S, Kumar N, Shenoy RR. Exploring the protective role of metformin and dehydrozingerone in sodium fluoride-induced neurotoxicity: evidence from prenatal rat models. 3 Biotech 2025; 15:36. [PMID: 39790448 PMCID: PMC11711601 DOI: 10.1007/s13205-024-04175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment. Behavioural studies like Novel Object Recognition Test (NORT), Open Field & Actophotometer test and biochemical estimations like Acetylcholinesterase (AchE), Glutathione (GSH), Malondialdehyde (MDA) were conducted on animals followed by histopathological image analysis. It was observed that NaF exposure significantly decreased learning, memory and locomotor ability (at p < 0.05, p ≤ 0.01) in rat pups and was also able to induce anxiety like behavior. Levels of AchE (p ≤ 0.001) and MDA (p ≤ 0.01, p ≤ 0.001) was found to be significantly elevated and GSH levels were significantly decreased (p ≤ 0.01, p ≤ 0.001) in hippocampus and frontal cortex in the disease group. Histopathological image analysis showed presence of degenerated neurons in hippocampus of disease group. From this study, it was observed that treatment with Metformin and DHZ, was able to significantly ameliorate the cognitive impairments, improve the condition of oxidative stress and decrease neuronal degeneration in NaF fed rat pups. These results established the protective role of Metformin and DHZ in NaF induced neurodevelopmental toxicity with particular emphasis on their antioxidant properties.
Collapse
Affiliation(s)
- Tejas Ahuja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Pharmacology, Vaagdevi Pharmacy College, Bollikunta, Warangal, Telangana 506005 India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- School of Pharmacy, Sharda University, Greater Noida-201306, Uttar Pradesh, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Vaishali, Hajipur, Bihar, 844102 India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
3
|
Li Z, Sun T, He Z, Li Z, Xiong J, Xiang H. Intestinal Dysbacteriosis Contributes to Persistent Cognitive Impairment after Resolution of Acute Liver Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2076-2090. [PMID: 39147234 DOI: 10.1016/j.ajpath.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Regulating the gut microbiota alleviates hepatic encephalopathy (HE). Whether it is imperative to withhold treatment for microbial imbalance after liver functional recovery remains unclear. The aim of this work was to elucidate the alterations in cognitive behavior, liver function, synaptic transmission, and brain metabolites in acute liver failure (ALF) mice before and after hepatic function recovery. Towards this end, thioacetamide was injected intraperitoneally to establish an ALF mouse model, which induced HE. Hierarchical clustering analysis indicated that while the liver functions normalized, cognitive dysfunction and intestinal dysbacteriosis occurred in the ALF mice 14 days after thioacetamide injection. In addition, fecal microbiota transplantation from the ALF mice with liver function recovery induced liver injury and cognitive impairment. Alterations in synaptic transmission were found in the ALF mice with liver function improvement, and the correlations between the gut bacteria and synaptic transmission in the cortex were significant. Finally, apparent alterations in the brain metabolic profiles of the ALF mice were detected after liver function improvement by performing 1H nuclear magnetic resonance spectroscopy, suggesting a risk of HE. These results showed that intestinal dysbacteriosis in ALF mice with liver function recovery is sufficient to induce liver injury and cognitive impairment. This indicates that continuous care may be necessary for monitoring microbial imbalance even in patients with ALF-induced HE whose liver function has recovered significantly.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Alghamdi B, Hassanein EHM, Alharthy SA, Farsi RM, Harakeh S. Vinpocetine attenuates methotrexate-induced hippocampal intoxication via Keap-1/Nrf2, NF-κB/AP-1, and apoptotic pathways in rats. Drug Chem Toxicol 2024; 47:1038-1049. [PMID: 38508707 DOI: 10.1080/01480545.2024.2329155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.
Collapse
Affiliation(s)
- Badrah Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Díaz L, Cortes C, Ugarte A, Trujillo A, Eguibar JR. Differences in memory performance: The effects of sex and reproductive experience on object recognition memory in high- and low-yawning Sprague‒Dawley rats. Physiol Behav 2024; 288:114713. [PMID: 39396667 DOI: 10.1016/j.physbeh.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The novel object recognition (NOR) test is an efficient way to measure nonspatial memory in rodents. The NOR performance of female and male rats is sexually dimorphic because memory performance is better in the former than in the latter. In females, maternal experience enhances spatial memory. We used the NOR test to evaluate short- and long-term recognition memory in both sexes in the high- and low-yawning sublines of rats (HY and LY, respectively), which were generated via a strict inbreeding process from the Sprague‒Dawley (SD) strain for more than ninety generations. Additionally, we evaluated the effect of maternal experience using nulliparous, primiparous, biparous, and multiparous HY, LY and SD dams. Our results revealed that LY rats presented less thigmotaxis, with lower central square crosses and more vertical exploration in the open-field arena, suggesting that they experienced anxiety. Additionally, LY males performed significantly better than LY females in short- and long-term NOR memory, and LY males performed significantly better than SD rats did. Among females, two maternal experiences negatively affected short-term memory in the LY and HY sublines with respect to primiparous dams, and HY dams had better memory performance in the NOR test than did SD dams. Our findings suggest that the yawning sublines are suitable for studying the neurobiological basis of different memory processes under different endocrine conditions in highly inbred groups of rats.
Collapse
Affiliation(s)
- Lilia Díaz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Carmen Cortes
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Araceli Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | | | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; Instituto Dirección General de Internacionalización, Benemérita Universidad Autónoma de Puebla.
| |
Collapse
|
6
|
Nemets VV, Vinogradova EP, Zavialov V, Grinevich VP, Budygin EA, Gainetdinov RR. Accumbal Dopamine Responses Are Distinct between Female Rats with Active and Passive Coping Strategies. Biomolecules 2024; 14:1280. [PMID: 39456212 PMCID: PMC11505701 DOI: 10.3390/biom14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping. The "active" subjects expressed a significantly higher level of activity directed toward handling stress experience, while the "passive" ones showed an escalated freezing pattern. Remarkably, these opposite behavioral manifestations were negatively correlated. Twenty-four hours following the SD exposure, decreased immobility latency in the Porsolt test and cognitive augmentation in the new object recognition evaluation were evident, along with an increase in electrically evoked mesolimbic DA release in passive coping rats. Rats exhibiting an active pattern of responses showed insignificant changes in immobility and cognitive performance as well as in evoked mesolimbic DA response. Furthermore, the dynamics of the decline and recovery of DA efflux under the depletion protocol were significantly altered in the passive but not active female rats. Taken together, these data suggest that female rats with a passive coping strategy are more susceptible to developing behavioral and neurochemical alterations within 24 h after stress exposure. This observation may represent both maladaptive and protective responses of an organism on a short timescale.
Collapse
Affiliation(s)
- Vsevolod V. Nemets
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Ekaterina P. Vinogradova
- Department of High Neuros Activity, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Vladislav Zavialov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Vladimir P. Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| |
Collapse
|
7
|
Neuhäusel TS, Gerevich Z. Sex-specific effects of subchronic NMDA receptor antagonist MK-801 treatment on hippocampal gamma oscillations. Front Neurosci 2024; 18:1425323. [PMID: 39170673 PMCID: PMC11335629 DOI: 10.3389/fnins.2024.1425323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/23/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists are widely used to pharmacologically model schizophrenia and have been recently established in the treatment of treatment-resistant major depression demonstrating that the pharmacology of this substance class is complex. Cortical gamma oscillations, a rhythmic neuronal activity associated with cognitive processes, are increased in schizophrenia and deteriorated in depressive disorders and are increasingly used as biomarker in these neuropsychiatric diseases. The opposite use of NMDA receptor antagonists in schizophrenia and depression raises the question how their effects are in accordance with the observed disease pathophysiology and if these effects show a consequent sex-specificity. In this study in rats, we investigated the effects of subchronic (14 days) intraperitoneal injections of the NMDA receptor antagonist MK-801 at a subanesthetic daily dose of 0.2 mg/kg on the behavioral phenotype of adult female and male rats and on pharmacologically induced gamma oscillations measured ex vivo from the hippocampus. We found that MK-801 treatment leads to impaired recognition memory in the novel object recognition test, increased stereotypic behavior and reduced grooming, predominantly in female rats. MK-801 also increased the peak power of hippocampal gamma oscillations induced by kainate or acetylcholine only in female rats, without affecting the peak frequency of the oscillations. The findings indicate that blockade of NMDA receptors enhances gamma oscillations predominantly in female rats and this effect is associated with behavioral changes in females. The results are in accordance with clinical electrophysiological findings and highlight the importance of hippocampal gamma oscillations as a biomarker in schizophrenia and depression.
Collapse
Affiliation(s)
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Reitz NL, Nunes PT, Savage LM. Exercise leads to sex-specific recovery of behavior and pathological AD markers following adolescent ethanol exposure in the TgF344-AD model. Front Behav Neurosci 2024; 18:1448691. [PMID: 39148897 PMCID: PMC11324591 DOI: 10.3389/fnbeh.2024.1448691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Human epidemiological studies suggest that heavy alcohol consumption may lead to earlier onset of Alzheimer's Disease (AD), especially in individuals with a genetic predisposition for AD. Alcohol-related brain damage (ARBD) during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study investigates if voluntary exercise in mid-adulthood can recover memory deficits caused by the interactions between adolescence ethanol exposure and AD-transgenes. Methods Male and female TgF344-AD and wildtype F344 rats were exposed to an intragastric gavage of water (control) or 5 g/kg of 20% ethanol (adolescent intermittent ethanol; AIE) for a 2 day on/off schedule throughout adolescence (PD27-57). At 6 months old, rats either remained in their home cage (stationary) or were placed in a voluntary wheel running apparatus for 4 weeks and then underwent several behavioral tests. The number of cholinergic neurons in the basal forebrain and measure of neurogenesis in the hippocampus were assessed. Results Voluntary wheel running recovers spatial working memory deficits selectively in female TgF344-AD rats exposed to AIE and improves pattern separation impairment seen in control TgF344-AD female rats. There were sex-dependent effects on brain pathology: Exercise improves the integration of recently born neurons in AIE-exposed TgF344-AD female rats. Exercise led to a decrease in amyloid burden in the hippocampus and entorhinal cortex, but only in male AIE-exposed TgF344-AD rats. Although the number of basal forebrain cholinergic neurons was not affected by AD-transgenes in either sex, AIE did reduce the number of basal forebrain cholinergic neurons in female rats. Discussion These data provide support that even after symptom onset, AIE and AD related cognitive decline and associated neuropathologies can be rescued with exercise in unique sex-specific ways.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| |
Collapse
|
9
|
Althagafy HS, Hassanein EHM. Fluoxetine attenuates chlorpyrifos-induced neuronal injury through the PPARγ, SIRT1, NF-κB, and JAK1/STAT3 signals. Int Immunopharmacol 2024; 136:112335. [PMID: 38815349 DOI: 10.1016/j.intimp.2024.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide in agriculture and homes. Exposure to organophosphates is associated with neurotoxicity. Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for depression and anxiety disorders. Studies have shown that FLX has neuroprotective, anti-inflammatory, antioxidant, and antiapoptotic effects. The molecular mechanisms underlying FLX are not fully understood. This work aimed to investigate the potential neuroprotective effect of FLX on CPF-induced neurotoxicity and the underlying molecular mechanisms involved. Thirty-two rats were randomly divided into four groups: (I) the vehicle control group; (II) the FLX-treated group (10 mg/kg/day for 28 days, p.o); (III) the CPF-treated group (10 mg/kg for 28 days); and (IV) the FLX+CPF group. FLX attenuated CPF-induced neuronal injury, as evidenced by a significant decrease in Aβ and p-Tau levels and attenuation of cerebral and hippocampal histological abrasion injury induced by CPF. FLX ameliorated neuronal oxidative stress, effectively reduced MDA production, and restored SOD and GSH levels through the coactivation of the PPARγ and SIRT1 proteins. FLX counteracted the neuronal inflammation induced by CPF by decreasing MPO, NO, TNF-α, IL-1β, and IL-6 levels by suppressing NF-κB and JAK1/STAT3 activation. The antioxidant and anti-inflammatory properties of FLX help to prevent CPF-induced neuronal intoxication.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
10
|
Gáll Z, Boros B, Kelemen K, Urkon M, Zolcseak I, Márton K, Kolcsar M. Melatonin improves cognitive dysfunction and decreases gliosis in the streptozotocin-induced rat model of sporadic Alzheimer's disease. Front Pharmacol 2024; 15:1447757. [PMID: 39135795 PMCID: PMC11317391 DOI: 10.3389/fphar.2024.1447757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Alzheimer's disease (AD) and other forms of dementia have a devastating effect on the community and healthcare system, as neurodegenerative diseases are causing disability and dependency in older population. Pharmacological treatment options are limited to symptomatic alleviation of cholinergic deficit and accelerated clearance of β-amyloid aggregates, but accessible disease-modifying interventions are needed especially in the early phase of AD. Melatonin was previously demonstrated to improve cognitive function in clinical setting and experimental studies also. Methods In this study, the influence of melatonin supplementation was studied on behavioral parameters and morphological aspects of the hippocampus and amygdala of rats. Streptozotocin (STZ) was injected intracerebroventricularly to induce AD-like symptoms in male adult Wistar rats (n = 18) which were compared to age-matched, sham-operated animals (n = 16). Melatonin was administered once daily in a dose of 20 mg/kg body weight by oral route. Behavioral analysis included open-field, novel object recognition, and radial-arm maze tests. TNF-α and MMP-9 levels were determined from blood samples to assess the anti-inflammatory and neuroprotective effects of melatonin. Immunohistological staining of brain sections was performed using anti-NeuN, anti-IBA-1, and anti-GFAP primary antibodies to evaluate the cellular reorganization of hippocampus. Results and Discussion The results show that after 40 days of treatment, melatonin improved the cognitive performance of STZ-induced rats and reduced the activation of microglia in both CA1 and CA3 regions of the hippocampus. STZ-injected animals had higher levels of GFAP-labeled astrocytes in the CA1 region, but melatonin treatment reduced this to that of the control group. In conclusion, melatonin may be a potential therapeutic option for treating AD-like cognitive decline and neuroinflammation.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Bernadett Boros
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Urkon
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - István Zolcseak
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Kincső Márton
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Kolcsar
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| |
Collapse
|
11
|
Ji J, Yi X, Gao X, Wang B, Zhang X, Shen X, Xia G. Synergistic effects of tilapia head protein hydrolysate and walnut protein hydrolysate on the amelioration of cognitive impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5419-5434. [PMID: 38334319 DOI: 10.1002/jsfa.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Ji
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Xiangzhou Yi
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xia Gao
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Bohui Wang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xueying Zhang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanghua Xia
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
12
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Akkaya EC, Koc B, Dalkiran B, Calis G, Dayi A, Kayatekin BM. High-intensity interval training ameliorates spatial and recognition memory impairments, reduces hippocampal TNF-alpha levels, and amyloid-beta peptide load in male hypothyroid rats. Behav Brain Res 2024; 458:114752. [PMID: 37944564 DOI: 10.1016/j.bbr.2023.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Thyroid hormones are critical for healthy brain functions at every stage of life. Hypothyroidism can cause severe cognitive dysfunction in patients who do not receive adequate treatment. Although thyroid hormone replacement alleviates cognitive decline in hypothyroid patients, there are studies showing that there is no complete recovery. The aim of this study was to investigate the effects of high-intensity interval training (HIIT) in hypothyroid rats on spatial and recognition memory, neuroinflammation, amyloid-beta load and compare these effects with T3 replacement. Hypothyroidism was induced and maintained by administration of 6-n-propyl-2-thiouracil (PTU) with their drinking water to 6-weeks-old male Sprague-Dawley rats for 7 weeks. The animals exercised in the treadmill according to the HIIT protocol for four weeks. T3 was injected intraperitoneally daily during the last two weeks of the study. All animals performed in the elevated plus maze test, Morris water maze test, novel object recognition test, and rotarod motor performance test in the last week of the study and then the animals were sacrificed. Amyloid beta (1-42) and TNFα levels were measured in the prefrontal cortex and hippocampus by ELISA. Anxiety-like behaviors did not significantly differ between groups. T3 replacement with or without HIIT increased motor performance in PTU-treated rats. HIIT and/or T3 replacement increased the exercise performance. HIIT and/or T3 replacement alleviated spatial and recognition memory impairments and normalized TNFα and amyloid-beta levels in the hippocampus in hypothyroid rats. In summary, regular physical exercise may have potential benefits in preserving cognitive functions in hypothyroid patients.
Collapse
Affiliation(s)
- Erhan Caner Akkaya
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey.
| | - Basar Koc
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | - Bahar Dalkiran
- Dokuz Eylul University, Department of Physiology, Institute of Health Sciences, Izmir, Turkey
| | - Guner Calis
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | - Ayfer Dayi
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | | |
Collapse
|
14
|
Thirtamara Rajamani K, Barbier M, Lefevre A, Niblo K, Cordero N, Netser S, Grinevich V, Wagner S, Harony-Nicolas H. Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Mol Psychiatry 2024; 29:412-424. [PMID: 38052983 PMCID: PMC11116117 DOI: 10.1038/s41380-023-02336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marie Barbier
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Cortical Systems and Behavior Laboratory, University of California San Diego, San Diego, CA, USA
| | - Kristi Niblo
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Cordero
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Chang T, Zhang M, Zhu J, Wang H, Li CC, Wu K, Zhang ZR, Jiang YH, Wang F, Wang HT, Wang XC, Liu Y. Simulated vestibular spatial disorientation mouse model under coupled rotation revealing potential involvement of Slc17a6. iScience 2023; 26:108498. [PMID: 38162025 PMCID: PMC10757040 DOI: 10.1016/j.isci.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spatial disorientation (SD) is the main contributor to flight safety risks, but research progress in animals has been limited, impeding a deeper understanding of the underlying mechanisms of SD. This study proposed a method for constructing and evaluating a vestibular SD mouse model, which adopted coupled rotational stimulation with visual occlusion. Physiological parameters were measured alongside behavioral indices to assess the model, and neuronal changes were observed through immunofluorescent staining. The evaluation of the model involved observing decreased colonic temperature and increased arterial blood pressure in mice exposed to SD, along with notable impairments in motor and cognitive function. Our investigation unveiled that vestibular SD stimulation elicited neuronal activation in spatially associated cerebral areas, such as the hippocampus. Furthermore, transcriptomic sequencing and bioinformatics analysis revealed the potential involvement of Slc17a6 in the mechanism of SD. These findings lay a foundation for further investigation into the molecular mechanisms underlying SD.
Collapse
Affiliation(s)
- Tong Chang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Jing Zhu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Han Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Cong-cong Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Kan Wu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhuo-ru Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Yi-hong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Fei Wang
- School of Basic Medicine, Air Force Medical University, Xi’an 710032, China
| | - Hao-tian Wang
- School of Basic Medicine, Air Force Medical University, Xi’an 710032, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Yong Liu
- School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
16
|
Tientcheu JPD, Ngueguim FT, Gounoue RK, Mbock MA, Ngapout R, Kandeda AK, Dimo T. The extract of Sclerocarya birrea, Nauclea latifolia, and Piper longum mixture ameliorates diabetes-associated cognitive dysfunction. Metab Brain Dis 2023; 38:2773-2796. [PMID: 37821784 DOI: 10.1007/s11011-023-01291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Diabetes-associated cognitive dysfunction is linked to chronic hyperglycemia, oxidative stress, inflammation, cholinergic dysfunction, and neuronal degeneration. We investigated the antidiabetic and neuroprotective activity of a mixture of Sclerocarya birrea, Nauclea latifolia, and Piper longum (SNP) in type 2 diabetic (T2D) rat model-induced memory impairment. Fructose (10%) and streptozotocin (35 mg/kg) were used to induce T2D in male Wistar rats. Diabetic animals received distilled water, metformin (200 mg/kg), or SNP mixture (75, 150, or 300 mg/kg). HPLC-MS profiling of the mixture was performed. Behavioral testing was conducted using the Y-maze, NORT, and Morris water mazes to assess learning and memory. Biochemical markers were evaluated, including carbohydrate metabolism, oxidative/nitrative stress, pro-inflammatory markers, and acetylcholinesterase activity. Histopathological examination of the pancreas and hippocampus was also performed. Fructose/STZ administration resulted in T2D, impaired short- and long-term memory, significantly increased oxidative/nitrative stress, pro-inflammatory cytokine levels, acetylcholinesterase activity (AChE), hippocampal neuronal loss and degeneration in CA1 and CA3 subfields, and neuronal vacuolation in DG. SNP mixture at 150 and 300 mg/kg significantly improved blood glucose and memory function in diabetic rats. The mixture reduced oxidative/nitrative stress and increased endogenous antioxidant levels. It also reduced serum IL-1β, INF-γ and TNF-α levels and ameliorated AChE activity. Histologically, SNP protected hippocampus neurons against T2D-induced neuronal necrosis and degeneration. We conclude that the aqueous extract of SNP mixture has antidiabetic and neuroprotective activities thanks to active metabolites identified in the plant mixture, which consequently normalized blood glucose, protected hippocampus neurons, and improved memory function in diabetic rats.
Collapse
Affiliation(s)
| | - Florence Tsofack Ngueguim
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Racéline Kamkumo Gounoue
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Michel Arnaud Mbock
- Department of Biochemistry, Laboratory of Biochemistry, Faculty of Science, University of Douala, PO Box 24 157, Douala, Cameroon
| | - Rodrigue Ngapout
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Antoine Kavaye Kandeda
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Théophile Dimo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
17
|
Boukari O, Khemissi W, Ghodhbane S, Lahbib A, Tebourbi O, Rhouma KB, Sakly M, Hallegue D. Effects of testosterone replacement on lipid profile, hepatotoxicity, oxidative stress, and cognitive performance in castrated wistar rats. Arch Ital Urol Androl 2023; 95:11593. [PMID: 38193231 DOI: 10.4081/aiua.2023.11593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Androgen deficiency is associated with multiple biochemical and behavioral disorders. This study investigated the effects of testosterone replacement and Spirulina Platensis association on testosterone deficiency-induced metabolic disorders and memory impairment. METHODS Adult male rats were randomly and equally divided into four groups and received the following treatments for 20 consecutive days. CONTROL GROUP non-castrated rats received distilled water. Castrated group received distilled water. Testosterone treated group: castrated rats received 0.20 mg of testosterone dissolved in corn oil by subcutaneous injection (i.p.). Spirulina co-treated group: castrated rats received 0.20 mg of testosterone (i.p.) dissolved in corn oil followed by 1000 mg/kg of Spirulina per os. RESULTS Data showed that castration induced an increase in plasma ALT, AST, alkaline phosphatase (PAL), cholesterol, and triglycerides level. Castrated rats showed a great elevation in SOD and CAT activities and MDA and H2O2 levels in the prostate, seminal vesicles, and brain. Testosterone deficiency was also associated with alteration of the spatial memory and exploratory behaviour. Testosterone replacement either alone or with Spirulina combination efficiently improved most of these biochemical parameters and ameliorated cognitive abilities in castrated rats. CONCLUSIONS Testosterone replacement either alone or in combination with Spirulina improved castration-induced metabolic, oxidative, and cognitive alterations.
Collapse
Affiliation(s)
- Oumayma Boukari
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Wahid Khemissi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Soumaya Ghodhbane
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Aida Lahbib
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Dorsaf Hallegue
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| |
Collapse
|
18
|
Zhao P, Zhang J, Kuai J, Li L, Li X, Feng N, Du H, Li C, Wang Q, Deng B. TAT-PEP Alleviated Cognitive Impairment by Alleviating Neuronal Mitochondria Damage and Apoptosis After Cerebral Ischemic Reperfusion Injury. Mol Neurobiol 2023; 60:5655-5671. [PMID: 37335462 PMCID: PMC10471703 DOI: 10.1007/s12035-023-03404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/27/2023] [Indexed: 06/21/2023]
Abstract
Paired immunoglobulin-like receptor B (PirB) was identified as a myelin-associated inhibitory protein (MAIP) receptor that plays a critical role in axonal regeneration, synaptic plasticity and neuronal survival after stroke. In our previous study, a transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that can block the interactions between MAIs and PirB. We found that TAT-PEP treatment improved axonal regeneration, CST projection and long-term neurobehavioural recovery after stroke through its effects on PirB-mediated downstream signalling. However, the effect of TAT-PEP on the recovery of cognitive function and the survival of neurons also needs to be investigated. In this study, we investigated whether pirb RNAi could alleviate neuronal injury by inhibiting the expression of PirB following exposure to oxygen-glucose deprivation (OGD) in vitro. In addition, TAT-PEP treatment attenuated the volume of the brain infarct and promoted the recovery of neurobehavioural function and cognitive function. This study also found that TAT-PEP exerts neuroprotection by reducing neuronal degeneration and apoptosis after ischemia-reperfusion injury. In addition, TAT-PEP improved neuron survival and reduced lactate dehydrogenase (LDH) release in vitro. Results also showed that TAT-PEP reduced malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) accumulation in OGD-injured neurons. The possible mechanism was that TAT-PEP could contribute to the damage of neuronal mitochondria and affect the expression of cleaved caspase 3, Bax and Bcl-2. Our results suggest that PirB overexpression in neurons after ischaemic-reperfusion injury induces neuronal mitochondrial damage, oxidative stress and apoptosis. This study also suggests that TAT-PEP may be a potent neuroprotectant with therapeutic potential for stroke by reducing neuronal oxidative stress, mitochondrial damage, degeneration and apoptosis in ischemic stroke.
Collapse
Affiliation(s)
- Pin Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Anesthesiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Jiapo Zhang
- Department of Emergency Medicine, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - JianKe Kuai
- Department of Anesthesiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Xuying Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Namin Feng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hailiang Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chen Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
19
|
Farkhakfar A, Hassanpour S, Zendehdel M. Resveratrol plays neuroprotective role on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Neurosci Lett 2023; 813:137436. [PMID: 37586559 DOI: 10.1016/j.neulet.2023.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
This study aimed to determine effects of the resveratrol on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Twenty-four male mice were allocated into four experimental groups as control, ketamine (20 mg/kg), resveratrol (80 mg/kg) and co-administration of the ketamine (20 mg/kg) + resveratrol (80 mg/kg). Mice were received resveratrol for 30 days and ketamine was used for an animal model of schizophrenia and was injected from days 16 to 30 of the study. After the drug administration was finished, schizophrenia-like behaviors were evaluated using object recognition test, tail suspension test, forced swimming test and open field test and brain malondialdehyde, glutathione peroxidase, superoxide dismutase and catalase levels were determined. According to the results, ketamine treatment significantly decreased body weight and pretreatment with resveratrol elevated body weight compared to ketamine group (P < 0.05). Ketamine treatment significantly decreased number of the cross in open field test and pretreatment with resveratrol improved i (P < 0.05). Immobility time in tail suspension and forced swimming tests increased in mice treated with ketamine (P < 0.05). Pretreatment with resveratrol diminished immobility time compared to ketamine group (P < 0.05). Ketamine significantly decreased memory deficits while pretreatment with resveratrol significantly reduced the memory deficits induced by ketamine (P < 0.05). Brain MDA increased in both cortical and sub-cortical area in ketamine treated mice while pretreatment with resveratrol decreased ketamine-induced elevation in MDA (P < 0.05). Ketamine significantly decreased brain SOD, GPx and CAT levels while pretreatment with resveratrol improved SOD, GPx and CAT levels (P < 0.05). Findings suggested resveratrol has neuroprotective effects against ketamine-induced behavioral deficits and oxidative damages.
Collapse
Affiliation(s)
- Alireza Farkhakfar
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
20
|
Zhuo C, Tian H, Chen G, Ping J, Yang L, Li C, Zhang Q, Wang L, Mac X, Li R, Sun Y, Song X, Chen L. Low-dose lithium mono- and adjunctive therapies improve MK-801-induced cognitive impairment and schizophrenia-like behavior in mice - Evidence from altered prefrontal lobe Ca 2+ activity. J Affect Disord 2023:S0165-0327(23)00709-7. [PMID: 37244539 DOI: 10.1016/j.jad.2023.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Few studies have evaluated lithium either as monotherapy or in combination with anti-psychotic agents to improve cognition in murine models of schizophrenia. METHODS Visualization of Ca2+ activity in the prefrontal cortex was used to characterize brain neural activity. Novel object recognition (NOR), Morris water maze (MWM), and fear conditioning (FCT) tests were used to characterize cognitive performance; while pre-pulse inhibition (PPI), elevated plus maze (EPM) and the open field test (OFT) were used to characterize schizophrenia-like behavior. RESULTS A 28-day course of low-dose lithium (human equivalent dose of 250 mg/day) combined with moderate-dose quetiapine (human equivalent dose of 600 mg/day) improved Ca2+ ratio by 70.10 %, PPI by 69.28 %, NOR by 70.09 %, MWM by 71.28 %, FCT by 68.56 %, EPM by 70.95 % and OFT by 75.23 % compared to the results of positive controls. Unexpectedly, moderate-dose lithium (human equivalent dose of 500 mg/day) used either as monotherapy or as an adjunct with quetiapine worsened Ca2+ activity, PPI, MWM, FCT, EPM, and OPT. LIMITATIONS Our study cannot explain the contrasting positive and negative effects of low-dose and moderate-dose lithium, respectively, when used either as monotherapies or as adjuncts. Further studies, especially Western blotting, may reveal molecular mechanisms of action. CONCLUSIONS Low-dose lithium (human equivalent dose of 250 mg/day) combined with moderate-dose quetiapine (human equivalent dose of 600 mg/day) provided the best improvements. Furthermore, benefits persisted for 14 days post-treatment. Our data provide directions for further research of therapeutic alternatives to mitigate schizophrenia-related cognopathy.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Animal Micro-imaging Center (AMC) of TJ4CH-WZ7PH Joint Mental Health Institute, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China; Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China; Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou 450000, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Guangdong Chen
- Animal Micro-imaging Center (AMC) of TJ4CH-WZ7PH Joint Mental Health Institute, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Jing Ping
- Animal Micro-imaging Center (AMC) of TJ4CH-WZ7PH Joint Mental Health Institute, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Lei Yang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Chao Li
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Xiaoyan Mac
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Ranli Li
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Yun Sun
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Langlang Chen
- Animal Micro-imaging Center (AMC) of TJ4CH-WZ7PH Joint Mental Health Institute, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| |
Collapse
|
21
|
Akefe IO, Nyan ES, Adegoke VA, Lamidi IY, Ameh MP, Chidiebere U, Ubah SA, Ajayi IE. Myrtenal improves memory deficits in mice exposed to radiofrequency-electromagnetic radiation during gestational and neonatal development via enhancing oxido-inflammatory, and neurotransmitter functions. Heliyon 2023; 9:e15321. [PMID: 37123912 PMCID: PMC10133755 DOI: 10.1016/j.heliyon.2023.e15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Radiofrequency-electromagnetic radiation (RF-EMR) exposure during gestational and neonatal development may interact with the foetus and neonate considered hypersensitive to RF-EMR, consequently resulting in developmental defects associated with neuropsychological and neurobehavioral disorders, including learning and memory impairment. This study assessed the potential of Myrtenal (Myrt) to improve memory deficits in C57BL/6 mice exposed to RF-EMR during gestational and neonatal development. Method Thirty-five male mice were randomly allocated into 5 cohorts, each comprising of 7 mice. Group I was administered vehicle, Group II: RF-EMR (900 MHz); Group III: RF-EMR (900 MHz) + 100 mg/kg Myrt; Group IV: RF-EMR (900 MHz) + 200 mg/kg Myrt; and Group V: RF-EMR (900 MHz) + donepezil 0.5 mg/kg. Results Myrt treatment improved short-term memory performance in RF-EMR (900 MHz)-exposed mice by augmenting activities of endogenous antioxidant enzymes and proinflammatory cytokines, thereby protecting the brain from oxido-inflammatory stress. Additionally, Myrt restored the homeostasis of neurotransmitters in RF-EMR-exposed animals. Conclusion Results from the present study shows that exposure to RF-EMR impaired short-term memory in animals and altered the response of markers of oxido-inflammatory stress, and neurotransmitters. It is therefore conceivable that the recommendation of Myrt-enriched fruits may offer protective benefits for foeti and neonates prone to RF-EMR exposure.
Collapse
Affiliation(s)
- Isaac Oluwatobi Akefe
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Ezekiel Stephen Nyan
- Department of Science and Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
| | | | - Ibrahim Yusuf Lamidi
- Department of Veterinary Pharmacology and Toxicology, University of Maiduguri, Maiduguri, Nigeria
| | - Matthew Phillip Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Uchendu Chidiebere
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Itopa Etudaye Ajayi
- Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria
- Corresponding author.
| |
Collapse
|
22
|
Sun L, Niu K, Guo J, Tu J, Ma B, An J. Dexmedetomidine attenuates postoperative spatial memory impairment after surgery by reducing cytochrome C. BMC Anesthesiol 2023; 23:85. [PMID: 36941579 PMCID: PMC10026454 DOI: 10.1186/s12871-023-02035-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Anesthesia and surgery can induce perioperative neurocognitive disorders (PND). Mitochondrial dysfunction has been proposed to be one of the earliest triggering events in surgery-induced neuronal damage. Dexmedetomidine has been demonstrated to attenuate the impairment of cognition in aged rats induced by surgery in our previous study. METHODS Male Sprague-Dawley rats underwent hepatic apex resection under anesthesia with propofol to clinically mimic human abdominal surgery. The rats were divided into three groups: Control group, Model group and Dexmedetomidine (Dex) group. Cognitive function was evaluated with the Morris water maze (MWM), Open Field Test (OFT)and Novel object recognition task (NOR). Ultrastructural change in neuronal mitochondria was measured by transmission electron microscopy. Mitochondrial function was measured by mitochondrial membrane potential and activities of mitochondrial complexes. Neuronal morphology was observed with H&E staining and the activation of glial cells was observed by immunohistochemistry in the hippocampus. Protein levels were measured by Western blot (WB) and immunofluorescence at 3 and 7 days after surgery. RESULTS Surgery-induced cognitive decline lasts three days, but not seven days after surgery in the model group. Transmission electron microscope showed the mitochondrial structure damage in the model group, similar changes were not induced in the Dex group. Dexmedetomidine may reverse the decrease in mitochondrial membrane potential and mitochondrial complex activity. Compared with the Control group, the expression of cytochrome c was significantly increased in model group by Western blot and immunofluorescence on days 3, but not day 7. Rats from the Model group expressed significantly greater levels of Iba-1 and GFAP compared with the Control group and the Dex group. CONCLUSION Dexmedetomidine appears to reverse surgery-induced behavior, mitigate the higher density of Iba-1 and GFAP, reduce the damage of mitochondrial structure and function by alleviating oxidative stress and protect mitochondrial respiratory chain, thus increasing cytochrome c oxidase (COX) expression and downregulate the expression of cytochrome c protein in the hippocampus of rats.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, Shandong, 261000, China
| | - Kun Niu
- Department of Anesthesiology, Pain & Sleep Medicine, Medical University &Beijing Institute of Translational Medicine, Aviation General Hospital of China, Chinese Academy of Sciences, Beijing, China
| | - Jian Guo
- Department of Anesthesiology, Pain & Sleep Medicine, Medical University &Beijing Institute of Translational Medicine, Aviation General Hospital of China, Chinese Academy of Sciences, Beijing, China
| | - Jingru Tu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Baofeng Ma
- Department of Anesthesiology, Pain & Sleep Medicine, Medical University &Beijing Institute of Translational Medicine, Aviation General Hospital of China, Chinese Academy of Sciences, Beijing, China
| | - Jianxiong An
- School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, Shandong, 261000, China.
- Department of Anesthesiology, Pain& Sleep Medicine, Affiliated Hospital of Weifang Medical University, Shandong, China.
- Department of Anesthesiology, Pain & Sleep Medicine, Medical University &Beijing Institute of Translational Medicine, Aviation General Hospital of China, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Brown J, Grayson B, Neill JC, Harte M, Wall MJ, Ngomba RT. Oscillatory Deficits in the Sub-Chronic PCP Rat Model for Schizophrenia Are Reversed by mGlu5 Receptor-Positive Allosteric Modulators VU0409551 and VU0360172. Cells 2023; 12:cells12060919. [PMID: 36980260 PMCID: PMC10047164 DOI: 10.3390/cells12060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The cognitive deficits of schizophrenia are linked to imbalanced excitatory and inhibitory signalling in the prefrontal cortex (PFC), disrupting gamma oscillations. We previously demonstrated that two mGlu5 receptor-positive allosteric modulators (PAMs), VU0409551 and VU0360172, restore cognitive deficits in the sub-chronic PCP (scPCP) rodent model for schizophrenia via distinct changes in PFC intracellular signalling molecules. Here, we have assessed ex vivo gamma oscillatory activity in PFC slices from scPCP rats and investigated the effects of VU0409551 and VU0360172 upon oscillatory power. mGlu5 receptor, protein kinase C (PKC), and phospholipase C (PLC) inhibition were also used to examine ‘modulation bias’ in PAM activity. The amplitude and area power of gamma oscillations were significantly diminished in the scPCP model. Slice incubation with either VU0409551 or VU0360172 rescued scPCP-induced oscillatory deficits in a concentration-dependent manner. MTEP blocked the PAM-induced restoration of oscillatory power, confirming the requirement of mGlu5 receptor modulation. Whilst PLC inhibition prevented the power increase mediated by both PAMs, PKC inhibition diminished the effects of VU0360172 but not VU0409551. This aligns with previous reports that VU0409551 exhibits preferential activation of the phosphatidylinositol-3-kinase (PI3K) signalling pathway over the PKC cascade. Restoration of the excitatory/inhibitory signalling balance and gamma oscillations may therefore underlie the mGluR5 PAM-mediated correction of scPCP-induced cognitive deficits.
Collapse
Affiliation(s)
- Jessica Brown
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Ben Grayson
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Joanna C. Neill
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Michael Harte
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| | - Mark J. Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| | - Richard T. Ngomba
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| |
Collapse
|
24
|
Novel object recognition in Octopus maya. Anim Cogn 2023; 26:1065-1072. [PMID: 36809584 PMCID: PMC10066149 DOI: 10.1007/s10071-023-01753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The Novel Object Recognition task (NOR) is widely used to study vertebrates' memory. It has been proposed as an adequate model for studying memory in different taxonomic groups, allowing similar and comparable results. Although in cephalopods, several research reports could indicate that they recognize objects in their environment, it has not been tested as an experimental paradigm that allows studying different memory phases. This study shows that two-month-old and older Octopus maya subjects can differentiate between a new object and a known one, but one-month-old subjects cannot. Furthermore, we observed that octopuses use vision and tactile exploration of new objects to achieve object recognition, while familiar objects only need to be explored visually. To our knowledge, this is the first time showing an invertebrate performing the NOR task similarly to how it is performed in vertebrates. These results establish a guide to studying object recognition memory in octopuses and the ontological development of that memory.
Collapse
|
25
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
26
|
Li Z, He Z, Li Z, Sun T, Zhang W, Xiang H. Differential synaptic mechanism underlying the neuronal modulation of prefrontal cortex, amygdala, and hippocampus in response to chronic postsurgical pain with or without cognitive deficits in rats. Front Mol Neurosci 2022; 15:961995. [PMID: 36117908 PMCID: PMC9478413 DOI: 10.3389/fnmol.2022.961995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic Postsurgical Pain (CPSP) is well recognized to impair cognition, particularly memory. Mounting evidence suggests anatomic and mechanistic overlap between pain and cognition on several levels. Interestingly, the drugs currently used for treating chronic pain, including opioids, gabapentin, and NMDAR (N-methyl-D-aspartate receptor) antagonists, are also known to impair cognition. So whether pain-related cognitive deficits have different synaptic mechanisms as those underlying pain remains to be elucidated. In this context, the synaptic transmission in the unsusceptible group (cognitively normal pain rats) was isolated from that in the susceptible group (cognitively compromised pain rats). It was revealed that nearly two-thirds of the CPSP rats suffered cognitive impairment. The whole-cell voltage-clamp recordings revealed that the neuronal excitability and synaptic transmission in the prefrontal cortex and amygdala neurons were enhanced in the unsusceptible group, while these parameters remained the same in the susceptible group. Moreover, the neuronal excitability and synaptic transmission in hippocampus neurons demonstrated the opposite trend. Correspondingly, the levels of synaptic transmission-related proteins demonstrated a tendency similar to that of the excitatory and inhibitory synaptic transmission. Furthermore, morphologically, the synapse ultrastructure varied in the postsynaptic density (PSD) between the CPSP rats with and without cognitive deficits. Together, these observations indicated that basal excitatory and inhibitory synaptic transmission changes were strikingly different between the CPSP rats with and without cognitive deficits.
Collapse
|
27
|
Wang J, Dai GD. Comparative Effects of Brominated Flame Retardants BDE-209, TBBPA, and HBCD on Neurotoxicity in Mice. Chem Res Toxicol 2022; 35:1512-1518. [PMID: 35950316 DOI: 10.1021/acs.chemrestox.2c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brominated flame retardants (BFRs) are ubiquitous industrial chemicals. In China, BFRs that are applied in large quantities include decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCD). Although findings are not always unequivocal, mounting evidence in vivo suggests that the BFRs have potential neurotoxicity. The present study aimed to assess and compare the neurotoxic effects of these three BFRs' exposure. Male mice were orally exposed to BDE-209, TBBPA, or HBCD at 50 and 100 mg/kg bw/day for 28 days. The cognitive behavior, oxidative stress (ROS, MDA, and GSH), apoptosis-related genes (caspase-3, bax, and bcl-2), memory-related proteins (BDNF and PSD-95), and neurotransmitters (AChE and ChAT) were detected comparatively. Results showed that high doses of BDE-209, TBBPA, and HBCD exposure impaired spatial memory of mice, elevated ROS and MDA and reduced GSH levels of hippocampus, upregulated caspase-3 and bax expressions, decreased BDNF and PSD-95 levels, and disordered AChE and ChAT levels. Notably, BDE-209 caused greater adverse effects > HBCD > TBBPA. This study confirms and extends that these three BFRs had similar neurotoxic effects at current concentrations, although they may be more or less toxic.
Collapse
Affiliation(s)
- Juan Wang
- Clinical Nursing Department, Nursing College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Guo-Dong Dai
- Department of Neurosurgery, Xianning Central Hospital, Xianning 437100, PR China
| |
Collapse
|
28
|
Li Z, Sun T, He Z, Li Z, Zhang W, Wang J, Xiang H. SCFAs Ameliorate Chronic Postsurgical Pain-Related Cognition Dysfunction via the ACSS2-HDAC2 Axis in Rats. Mol Neurobiol 2022; 59:6211-6227. [PMID: 35902549 PMCID: PMC9463230 DOI: 10.1007/s12035-022-02971-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Patients with chronic postsurgical pain (CPSP) frequently exhibit comorbid cognitive deficits. Recent observations have emphasized the critical effects of gut microbial metabolites, like short-chain fatty acids (SCFAs), in regulating cognitive function. However, the underlying mechanisms and effective interventions remain unclear. According to hierarchical clustering and 16S rRNA analysis, over two-thirds of the CPSP rats had cognitive impairment, and the CPSP rats with cognitive impairment had an aberrant composition of gut SCFA-producing bacteria. Then, using feces microbiota transplantation, researchers identified a causal relationship between cognitive-behavioral and microbic changes. Similarly, the number of genera that generated SCFAs was decreased in the feces from recipients of cognitive impairment microbiota. Moreover, treatment with the SCFAs alleviated the cognitive-behavioral deficits in the cognitively compromised pain rats. Finally, we observed that SCFA supplementation improved histone acetylation and abnormal synaptic transmission in the medial prefrontal cortex (mPFC), hippocampal CA1, and central amygdala (CeA) area via the ACSS2 (acetyl-CoA synthetase2)-HDAC2 (histone deacetylase 2) axis. These findings link pain-related cognition dysfunction, gut microbiota, and short-chain fatty acids, shedding fresh insight into the pathogenesis and therapy of pain-associated cognition dysfunction.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
29
|
High Fructose and High Fat Diet Impair Different Types of Memory through Oxidative Stress in a Sex- and Hormone-Dependent Manner. Metabolites 2022; 12:metabo12040341. [PMID: 35448528 PMCID: PMC9024673 DOI: 10.3390/metabo12040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolic syndrome (MetS) contributes to the spread of cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. Evaluation of sex- and hormone-dependent changes in body weight, blood pressure, blood lipids, oxidative stress markers, and alterations in different types of memory in Sprague–Dawley rats fed with a high fat and high fructose (HFHF) diet were evaluated. After 12 weeks of feeding the male and female rats with HFHF, body weight gain, increase in blood pressure, and generation of dyslipidemia compared to the animals fed with chow diet were observed. Regarding memory, it was noted that gonadectomy reverted the effects of HFHF in the 24 h novel object recognition task and in spatial learning/memory analyzed through Morris water maze, males being more affected than females. Nevertheless, gonadectomy did not revert long-term memory impairment in the passive avoidance task induced by HFHF nor in male or female rats. On the other hand, sex-hormone–diet interaction was observed in the plasma concentration of malondialdehyde and nitric oxide. These results suggest that the changes observed in the memory and learning of MetS animals are sex- and hormone-dependent and correlate to an increase in oxidative stress.
Collapse
|
30
|
Krishna NK, Cunnion KM, Parker GA. The EPICC Family of Anti-Inflammatory Peptides: Next Generation Peptides, Additional Mechanisms of Action, and In Vivo and Ex Vivo Efficacy. Front Immunol 2022; 13:752315. [PMID: 35222367 PMCID: PMC8863753 DOI: 10.3389/fimmu.2022.752315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
The EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety. RLS-0071 has been demonstrated to possess other mechanisms of action in addition to complement blockade that include the inhibition of neutrophil-driven myeloperoxidase (MPO) activity, inhibition of neutrophil extracellular trap (NET) formation as well as intrinsic antioxidant activity mediated by vicinal cysteine residues contained within the peptide sequence. RLS-0071 has been tested in various ex vivo and in vivo systems and has shown promise for the treatment of both immune-mediated hematological diseases where alterations in the classical complement pathway plays an important pathogenic role as well as in models of tissue-based diseases such as acute lung injury and hypoxic ischemic encephalopathy driven by both complement and neutrophil-mediated pathways (i.e., MPO activity and NET formation). Next generation EPICC peptides containing a sarcosine residue substitution in various positions within the peptide sequence possess aqueous solubility in the absence of PEGylation and demonstrate enhanced complement and neutrophil inhibitory activity compared to RLS-0071. This review details the development of the EPICC peptides, elucidation of their dual-acting complement and neutrophil inhibitory activities and efficacy in ex vivo systems using human clinical specimens and in vivo efficacy in animal disease models.
Collapse
Affiliation(s)
- Neel K Krishna
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| | - Kenji M Cunnion
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States.,Department of Pediatrics, Children's Hospital of The King's Daughters, Norfolk, VA, United States.,Children's Specialty Group, Norfolk, VA, United States.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Grace A Parker
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| |
Collapse
|
31
|
Kim MJ, Kim JH, Lee S, Cho EJ, Kim HY. Protective effects of Aster yomena (Kitam.) Honda from cognitive dysfunction induced by high-fat diet. J Food Biochem 2022; 46:e14138. [PMID: 35322445 DOI: 10.1111/jfbc.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
In our study, we investigated whether Aster yomena (Kitam.) Honda (AY) improved cognitive impairment which results from consumption of high-fat diet (HFD). When ethyl acetate fraction from AY (EFAY) was administered to C57BL/6J mice fed with 60% HFD, EFAY significantly enhanced cognitive ability that was impaired by HFD in T-maze test and novel object recognition test. Furthermore, EFAY increased memory and learning functions that were proven during Morris water maze test. We further elucidated protective mechanisms of EFAY against cognitive decline that resulted from obesity by western blotting. In the brain, HFD increased neuronal inflammation and disturbed insulin receptor substrate-1 (IRS-1)/Akt pathway. However, EFAY significantly downregulated inflammation-related protein expressions such as nuclear factor-κB interleukin-1β, inducible nitric oxide synthase and cyclooxygenase-2, compared with the HFD-fed control group. Furthermore, the IRS-1/Akt pathway was regulated by EFAY, indicating that EFAY ameliorated insulin resistance in the brain. PRACTICAL APPLICATIONS: Obesity and its complications increase the risk for developing cognitive dysfunction such as dementia. Administration of ethyl acetate fraction from AY (EFAY)-attenuated cognitive and memory impairment by inhibitions of neuronal oxidative stress and low-grade chronic inflammation in high-fat diet (HFD)-induced cognitive impairment mouse model. In addition, EFAY-administered mice disturbed cerebral insulin receptor substrate-1 (IRS-1)/Akt pathway. These data suggest that EFAY-improved cognitive impairment induced by HFD through modulation of insulin resistance and inflammation. Therefore, we proposed that AY could be a potential agent to prevent cognitive dysfunction induced by obesity and insulin resistance.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
32
|
He S, Peng WB, Fu XJ, Zhou HL, Wang ZG. Deep Sea Water Alleviates Tau Phosphorylation and Cognitive Impairment via PI3K/Akt/GSK-3β Pathway. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:68-81. [PMID: 34982299 DOI: 10.1007/s10126-021-10087-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Deep sea water (DSW), as a noticeable natural resource, has been demonstrated to contain high levels of beneficial minerals and exert marked anti-diabetes effects. Epidemiological studies show that type 2 diabetes mellitus (T2DM) is closely related to high danger of Alzheimer's disease (AD); moreover, Akt/GSK-3β signaling is the main underlying pathway that connects these two diseases. Besides, it has been demonstrated that minerals in DSW, such as Mg, Se, and Zn, could effectively treat cognitive deficits associated with AD. Herein, we first observed the protection of DSW against cognitive dysfunction in T2DM rats, then furtherly explored the neuroprotective mechanism in SH-SY5Y cell model. In T2DM rats, DSW obviously elevated the concentrations of elements Mg, V, Cr, Zn, and Se in brain and improved learning and memory dysfunction in behavior assays, including Morris water maze (MWM) and new object recognition (NOR). Western blot (WB) results demonstrated that DSW could stimulate PI3K/Akt/GSK-3β signaling, arrest Tau hyperphosphorylation at serine (Ser) 396 and threonine (Thr)231, which was confirmed by immunohistochemistry (IHC). In order to further confirm the mechanism, we employed wortmannin to inhibit PI3K in SH-SY5Y cells; results showed that pretreatment with wortmannin almost abolished DSW-induced decreases in phosphorylated Tau. Taken together, these data elucidated that DSW could improve Tau hyperphosphorylation and cognitive impairment, which were closely related with the stimulation of Akt/GSK-3β signaling, and the neuroprotective effects of DSW should be contributed to the synergistic effects of major and trace elements in it, such as Mg, V, Cr, Zn, and Se. These experimental evidence indicated that DSW may be explored as natural neuroprotective food for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Shan He
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266071, China.
| | - Wei-Bing Peng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xian-Jun Fu
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266071, China
| | - Hong-Lei Zhou
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhen-Guo Wang
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
33
|
Brown J, Iacovelli L, Di Cicco G, Grayson B, Rimmer L, Fletcher J, Neill JC, Wall MJ, Ngomba RT, Harte M. The comparative effects of mGlu5 receptor positive allosteric modulators VU0409551 and VU0360172 on cognitive deficits and signalling in the sub-chronic PCP rat model for schizophrenia. Neuropharmacology 2022; 208:108982. [DOI: 10.1016/j.neuropharm.2022.108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
|
34
|
Shang L, Liu Y, Li J, Pan G, Zhou F, Yang S. Emodin Protects Sepsis Associated Damage to the Intestinal Mucosal Barrier Through the VDR/ Nrf2 /HO-1 Pathway. Front Pharmacol 2022; 12:724511. [PMID: 34987380 PMCID: PMC8721668 DOI: 10.3389/fphar.2021.724511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone extracted from Polygonum multiflorum, which has potential anti-inflammatory and anti-oxidative stress effects. However, the possible protective mechanism of emodin is unclear. The purpose of this study was to investigate the protective mechanism of emodin against cecal ligation and puncture and LPS-induced intestinal mucosal barrier injury through the VDR/ Nrf2 /HO-1 signaling pathway. Methods: We established a mouse model of sepsis by cecal ligation and puncture (CLP), and stimulated normal intestinal epithelial cells with lipopolysaccharide (LPS). VDR in cellswas down-regulated by small interfering ribonucleic acid (siRNA) technology.Mice were perfused with VDR antagonists ZK168281 to reduce VDR expression and mRNA and protein levels of VDR and downstream molecules were detected in cells and tissue. Inflammation markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)) and oxidative stress markers (superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH)) were measured in serum and intestinal tissueby enzym-linked immunosorbent assay. The expression of VDR in intestinal tissue was detected by immunofluorescence. Histopathological changes were assessed by hematoxylin and eosin staining. Results: In NCM460 cells and animal models, emodin increased mRNA and protein expression of VDR and its downstream molecules. In addition, emodin could inhibit the expressions of TNF-α, IL-6 and MDA in serum and tissue, and increase the levels of SOD and GSH. The protective effect of emodin was confirmed in NCM460 cells and mice, where VDR was suppressed. In addition, emodin could alleviate the histopathological damage of intestinal mucosal barrier caused by cecal ligation and puncture. Conclusion: Emodin has a good protective effect against sepsis related intestinal mucosal barrier injury, possibly through the VDR/ Nrf2 /HO-1 pathway.
Collapse
Affiliation(s)
- Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangtao Pan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Social housing promotes cognitive function and reduces anxiety and depressive-like behaviours in rats. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to assess the impact of social isolation of rats in the post-weaning period using behavioural tests aimed at assessing cognitive function, anxiety, and depressive-like behaviours. The monitoring was performed in male Wistar rats which were housed after weaning either individually (n = 8) or in pairs (n = 8) for 33 days. In the open field, rats kept in isolation reared less often (P < 0.05) than pair-housed rats. In the elevated plus-maze test, pair-housed rats entered the open arm more frequently (P = 0.002) and stayed in the closed arm less often (P = 0.019) compared to rats housed in isolation. In the forced swim test, climbing was seen more frequently (P = 0.016) in pair-housed rats whereas immobility was more common (P = 0.006) in rats housed individually. In the novel object recognition test, the pair-housed rats preferred (P = 0.014) the novel object whereas there was no difference (P = 0.107) in time spent by exploring familiar and novel objects in rats housed in isolation. Furthermore, juvenile rats housed for 33 days in isolation showed higher (P = 0.003) body weight gain during the monitored period than rats housed for the same period in pairs. Our findings are important not only in terms of assessing the impact of rat housing on their mental and physical development but also in terms of the accurate interpretation of the results of other experiments where the rat is used as a model organism.
Collapse
|
36
|
Chaturvedi S, Ganeshpurkar A, Shrivastava A, Dubey N. Protective effect of co-administration of caffeine and piracetam on scopolamine-induced amnesia in Wistar rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100052. [PMID: 34909678 PMCID: PMC8663986 DOI: 10.1016/j.crphar.2021.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease is a cerebrovascular disorder characterized by progressive loss of the mental capabilities. The novel therapeutic agent piracetam is a cyclic derivative of γ-aminobutyric acid and one of the oldest recognized synthetic nootropics. Piracetam improves cognitive function without stimulation or sedation. Caffeine is a central nervous system stimulant with nootropic activity. Caffeine promotes the performance of tasks that involve working memory to a limited extent, and it also retards cognitive decline in healthy individuals. The present study aimed to determine the protective effect of co-administering piracetam and caffeine on scopolamine-induced amnesia in rats. Pre-treatment with caffeine and piracetam decreased scopolamine-induced cognitive damage and amnesia. The preventive response was demonstrated by an improved learning tendency. The mechanism responsible for these effects requires further investigation. The co-administration of caffeine and piracetam has potential as a novel therapeutic strategy for combating amnesia. Piracetam improves cognitive function with no stimulation or sedation on CNS. Caffeine is CNS stimulant which is reported for nootropic activity. Caffeine and piracetam pre-treatment decreased scopolamine-induced cognitive damage and amnesia. The preventive response was reported by an improvement in learning tendency.
Collapse
Affiliation(s)
| | | | | | - Nazneen Dubey
- Shri Ram Institute of Technology-Jabalpur, Madhya, Pradesh, India
| |
Collapse
|
37
|
AYKAÇ A, ÖZBEYLİ D, PEKOL G, ŞEHİRLİ AÖ. Evaluation of the effects of donepezil, memantine and α-lipoic acid combined administration in amnesia rats on impaired cognitive functions in terms of behavioural, apoptotic, cholinergic and glutamatergic systems. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.856459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
39
|
Kumar P, Hair P, Cunnion K, Krishna N, Bass T. Classical complement pathway inhibition reduces brain damage in a hypoxic ischemic encephalopathy animal model. PLoS One 2021; 16:e0257960. [PMID: 34591905 PMCID: PMC8483388 DOI: 10.1371/journal.pone.0257960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Perinatal hypoxic ischemic encephalopathy (HIE) remains a major contributor of infant death and long-term disability worldwide. The role played by the complement system in this ischemia-reperfusion injury remains poorly understood. In order to better understand the role of complement activation and other modifiable mechanisms of injury in HIE, we tested the dual-targeting anti-inflammatory peptide, RLS-0071 in an animal model of HIE. Using the well-established HIE rat pup model we measured the effects of RLS-0071 during the acute stages of the brain injury and on long-term neurocognitive outcomes. Rat pups subject to hypoxia-ischemia insult received one of 4 interventions including normothermia, hypothermia and RLS-0071 with and without hypothermia. We measured histopathological effects, brain C1q levels and neuroimaging at day 1 and 21 after the injury. A subset of animals was followed into adolescence and evaluated for neurocognitive function. On histological evaluation, RLS-0071 showed neuronal protection in combination with hypothermia (P = 0.048) in addition to reducing C1q levels in the brain at 1hr (P = 0.01) and at 8 hr in combination with hypothermia (P = 0.005). MRI neuroimaging demonstrated that RLS-0071 in combination with hypothermia reduced lesion volume at 24 hours (P<0.05) as well as decreased T2 signal at day 21 in combination with hypothermia (P<0.01). RLS-0071 alone or in combination with hypothermia improved both short-term and long-term memory. These findings suggest that modulation by RLS-0071 can potentially decrease brain damage resulting from HIE.
Collapse
Affiliation(s)
- Parvathi Kumar
- ReAlta Life Sciences, Norfolk, VA, United States of America
- Department of Pediatrics, Children’s Hospital of The King’s Daughters, Norfolk, VA, United States of America
- * E-mail:
| | - Pamela Hair
- ReAlta Life Sciences, Norfolk, VA, United States of America
| | - Kenji Cunnion
- ReAlta Life Sciences, Norfolk, VA, United States of America
- Department of Pediatrics, Children’s Hospital of The King’s Daughters, Norfolk, VA, United States of America
- Eastern Virginia Medical School, Norfolk, VA, United States of America
| | - Neel Krishna
- ReAlta Life Sciences, Norfolk, VA, United States of America
- Department of Pediatrics, Children’s Hospital of The King’s Daughters, Norfolk, VA, United States of America
- Eastern Virginia Medical School, Norfolk, VA, United States of America
| | - Thomas Bass
- Department of Pediatrics, Children’s Hospital of The King’s Daughters, Norfolk, VA, United States of America
- Eastern Virginia Medical School, Norfolk, VA, United States of America
| |
Collapse
|
40
|
Wu D, Kumal JPP, Lu X, Li Y, Mao D, Tang X, Nie M, Liu X, Sun L, Liu B, Zhang Y. Traumatic Brain Injury Accelerates the Onset of Cognitive Dysfunction and Aggravates Alzheimer's-Like Pathology in the Hippocampus by Altering the Phenotype of Microglia in the APP/PS1 Mouse Model. Front Neurol 2021; 12:666430. [PMID: 34539542 PMCID: PMC8440856 DOI: 10.3389/fneur.2021.666430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies have suggested that traumatic brain injury (TBI) is associated with some neurodegenerative diseases, including Alzheimer's disease (AD). Various aspects of the mechanism of TBI-induced AD have been elucidated. However, there are also studies opposing the view that TBI is one of the causes of AD. In the present study, we demonstrated that TBI exacerbated the disruption of hippocampal-dependent learning and memory, worsened the reductions in neuronal cell density and synapse formation, and aggravated the deposition of Aβ plaques in the hippocampi of APP/PS1 mice. We also found that TBI rapidly activated microglia in the central nervous system (CNS) and that this effect lasted for at least for 3 weeks. Furthermore, TBI boosted Aβ-related microglia-mediated neuroinflammation in the hippocampi of APP/PS1 mice and the transformation of microglia toward the proinflammatory phenotype. Therefore, our experiments suggest that TBI accelerates the onset of cognitive dysfunction and Alzheimer-like pathology in the APP/PS1 mouse model, at least partly by altering microglial reactions and polarization.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jay Prakash P Kumal
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xiaodi Lu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yixuan Li
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Dongsheng Mao
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xudong Tang
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Meitong Nie
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xin Liu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Bin Liu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
41
|
Promoting and Optimizing the Use of 3D-Printed Objects in Spontaneous Recognition Memory Tasks in Rodents: A Method for Improving Rigor and Reproducibility. eNeuro 2021; 8:ENEURO.0319-21.2021. [PMID: 34503967 PMCID: PMC8489023 DOI: 10.1523/eneuro.0319-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Spontaneous recognition memory tasks are widely used to assess cognitive function in rodents and have become commonplace in the characterization of rodent models of neurodegenerative, neuropsychiatric and neurodevelopmental disorders. Leveraging an animal’s innate preference for novelty, these tasks use object exploration to capture the what, where and when components of recognition memory. Choosing and optimizing objects is a key feature when designing recognition memory tasks. Although the range of objects used in these tasks varies extensively across studies, object features can bias exploration, influence task difficulty and alter brain circuit recruitment. Here, we discuss the advantages of using 3D-printed objects in rodent spontaneous recognition memory tasks. We provide strategies for optimizing their design and usage, and offer a repository of tested, open-source designs for use with commonly used rodent species. The easy accessibility, low-cost, renewability and flexibility of 3D-printed open-source designs make this approach an important step toward improving rigor and reproducibility in rodent spontaneous recognition memory tasks.
Collapse
|
42
|
Umbilical cord blood therapy modulates neonatal hypoxic ischemic brain injury in both females and males. Sci Rep 2021; 11:15788. [PMID: 34349144 PMCID: PMC8338979 DOI: 10.1038/s41598-021-95035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical studies have shown that sex is a significant risk factor for perinatal morbidity and mortality, with males being more susceptible to neonatal hypoxic ischemic (HI) brain injury. No study has investigated sexual dimorphism in the efficacy of umbilical cord blood (UCB) cell therapy. HI injury was induced in postnatal day 10 (PND10) rat pups using the Rice-Vannucci method of carotid artery ligation. Pups received 3 doses of UCB cells (PND11, 13, 20) and underwent behavioural testing. On PND50, brains were collected for immunohistochemical analysis. Behavioural and neuropathological outcomes were assessed for sex differences. HI brain injury resulted in a significant decrease in brain weight and increase in tissue loss in females and males. Females and males also exhibited significant cell death, region-specific neuron loss and long-term behavioural deficits. Females had significantly smaller brains overall compared to males and males had significantly reduced neuron numbers in the cortex compared to females. UCB administration improved multiple aspects of neuropathology and functional outcomes in males and females. Females and males both exhibited injury following HI. This is the first preclinical evidence that UCB is an appropriate treatment for neonatal brain injury in both female and male neonates.
Collapse
|
43
|
Investigation of acupuncture in improving sleep, cognitive and emotion based on attenuation of oxidative stress in prefrontal cortex in sleep-deprived rats. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1240-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Penny TR, Pham Y, Sutherland AE, Smith MJ, Lee J, Jenkin G, Fahey MC, Miller SL, McDonald CA. Optimization of behavioral testing in a long-term rat model of hypoxic ischemic brain injury. Behav Brain Res 2021; 409:113322. [PMID: 33901432 DOI: 10.1016/j.bbr.2021.113322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxic ischemic (HI) brain injury is a significant cause of childhood neurological deficits. Preclinical rodent models are often used to study these deficits; however, no preclinical study has determined which behavioral tests are most appropriate for long-term follow up after neonatal HI. METHODS HI brain injury was induced in postnatal day (PND) 10 rat pups using the Rice-Vannucci method of unilateral carotid artery ligation. Rats underwent long-term behavioral testing to assess motor and cognitive outcomes between PND11-50. Behavioral scores were transformed into Z-scores and combined to create composite behavioral scores. RESULTS HI rats showed a significant deficit in three out of eight behavioral tests: negative geotaxis analysis, the cylinder test and the novel object recognition test. These individual test outcomes were transformed into Z-scores and combined to create a composite Z-score. This composite z-score showed that HI rats had a significantly increased behavioral burden over the course of the experiment. CONCLUSION In this study we have identified tests that highlight specific cognitive and motor deficits in a rat model of neonatal HI. Due to the high variability in this model of neonatal HI brain injury, significant impairment is not always observed in individual behavioral tests, but by combining outcomes from these individual tests, long-term behavioral burden can be measured.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Madeleine J Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Joohyung Lee
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| |
Collapse
|
45
|
Meng X, Fu M, Wang S, Chen W, Wang J, Zhang N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer's disease by regulating multiple metabolic pathways. Mol Med Rep 2021; 23:332. [PMID: 33760152 PMCID: PMC7974313 DOI: 10.3892/mmr.2021.11971] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the neuroprotective effects of naringin on the memory impairment of hydrocortisone mice, and to elucidate the potential underlying molecular mechanisms. In the present study, a hydrocortisone model was constructed. Novel object recognition, Morris water maze and step‑down tests were performed in order to assess the learning and memory abilities of mice. Hematoxylin and eosin staining was used to observe pathological changes in the hippocampus and hypothalamus. Transmission electron microscopy was used to observe the ultrastructural changes in the hippocampus. Immunohistochemistry was used to detect the expression of ERα and ERβ. Western blotting was performed to detect the expression of each protein in the relevant system. It was found that naringin can significantly improve cognitive, learning and memory dysfunction in mice with hydrocortisone memory impairment. In addition, naringin can exert neuroprotective effects through a variety of mechanisms, including amyloid β metabolism, Tau protein hyperphosphorylation, acetylcholinergic system, glutamate receptor system, oxidative stress and cell apoptosis. Naringin can also affect the expression of phosphorylated‑P38/P38, indicating that the neuroprotective effect of naringin may also involve the MAPK/P38 pathway. The results of the present study concluded that naringin can effectively improve the cognitive abilities of mice with memory impairment and exert neuroprotective effects. Thus, naringin may be a promising target drug candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangdong Meng
- Nanchong Central Hospital, Second Clinical Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mingming Fu
- Foreign Language Department, North Sichuan Medical College (University), Nanchong, Sichuan 637000, P.R. China
| | - Shoufeng Wang
- Affiliated First Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weida Chen
- Affiliated First Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jianjie Wang
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Ning Zhang
- Jiamusi College, College of Pharmacy, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
46
|
Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110141. [PMID: 33069816 DOI: 10.1016/j.pnpbp.2020.110141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
Cannabis and alcohol co-use is prevalent in adolescence, but the long-term behavioural effects of this co-use remain largely unexplored. The aim of this study is to investigate the effects of adolescent alcohol and Δ9-tetrahydracannabinol (THC) vapour co-exposure on cognitive- and reward-related behaviours. Male Sprague-Dawley rats received vapourized THC (10 mg vapourized THC/four adolescent rats) or vehicle every other day (from post-natal day (PND) 28-42) and had continuous voluntary access to ethanol (10% volume/volume) in adolescence. Alcohol intake was measured during the exposure period to assess the acute effects of THC on alcohol consumption. In adulthood (PND 56+), rats underwent behavioural testing. Adolescent rats showed higher alcohol preference, assessed using the two-bottle choice test, on days on which they were not exposed to THC vapour. In adulthood, rats that drank alcohol as adolescents exhibited short-term memory deficits and showed decreased alcohol preference; on the other hand, rats exposed to THC vapour showed learning impairments in the delay-discounting task. Vapourized THC, alcohol or their combination had no effect on anxiety-like behaviours in adulthood. Our results show that although adolescent THC exposure acutely affects alcohol drinking, adolescent alcohol and cannabis co-use may not produce long-term additive effects.
Collapse
|
47
|
Wang Q, Dong L, Wang M, Chen S, Li S, Chen Y, He W, Zhang H, Zhang Y, Pires Dias AC, Yang S, Liu X. Dammarane Sapogenins Improving Simulated Weightlessness-Induced Depressive-Like Behaviors and Cognitive Dysfunction in Rats. Front Psychiatry 2021; 12:638328. [PMID: 33841208 PMCID: PMC8032884 DOI: 10.3389/fpsyt.2021.638328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/18/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Our studies demonstrated that the space environment has an impact on the brain function of astronauts. Numerous ground-based microgravity and social isolation showed that the space environment can induce brain function damages in humans and animals. Dammarane sapogenins (DS), an active fraction from oriental ginseng, possesses neuropsychic protective effects and has been shown to improve depression and memory. This study aimed to explore the effects and mechanisms of DS in attenuating depressive-like behaviors and cognitive deficiency induced by simulated weightlessness and isolation [hindlimb suspension and isolation (HLSI)] in rats. Methods: Male rats were orally administered with two different doses of DS (37.5, 75 mg/kg) for 14 days, and huperzine-A (1 mg/kg) served as positive control. Rats were subjected to HLSI for 14 days except the control group during drug administration. The depressive-like behaviors were then evaluated by the open-field test, the novel object recognition test, and the forced swimming test. The spatial memory and working memory were evaluated by the Morris water maze (MWM) test, and the related mechanism was further explored by analyzing the activity of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) in the hippocampus of rats. Results: The results showed that DS treatment significantly reversed the HLSI-induced depressive-like behaviors in the open-field test, the novel object recognition test, and the forced swimming test and improved the HLSI-induced cognitive impairment in the MWM test. Furthermore, after DS treatment, the ChAT and SOD activities of HLSI rats were increased while AChE activity was significantly suppressed. Conclusions: These findings clearly demonstrated that DS might exert a significant neuropsychic protective effect induced by spaceflight environment, driven in part by the modulation of cholinergic system and anti-oxidation in the hippocampus.
Collapse
Affiliation(s)
- Qiong Wang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Li Dong
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Mengdi Wang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shanguang Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Shanshan Li
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongbing Chen
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenlu He
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Hong Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongliang Zhang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Alberto Carlos Pires Dias
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Biology, University of Mihno, Braga, Portugal
| | - Sijin Yang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Massaoudi Y, Anissi J, Lefter R, Lobiuc A, Sendide K, Ciobica A, Hassouni ME. Protective Effects of Two Halophilic Crude Extracts from Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine-Induced Schizophrenia in Mice Focusing on Oxidative Stress Status. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8852418. [PMID: 33299461 PMCID: PMC7707988 DOI: 10.1155/2020/8852418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022]
Abstract
Recently, the implication of oxidative stress in behavioral-like disorders has received a lot of attention. Many studies were interested in searching for new natural compounds with protective effects on behavioral-like disorders by focusing on oxidative stress as the main causal factor. Here, we assess the potential effect of cell-free extracts from halophilic bacteria on memory, anxiety, and depression-related behaviors in mice, as well as on cognitive deficits, negative symptoms, and some oxidative stress biomarkers in methionine-induced mice models of schizophrenia. Firstly, crude extracts of bacteria isolated from the Dead Sea were screened for their effects on memory and anxiety- and depression-like behaviors through Y-maze, elevated plus maze, and forced swimming test, respectively, using two doses 60 mg/kg and 120 mg/kg. Then, 120 mg/kg of two bacterial crude extracts, from two strains designated SL22 and BM20 and identified as Bacillus stratosphericus and Pseudomonas zhaodongensis, respectively, with significant contents of phenolic and flavonoid-like compounds, were selected for the assessment of cognitive and negative symptom improvement, as well as for their effects on oxidative stress status in methionine-induced mice models of schizophrenia using six groups (controls, methionine, crude extracts solely, and combinations of crude extracts and methionine). Results showed that the administration of the crude extracts caused a significant increase in the spontaneous alternations in the Y-maze task, the time spent in open arms of the elevated plus maze, and a decrease in immobility time in the forced swimming test in comparison with the control group. Furthermore, the administration of bacterial extracts seemed to diminish disorders related to cognitive and negative symptoms of schizophrenia and to improve the oxidative state in the temporal lobes, in comparison with the methionine group. Our findings suggest substantial antioxidant and anti-neuropsychiatric effects of the crude extracts prepared from Pseudomonas zhaodongensis strain BM20 and Bacillus stratosphericus strain SL22 and that further studies are needed to purify and to determine the active fraction from the extracts.
Collapse
Affiliation(s)
- Yousra Massaoudi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| | - Jaouad Anissi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
- School of Engineering BIOMEDTECH, Euro-Mediterranean University of Fez, Rond-point Bensouda, Route de Meknès BP 51, Fez, Morocco
| | - Radu Lefter
- Romanian Academy, Iasi Branch, Center of Biomedical Research, B dul Carol I, 8, 700506 Iasi, Romania
| | - Andrei Lobiuc
- CERNESIM Research Centre, L2, Alexandru Ioan Cuza University, 700505 Carol I Bd., Iasi, Romania
- Human Health and Development Department, Stefan Cel Mare University, 720229 Universitatii Str., Suceava, Romania
| | - Khalid Sendide
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University in Ifrane, P.O. Box 104, Ifrane, Morocco
| | - Alin Ciobica
- Department of Research, Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Mohammed El Hassouni
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| |
Collapse
|
49
|
Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. Cell Rep 2020; 33:108359. [PMID: 33176133 DOI: 10.1016/j.celrep.2020.108359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Activation of the basal forebrain (BF) has been associated with increased attention, arousal, and a heightened cortical representation of the external world. In addition, BF has been implicated in the regulation of the default mode network (DMN) and associated behaviors. Here, we provide causal evidence for a role of BF in DMN regulation, highlighting a prominent role of parvalbumin (PV) GABAergic neurons. The optogenetic activation of BF PV neurons reliably drives animals toward DMN-like behaviors, with no effect on memory encoding. In contrast, BF electrical stimulation enhances memory performance and increases DMN-like behaviors. BF stimulation has a correlated impact on peptide regulation in the BF and ACC, enhancing peptides linked to grooming behavior and memory functions, supporting a crucial role of the BF in DMN regulation. We suggest that in addition to enhancing attentional functions, the BF harbors a network encompassing PV GABAergic neurons that promotes self-directed behaviors associated with the DMN.
Collapse
|
50
|
Rodrigues JVF, Vidigal APP, Minassa VS, Batista TJ, de Lima RMS, Funck VR, Antero LS, Resstel LBM, Coitinho JB, Bertoglio LJ, Sampaio KN, Beijamini V. A single dose of the organophosphate triazophos induces fear extinction deficits accompanied by hippocampal acetylcholinesterase inhibition. Neurotoxicol Teratol 2020; 82:106929. [DOI: 10.1016/j.ntt.2020.106929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
|