1
|
Badolato CJ, Lynch EA, Arnold JC, McGregor IS, Bowen MT. Cannabidiol dose dependently reduces alcohol intake in mice via a non-5-HT 1A receptor mechanism: Exploration of other potential receptor targets. Br J Pharmacol 2025. [PMID: 40432283 DOI: 10.1111/bph.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND AND PURPOSE Binge drinking is a risky pattern of alcohol intake and a major predictor of alcohol use disorder (AUD). Current AUD medications have limited efficacy and poor patient compliance, calling for more effective therapeutics. Cannabidiol (CBD), a non-intoxicating component of cannabis, has emerged as a potential novel therapeutic. However, receptor mechanisms in CBD's alcohol-related effects have not been investigated comprehensively. EXPERIMENTAL APPROACH Using the murine drinking-in-the-dark model of binge drinking, our research aimed to confirm a reduction of alcohol consumption with CBD (7.5, 15, 30, 60, 120 mg kg-1) in male and female mice. Behavioural pharmacological approaches were used to explore CBD interactions with identified target mechanisms: serotonin-1A receptor (5-HT1AR) and peroxisome proliferator-activated receptor-gamma (PPARɣ), and the novel targets, chemokine receptor type-4 (CXCR4) and neuropeptide S receptor (NPSR). KEY RESULTS Acute CBD dose dependently suppressed binge-like drinking and blood ethanol concentration. The effect was not driven by locomotor impairments and was maintained across sub-chronic treatment. Blockade of 5-HT1AR and PPARɣ had no impact on CBD's reduction of alcohol consumption. Co-administration of subthreshold CBD doses and a NPSR antagonist implicated NPSR blockade as a potential mechanism contributing to CBD's effect, whereas co-administration of CBD and a CXCR4 antagonist suggested CXCR4 was not involved. However, the potent and selective CXCR4 antagonist AMD3100 reduced ethanol consumption. CONCLUSIONS AND IMPLICATIONS CBD represents a promising candidate to reduce voluntary alcohol consumption. Mechanisms driving CBD's alcohol-related effects remain unclear and may involve polypharmacology, including actions at the NPSR identified in the present study.
Collapse
Affiliation(s)
- Connie J Badolato
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Erin A Lynch
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael T Bowen
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Capone F, Vacca A, Bidault G, Sarver D, Kaminska D, Strocchi S, Vidal-Puig A, Greco CM, Lusis AJ, Schiattarella GG. Decoding the Liver-Heart Axis in Cardiometabolic Diseases. Circ Res 2025; 136:1335-1362. [PMID: 40403112 DOI: 10.1161/circresaha.125.325492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The liver and heart are closely interconnected organs, and their bidirectional interaction plays a central role in cardiometabolic disease. In this review, we summarize current evidence linking liver dysfunction-particularly metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and cirrhosis-with an increased risk of heart failure and other cardiovascular diseases. We discuss how these liver conditions contribute to cardiac remodeling, systemic inflammation, and hemodynamic stress and how cardiac dysfunction in turn impairs liver perfusion and promotes hepatic injury. Particular attention is given to the molecular mediators of liver-heart communication, including hepatokines and cardiokines, as well as the emerging role of advanced research methodologies, including omics integration, proximity labeling, and organ-on-chip platforms, that are redefining our understanding of interorgan cross talk. By integrating mechanistic insights with translational tools, this review aims to support the development of multiorgan therapeutic strategies for cardiometabolic disease.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Department of Medicine, Unit of Internal Medicine III, Padua University Hospital, University of Padua, Padova, Italy (F.C.)
- Department of Biomedical Sciences, University of Padova, Italy (F.C.)
| | - Antonio Vacca
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Clinica Medica, Department of Medicine, University of Udine, Italy (A.V.)
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
| | - Dylan Sarver
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Dorota Kaminska
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
- Centro de Investigacion Principe Felipe, Valencia, Spain (A.V.-P.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy (C.M.G.)
- IRCCS Humanitas Research Hospital, Milan, Italy (C.M.G.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (G.G.S.)
- Friede Springer Cardiovascular Prevention Center at Charité-Universitätsmedizin Berlin, Germany (G.G.S.)
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| |
Collapse
|
3
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers W, Wolstenholme J, Miles M. A Selective GSK3β Inhibitor, Tideglusib, Decreases Intermittent Access and Binge Ethanol Self-Administration in C57BL/6J Mice. Addict Biol 2025; 30:e70044. [PMID: 40390305 PMCID: PMC12089657 DOI: 10.1111/adb.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/07/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Over 10% of the US population over 12 years old meets criteria for alcohol use disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3-beta (GSK3β) has been implicated in ethanol behaviours and poses as a potential therapeutic target in the treatment of AUD. Here, we investigated the preclinical evidence for tideglusib, a clinically available selective GSK3β inhibitor, in modulating chronic and binge ethanol consumption. Tideglusib decreased ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behaviour (drinking in the dark) without effecting water intake. With drinking in the dark, tideglusib was more potent in males (ED50 = 64.6, CI = 58.9-70.8) than females (ED50 = 79.4, CI = 70.8-93.3). Further, we found tideglusib had no effect on ethanol pharmacokinetics, taste preference or anxiety-like behaviour, although there was a transient increase in total locomotion following treatment. Additionally, tideglusib treatment did not alter liver function as measured by serum activity of alanine aminotransferase and aspartate aminotransferase but did cause a decrease in serum alkaline phosphatase activity. RNA sequencing analysis of tideglusib actions on ethanol consumption revealed alterations in genes involved in synaptic plasticity and transmission, as well as genes downstream of the canonical Wnt signalling pathway, suggesting tideglusib may modulate ethanol consumption via β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
Affiliation(s)
- Sam Gottlieb
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Program in NeuroscienceVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrew van der Vaart
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Annalise Hassan
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Douglas Bledsoe
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Alanna Morgan
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brennen O'Rourke
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Walker D. Rogers
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
4
|
Thomas KN, Basel A, Reitz H, Toler R, Thomas KR, Dotson LJ, Brown T, Pham AN, Rouzer SK, Miranda RC, Golding MC. Maternal, paternal, and dual-parental alcohol exposures result in both overlapping and distinct impacts on behavior in adolescent offspring. Alcohol 2025; 124:65-77. [PMID: 39855492 DOI: 10.1016/j.alcohol.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Emerging research reveals that alcohol use by fathers before conception can affect the growth and development of their offspring. Here, we used a C57BL/6J mouse model to study the effects of alcohol exposure on the behavior of the first-generation (F1) offspring, comparing the impacts of alcohol exposure by mothers, fathers, and both parents. Our goal was to determine how alcohol exposure by each parent or both parents influences the behavior of the offspring. We found that adolescent male offspring of alcohol-exposed fathers showed reduced anxiety-like behaviors as they spent more time in the center of the testing arena during the open field test. Both maternal and paternal alcohol exposure caused sex-specific increases in the nestlet shredding test while decreasing the number of buried marbles in the marble burying test. Interestingly, dual-parental alcohol exposure did not produce any significant changes in these same tests. However, during novel object recognition testing, we found that dual-parental male and female offspring exhibit an increased preference for novel objects, suggesting an increased risk preference. Finally, at sixteen weeks, male offspring of dual-exposed parents exhibited decreased voluntary physical activity on running wheels during the active phase, suggesting alterations in their circadian rhythms. Although differences in parental exposure histories between treatment groups make interpretation challenging, our findings suggest that exposure to alcohol by both parents may have unique effects on behavior and that studying both maternal and paternal alcohol use is essential for understanding the full range of factors influencing the penetrance and severity of alcohol-related phenotypes.
Collapse
Affiliation(s)
- Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hayden Reitz
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel Toler
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly R Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Luke J Dotson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Tyler Brown
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alan Nguyen Pham
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Siara K Rouzer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Leggio L, Vendruscolo LF. Evidence for independent actions of the CRF and ghrelin systems in binge-like alcohol drinking in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111341. [PMID: 40139339 PMCID: PMC12043401 DOI: 10.1016/j.pnpbp.2025.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. Both ghrelin and corticotrophin-releasing factor (CRF) drive stress responses and alcohol drinking. Despite evidence of a relationship between the ghrelin and CRF systems, their potential interaction in modulating alcohol drinking is unclear. We tested the effect of a brain-penetrant CRF1 receptor antagonist (R121919) and a peripherally restricted nonselective CRF receptor antagonist (astressin) on plasma ghrelin levels. We also tested effects of R121919 and astressin alone and combined with the growth hormone secretagogue receptor (GHSR; the ghrelin receptor) antagonist JMV2959 and GHSR antagonist/inverse agonist PF-5190457 in a model of binge-like alcohol drinking in male and female C57BL/6 J mice. The intraperitoneal administration of R121919 but not astressin increased plasma ghrelin levels. R121919 but not astressin reduced binge-like alcohol drinking. CRF receptor antagonism had no effect on the ability of GHSR blockers to reduce alcohol drinking. No sex × drug treatment interactions were observed. These findings suggest that while both CRF receptor antagonism and GHSR antagonism reduce alcohol drinking, these two pharmacological approaches may not interact to mediate binge-like alcohol drinking in mice. Additionally, these results provide evidence that GHSR but not peripheral endogenous ghrelin may be key in driving binge-like alcohol drinking.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay A Kryszak
- Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA..
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Emous TA, Eduardo PMC, Melo MC, Pichinin LS, Abrahao KP. Influence of food availability on water and alcohol consumption in murine models. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:854-865. [PMID: 39943667 DOI: 10.1111/acer.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/21/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Alcohol use disorder remains a global issue. Thus, understanding the factors that contribute to alcohol abuse, including how food availability can influence drinking behavior, is critical. METHODS Female and male C57Bl/6 and Swiss mice underwent a two-bottle choice Intermittent Overnight Drinking (IOD) protocol consisting of 12 sessions on alternate nights, three times per week, using lickometer devices. Mice had access to two bottles, containing either water or 10% ethanol, for 16 hours, starting 2 hours before the dark cycle. Animals were initially assigned to two groups: one with access to water, ethanol, and standard rodent chow (FOOD group), and another with access only to water and ethanol (NFOOD group). After six sessions, half of the mice in the second group were reassigned to a new group with delayed access to chow (NFOOD-FOOD group). RESULTS Food availability led to increased drinking, but the modulation was liquid dependent for each strain. The presence of food primarily increased ethanol intake in C57Bl/6 mice, while it enhanced water intake in Swiss mice. Microstructure analysis revealed that food heightened ethanol licks in C57Bl/6 mice, whereas it elevated water licks in Swiss mice, without altering numbers of bouts. Additionally, overnight analysis showed that C57Bl/6 mice with access to food had a peak in ethanol licks between 20:00 and 22:00, while Swiss mice exhibited an increase in water licks starting at 20:00 to 2:00, highlighting a strain-specific response to the dark cycle. CONCLUSIONS This study provides normative data on the temporal patterns of water and ethanol consumption in C57Bl/6 and Swiss female and male mice, contributing valuable insights to the field of voluntary drinking behaviors in murine models.
Collapse
Affiliation(s)
- Thaynnam Arcebispo Emous
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Mariana Cardoso Melo
- Pós-graduação em Engenharia Biomédica, Instituto de Ciência e Tecnologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Letícia S Pichinin
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Karina Possa Abrahao
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2025; 123:87-99. [PMID: 39218047 PMCID: PMC12034132 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L. GHSR blockade, but not reduction of peripherally circulating ghrelin via β 1-adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. Mol Psychiatry 2025; 30:1047-1056. [PMID: 39232198 PMCID: PMC11835741 DOI: 10.1038/s41380-024-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized β1-adrenergic receptors (β1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic β1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The β1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and β1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA.
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Zhang Z, Xiao T, Hall MR, Crodian JS, Alford AK, Kimbrough A, Shi R. Temporal differential effects of post-injury alcohol consumption in a mouse model of blast-induced traumatic brain injury. Neuroscience 2024; 562:239-251. [PMID: 39369945 PMCID: PMC11769080 DOI: 10.1016/j.neuroscience.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. Hence, it is possible that alcohol could contribute to the overall pathological outcome of brain trauma. However, such a possibility has not been explored in detail. Here, we combined a mild bTBI (mbTBI) model with the drinking-in-the-dark (DID) paradigm to investigate the pathological synergy between mbTBI and alcohol consumption by examining brain oxidative stress levels and behavioral alterations in mice. The results revealed the anxiolytic and short-term memory improvement effects of post-trauma alcohol drinking examined at an early timepoint post mbTBI. However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
Collapse
Affiliation(s)
- Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Mekyna R Hall
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Jennifer S Crodian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Anna K Alford
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
Bauer MR, McVey MM, Zhang Y, Boehm SL. Dorsomedial striatal AMPA receptor antagonism increases alcohol binge drinking in selectively bred crossed high alcohol preferring mice. Eur J Neurosci 2024; 60:6300-6311. [PMID: 39358829 PMCID: PMC11534507 DOI: 10.1111/ejn.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Crossed high alcohol preferring (cHAP) mice have been selectively bred to consume considerable amounts of alcohol resulting in binge drinking. The dorsomedial striatum (DMS) is a brain region involved in goal-directed action selection, and dorsolateral striatum (DLS) is a brain region involved in habitual action selection. Alcohol use disorder (AUD) may involve a disruption in the balance between the DMS and DLS. While the DLS is involved in binge drinking, the reliance on the DMS and DLS in binge drinking has not been investigated in cHAP mice. We have previously demonstrated that glutamatergic activity in the DLS is necessary for binge-like alcohol drinking in C57BL/6J mice, another high drinking mouse. Because of this, we hypothesised that DLS glutamatergic activity would gate binge-like alcohol drinking in cHAP mice. cHAP mice underwent bilateral cannulation into the DMS or DLS and were allowed free-access to 20% alcohol for 2 h each day for 11 days. Mice were microinjected with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist, NBQX, into the DMS or DLS immediately prior to alcohol access. AMPAR protein expression was also assessed in a separate group of animals in the DMS and DLS following an 11-day drinking history. We found that intra-DMS (but not intra-DLS) NBQX alters binge alcohol drinking, with intra-DMS NBQX increasing alcohol consumption. We also found that the ratio of GluA1 to GluA2 differs across dorsal striatal subregions. Together, these findings suggest that glutamatergic activity in the DMS may serve to limit binge drinking in cHAP mice.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Yanping Zhang
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Salguero A, Marengo L, Cendán CM, Morón I, Ruiz-Leyva L, Pautassi RM. Ethanol drinking at adulthood is sensitive to S1-R antagonism and is promoted by binge ethanol self-administration at adolescence. Drug Alcohol Depend 2024; 260:111338. [PMID: 38838478 DOI: 10.1016/j.drugalcdep.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Binge drinking at adolescence is a risk factor for problematic alcohol (ethanol) consumption later in life, yet the murine studies that modelled this phenomenon via ethanol self-administration have provided mixed findings. Antagonism of the sigma-1 receptor (S1-R) system at adolescence modulates ethanol's motivational effects and intake. It is still unknown, however, whether this antagonism would protect against enhanced ethanol intake at adulthood after adolescent binge ethanol exposure. METHODS Exp. 1 and 2 tested adults male or female Wistar rats -exposed or not to ethanol self-administration at adolescence (postnatal days 31-49; nine 2-hour sessions of access to 8-10% ethanol)- for ethanol intake using 24-h two-bottle choice test (Exp. 1) or time restricted, single-bottle, tests (Exp. 2). Experiments 2-5 evaluated, in adolescent or adult rats, the effects of the S1-R antagonist S1RA on ethanol intake and on ethanol-induced conditioned taste or place aversion. Ancillary tests (e.g., novel object recognition, ethanol-induced locomotor activity) were also conducted. RESULTS Adolescent ethanol exposure promoted ethanol consumption at both the restricted, single-bottle, and at the two-bottle choice tests conducted at adulthood. S1RA administration reduced ethanol intake at adulthood and facilitated the development of ethanol-induced taste (but not place) aversion. CONCLUSIONS S1RA holds promise for lessening ethanol intake after chronic and substantial ethanol exposure in adolescence that results in heightened ethanol exposure at adulthood. This putative protective effect of S1-R antagonism may relate to S1RA exacerbating the aversive effects of this drug.
Collapse
Affiliation(s)
- Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Leonardo Marengo
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Cruz Miguel Cendán
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM) Faculty of Medicine, University of Granada and Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Ignacio Morón
- Deparment of Psychobiology. Center of Research, Mind, Brain and Behabior (CIMCYC). University of Granada, Granada, Spain
| | - Leandro Ruiz-Leyva
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM) Faculty of Medicine, University of Granada and Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina.
| |
Collapse
|
12
|
Fu Y, Mackowiak B, Lin YH, Maccioni L, Lehner T, Pan H, Guan Y, Godlewski G, Lu H, Chen C, Wei S, Feng D, Paloczi J, Zhou H, Pacher P, Zhang L, Kunos G, Gao B. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6:1380-1396. [PMID: 38902331 DOI: 10.1038/s42255-024-01063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking. Mechanistically, we find that after ethanol intake, a substantial proportion of AcH generated in the liver is excreted via the bile into the gastrointestinal tract where AcH is further metabolized by gut ALDH2. Modulating bile flow significantly affects serum AcH level and drinking behaviour. Thus, combined targeting of liver and gut ALDH2, and manipulation of bile flow and secretion are potential therapeutic strategies to treat AUD.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Hong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Soares AR, Garcia-Rivas V, Fai C, Thomas MA, Zheng X, Picciotto MR, Mineur YS. Role of microglia in stress-induced alcohol intake in female and male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597614. [PMID: 38895217 PMCID: PMC11185719 DOI: 10.1101/2024.06.05.597614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rates of alcohol use disorder (AUD) have escalated in recent years, with a particular increase among women. Women are more susceptible to stress-induced alcohol drinking, and preclinical data suggest that stress can increase alcohol intake in female rodents; however, a comprehensive understanding of sex-specific neurobiological substrates underlying this phenomenon is still emerging. Microglia, the resident macrophages of the brain, are essential for reshaping neuronal processes, and microglial activity contributes to overall neuronal plasticity. We investigated microglial dynamics and morphology in limbic brain structures of male and female mice following exposure to stress, alcohol or both challenges. In a modified paradigm of intermittent binge drinking (repeated "drinking in the dark"), we determined that female, but not male, mice increased their alcohol consumption after exposure to a physical stressor and re-exposure trials in the stress-paired context. Ethanol (EtOH) drinking and stress altered a number of microglial parameters, including overall number, in subregions of the amygdala and hippocampus, with effects that were somewhat more pronounced in female mice. We used the CSF1R antagonist PLX3397 to deplete microglia in female mice to determine whether microglia contribute to stress-induced escalation of EtOH intake. We observed that microglial depletion attenuated stress-induced alcohol intake with no effect in the unstressed group. These findings suggest that microglial activity can contribute to alcohol intake under stressful conditions, and highlight the importance of evaluating sex-specific mechanisms that could result in tailored interventions for AUD in women.
Collapse
|
14
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers WD, Wolstenholme JT, Miles MF. A selective GSK3β inhibitor, tideglusib, decreases intermittent access and binge ethanol self-administration in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593949. [PMID: 38798478 PMCID: PMC11118361 DOI: 10.1101/2024.05.13.593949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Over 10% of the US population over 12 years old meets criteria for Alcohol Use Disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3 beta (GSK3β) has been implicated in ethanol behaviors and poses as a potential therapeutic target in the treatment of AUD. Here we investigate the role of tideglusib, a selective GSK3β inhibitor, in ethanol consumption and other behaviors. We have shown tideglusib decreases ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behavior (drinking-in-the-dark) without effecting water intake. Further, we have shown tideglusib to have no effect on ethanol pharmacokinetics, taste preference, or anxiety-like behavior, though there was a transient increase in total locomotion following treatment. Additionally, we assessed liver health following treatment via serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and showed no effect on aminotransferase levels though there was a decrease in alkaline phosphatase. RNA sequencing studies revealed a role of GSK3β inhibition via tideglusib on the canonical Wnt signaling pathway, suggesting tideglusib may carry out its effects on ethanol consumption through effects on β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
|
15
|
Lin J, Rivadeneira AP, Ye Y, Ryu C, Parvin S, Jang K, Garraway SM, Choi I. Sodium Bicarbonate Decreases Alcohol Consumption in Mice. Int J Mol Sci 2024; 25:5006. [PMID: 38732226 PMCID: PMC11084513 DOI: 10.3390/ijms25095006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
We previously reported that mice with low neuronal pH drink more alcohol, demonstrating the importance of pH for alcohol reward and motivation. In this study, we tested whether systemic pH affects alcohol consumption and if so, whether it occurs by changing the alcohol reward. C57BL/6J mice were given NaHCO3 to raise their blood pH, and the animals' alcohol consumption was measured in the drinking-in-the-dark and two-bottle free choice paradigms. Alcohol consumption was also assessed after suppressing the bitterness of NaHCO3 with sucrose. Alcohol reward was evaluated using a conditioned place preference. In addition, taste sensitivity was assessed by determining quinine and sucrose preference. The results revealed that a pH increase by NaHCO3 caused mice to decrease their alcohol consumption. The decrease in high alcohol contents (20%) was significant and observed at different ages, as well as in both males and females. Alcohol consumption was also decreased after suppressing NaHCO3 bitterness. Oral gavage of NaHCO3 did not alter quinine and sucrose preference. In the conditioned place preference, NaHCO3-treated mice spent less time in the alcohol-injected chamber. Conclusively, the results show that raising systemic pH with NaHCO3 decreases alcohol consumption, as it decreases the alcohol reward value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Inyeong Choi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (J.L.); (Y.Y.); (C.R.); (S.P.); (K.J.); (S.M.G.)
| |
Collapse
|
16
|
Kalelkar A, Sipe G, Castro E Costa AR, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. Neuropharmacology 2024; 245:109800. [PMID: 38056524 PMCID: PMC11292593 DOI: 10.1016/j.neuropharm.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ilka M Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA.
| |
Collapse
|
17
|
Torres Irizarry VC, Feng B, Yang X, Patel N, Schaul S, Ibrahimi L, Ye H, Luo P, Carrillo-Sáenz L, Lai P, Kota M, Dixit D, Wang C, Lasek AW, He Y, Xu P. Estrogen signaling in the dorsal raphe regulates binge-like drinking in mice. Transl Psychiatry 2024; 14:122. [PMID: 38413577 PMCID: PMC10899193 DOI: 10.1038/s41398-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Estrogens promote binge alcohol drinking and contribute to sex differences in alcohol use disorder. However, the mechanisms are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine neurons in the dorsal raphe nucleus (5-HTDRN) to promote binge drinking. We found that female mice drank more alcohol than male mice in chronic drinking in the dark (DID) tests. This sex difference was associated with distinct alterations in mRNA expression of estrogen receptor α (ERα) and 5-HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling. In supporting this view, 5-HTDRN neurons from naïve male mice had lower baseline firing activity but higher sensitivity to alcohol-induced excitation compared to 5-HTDRN neurons from naïve female mice. Notably, this higher sensitivity was blunted by 17β-estradiol treatment in males, indicating an estrogen-dependent mechanism. We further showed that both ERα and ERβ are expressed in 5-HTDRN neurons, whereas ERα agonist depolarizes and ERβ agonist hyperpolarizes 5-HTDRN neurons. Notably, both treatments blocked the stimulatory effects of alcohol on 5-HTDRN neurons in males, even though they have antagonistic effects on the activity dynamics. These results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HTDRN neurons may contribute to higher levels of binge drinking in females. Consistently, chemogenetic activation of ERα- or ERβ-expressing neurons in the DRN reduced binge alcohol drinking. These results support a model in which estrogens act on ERα/β to prevent alcohol-induced activation of 5-HTDRN neurons, which in return leads to higher binge alcohol drinking.
Collapse
Affiliation(s)
- Valeria C Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Ye
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Simon B, Thury AÁ, Török L, Földesi I, Csabafi K, Bagosi Z. The effects of alcohol on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking. Alcohol 2023; 112:17-24. [PMID: 37236432 DOI: 10.1016/j.alcohol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The aim of the present study was to determine the effects of binge drinking on anxiety-like, depression-like, and social behavior. The participation of the corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in these effects was also investigated. Therefore, male C57BL/6 mice were exposed to drinking in the dark, a classical animal model for binge drinking, and treated intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B, immediately or 24 h after binge drinking. After 30 min, the animals were investigated in an elevated plus-maze test and a forced swim test for anxiety-like and depression-like signs, respectively. In addition, mice were tested in a three-chamber social interaction arena for sociability and preference for social novelty. Immediately after binge drinking, mice exposed to alcohol expressed anxiolytic and antidepressant effects, which were reduced by astressin2B, but not antalarmin. Moreover, mice exposed to alcohol showed increased sociability and preference for social novelty immediately after binge drinking. In contrast, 24 h after binge drinking mice exposed to alcohol presented anxiety-like and depression-like signs, which were reversed by antalarmin, but not astressin2B. However, mice exposed to alcohol did not show any significant change in social interaction after 24 h. The present study demonstrates that alcohol exerts different effects on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking, and that the anxiolytic and antidepressant effects produced by binge drinking are mediated by CRF2, whereas the anxiety-like and depression-like signs observed the next day are promoted by CRF1.
Collapse
Affiliation(s)
- Balázs Simon
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Attila Ágoston Thury
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Institute of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
DeBaker MC, Mitten EH, Rose TR, Marron Fernandez de Velasco E, Gao R, Lee AM, Wickman K. RGS6 negatively regulates inhibitory G protein signaling in dopamine neurons and positively regulates binge-like alcohol consumption in mice. Br J Pharmacol 2023; 180:2140-2155. [PMID: 36929333 PMCID: PMC10504421 DOI: 10.1111/bph.16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Drugs of abuse, including alcohol, increase dopamine in the mesocorticolimbic system via actions on dopamine neurons in the ventral tegmental area (VTA). Increased dopamine transmission can activate inhibitory G protein signalling pathways in VTA dopamine neurons, including those controlled by GABAB and D2 receptors. Members of the R7 subfamily of regulator of G protein signalling (RGS) proteins can regulate inhibitory G protein signalling, but their influence on VTA dopamine neurons is unclear. Here, we investigated the influence of RGS6, an R7 RGS family memberthat has been implicated in the regulation of alcohol consumption in mice, on inhibitory G protein signalling in VTA dopamine neurons. EXPERIMENTAL APPROACH We used molecular, electrophysiological and genetic approaches to probe the impact of RGS6 on inhibitory G protein signalling in VTA dopamine neurons and on binge-like alcohol consumption in mice. KEY RESULTS RGS6 is expressed in adult mouse VTA dopamine neurons and it modulates inhibitory G protein signalling in a receptor-dependent manner, tempering D2 receptor-induced somatodendritic currents and accelerating deactivation of synaptically evoked GABAB receptor-dependent responses. RGS6-/- mice exhibit diminished binge-like alcohol consumption, a phenotype replicated in female (but not male) mice lacking RGS6 selectively in VTA dopamine neurons. CONCLUSIONS AND IMPLICATIONS RGS6 negatively regulates GABAB - and D2 receptor-dependent inhibitory G protein signalling pathways in mouse VTA dopamine neurons and exerts a sex-dependent positive influence on binge-like alcohol consumption in adult mice. As such, RGS6 may represent a new diagnostic and/or therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Margot C. DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Eric H. Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Timothy R. Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | | | - Runbo Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Anna M. Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
21
|
Brewton HW, Robinson SL, Thiele TE. Astrocyte expression in the extended amygdala of C57BL/6J mice is sex-dependently affected by chronic intermittent and binge-like ethanol exposure. Alcohol 2023; 108:55-64. [PMID: 36539069 PMCID: PMC10033386 DOI: 10.1016/j.alcohol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption. The basolateral amygdala (BLA), central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are brain regions that process stress, anxiety, and reward; they are also implicated in modulating ethanol intake. Little is understood, however, about how astrocyte expression in each region is modulated by chronic and binge-like ethanol drinking patterns. In the present report, we utilized two separate animal models of excessive drinking: chronic intermittent ethanol (CIE) and "Drinking-in-the-dark" (DID). Following these paradigms, animal brains were processed through immunohistochemistry (IHC) and stained for glial fibrillary acidic protein (GFAP). Collected data illustrated a sex-dependent relationship between ethanol intake and GFAP immunoreactivity (IR) in the BLA and BNST, but not in the CeA. Specifically, CIE and DID ethanol drinking resulted in blunted GFAP-IR (specifically via GFAP-positive cell count) in the BLA and BNST, particularly in males. These findings may implicate sex-dependent ethanol-induced changes in BLA and BNST astrocytes, providing a potential therapeutic target for anxiety and stress disorders.
Collapse
Affiliation(s)
- Honoreé W Brewton
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States
| | - Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States.
| |
Collapse
|
22
|
Stefaniuk M, Pawłowska M, Barański M, Nowicka K, Zieliński Z, Bijoch Ł, Legutko D, Majka P, Bednarek S, Jermakow N, Wójcik D, Kaczmarek L. Global brain c-Fos profiling reveals major functional brain networks rearrangements after alcohol reexposure. Neurobiol Dis 2023; 178:106006. [PMID: 36682503 DOI: 10.1016/j.nbd.2023.106006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland.
| | - Monika Pawłowska
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Institute of Experimental Physics, Section of Optics, Warsaw University, Warsaw, Poland
| | - Marcin Barański
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | | | - Łukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Laboratory of Neuronal Plasticity, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Diana Legutko
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Daniel Wójcik
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| |
Collapse
|
23
|
Rahman MT, Decker AM, Ben Hamida S, Perrey DA, Chaminda Lakmal HH, Maitra R, Darcq E, Kieffer BL, Jin C. Improvement of the Metabolic Stability of GPR88 Agonist RTI-13951-33: Design, Synthesis, and Biological Evaluation. J Med Chem 2023; 66:2964-2978. [PMID: 36749855 PMCID: PMC9974843 DOI: 10.1021/acs.jmedchem.2c01983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 (1b) as the first in vivo active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties. As a result, we identified a highly potent GPR88 agonist RTI-122 (30a) (cAMP EC50 = 11 nM) with good metabolic stability (half-life of 5.8 h) and brain permeability (brain/plasma ratio of >1) in mice. Notably, RTI-122 was more effective than RTI-13951-33 in attenuating the binge-like alcohol drinking behavior in the drinking-in-the-dark paradigm. Collectively, our findings suggest that RTI-122 is a promising lead compound for drug discovery research of GPR88 agonists.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Sami Ben Hamida
- INSERM UMR 1247, University of Picardie Jules Verne, Amiens 80025, France
| | - David A Perrey
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Hetti Handi Chaminda Lakmal
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Emmanuel Darcq
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France
| | | | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
24
|
Ousey J, Boktor JC, Mazmanian SK. Gut microbiota suppress feeding induced by palatable foods. Curr Biol 2023; 33:147-157.e7. [PMID: 36450285 PMCID: PMC9839363 DOI: 10.1016/j.cub.2022.10.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Feeding behaviors depend on intrinsic and extrinsic factors including genetics, food palatability, and the environment.1,2,3,4,5 The gut microbiota is a major environmental contributor to host physiology and impacts feeding behavior.6,7,8,9,10,11,12 Here, we explored the hypothesis that gut bacteria influence behavioral responses to palatable foods and reveal that antibiotic depletion (ABX) of the gut microbiota in mice results in overconsumption of several palatable foods with conserved effects on feeding dynamics. Gut microbiota restoration via fecal transplant into ABX mice is sufficient to rescue overconsumption of high-sucrose pellets. Operant conditioning tests found that ABX mice exhibit intensified motivation to pursue high-sucrose rewards. Accordingly, neuronal activity in mesolimbic brain regions, which have been linked with motivation and reward-seeking behavior,3 was elevated in ABX mice after consumption of high-sucrose pellets. Differential antibiotic treatment and functional microbiota transplants identified specific gut bacterial taxa from the family S24-7 and the genus Lactobacillus whose abundances associate with suppression of high-sucrose pellet consumption. Indeed, colonization of mice with S24-7 and Lactobacillus johnsonii was sufficient to reduce overconsumption of high-sucrose pellets in an antibiotic-induced model of binge eating. These results demonstrate that extrinsic influences from the gut microbiota can suppress the behavioral response toward palatable foods in mice.
Collapse
Affiliation(s)
- James Ousey
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Bauer MR, McVey MM, Boehm SL. Drinking history dependent functionality of the dorsolateral striatum on gating alcohol and quinine-adulterated alcohol front-loading and binge drinking. Alcohol 2022; 105:43-51. [PMID: 36240946 PMCID: PMC9835618 DOI: 10.1016/j.alcohol.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 01/26/2023]
Abstract
After an extended alcohol-drinking history, alcohol use can transition from controlled to compulsive, causing deleterious consequences. Alcohol use can be segregated into two distinct behaviors, alcohol seeking and alcohol taking. Expression of habitual and compulsive alcohol seeking depends on the dorsolateral striatum (DLS), a brain region thought to engage after extended alcohol access. However, it is unknown whether the DLS is also involved in compulsive-like alcohol taking. The purpose of this experiment was to identify whether the DLS gates compulsive-like binge alcohol drinking. To ask this question, we gave adult male and female C57BL/6J mice a binge-like alcohol-drinking history, which we have previously demonstrated to produce compulsive-like alcohol drinking (Bauer, McVey, & Boehm, 2021), or a water-drinking history. We then tested the involvement of the DLS on gating binge-like alcohol drinking and compulsive-like quinine-adulterated alcohol drinking via intra-DLS AMPA receptor antagonism. We hypothesized that pharmacological lesioning of the DLS would reduce compulsive-like quinine-adulterated alcohol (QuA) drinking, but not non-adulterated alcohol drinking, in male and female C57BL/6J mice. Three important findings were made. First, compulsive-like alcohol drinking is significantly blunted in cannulated mice. Because of this, we conclude that we were not able to adequately assess the effect of intra-DLS lesioning on compulsive-like alcohol drinking. Second, we found that the DLS gates binge-like alcohol drinking initially, which replicates findings in our previous work (Bauer, McVey, Germano, Zhang, & Boehm, 2022). However, following an extended alcohol history, the DLS no longer drives this behavior. Finally, alcohol and QuA front-loading is DLS-dependent in alcohol-history mice. Intra-DLS NBQX altered these drinking behaviors without altering ambulatory locomotor activity. These data demonstrate the necessity of the DLS in binge-like alcohol drinking before, but not following, an extended binge-like alcohol-drinking history and in alcohol front-loading in alcohol-history mice.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| |
Collapse
|
26
|
Ben Hamida S, Carter M, Darcq E, Sourty M, Rahman MT, Decker AM, Jin C, Kieffer BL. The GPR88 agonist RTI-13951-33 reduces alcohol drinking and seeking in mice. Addict Biol 2022; 27:e13227. [PMID: 36301207 PMCID: PMC9539967 DOI: 10.1111/adb.13227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/26/2023]
Abstract
GPR88 is an orphan G-protein-coupled receptor that is considered a potential target to treat neuropsychiatric disorders, including addiction. Most knowledge about GPR88 function stems from knockout mouse studies, and in vivo pharmacology is still scarce. Here we examine the effects of the novel brain-penetrant agonist RTI-13951-33 on several alcohol-related behaviours in the mouse. In the intermittent-access-two-bottle-choice paradigm, the compound reduced excessive voluntary alcohol drinking, while water drinking was intact. This was observed for C57BL/6 mice, as well as for control but not Gpr88 knockout mice, demonstrating efficacy and specificity of the drug in vivo. In the drinking-in-the-dark paradigm, RTI-13951-33 also reduced binge-like drinking behaviour for control but not Gpr88 knockout mice, confirming the alcohol consumption-reducing effect and in vivo specificity of the drug. When C57BL/6 mice were trained for alcohol self-administration, RTI-13951-33 decreased the number of nose-pokes over a 4-h session and reduced the number of licks and bursts of licks, suggesting reduced motivation to obtain alcohol. Finally, RTI-13951-33 did not induce any place preference or aversion but reduced the expression of conditioned place preference to alcohol, indicative of a reduction of alcohol-reward seeking. Altogether, data show that RTI-13951-33 limits alcohol intake under distinct conditions that require consummatory behaviour, operant response or association with contextual cues. RTI-13951-33 therefore is a promising lead compound to evaluate GPR88 as a therapeutic target for alcohol use disorders. More broadly, RTI-13951-33 represents a unique tool to better understand GPR88 function, disentangle receptor roles in development from those in the adult and perhaps address other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Douglas Mental Health University InstituteMontrealQuebecCanada
- INSERM UMR 1247University of Picardie Jules VerneAmiensFrance
| | - Michelle Carter
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Emmanuel Darcq
- Douglas Mental Health University InstituteMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- INSERM U1114University of StrasbourgStrasbourgFrance
| | - Marion Sourty
- INSERM U1114University of StrasbourgStrasbourgFrance
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare Team (IMIS), CNRS UMR 7357University of StrasbourgStrasbourgFrance
| | - Md Toufiqur Rahman
- Center for Drug DiscoveryResearch Triangle InstituteResearch Triangle ParkNorth CarolinaUSA
| | - Ann M. Decker
- Center for Drug DiscoveryResearch Triangle InstituteResearch Triangle ParkNorth CarolinaUSA
| | - Chunyang Jin
- Center for Drug DiscoveryResearch Triangle InstituteResearch Triangle ParkNorth CarolinaUSA
| | - Brigitte L. Kieffer
- Douglas Mental Health University InstituteMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- INSERM U1114University of StrasbourgStrasbourgFrance
| |
Collapse
|
27
|
McCarthy W, Huq SN, Allen K, Scally L, Petri A, Wujek M, Sachs BD. Chronic, but not sub-chronic, stress increases binge-like alcohol consumption in male and female c57BL6 mice. Front Behav Neurosci 2022; 16:958342. [PMID: 36204485 PMCID: PMC9530781 DOI: 10.3389/fnbeh.2022.958342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Stress is known to contribute to mental illness and alcohol use disorders, which are highly prevalent and lead to considerable disability. These stress-related disorders are characterized by significant sex differences, which remain poorly understood. Preclinical research comparing the effects of stress in males and females has the potential to provide new insights into the neurobiology of these conditions. The current study compared the effects of chronic and sub-chronic exposure to variable environmental stressors on binge-like alcohol consumption using the drinking-in-the-dark model in male and female c57BL6 mice. The results reveal that chronic, but not sub-chronic, exposure to variable stress increases alcohol intake in both sexes. Stress-induced alterations in gene expression were also compared in the nucleus accumbens, a brain region widely known to play a key role in stress susceptibility and reward processing. Real-time PCR data indicate that chronic, but not sub-chronic, environmental stress leads to downregulation of adenosine 2A (A2A) receptor mRNA. By contrast, sub-chronic stress increased CREB expression, while chronic stress did not. Several sex differences in the effects of stress on gene expression were also noted. Our results demonstrate that reductions in A2A receptor mRNA in the nucleus accumbens are associated with the increased binge drinking of chronically stressed animals, but future work will be required to determine the functional importance of this gene expression change. Continuing to define the molecular alterations associated with stress-induced increases in alcohol intake has the potential to provide insights into the development and progression of stress-related disorders.
Collapse
|
28
|
Bauer MR, Hernández M, Kasten CR, Boehm SL. Systemic administration of racemic baclofen reduces both acquisition and maintenance of alcohol consumption in male and female mice. Alcohol 2022; 103:25-35. [PMID: 35870740 PMCID: PMC9835998 DOI: 10.1016/j.alcohol.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023]
Abstract
Baclofen is a GABAB receptor agonist with proposed use as a treatment for alcohol use disorder (AUD). In preclinical studies, racemic baclofen decreases alcohol consumption in both mice and rats; however, there is a significant disparity in the efficacy of the drug across species. We previously demonstrated that baclofen is enantioselective, with the racemic enantiomer successfully reducing binge-like alcohol consumption during Drinking-in-the-Dark (DID) in C57BL/6J (B6) mice, as well as 24-h consumption during two-bottle choice (2BC) preference drinking in replicate 1 High Alcohol Preferring (HAP) mice. Here we extend these findings by investigating the effects of racemic baclofen on the acquisition and maintenance of alcohol consumption, locomotor activity, and saccharin drinking in two different mouse genotypes and drinking paradigms. Adult male and female B6 mice were allowed free access to 20% (v/v) alcohol for 2 h daily in a 14-day DID procedure. Adult male and female replicate 2 HAP (HAP2) mice were allowed 24-h access to 10% (v/v) alcohol versus tap water in a 2BC procedure for 14 days. Systemic injections of baclofen (0.0 or 3.0 mg/kg) were given 3 h into the dark cycle on days 1-5 in alcohol acquisition experiments and days 6-10 in alcohol maintenance experiments. We found that racemic baclofen significantly reduces acquisition of DID and 2BC alcohol drinking in male and female B6 and HAP2 mice, whereas it only significantly reduces the maintenance of DID alcohol intake in B6 mice. Racemic baclofen did not alter home cage locomotor activity but did alter saccharin intake, suggesting it may have nonspecific effects. The current data add to literature suggesting that smaller doses of racemic baclofen may be an effective treatment of AUD. Future work should focus on the longitudinal efficacy of racemic baclofen in high-drinking mouse genotypes to further investigate whether it is effective for those with a genetic predisposition to AUD.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Maribel Hernández
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Chelsea R Kasten
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, United States.
| |
Collapse
|
29
|
Thomas KN, Zimmel KN, Basel A, Roach AN, Mehta NA, Thomas KR, Dotson LJ, Bedi YS, Golding MC. Paternal alcohol exposures program intergenerational hormetic effects on offspring fetoplacental growth. Front Cell Dev Biol 2022; 10:930375. [PMID: 36036017 PMCID: PMC9405020 DOI: 10.3389/fcell.2022.930375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.
Collapse
|
30
|
Lawson K, Scarlata MJ, Cho WC, Mangan C, Petersen D, Thompson HM, Ehnstrom S, Mousley AL, Bezek JL, Bergstrom HC. Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology 2022; 211:109048. [PMID: 35364101 PMCID: PMC9067297 DOI: 10.1016/j.neuropharm.2022.109048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
After experiencing a traumatic event people often turn to alcohol to cope with symptoms. In those with post-traumatic stress disorder (PTSD) and a co-occurring alcohol use disorder (AUD), PTSD symptoms can worsen, suggesting that alcohol changes how traumatic memory is expressed. The objective of this series of experiments is to identify how alcohol drinking (EtOH), following cued fear conditioning and extinction, impacts fear expression in mice. Molecular (activity-regulated cytoskeleton-associated protein, Arc/arg3.1) and structural (dendrite and spine morphometry) markers of neuronal plasticity were measured following remote extinction retrieval. Mouse age (adolescent and adult) and sex were included as interacting variables in a full factorial design. Females drank more EtOH than males and adolescents drank more EtOH than adults. Adolescent females escalated EtOH intake across drinking days. Adolescent drinkers exhibited more conditioned freezing during extinction retrieval, an effect that persisted for at least 20 days. Heightened cued freezing in the adolescent group was associated with greater Arc/arg3.1 expression in layer (L) 2/3 prelimbic (PL) cortex, greater spine density, and reduced basal dendrite complexity. In adults, drinking was associated with reduced L2/3 infralimbic (IL) Arc expression but no behavioral differences. Few sex interactions were uncovered throughout. Overall, these data identify prolonged age-related differences in alcohol-induced fear extinction impairment and medial prefrontal cortex neuroadaptations.
Collapse
Affiliation(s)
- K Lawson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - M J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - W C Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - C Mangan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - D Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H M Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - S Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - A L Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - J L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
31
|
Grecco GG, Haggerty DL, Reeves KC, Gao Y, Maulucci D, Atwood BK. Prenatal opioid exposure reprograms the behavioural response to future alcohol reward. Addict Biol 2022; 27:e13136. [PMID: 35229956 PMCID: PMC8896285 DOI: 10.1111/adb.13136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
As the opioid crisis has continued to grow, so has the number of infants exposed to opioids during the prenatal period. A growing concern is that prenatal exposure to opioids may induce persistent neurological changes that increase the propensity for future addictions. Although alcohol represents the most likely addictive substance that the growing population of prenatal opioid exposed will encounter as they mature, no studies to date have examined the effect of prenatal opioid exposure on future sensitivity to alcohol reward. Using a recently developed mouse model of prenatal methadone exposure (PME), we investigated the rewarding properties of alcohol and alcohol consumption in male and female adolescent PME and prenatal saline exposed (PSE) control animals. Conditioned place preference to alcohol was disrupted in PME offspring in a sex-dependent manner with PME males exhibiting resistance to the rewarding properties of alcohol. Repeated injections of alcohol revealed enhanced sensitivity to the locomotor-stimulating effects of alcohol specific to PME females. PME males consumed significantly more alcohol over 4 weeks of alcohol access relative to PSE males and exhibited increased resistance to quinine-adulterated alcohol. Further, a novel machine learning model was developed to employ measured differences in alcohol consumption and drinking microstructure to reliably predict prenatal exposure. These findings indicate that PME alters the sensitivity to alcohol reward in adolescent mice in a sex-specific manner and suggests prenatal opioid exposure may induce persistent effects on reward neurocircuitry that can reprogram offspring behavioural response to alcohol later in life.
Collapse
Affiliation(s)
- Gregory G. Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN 46202
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yong Gao
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Maulucci
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Corresponding Author: Brady K. Atwood, Ph.D. Department of Pharmacology and Toxicology, Contact: 320 W. 15th St, Indianapolis, IN 46202, NB 400-C. phone: 317-274-8917.
| |
Collapse
|
32
|
Hood LE, Nagy EK, Leyrer-Jackson JM, Olive MF. Ethanol consumption activates a subset of arcuate nucleus pro-opiomelanocortin (POMC)-producing neurons: a c-fos immunohistochemistry study. Physiol Rep 2022; 10:e15231. [PMID: 35312178 PMCID: PMC8935532 DOI: 10.14814/phy2.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Ethanol activates various opioid peptide-containing circuits within the brain that may underlie its motivational and rewarding effects. One component of this circuitry consists of neurons located in the arcuate nucleus (ArcN) of the hypothalamus which express pro-opiomelanocortin (POMC), an opioid precursor peptide that is cleaved to form bioactive fragments including β-endorphin and α-melanocyte stimulating hormone. In this study, we sought to determine if ethanol intake activates ArcN POMC neurons as measured by expression of the immediate early gene c-fos. Male and female POMC-EGFP mice underwent drinking-in-the-dark (DID) procedures for 3 consecutive days (2 h/day) and were allowed to consume either ethanol (20% v/v), saccharin (0.2% w/v), or water. On the fourth day of DID procedures, animals were allowed to consume their respective solutions for 20 min, and 1 h following the session brains were harvested and processed for c-fos immunohistochemistry and co-localization with EGFP. Our results indicate that ethanol intake activates a subset (~15-20%) of ArcN POMC neurons, whereas saccharin or water intake activates significantly fewer (~5-12%) of these neurons. The percent of activated POMC neurons did not correlate with blood ethanol levels at the time of tissue collection, and activation appeared to be distributed throughout the rostrocaudal axis of the ArcN. No sex differences were observed in the degree of neuronal activation across drinking solutions. These findings indicate a preferential activation of ArcN POMC neurons by ethanol consumption, strengthening the notion that ethanol activates endogenous opioid systems in the brain which may underlie its motivational properties.
Collapse
Affiliation(s)
- Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| | | | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| |
Collapse
|
33
|
Bauer MR, McVey MM, Germano DM, Zhang Y, Boehm SL. Intra-dorsolateral striatal AMPA receptor antagonism reduces binge-like alcohol drinking in male and female C57BL/6J mice. Behav Brain Res 2022; 418:113631. [PMID: 34715146 PMCID: PMC8671209 DOI: 10.1016/j.bbr.2021.113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
The dorsolateral striatum (DLS) is involved in addiction, reward, and alcohol related behaviors. The DLS primarily receives excitatory inputs which are gated by post-synaptic AMPA receptors. We antagonized AMPA receptors in the DLS to investigate how such modulation affects binge-like alcohol drinking in male and female C57BL/6J mice and whether an associated alcohol drinking history alters dorsomedial striatum (DMS) and DLS AMPA receptor expression. We also investigated the effect of intra-DLS NBQX on locomotor activity and saccharin drinking in mice. Mice were allowed free access to 20% alcohol for two hours each day for a total of seven days. Mice received an intra-DLS infusion of one of four concentrations of NBQX (saline, 0.15, 0.5, or 1.5 μg/side), an AMPA receptor antagonist, immediately prior to alcohol access on day 7. Two-hour binge alcohol intakes, locomotor activity, and blood alcohol concentrations were determined. Intra-DLS NBQX reduced binge-like alcohol drinking in a U-shaped manner in male and female mice. Intake predicted blood alcohol concentration, and locomotor activity was not affected. In a follow up experiment, we assessed whether the most effective NBQX concentration for reducing alcohol consumption also reduced saccharin drinking, finding intra-DLS NBQX did not alter saccharin drinking in male and female mice. These data suggest that AMPA receptors in the DLS play a role in the modulation of binge-like alcohol drinking. These findings further validate the importance of the DLS for alcohol related behaviors and alcohol use disorder.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Damon M Germano
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yanping Zhang
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Iyer V, Woodward TJ, Pacheco R, Hohmann AG. A limited access oral oxycodone paradigm produces physical dependence and mesocorticolimbic region-dependent increases in DeltaFosB expression without preference. Neuropharmacology 2021; 205:108925. [PMID: 34921830 DOI: 10.1016/j.neuropharm.2021.108925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/07/2023]
Abstract
The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Taylor J Woodward
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
35
|
Thomas KN, Zimmel KN, Roach AN, Basel A, Mehta NA, Bedi YS, Golding MC. Maternal background alters the penetrance of growth phenotypes and sex-specific placental adaptation of offspring sired by alcohol-exposed males. FASEB J 2021; 35:e22035. [PMID: 34748230 PMCID: PMC8713293 DOI: 10.1096/fj.202101131r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Epigenetic mechanisms of paternal inheritance are an emerging area of interest in our efforts to understand fetal alcohol spectrum disorders. In rodent models examining maternal alcohol exposures, different maternal genetic backgrounds protect or sensitize offspring to alcohol‐induced teratogenesis. However, whether maternal background can mitigate sperm‐inherited alterations in developmental programming and modify the penetrance of growth defects induced by preconception paternal alcohol exposures remains unaddressed. In our previous studies examining pure C57Bl/6J crosses, the offspring of alcohol‐exposed sires exhibited fetal growth restriction, enlarged placentas, and decreased placental efficiency. Here, we find that in contrast to our previous studies, the F1 offspring of alcohol‐exposed C57Bl/6J sires and CD‐1 dams do not exhibit fetal growth restriction, with male fetuses developing smaller placentas and increased placental efficiencies. However, in these hybrid offspring, preconception paternal alcohol exposure induces sex‐specific changes in placental morphology. Specifically, the female offspring of alcohol‐exposed sires displayed structural changes in the junctional and labyrinth zones, along with increased placental glycogen content. These changes in placental organization are accompanied by female‐specific alterations in the expression of imprinted genes Cdkn1c and H19. Although male placentae do not display overt changes in placental histology, using RNA‐sequencing, we identified programmed alterations in genes regulating oxidative phosphorylation, mitochondrial function, and Sirtuin signaling. Collectively, our data reveal that preconception paternal alcohol exposure transmits a stressor to developing offspring, that males and females exhibit distinct patterns of placental adaptation, and that maternal genetic background can modulate the effects of paternal alcohol exposure.
Collapse
Affiliation(s)
- Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Nicole A Mehta
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
36
|
Russell JT, Zhou Y, Weinstock GM, Bubier JA. The Gut Microbiome and Substance Use Disorder. Front Neurosci 2021; 15:725500. [PMID: 34531718 PMCID: PMC8439419 DOI: 10.3389/fnins.2021.725500] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 01/15/2023] Open
Abstract
Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component. Much of SUD research has focused on the neurologic and genetic facets of consumption behavior. There is now interest in the role of the gut microbiome in the pathogenesis of SUD. In this review, we summarize current animal and clinical evidence that the gut microbiome is involved in SUD, then address the underlying mechanisms by which the gut microbiome interacts with SUD through metabolomic, immune, neurological, and epigenetic mechanisms. Lastly, we discuss methods using various inbred and outbred mice models to gain an integrative understanding of the microbiome and host genetic controls in SUD.
Collapse
Affiliation(s)
- Jordan T Russell
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | |
Collapse
|
37
|
Flores-Bonilla A, De Oliveira B, Silva-Gotay A, Lucier KW, Richardson HN. Shortening time for access to alcohol drives up front-loading behavior, bringing consumption in male rats to the level of females. Biol Sex Differ 2021; 12:51. [PMID: 34526108 PMCID: PMC8444481 DOI: 10.1186/s13293-021-00395-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background Incentives to promote drinking (“happy hour”) can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. Methods Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, “early sessions”) and then again at 10 h into the dark cycle (late phase of the dark cycle, “late sessions”) with an 8-h break between the two sessions in the home cage. Results Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). Conclusions This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior. Voluntary alcohol drinking is higher in adult female rats compared to adult male rats. This sex difference is most pronounced in the later phase of the dark cycle, and when the operant effort is minimal (when 1 lever press gives 1 reward: fixed ratio 1, FR1). Higher alcohol intake in females is primarily due to “front-loading”, or the rapid consumption of alcohol within the first 5 min of access. Increasing the effort required to obtain alcohol from FR1 to FR3 dampens front-loading drinking behavior, resulting in similar levels of total intake in males and females. Compressing the time of access to 15 min drives up front-loading to such a degree that rats end up consuming more alcohol in total than they do in 30-min sessions. In males, this increase in drinking is large enough that it eliminates the sex difference in total alcohol intake.
Collapse
Affiliation(s)
- Annabelle Flores-Bonilla
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Barbara De Oliveira
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrea Silva-Gotay
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kyle W Lucier
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Heather N Richardson
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
38
|
Levine OB, Skelly MJ, Miller JD, Rivera-Irizarry JK, Rowson SA, DiBerto JF, Rinker JA, Thiele TE, Kash TL, Pleil KE. The paraventricular thalamus provides a polysynaptic brake on limbic CRF neurons to sex-dependently blunt binge alcohol drinking and avoidance behavior in mice. Nat Commun 2021; 12:5080. [PMID: 34426574 PMCID: PMC8382748 DOI: 10.1038/s41467-021-25368-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
Bed nucleus of the stria terminalis (BNST) neurons that synthesize corticotropin-releasing factor (CRF) drive binge alcohol drinking and anxiety. Here, we found that female C57BL/6J mice binge drink more than males and have greater basal BNSTCRF neuron excitability and synaptic excitation. We identified a dense VGLUT2 + synaptic input from the paraventricular thalamus (PVT) that releases glutamate directly onto BNSTCRF neurons but also engages a large BNST interneuron population to ultimately inhibit BNSTCRF neurons, and this polysynaptic PVTVGLUT2-BNSTCRF circuit is more robust in females than males. Chemogenetic inhibition of the PVTBNST projection promoted binge alcohol drinking only in female mice, while activation reduced avoidance behavior in both sexes. Lastly, repeated binge drinking produced a female-like phenotype in the male PVT-BNSTCRF excitatory synapse without altering the function of PVTBNST neurons per se. Our data describe a complex, feedforward inhibitory PVTVGLUT2-BNSTCRF circuit that is sex-dependent in its function, behavioral roles, and alcohol-induced plasticity.
Collapse
Affiliation(s)
- Olivia B Levine
- Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona College, New Rochelle, NY, USA
| | - John D Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sydney A Rowson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kristen E Pleil
- Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
39
|
Burnham NW, Chaimowitz CN, Vis CC, Segantine Dornellas AP, Navarro M, Thiele TE. Lateral hypothalamus-projecting noradrenergic locus coeruleus pathway modulates binge-like ethanol drinking in male and female TH-ires-cre mice. Neuropharmacology 2021; 196:108702. [PMID: 34246685 DOI: 10.1016/j.neuropharm.2021.108702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
A growing body of literature implicates noradrenergic (NE) signaling in the modulation of ethanol consumption. However, relatively few studies have detailed specific brain pathways that mediate NE-associated binge-like ethanol consumption. To begin to fill this gap in the literature, male and female C57BL6/J and TH-ires-cre mice underwent pharmacological and chemogenetic testing, respectively, in combination with "drinking in the dark" procedures to model binge-like consumption of ethanol or sucrose solutions. First, we showed that intraperitoneal administration of the NE reuptake inhibitor, reboxetine, blunted binge-like ethanol intake in C57BL6/J mice. Chemogenetic activation of locus coeruleus (LC) tyrosine hydroxylase (TH)-expressing neurons blunted binge-like ethanol intake regardless of sex. Chemogenetic activation of LC projections to the lateral hypothalamus (LH), a region implicated in ethanol consumption, blunted binge-like ethanol drinking without altering sucrose intake in ethanol-experienced or ethanol-naïve mice. In C57BL/6 J mice, LH-targeted microinfusion of an α1-adrenergic receptor (AR) agonist blunted binge-like ethanol intake across both sexes, while LH infusion of a β-AR agonist blunted binge-like ethanol intake in females exclusively. Finally, in mice with high baseline ethanol intake both an α1- AR agonist and an α-2 AR antagonist blunted binge-like ethanol intake. The present results provide novel evidence that increased NE tone in a circuit arising from the LC and projecting to the LH reduces binge-like ethanol drinking in mice, and may represent a novel approach to treating binge or heavy drinking prior to the development of dependence. This article is part of the special Issue on "Neurocircuitry Modulating Drug and Alcohol Abuse".
Collapse
Affiliation(s)
- Nathan W Burnham
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, 27599-7178, USA
| | - Corryn N Chaimowitz
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Cortland C Vis
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Ana Paula Segantine Dornellas
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, 27599-7178, USA
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, 27599-7178, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, 27599-7178, USA.
| |
Collapse
|
40
|
Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, Bartlett SE. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci 2021; 14:678267. [PMID: 34262435 PMCID: PMC8273284 DOI: 10.3389/fnmol.2021.678267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Leyrer-Jackson JM, Hood LE, Olive MF. Alcohol consumption preferentially activates a subset of pro-opiomelanocortin (POMC) producing neurons targeting the amygdala. Neuropharmacology 2021; 195:108674. [PMID: 34153315 DOI: 10.1016/j.neuropharm.2021.108674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol abuse is a worldwide public health concern and leads to an estimated 90,000 alcohol-related deaths in the United States annually. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. Pro-opiomelanocortin (POMC) producing neurons located within the arcuate nucleus (ArcN) of the hypothalamus make up one circuit of the endogenous opioid system, and heavily projects to reward-related brain areas such as the amygdala, nucleus accumbens (NAc) and ventral tegmental area (VTA). POMC producing neurons release β-endorphin and other peptides that target opioid receptors within reward areas to elicit their associated rewarding effects. Here we explore ArcN POMC neuronal activation, as assessed via FosB expression, following alcohol consumption to determine whether activation varied within subsets of ArcN POMC projection neurons targeting different reward-related areas. METHODS Fluorescent retrobeads were used to label ArcN POMC projection neurons targeting the NAc, amygdala and VTA in POMC-cre mice expressing the reporter tdTomato. Animals (n = 57) were then allowed to voluntarily consume alcohol or water using the drinking-in-the-dark (DID) paradigm, and sacrificed for immunohistochemistry to examine FosB expression within ArcN POMC neurons. RESULTS Female mice displayed escalation of alcohol intake across DID sessions, whereas males did not. A greater percent of ArcN POMC neurons target the amygdala over the NAc and VTA, and alcohol consumption preferentially activated ArcN POMC neurons targeting the amygdala over other areas. CONCLUSION These findings highlight a novel aspect alcohol-induced activation of the endogenous opioid system, whereby alcohol activates a specific subpopulation of ArcN POMC producing neurons that project primarily to the amygdala.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
42
|
Savarese AM, Ozburn AR, Barkley-Levenson AM, Metten P, Crabbe JC. The impact of Drinking in the Dark (DID) procedural manipulations on ethanol intake in High Drinking in the Dark (HDID) mice. Alcohol 2021; 93:45-56. [PMID: 33556460 DOI: 10.1016/j.alcohol.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023]
Abstract
The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice. HDID-1, HDID-2, and non-selected HS/NPT mice were tested in a series of DID experiments where one of the following factors was manipulated: length of ethanol access, fluid choice, number of ethanol bottles, and housing condition. We observed that 1) HDID mice achieve intoxicating BECs in DID, even when they are group-housed; 2) HDID mice continue to show elevated ethanol intake relative to HS/NPT mice during an extended access session, but this is most apparent during the first 4 h of access; and 3) offering a water choice during DID prevents elevated intake in the HDID-1 mice, but not necessarily in HDID-2 mice. Together, these results suggest that the lack of choice in the DID paradigm, together with the length of ethanol access, are important factors contributing to elevated ethanol intake in the HDID mice. These results further suggest important differences between the HDID lines in response to procedural manipulations of housing condition and ethanol bottle number in the DID paradigm, highlighting the distinct characteristics that each of these lines possess, despite being selectively bred for the same phenotype.
Collapse
|
43
|
Reeves KC, Kube MJ, Grecco GG, Fritz BM, Muñoz B, Yin F, Gao Y, Haggerty DL, Hoffman HJ, Atwood BK. Mu opioid receptors on vGluT2-expressing glutamatergic neurons modulate opioid reward. Addict Biol 2021; 26:e12942. [PMID: 32686251 PMCID: PMC7854952 DOI: 10.1111/adb.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The role of Mu opioid receptor (MOR)‐mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR‐mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2‐expressing neurons (MORflox‐vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2‐expressing neurons in opioid‐related behaviors. In tests of conditioned place preference, MORflox‐vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox‐vGluT2cre mice also failed to show oxycodone‐induced locomotor stimulation. These mice displayed baseline withdrawal‐like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal‐like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR‐mediated behaviors were unaffected, including oxycodone‐induced analgesia. These data reveal that MOR‐mediated regulation of glutamate transmission is a critical component of opioid reward.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Megan J. Kube
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Gregory G. Grecco
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
- Medical Scientist Training Program Indiana University School of Medicine Indianapolis Indiana USA
| | - Brandon M. Fritz
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Fuqin Yin
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Yong Gao
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - David L. Haggerty
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Hunter J. Hoffman
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| |
Collapse
|
44
|
Monroe SC, Radke AK. Aversion-resistant fentanyl self-administration in mice. Psychopharmacology (Berl) 2021; 238:699-710. [PMID: 33226446 PMCID: PMC7914171 DOI: 10.1007/s00213-020-05722-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
RATIONALE Animal models of compulsive drug use that continues despite negative consequences can be used to investigate the neural mechanisms of addiction. However, models of punished or aversion-resistant opioid self-administration are notably lacking. OBJECTIVES We sought to develop an aversion-resistant, oral fentanyl self-administration paradigm. METHODS In Experiment 1, C57BL/6J male and female, adult mice consumed fentanyl (10 μg/mL) in a two-bottle drinking in the dark task and escalating concentrations of quinine were added to the bottles. In Experiment 2, mice were trained to administer oral fentanyl (10 μg/mL) in an operant response task. Quinine was next added to the fentanyl solution in escalating concentrations. In Experiment 3, mice were trained to respond for oral fentanyl or fentanyl adulterated with 500 μM quinine on every session. In Experiment 4, mice were trained to respond for a 1% sucrose solution before introduction of quinine. RESULTS Quinine reduced two-bottle choice consumption in males but not in females. Both sexes demonstrated the ability to detect the selected concentrations of quinine in fentanyl. In the operant chamber, mice responded robustly for oral fentanyl but introduction of quinine at any stage of training was insufficient to reduce responding. In contrast, quinine reduced responding for sucrose at concentrations above 250 μM. CONCLUSIONS Mice will respond for and consume oral fentanyl in both a two-bottle choice and an operant response task. Quinine is detectable in fentanyl but mice will continue to respond for and consume fentanyl with quinine in both paradigms. These data support the use of these models in behavioral studies of compulsive-like opioid use.
Collapse
Affiliation(s)
| | - Anna K. Radke
- Correspondence to: Anna K. Radke, PhD, 90 N Patterson Ave, Oxford, OH, USA 45056,
| |
Collapse
|
45
|
Bauer MR, McVey MM, Boehm SL. Three Weeks of Binge Alcohol Drinking Generates Increased Alcohol Front-Loading and Robust Compulsive-Like Alcohol Drinking in Male and Female C57BL/6J Mice. Alcohol Clin Exp Res 2021; 45:650-660. [PMID: 33496972 DOI: 10.1111/acer.14563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Current models of compulsive-like quinine-adulterated alcohol (QuA) drinking in mice, if improved, could be more useful for uncovering the neural mechanisms of compulsive-like alcohol drinking. The purpose of these experiments was to further characterize and improve the validity of a model of compulsive-like QuA drinking in C57BL/6J mice. We sought to determine whether compulsive-like alcohol drinking could be achieved following 2 or 3 weeks of Drinking-in-the-Dark (DID), whether it provides evidence for a robust model of compulsive-like alcohol drinking by inclusion of a water control group and use of a highly concentrated QuA solution, whether repeated QuA exposures alter compulsive-like drinking, and whether there are sex differences in compulsive-like alcohol drinking. METHODS Male and Female C57BL/6J mice were allowed free access to either 20% alcohol or tap water for 2 hours each day for approximately 3 weeks. After 2 or 3 weeks, the mice were given QuA (500 μM) and the effect of repeated QuA drinking sessions on compulsive-like alcohol drinking was assessed. 3-minute front-loading, 2 hour binge-drinking, and blood alcohol concentrations were determined. RESULTS Compulsive-like QuA drinking was achieved after 3 weeks, but not 2 weeks, of daily alcohol access as determined by alcohol history mice consuming significantly more QuA than water history mice and drinking statistically nondifferent amounts of QuA than nonadulterated alcohol at baseline. Thirty-minute front-loading of QuA revealed that alcohol history mice front-loaded significantly more QuA than water history mice, but still found the QuA solution aversive. Repeated QuA exposures did not alter these patterns, compulsive-like drinking did not differ by sex, and BACs for QuA drinking were at the level of a binge. CONCLUSIONS These data suggest that compulsive-like QuA drinking can be robustly achieved following 3 weeks of DID and male and female C57BL/6J mice do not differ in compulsive-like alcohol drinking.
Collapse
Affiliation(s)
- Meredith R Bauer
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Megan M McVey
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen L Boehm
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
46
|
Accumbens coordinated reset stimulation in mice exhibits ameliorating aftereffects on binge alcohol drinking. Brain Stimul 2021; 14:330-334. [PMID: 33524612 DOI: 10.1016/j.brs.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) affects nearly 5% of the world's adult population. Despite treatment, AUD often manifests with relapse to binge drinking, which has been associated with corticostriatal hypersynchrony involving the nucleus accumbens (NAc). METHODS A modified "Drinking in the Dark" protocol was used to provoke binge-like alcohol drinking. We implemented Coordinated Reset Stimulation (CRS), a computationally designed, spatio-temporal stimulation algorithm, to desynchronize abnormal neuronal activity via a deep brain stimulation (DBS) electrode in the NAc of mice exhibiting binge-like alcohol drinking. Integral CRS charge injected would be 2.5% of that of conventional high-frequency DBS. RESULTS NAc CRS delivery during only the initial phase of exposure to alcohol and prior to the exposure (but not during) significantly reduced binge-like drinking without interfering with social behavior or locomotor activity. CONCLUSIONS NAc CRS ameliorates binge-like alcohol drinking and preliminarily exhibits sustained aftereffects that are suggestive of an unlearning of hypersynchrony.
Collapse
|
47
|
Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2021; 14:601111. [PMID: 33574742 PMCID: PMC7870708 DOI: 10.3389/fnbeh.2020.601111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
The prevalence of psychiatry disorders such as anxiety and depression has steadily increased in recent years in the United States. This increased risk for anxiety and depression is associated with excess weight gain, which is often due to over-consumption of western diets that are typically high in fat, as well as with binge eating disorders, which often overlap with overweight and obesity outcomes. This finding suggests that diet, particularly diets high in fat, may have important consequences on the neurocircuitry regulating emotional processing as well as metabolic functions. Depression and anxiety disorders are also often comorbid with alcohol and substance use disorders. It is well-characterized that many of the neurocircuits that become dysregulated by overconsumption of high fat foods are also involved in drug and alcohol use disorders, suggesting overlapping central dysfunction may be involved. Emerging preclinical data suggest that high fat diets may be an important contributor to increased susceptibility of binge drug and ethanol intake in animal models, suggesting diet could be an important aspect in the etiology of substance use disorders. Neuroinflammation in pivotal brain regions modulating metabolic function, food intake, and binge-like behaviors, such as the hypothalamus, mesolimbic dopamine circuits, and amygdala, may be a critical link between diet, ethanol, metabolic dysfunction, and neuropsychiatric conditions. This brief review will provide an overview of behavioral and physiological changes elicited by both diets high in fat and ethanol consumption, as well as some of their potential effects on neurocircuitry regulating emotional processing and metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Bailey N. Keller
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Amy C. Arnold
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
48
|
Almeida-Toledano L, Andreu-Fernández V, Aras-López R, García-Algar Ó, Martínez L, Gómez-Roig MD. Epigallocatechin Gallate Ameliorates the Effects of Prenatal Alcohol Exposure in a Fetal Alcohol Spectrum Disorder-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22020715. [PMID: 33450816 PMCID: PMC7828292 DOI: 10.3390/ijms22020715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal alcohol spectrum disorder is the main preventable cause of intellectual disability in the Western world. Although binge drinking is the most studied prenatal alcohol exposure pattern, other types of exposure, such as the Mediterranean, are common in specific geographic areas. In this study, we analyze the effects of prenatal alcohol exposure in binge and Mediterranean human drinking patterns on placenta and brain development in C57BL/6J mice. We also assess the impact of prenatal treatment with the epigallocatechin-3-gallate antioxidant in both groups. Study experimental groups for Mediterranean or binge patterns: (1) control; (2) ethanol; (3) ethanol + epigallocatechin-3-gallate. Brain and placental tissue were collected on gestational Day 19. The molecular pathways studied were fetal and placental growth, placental angiogenesis (VEGF-A, PLGF, VEGF-R), oxidative stress (Nrf2), and neurodevelopmental processes including maturation (NeuN, DCX), differentiation (GFAP) and neural plasticity (BDNF). Prenatal alcohol exposure resulted in fetal growth restriction and produced imbalances of placental angiogenic factors. Moreover, prenatal alcohol exposure increased oxidative stress and caused significant alterations in neuronal maturation and astrocyte differentiation. Epigallocatechin-3-gallate therapy ameliorated fetal growth restriction, attenuated alcohol-induced changes in placental angiogenic factors, and partially rescued neuronal nuclear antigen (NeuN), (doublecortin) DCX, and (glial fibrillary acidic protein) GFAP levels. Any alcohol consumption (Mediterranean or binge) during pregnancy may generate a fetal alcohol spectrum disorder phenotype and the consequences may be partially attenuated by a prenatal treatment with epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
| | - Óscar García-Algar
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| |
Collapse
|
49
|
Hoffman J, Yu J, Kirstein C, Kindy MS. Combined Effects of Repetitive Mild Traumatic Brain Injury and Alcohol Drinking on the Neuroinflammatory Cytokine Response and Cognitive Behavioral Outcomes. Brain Sci 2020; 10:brainsci10110876. [PMID: 33228251 PMCID: PMC7699568 DOI: 10.3390/brainsci10110876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
The relationship between alcohol consumption and traumatic brain injury (TBI) often focuses on alcohol consumption increasing the likelihood of incurring a TBI, rather than alcohol use outcomes after TBI. However, patients without a history of an alcohol use disorder can also show increased problem drinking after single or multiple TBIs. Alcohol and mild TBI share diffuse deleterious neurological impacts and cognitive impairments; therefore, the purpose of these studies was to determine if an interaction on brain and behavior outcomes occurs when alcohol is consumed longitudinally after TBI. To examine the impact of mild repetitive TBI (rmTBI) on voluntary alcohol consumption, mice were subjected to four mild TBI or sham procedures over a 2 week period, then offered alcohol (20% v/v) for 2 weeks using the two-bottle choice, drinking in the dark protocol. Following the drinking period, mice were evaluated for neuroinflammatory cytokine response or tested for cognitive and behavioral deficits. Results indicate no difference in alcohol consumption or preference following rmTBI as compared to sham; however, increases in the neuroinflammatory cytokine response due to alcohol consumption and some mild cognitive behavioral deficits after rmTBI and alcohol consumption were observed. These data suggest that the cytokine response to alcohol drinking and rmTBI + alcohol drinking is not necessarily aggregate, but the combination does result in an exacerbation of cognitive behavioral outcomes.
Collapse
Affiliation(s)
- Jessica Hoffman
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (J.H.); (M.S.K.); Tel.: +1-919-843-4389 (J.H.)
| | - Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Cheryl Kirstein
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA;
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence: (J.H.); (M.S.K.); Tel.: +1-919-843-4389 (J.H.)
| |
Collapse
|
50
|
Bauer MR, Garcy DP, Boehm SL. Systemic Administration of the AMPA Receptor Antagonist, NBQX, Reduces Alcohol Drinking in Male C57BL/6J, But Not Female C57BL/6J or High-Alcohol-Preferring, Mice. Alcohol Clin Exp Res 2020; 44:2316-2325. [PMID: 32945559 DOI: 10.1111/acer.14461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are ionotropic glutamate receptors that have been investigated for their role in modulating alcohol consumption. However, little is known about the role of AMPA receptors in the control of binge-like or free-access alcohol drinking in C57BL/6J or in selectively bred high-alcohol-preferring (HAP) mice. The purpose of this experiment was to assess the role of systemic administration of the AMPA receptor antagonist, 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX), on alcohol consumption using a model of binge-like drinking, drinking in the dark (DID) and free-access 2-bottle choice (2BC) in male and female C57BL/6J and HAP mice. METHODS C57BL/6J mice were allowed free access to 20% (v/v) alcohol for 2 hours each day beginning 3 hours into the dark cycle for 4 days. On day 5, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 10) 15 minutes before alcohol presentation and were given 4-hour alcohol access (extended DID). HAP mice were given 24-hour free access to 10% (v/v) alcohol and water for 19 days. On day 20, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 9) 15 minutes before alcohol and water presentation. RESULTS In the first 2 hours of DID, at 30 mg/kg, male, but not female C57BL/6J or HAP, mice drank significantly less alcohol compared with controls and 30 mg/kg NBQX did not alter saccharin intake in the males. Although male HAP mice drank significantly less alcohol than female mice following 10 mg/kg NBQX, neither sex exhibited drinking that differed significantly from controls. NBQX did not reduce locomotor behavior at any dose, sex, or genotype. CONCLUSIONS These data suggest that AMPA receptors play a key role in modulating binge-like alcohol consumption without altering saccharin consumption or general locomotion and that this effect is specific to sex and genotype.
Collapse
Affiliation(s)
- Meredith R Bauer
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Daniel P Garcy
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Stephen L Boehm
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|