1
|
Farías MA, Cancino FA, Navarro AJ, Duarte LF, Soto AA, Tognarelli EI, Ramm MJ, Alarcón-Zapata BN, Cordero J, San Martín S, Agurto-Muñoz C, Retamal-Díaz A, Riedel CA, Barrera NP, Bustamante L, Bueno SM, Kalergis AM, González PA. HSV-1 alters lipid metabolism and induces lipid droplet accumulation in functionally impaired mouse dendritic cells. iScience 2025; 28:112441. [PMID: 40343272 PMCID: PMC12059724 DOI: 10.1016/j.isci.2025.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) significantly impairs dendritic cell (DC) function, ultimately eliciting the death of these cells. Here, we sought to assess whether HSV-1 modulates lipid metabolism in mouse DCs as a mechanism of immune evasion. For this, we performed RT-qPCR gene arrays with ingenuity pathway analysis (IPA), RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA), confocal microscopy, transmission electron microscopy, ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) analysis, pharmacological inhibition of eight lipid-metabolism-related enzymes in HSV-1-infected DCs, co-cultures between virus-specific transgenic CD4+ and CD8+ T cells and HSV-1-infected DCs, and in vivo assays with mice. We found that HSV-1 significantly alters lipid metabolism in DCs and induces lipid droplet (LD) accumulation in these cells. Pharmacological inhibition of two particular lipid metabolism enzymes was found to partially restore DC function. Overall, these results suggest that lipid metabolism plays an important role in the impairment of DC function by HSV-1.
Collapse
Affiliation(s)
- Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A. Cancino
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Areli J. Navarro
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abel A. Soto
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano J. Ramm
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Bárbara N. Alarcón-Zapata
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - José Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio San Martín
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, Hospital Clínico Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Chile
- Centro de Investigación para la Resiliencia a Pandemias, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nelson P. Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Strauch CJ, Sprotte N, Peña Lozano E, Boutant E, Amari K, Ostendorp S, Ostendorp A, Kehr J, Niehl A. Studies on the Japanese soil-borne wheat mosaic virus movement protein highlight its ability to bind plant RNA. Virol J 2025; 22:134. [PMID: 40336096 PMCID: PMC12060307 DOI: 10.1186/s12985-025-02757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Plant viral movement protein (MP) function is decisive for virus cell-to-cell movement. Often, MPs also induce membrane alterations, which are believed to play a role for the establishment of viral replication compartments. Despite these central roles in virus infection, knowledge of the underlying molecular mechanisms by which MPs cause changes in plasmodesmata (PD) size exclusion limit and contribute to the formation of viral replication compartments remain far from being complete. METHODS To further identify host processes subverted by viral MPs, we here characterized the MP of Japanese soil-borne wheat mosaic virus (JSBWMV). We used confocal fluorescence microscopy to study the subcellular localization of MPJSBWMV and to address its functionality in promoting virus cell-to-cell movement. Using the biochemical and biophysical methods co-immunoprecipitation, fluorescence lifetime imaging, microscale thermophoresis and RNA immunoprecipitation we investigate the capacity of MPJSBWMV to multimerize and to bind viral and cellular RNAs. RESULTS MPJSBWMV localized to PD, promoted cell-to-cell movement by complementing a movement-deficient unrelated virus, formed multimers in-vivo and bound to viral RNA with high affinity. Using RNA immunoprecipitation, we identified host RNAs associated with the viral MP. Within the MP-RNA complexes we found RNAs encoding proteins with key functions in membrane modification, signaling, protein folding, and degradation. We propose that binding of MP to these RNAs during infection and regulation of their spatio-temporal translation may represent a mechanism for MPs to achieve PD and host control during replication and movement. CONCLUSION This study provides new insight into the complex interactions between viral MPs and host cellular processes.
Collapse
Affiliation(s)
- Claudia Janina Strauch
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Nico Sprotte
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Estefania Peña Lozano
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin - CS 60024, F-67400, Illkirch, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, F-67412, Illkirch, Strasbourg, France
| | - Khalid Amari
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Steffen Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Anna Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Annette Niehl
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany.
| |
Collapse
|
3
|
Tiwari A, Nadeem A, Paul D, Siddiqui N, Panda KK, Singh RK, Mahadevan GD, Kumar P. Whole-Genome Insights into the Probiotic Prospects of Blautia producta. Ind Biotechnol (New Rochelle N Y) 2025; 21:81-94. [DOI: 10.1089/ind.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Affiliation(s)
- Akshita Tiwari
- Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Debarati Paul
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Nahid Siddiqui
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Kusuma Kumari Panda
- Centre for Plant and Environmental Biotech, AmitIy Institute of Biotechnology, Amity University, Noida, India-201310
| | - Ravi Kant Singh
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Gurumurthy Dummi Mahadevan
- Centre for Cellular and Molecular Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| | - Prabhanshu Kumar
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, India-201310
| |
Collapse
|
4
|
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, Lisbona-Montañez JM, Mucientes A, Manrique-Arija S, Redondo-Rodriguez R, Cano-García L, Tinahones FJ, Fernández-Nebro A. Gut dysbiosis is associated with difficult-to-treat rheumatoid arthritis. Front Med (Lausanne) 2025; 11:1497756. [PMID: 39886456 PMCID: PMC11781114 DOI: 10.3389/fmed.2024.1497756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Background Difficult-to-treat rheumatoid arthritis (D2T RA) refers to a subset of patients who fail to achieve adequate disease control after the use of two or more biological or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) with different mechanisms of action, while maintaining active inflammatory disease. This presents a therapeutic challenge and highlights the need to explore contributing factors such as the potential role of the gut microbiota. Therefore, the aim of this study was to analyze the gut microbiota and inflammation in patients with D2T RA in comparison to patients with easy-to-treat RA (E2T RA). Objective To analyze the gut microbiota and inflammation in patients with D2T RA. Methods We performed an observational study of a prospective cohort between 2007 and 2011 and analyzed the gut microbiota. In 2022, we identified 2 extreme patient phenotypes: (1) D2T RA, which was defined as failure of ≥2 biological or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) (with different mechanisms of action) plus signs of active disease; and (2) easy-to-treat RA (E2T RA), i.e., stable disease managed with a single treatment. The gut microbiota was analyzed using 16S rRNA gene sequencing; bioinformatics analysis was performed using QIIME2, and its functionality was inferred through PICRUSt. We recorded data on clinical findings, inflammation, and cytokines. A Cox multivariate analysis was performed to identify factors related to D2T RA. Results The study population comprised 39 patients: 13 (33%) with D2T RA and 26 (66%) with E2T RA. The families Lachnospiraceae and Pasteurellaceae, and their genera Coprococcus and Haemophilus were more abundant in E2T RA patients, while the genus Megasphaera was more abundant in D2T RA patients. The Firmicutes/Bacteroidetes ratio decreased in D2T RA patients. The metabolic profile of the gut microbiota was characterized by differences in Degradation/Utilization/Assimilation pathway and the Biosynthesis pathway. The factors associated with D2T RA were inflammatory activity according to DAS28-ESR (HR, 2.649; p = 0.013), prednisone (HR, 3.794; p = 0.008), and the Firmicutes/Bacteroidetes ratio (HR, 0.288; p = 0.033). Conclusion The composition of the gut microbiota of patients with D2T RA differed from that of E2T RA patients, as did the metabolic pathways.
Collapse
Affiliation(s)
- Patricia Ruiz-Limón
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Mena-Vázquez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Isabel Moreno-Indias
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Manuel Lisbona-Montañez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina. Universidad de Málaga, Málaga, Spain
| | - Arkaitz Mucientes
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Sara Manrique-Arija
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina. Universidad de Málaga, Málaga, Spain
| | - Rocío Redondo-Rodriguez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Laura Cano-García
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco J. Tinahones
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina. Universidad de Málaga, Málaga, Spain
| | - Antonio Fernández-Nebro
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain
- UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina. Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
6
|
Barranco I, Almiñana C, Parra A, Martínez-Diaz P, Lucas X, Bauersachs S, Roca J. RNA profiles differ between small and large extracellular vesicle subsets isolated from porcine seminal plasma. BMC Genomics 2024; 25:1250. [PMID: 39731016 DOI: 10.1186/s12864-024-11167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs). The two subsets of sEVs were isolated from 54 seminal plasma samples by a method combining serial centrifugations, size exclusion chromatography, and ultrafiltration. The sEVs were characterized using an orthogonal approach. Analysis of RNA content and quantification were performed using RNA-seq analysis. RESULTS The two subsets of sEVs had different size distributions (P < 0.001). They also showed differences in concentration, morphology, and specific protein markers (P < 0.05). A total of 735 RNAs were identified and quantified, which included: (1) mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, other ncRNAs (termed as "all RNAs"), (2) miRNAs and (3) piRNAs. The distribution pattern of these RNA classes differed between S-sEVs and L-sEVs (P < 0.05). More than half of "all RNAs", miRNAs and piRNAs were found to be differentially abundant between S- and L-sEVs (FDR < 0.1%). Among the differentially abundant RNAs, "all RNAs" were more abundant in L- than in S-sEVs, whereas the most of the miRNAs were more abundant in S- than in L-sEVs. Differentially abundant piRNAs were equally distributed between S- and L-sEVs. Some of the all RNAs and miRNAs found to be differentially abundant between S- and L-sEVs were associated with sperm quality and functionality and male fertility success. CONCLUSIONS Small and large sEVs isolated from porcine seminal plasma show quantitative differences in RNA content. These differences would suggest that each sEV subtype exerts different functional activities in the targeted cells, namely spermatozoa and functional cells of the female reproductive tract.
Collapse
Grants
- PID2022-137738NA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER UE Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Diaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
7
|
Li W, Zhang Z, Xie B, He Y, He K, Qiu H, Lu Z, Jiang C, Pan X, He Y, Hu W, Liu W, Que T, Hu Y. HiOmics: A cloud-based one-stop platform for the comprehensive analysis of large-scale omics data. Comput Struct Biotechnol J 2024; 23:659-668. [PMID: 38292471 PMCID: PMC10824657 DOI: 10.1016/j.csbj.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Analyzing the vast amount of omics data generated comprehensively by high-throughput sequencing technology is of utmost importance for scientists. In this context, we propose HiOmics, a cloud-based platform equipped with nearly 300 plugins designed for the comprehensive analysis and visualization of omics data. HiOmics utilizes the Element Plus framework to craft a user-friendly interface and harnesses Docker container technology to ensure the reliability and reproducibility of data analysis results. Furthermore, HiOmics employs the Workflow Description Language and Cromwell engine to construct workflows, ensuring the portability of data analysis and simplifying the examination of intricate data. Additionally, HiOmics has developed DataCheck, a tool based on Golang, which verifies and converts data formats. Finally, by leveraging the object storage technology and batch computing capabilities of public cloud platforms, HiOmics enables the storage and processing of large-scale data while maintaining resource independence among users.
Collapse
Affiliation(s)
- Wen Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zhining Zhang
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Bo Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunlin He
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Kangming He
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Hong Qiu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Zhiwei Lu
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Chunlan Jiang
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Xuanyu Pan
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuxiao He
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Hu
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Wenjian Liu
- Faculty of Data Science, City University of Macau, Macau, China
| | - Tengcheng Que
- Faculty of Data Science, City University of Macau, Macau, China
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Guangxi Zhuang Autonomous Terrestrial Wildlife Rescue Research and Epidemic Diseases Monitoring Center, Nanning, Guangxi, China
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Henbio Biotechnology Co., Ltd., Nanning, Guangxi, China
- Faculty of Data Science, City University of Macau, Macau, China
| |
Collapse
|
8
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Sari Widyarman A, Udawatte NS, Tegar Badruzzaman I, Cloudya Panjaitan C, Apriani A, Jeddy, Erri Astoeti T, Jayampath Seneviratne C. Topical fluoride varnish application shifts dysbiotic dental plaque microbiome towards eubiosis in children with dental caries. Saudi Dent J 2024; 36:1313-1320. [PMID: 39525937 PMCID: PMC11544270 DOI: 10.1016/j.sdentj.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study used high-throughput amplicon sequencing to examine the impact of long-term continuous fluoride treatment on the dental plaque microbiota of children aged 8 to 9 with mixed dentition. Design The study population consisted of twenty 8-9-year-old children with dental caries. Topical application of fluoride-varnish was weekly administered for one month to all subjects. Clinical indicators and anthropological data, such as the caries index (DMFT and dmft), were documented for every participant at baseline. A baseline assessment and a month after the fluoride varnish treatment were conducted for the salivary pH level and the Patient-Hygiene-Performance (PHP) index. Following application of the fluoride varnish, plaque samples were obtained both one month later and before (baseline) and were then used for 16S rRNA gene-based Next Generation Sequencing. Results The results showed significant differences in the community composition structure (p < 0.01). Notable caries-associated pathogens in the dental plaque microbiome were depleted whilst health associated phylum Proteobacteria was increased in the abundance following fluoride-varnish application. In children with mixed dentition, this study found that after one month of fluoride-varnish treatment, there was a significant decrease in the prevalence of the dominant pathogenic genera, Fusobacterium, Porphyromonas, Capnocytophaga, Neisseria, and Leptrotrichia, along with an increase in certain genera related to healthy oral condition, mostly from the phylum Proteobacteria, such as Areinmonas, Pseudoxanthomonas, and Luteimonas. Conclusions Fluoride-varnish application may shift the community level microecology from dysbiosis to eubiosis. Moreover, application of fluoride-varnish with weekly intervals for one month reduced the caries-causing bacteria while enriching the rise of unique, ubiquitous genera primarily belonging to the Proteobacteria, which may plaque a defensive role against progression of caries. Furthermore, a rising pH level towards neutrality (pH 7) indicated a healthier oral environment following the application of fluoride varnish.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | | | - Idham Tegar Badruzzaman
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Caesary Cloudya Panjaitan
- Department of Preventive and Public Health, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Anie Apriani
- Department of Pediatric Dentistry, Faculty of Dentistry, Maranatha University, Bandung, Indonesia
| | - Jeddy
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Tri Erri Astoeti
- Department of Preventive and Public Health, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | | |
Collapse
|
10
|
Cui M, Su Q, Yip M, McGowan J, Punzo C, Gao G, Tai PWL. The AAV2.7m8 capsid packages a higher degree of heterogeneous vector genomes than AAV2. Gene Ther 2024; 31:489-498. [PMID: 39134629 PMCID: PMC11600122 DOI: 10.1038/s41434-024-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.
Collapse
Affiliation(s)
- Mengtian Cui
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Mitchell Yip
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Cui L, Li X, Chen Z, Liu Z, Zhang Y, Han Z, Liu S, Li H. Integrative RNA-seq and ChIP-seq analysis unveils metabolic regulation as a conserved antiviral mechanism of chicken p53. Microbiol Spectr 2024; 12:e0030924. [PMID: 38888361 PMCID: PMC11302347 DOI: 10.1128/spectrum.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Xing Q, Zhang S, Tao X, Mesbah NM, Mao X, Wang H, Wiegel J, Zhao B. The polyextremophile Natranaerobius thermophilus adopts a dual adaptive strategy to long-term salinity stress, simultaneously accumulating compatible solutes and K . Appl Environ Microbiol 2024; 90:e0014524. [PMID: 38578096 PMCID: PMC11107154 DOI: 10.1128/aem.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
The bacterium Natranaerobius thermophilus is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na+), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in N. thermophilus, it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of N. thermophilus under 3.1, 3.7, and 4.3 M Na+ conditions compared to 2.5 M Na+ condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of N. thermophilus. The mRNA level of key proteins and the intracellular content of compatible solutes and K+ support this conclusion. Specifically, N. thermophilus employs the glycine betaine ABC transporters (Opu and ProU families), Na+/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in N. thermophilus. Additionally, the upregulation of Na+/ K+/ H+ transporters facilitates the maintenance of intracellular K+ concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, N. thermophilus exhibits cytoplasmic acidification in response to high Na+ concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of N. thermophilus under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of N. thermophilus under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the Clostridia class in response to long-term salinity stress.
Collapse
Affiliation(s)
- Qinghua Xing
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
- Luo Yang Branch of Institute of Computing Technology, Chinese Academy of Sciences, Luoyang, China
| | - Xinyi Tao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Noha M. Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Xinwei Mao
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juergen Wiegel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Mallet C, Rossi F, Hassan-Loni Y, Holub G, Thi-Hong-Hanh L, Diez O, Michel H, Sergeant C, Kolovi S, Chardon P, Montavon G. Assessing the chronic effect of the bioavailable fractions of radionuclides and heavy metals on stream microbial communities: A case study at the Rophin mining site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170692. [PMID: 38325491 DOI: 10.1016/j.scitotenv.2024.170692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.
Collapse
Affiliation(s)
- Clarisse Mallet
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| | - Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Yahaya Hassan-Loni
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France
| | - Guillaume Holub
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Le Thi-Hong-Hanh
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Olivier Diez
- Institut de Radioprotection et Sureté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, 31 Avenue de la division Leclerc, F-922602 Fontenay-aux-Roses, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Hervé Michel
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Claire Sergeant
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Sofia Kolovi
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Patrick Chardon
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Gilles Montavon
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| |
Collapse
|
14
|
Genet G, Genet N, Paila U, Cain SR, Cwiek A, Chavkin NW, Serbulea V, Figueras A, Cerdà P, McDonnell SP, Sankaranarayanan D, Huba M, Nelson EA, Riera-Mestre A, Hirschi KK. Induced Endothelial Cell Cycle Arrest Prevents Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia. Circulation 2024; 149:944-962. [PMID: 38126211 PMCID: PMC10954087 DOI: 10.1161/circulationaha.122.062952] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.
Collapse
Affiliation(s)
- Gael Genet
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Nafiisha Genet
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Umadevi Paila
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Shelby R Cain
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Aleksandra Cwiek
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Nicholas W Chavkin
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain (A.F.)
- Oncobell Program (A.F.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pau Cerdà
- (P.C., A.R.-M.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- HHT Unit, Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain (P.C., A.R.-M.)
| | - Stephanie P McDonnell
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Danya Sankaranarayanan
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Mahalia Huba
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Elizabeth A Nelson
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Antoni Riera-Mestre
- (P.C., A.R.-M.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- HHT Unit, Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain (P.C., A.R.-M.)
- Department of Clinical Science, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Spain (A.R.-M.)
| | - Karen K Hirschi
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
- Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (K.K.H.)
| |
Collapse
|
15
|
Nagai LAE, Lee S, Nakato R. Protocol for identifying differentially expressed genes using the RumBall RNA-seq analysis platform. STAR Protoc 2024; 5:102926. [PMID: 38461412 PMCID: PMC10940175 DOI: 10.1016/j.xpro.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Here, we present a protocol for the identification of differentially expressed genes through RNA sequencing analysis. Starting with FASTQ files from public datasets, this protocol leverages RumBall within a self-contained Docker system. We describe the steps for software setup, obtaining data, read mapping, sample normalization, statistical modeling, and gene ontology enrichment. We then detail procedures for interpreting results with plots and tables. RumBall internally utilizes popular tools, ensuring a comprehensive understanding of the analysis process.
Collapse
Affiliation(s)
- Luis Augusto Eijy Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan.
| | - Seohyun Lee
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan.
| |
Collapse
|
16
|
Radojković M, Ubbink M. Positive epistasis drives clavulanic acid resistance in double mutant libraries of BlaC β-lactamase. Commun Biol 2024; 7:197. [PMID: 38368480 PMCID: PMC10874438 DOI: 10.1038/s42003-024-05868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Phenotypic effects of mutations are highly dependent on the genetic backgrounds in which they occur, due to epistatic effects. To test how easily the loss of enzyme activity can be compensated for, we screen mutant libraries of BlaC, a β-lactamase from Mycobacterium tuberculosis, for fitness in the presence of carbenicillin and the inhibitor clavulanic acid. Using a semi-rational approach and deep sequencing, we prepare four double-site saturation libraries and determine the relative fitness effect for 1534/1540 (99.6%) of the unique library members at two temperatures. Each library comprises variants of a residue known to be relevant for clavulanic acid resistance as well as residue 105, which regulates access to the active site. Variants with greatly improved fitness were identified within each library, demonstrating that compensatory mutations for loss of activity can be readily found. In most cases, the fittest variants are a result of positive epistasis, indicating strong synergistic effects between the chosen residue pairs. Our study sheds light on a role of epistasis in the evolution of functional residues and underlines the highly adaptive potential of BlaC.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
17
|
Rocha U, Coelho Kasmanas J, Kallies R, Saraiva JP, Toscan RB, Štefanič P, Bicalho MF, Borim Correa F, Baştürk MN, Fousekis E, Viana Barbosa LM, Plewka J, Probst AJ, Baldrian P, Stadler PF. MuDoGeR: Multi-Domain Genome recovery from metagenomes made easy. Mol Ecol Resour 2024; 24:e13904. [PMID: 37994269 DOI: 10.1111/1755-0998.13904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Several computational frameworks and workflows that recover genomes from prokaryotes, eukaryotes and viruses from metagenomes exist. Yet, it is difficult for scientists with little bioinformatics experience to evaluate quality, annotate genes, dereplicate, assign taxonomy and calculate relative abundance and coverage of genomes belonging to different domains. MuDoGeR is a user-friendly tool tailored for those familiar with Unix command-line environment that makes it easy to recover genomes of prokaryotes, eukaryotes and viruses from metagenomes, either alone or in combination. We tested MuDoGeR using 24 individual-isolated genomes and 574 metagenomes, demonstrating the applicability for a few samples and high throughput. While MuDoGeR can recover eukaryotic viral sequences, its characterization is predominantly skewed towards bacterial and archaeal viruses, reflecting the field's current state. However, acting as a dynamic wrapper, the MuDoGeR is designed to constantly incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field. MuDoGeR is open-source software available at https://github.com/mdsufz/MuDoGeR. Additionally, MuDoGeR is also available as a Singularity container.
Collapse
Affiliation(s)
- Ulisses Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jonas Coelho Kasmanas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rodolfo Brizola Toscan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Polonca Štefanič
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marcos Fleming Bicalho
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Felipe Borim Correa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Merve Nida Baştürk
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Efthymios Fousekis
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Luiz Miguel Viana Barbosa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Julia Plewka
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Peter F Stadler
- Department of Computer Science and Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
18
|
Thakur A, Park K, Cullum R, Fuglerud BM, Khoshnoodi M, Drissler S, Stephan TL, Lotto J, Kim D, Gonzalez FJ, Hoodless PA. HNF4A guides the MLL4 complex to establish and maintain H3K4me1 at gene regulatory elements. Commun Biol 2024; 7:144. [PMID: 38297077 PMCID: PMC10830483 DOI: 10.1038/s42003-024-05835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Hepatocyte nuclear factor 4A (HNF4A/NR2a1), a transcriptional regulator of hepatocyte identity, controls genes that are crucial for liver functions, primarily through binding to enhancers. In mammalian cells, active and primed enhancers are marked by monomethylation of histone 3 (H3) at lysine 4 (K4) (H3K4me1) in a cell type-specific manner. How this modification is established and maintained at enhancers in connection with transcription factors (TFs) remains unknown. Using analysis of genome-wide histone modifications, TF binding, chromatin accessibility and gene expression, we show that HNF4A is essential for an active chromatin state. Using HNF4A loss and gain of function experiments in vivo and in cell lines in vitro, we show that HNF4A affects H3K4me1, H3K27ac and chromatin accessibility, highlighting its contribution to the establishment and maintenance of a transcriptionally permissive epigenetic state. Mechanistically, HNF4A interacts with the mixed-lineage leukaemia 4 (MLL4) complex facilitating recruitment to HNF4A-bound regions. Our findings indicate that HNF4A enriches H3K4me1, H3K27ac and establishes chromatin opening at transcriptional regulatory regions.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kwangjin Park
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Bettina M Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Frank J Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
19
|
Afonso CL, Afonso AM. Next-Generation Sequencing for the Detection of Microbial Agents in Avian Clinical Samples. Vet Sci 2023; 10:690. [PMID: 38133241 PMCID: PMC10747646 DOI: 10.3390/vetsci10120690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Direct-targeted next-generation sequencing (tNGS), with its undoubtedly superior diagnostic capacity over real-time PCR (RT-PCR), and direct-non-targeted NGS (ntNGS), with its higher capacity to identify and characterize multiple agents, are both likely to become diagnostic methods of choice in the future. tNGS is a rapid and sensitive method for precise characterization of suspected agents. ntNGS, also known as agnostic diagnosis, does not require a hypothesis and has been used to identify unsuspected infections in clinical samples. Implemented in the form of multiplexed total DNA metagenomics or as total RNA sequencing, the approach produces comprehensive and actionable reports that allow semi-quantitative identification of most of the agents present in respiratory, cloacal, and tissue samples. The diagnostic benefits of the use of direct tNGS and ntNGS are high specificity, compatibility with different types of clinical samples (fresh, frozen, FTA cards, and paraffin-embedded), production of nearly complete infection profiles (viruses, bacteria, fungus, and parasites), production of "semi-quantitative" information, direct agent genotyping, and infectious agent mutational information. The achievements of NGS in terms of diagnosing poultry problems are described here, along with future applications. Multiplexing, development of standard operating procedures, robotics, sequencing kits, automated bioinformatics, cloud computing, and artificial intelligence (AI) are disciplines converging toward the use of this technology for active surveillance in poultry farms. Other advances in human and veterinary NGS sequencing are likely to be adaptable to avian species in the future.
Collapse
|
20
|
Rattanapan Y, Charong N, Narkpetch S, Chareonsirisuthigul T. Genotyping of the rare Para-Bombay blood group in southern Thailand. Hematol Transfus Cell Ther 2023; 45:449-455. [PMID: 36241527 PMCID: PMC10627842 DOI: 10.1016/j.htct.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION The para-Bombay phenotype, or H-deficient secretor, results from different mutations of the FUT1, with or without the FUT2 mutation. Consequently, there is an absent or weak expression of the H antigen on red blood cells (RBCs). Routine ABO blood grouping for two siblings with blood group O showed discrepant results with their parental blood group AB. Fragments encompassing the entire coding region of the FUT1 and FUT2 genes were investigated. METHODS Blood and saliva specimens were collected to verify the correct ABO grouping by cell grouping, serum grouping and the hemagglutination inhibition (HI) test, respectively. The FUT1 and FUT2 genomes were identified using the whole-exome sequencing (WES) in two children's DNA blood specimens and may have caused, or been relative to, their blood group. Genetic variations of the FUT1 and FUT2 genes have been investigated in the other family members using the Sanger sequencing. RESULTS The serologic reaction results of the proband revealed that A, B and H antigens were absent on RBCs, and that the serum contained anti-H. However, ABH and AH antigens were present in the saliva PB1 and PB2, respectively. The probands PB1 and PB2 were assigned as AB and A blood groups, respectively. Blood genotyping confirmed that heterozygous mutations of the FUT1 gene, c.551_552delAG, were identified. Three family members, PB3, PB, and PB8, also showed normal ABO blood groups, but their genotypes were also the FUT1 mutation c.551_552delAG. CONCLUSIONS The FUT1 mutation c.551_552delAG may result in the reduced or absent H antigen production on RBCs, which characterizes the para-Bombay phenotypes. Blood genotyping is essential if these individuals need a blood transfusion or are planning to donate blood.
Collapse
Affiliation(s)
- Yanisa Rattanapan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nurdina Charong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sodsai Narkpetch
- Blood Bank, Maharaj Nakhon Si Thammarat Hospital, Nakhon Si Thammarat, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Xing Q, Mesbah NM, Wang H, Zhang Y, Li J, Zhao B. Tandem mass tag-based quantitative proteomics reveals osmotic adaptation mechanisms in Alkalicoccus halolimnae BZ-SZ-XJ29 T , a halophilic bacterium with a broad salinity range for optimal growth. Environ Microbiol 2023; 25:1967-1987. [PMID: 37271582 DOI: 10.1111/1462-2920.16428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The moderate halophilic bacterium Alkalicoccus halolimnae BZ-SZ-XJ29T exhibits optimum growth over a wide range of NaCl concentrations (8.3-12.3%, w/v; 1.42-2.1 mol L-1 ). However, its adaptive mechanisms to cope with high salt-induced osmotic stress remain unclear. Using TMT-based quantitative proteomics, the cellular proteome was assessed under low (4% NaCl, 0.68 mol L-1 NaCl, control (CK) group), moderate (8% NaCl, 1.37 mol L-1 NaCl), high (12% NaCl, 2.05 mol L-1 NaCl), and extremely high (16% NaCl, 2.74 mol L-1 NaCl) salinity conditions. Digital droplet PCR confirmed the transcription of candidate genes related to salinity. A. halolimnae utilized distinct adaptation strategies to cope with different salinity conditions. Mechanisms such as accumulating different amounts and types of compatible solutes (i.e., ectoine, glycine betaine, glutamate, and glutamine) and the uptake of glycine betaine and glutamate were employed to cope with osmotic stress. Ectoine synthesis and accumulation were critical to the salt adaptation of A. halolimnae. The expression of EctA, EctB, and EctC, as well as the intracellular accumulation of ectoine, significantly and consistently increased with increasing salinity. Glycine betaine and glutamate concentrations remained constant under the four NaCl concentrations. The total content of glutamine and glutamate maintained a dynamic balance and, when exposed to different salinities, may play a role in low salinity-induced osmoadaptation. Moreover, cellular metabolism was severely affected at high salt concentrations, but the synthesis of amino acids, carbohydrate metabolism, and membrane transport related to haloadptation was preserved to maintain cytoplasmic concentration at high salinity. These findings provide insights into the osmoadaptation mechanisms of moderate halophiles and can serve as a theoretical underpinning for industrial production and application of compatible solutes.
Collapse
Affiliation(s)
- Qinghua Xing
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjie Zhang
- China Patent Technology Development Co, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Vozdek R, Wang B, Li KH, Pramstaller PP, Hicks AA, Ma DK. Fluorescent reporter of Caenorhabditis elegans Parkin: Regulators of its abundance and role in autophagy-lysosomal dynamics. OPEN RESEARCH EUROPE 2023; 2:23. [PMID: 37811477 PMCID: PMC10556562 DOI: 10.12688/openreseurope.14235.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Background: Parkin, which when mutated leads to early-onset Parkinson's disease, acts as an E3 ubiquitin ligase. How Parkin is regulated for selective protein and organelle targeting is not well understood. Here, we used protein interactor and genetic screens in Caenorhabditis elegans ( C. elegans) to identify new regulators of Parkin abundance and showed their impact on autophagy-lysosomal dynamics and alpha-Synuclein processing. Methods: We generated a transgene encoding mCherry-tagged C. elegans Parkin - Parkinson's Disease Related 1 (PDR-1). We performed protein interactor screen using Co-immunoprecipitation followed by mass spectrometry analysis to identify putative interacting partners of PDR-1. Ribonucleic acid interference (RNAi) screen and an unbiased mutagenesis screen were used to identify genes regulating PDR-1 abundance. Confocal microscopy was used for the identification of the subcellular localization of PDR-1 and alpha-Synuclein processing. Results: We show that the mCherry::pdr-1 transgene rescues the mitochondrial phenotype of pdr-1 mutants and that the expressed PDR-1 reporter is localized in the cytosol with enriched compartmentalization in the autophagy-lysosomal system. We determined that the transgenic overexpression of the PDR-1 reporter, due to inactivated small interfering RNA (siRNA) generation pathway, disrupts autophagy-lysosomal dynamics. From the RNAi screen of putative PDR-1 interactors we found that the inactivated Adenine Nucleotide Translocator ant-1.1/hANT, or hybrid ubiquitin genes ubq-2/h UBA52 and ubl-1/h RPS27A encoding a single copy of ubiquitin fused to the ribosomal proteins L40 and S27a, respectively, induced PDR-1 abundance and affected lysosomal dynamics. In addition, we demonstrate that the abundant PDR-1 plays a role in alpha-Synuclein processing. Conclusions: These data show that the abundant reporter of C. elegans Parkin affects the autophagy-lysosomal system together with alpha-Synuclein processing which can help in understanding the pathology in Parkin-related diseases.
Collapse
Affiliation(s)
- Roman Vozdek
- Institute for Biomedicine, Eurac Research, Affiliated institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
23
|
Mastrochirico M, Spanò R, De Miccolis Angelini RM, Mascia T. Molecular Characterization of a Recombinant Isolate of Tomato Leaf Curl New Delhi Virus Associated with Severe Outbreaks in Zucchini Squash in Southern Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2399. [PMID: 37446959 DOI: 10.3390/plants12132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The molecular characterization of a tomato leaf curl New Delhi virus (ToLCNDV) isolate, denoted ToLCNDV-Le, is reported. The virus was associated with severe and recurrent outbreaks in protected crops of zucchini squash grown in the Province of Lecce (Apulia, southern Italy). The fully sequenced genome of ToLCNDV-Le consists of two genomic components named DNA-A and DNA-B of 2738 and 2683 nt in size, respectively. Like other ToLCNDV isolates, ToLCNDV-Le DNA-A contains the AV2 and AV1 open reading frames (ORFs) in the virion-sense orientation and five additional ORFs named AC1, AC2, AC3, AC4 and AC5 in the complementary-sense orientation. The DNA-B contains BV1 ORF in the virion-sense orientation and BC1 ORF in the complementary-sense orientation. No DNA betasatellites were found associated with ToLCNDV-Le in naturally infected samples. Phylogenetic analysis clustered ToLCNDV-Le with the ToLCNDV-ES strain of western Mediterranean Basin isolates. Consequently, the ToLCNDV-ES-[IT-Zu-Le18] name is proposed as the descriptor for ToLCNDV-Le. Using recombination detection program RDP4, one putative recombination breakpoint (Rbp) was identified close to nucleotide positions 2197-2727, covering approximately half of the AC1 region, including the AC4 ORF and the 3' UTR. RDP4 indicated the event represents an Rbp of an isolate similar to ToLCNDV [Pk-06] (Acc. No. EF620534) found in Luffa acutangula in Pakistan and identified as putative minor parent into the background of ToLCNDV [BG-Jes-Svr-05] (Acc. No. AJ875157), found in tomato in Bangladesh, and identified as putative major parent. To the best of our knowledge, this is the first report of a ToLCNDV-ES recombinant isolate in the AC1-AC4 region in Italy.
Collapse
Affiliation(s)
| | - Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | | | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| |
Collapse
|
24
|
Mohammaddoust S, Sadeghizadeh M. Mir-183 functions as an oncogene via decreasing PTEN in breast cancer cells. Sci Rep 2023; 13:8086. [PMID: 37208413 PMCID: PMC10199038 DOI: 10.1038/s41598-023-35059-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Regarding the important role of microRNAs in breast cancer, investigating the molecular mechanisms of miRs and their impacts on breast cancer progression is critical. Thus, the present work aimed to investigate the molecular mechanism of miR-183 in breast cancer. PTEN was validated by dual luciferase assay as a target gene of miR-183. Through qRT-PCR analysis, miR-183 and PTEN mRNA levels in breast cancer cell lines were measured. To determine the impacts of miR-183 on cell viability, the MTT assay was used. Moreover, flowcytometry was applied to analyze the effects of miR-183 on the cell cycle progression. To detect the effects of miR-183 on the migration of BC cell lines, wound healing was used along with a Trans-well migration assay. Western blot was utilized to assess the effect of miR-183 on PTEN protein expression. MiR-183 can exert an oncogenic effect by promoting cell viability, migration, and cell cycle progression. It was revealed that cellular oncogenicity is positively regulated by miR-183 by inhibiting the expression of PTEN. According to the present data, miR-183 may play a vital role in the progression of breast cancer by reducing PTEN expression. It may be also a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Samaneh Mohammaddoust
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Zhang H, Liu X, Wang Y, Duan L, Liu X, Zhang X, Dong L. Deep relationships between bacterial community and polycyclic aromatic hydrocarbons in soil profiles near typical coking plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64486-64498. [PMID: 37071357 DOI: 10.1007/s11356-023-26903-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Bacterial communities play an important role in maintaining the normal functioning of ecosystems; therefore, it is important to understand the effects of polycyclic aromatic hydrocarbons (PAHs) on the bacterial community. In addition, understanding the metabolic potential of bacterial communities for PAHs is important for the remediation of PAH-contaminated soils. However, the deep relationship between PAHs and bacterial community in coking plants is not clear. In this study, we determined the bacterial community and the concentration of PAHs in three soil profiles contaminated by coke plants in Xiaoyi Coking Park, Shanxi, China, using 16S rRNA and gas chromatography coupled with mass spectrometry, respectively. The results show that 2 ~ 3 rings PAHs are the main PAHs and Acidobacteria (23.76%) was the dominant bacterial community in three soil profiles. Statistical analysis showed that there were significant differences in the composition of bacterial communities at different depths and different sites. Redundancy analysis (RDA) and variance partitioning analysis (VPA) illustrate the influence of environmental factors (including PAHs, soil organic matter (SOM), and pH) on the vertical distribution of soil bacterial community, and PAHs were the main factors affecting the bacterial community in this study. The co-occurrence networks further indicated correlations between bacterial community and PAHs and found that Nap has the greatest effect on bacterial community compared with other PAHs. In addition, some operational taxonomic units (OTUs, OTU2, and OTU37) have the potential to degrade PAHs. PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used for further study on the potential of microbial PAHs degradation from a genetic perspective, which showed that different PAH metabolism genes were present in the genomes of bacterial communities in the three soil profiles, and a total of 12 PAH degradation-related genes were isolated, mainly dioxygenase and dehydrogenase genes.
Collapse
Affiliation(s)
- Handan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China.
| | - Yujing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Linshuai Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiqin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| |
Collapse
|
26
|
Berger B, Yu YW. Navigating bottlenecks and trade-offs in genomic data analysis. Nat Rev Genet 2023; 24:235-250. [PMID: 36476810 PMCID: PMC10204111 DOI: 10.1038/s41576-022-00551-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
Genome sequencing and analysis allow researchers to decode the functional information hidden in DNA sequences as well as to study cell to cell variation within a cell population. Traditionally, the primary bottleneck in genomic analysis pipelines has been the sequencing itself, which has been much more expensive than the computational analyses that follow. However, an important consequence of the continued drive to expand the throughput of sequencing platforms at lower cost is that often the analytical pipelines are struggling to keep up with the sheer amount of raw data produced. Computational cost and efficiency have thus become of ever increasing importance. Recent methodological advances, such as data sketching, accelerators and domain-specific libraries/languages, promise to address these modern computational challenges. However, despite being more efficient, these innovations come with a new set of trade-offs, both expected, such as accuracy versus memory and expense versus time, and more subtle, including the human expertise needed to use non-standard programming interfaces and set up complex infrastructure. In this Review, we discuss how to navigate these new methodological advances and their trade-offs.
Collapse
Affiliation(s)
- Bonnie Berger
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yun William Yu
- Department of Computer and Mathematical Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Tri-Campus Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Weil PP, Reincke S, Hirsch CA, Giachero F, Aydin M, Scholz J, Jönsson F, Hagedorn C, Nguyen DN, Thymann T, Pembaur A, Orth V, Wünsche V, Jiang PP, Wirth S, Jenke ACW, Sangild PT, Kreppel F, Postberg J. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr 2023:S0002-9165(23)46299-5. [PMID: 36963568 DOI: 10.1016/j.ajcnut.2023.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiation of enteral nutrition. However, this requires that relevant milk miRNA amounts survive gastrointestinal passage, are taken up by cells, and become available to the RNA interference (RNAi) machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and gastrointestinal passage. OBJECTIVE Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. DESIGN We performed cross-species profiling of miRNAs via deep-sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells (HIEC-6) using Ad5-mediated miRNA-gene transfer. RESULTS Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula-nutrition in human preterm stool and 9 days after onset of enteral feeding in intestinal cells of preterm piglets. Thereafter, several xenomiRs accumulated in the intestinal cells. Moreover, few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in AGO2-immunocomplexes from intestinal biopsies. CONCLUSIONS Milk-derived miRNAs survived gastrointestinal passage in human and porcine neonates. Bovine-specific miRNAs accumulated in intestinal cells of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood levels of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in intestinal cells. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.
Collapse
Affiliation(s)
- Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Susanna Reincke
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Christian Alexander Hirsch
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Federica Giachero
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Malik Aydin
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany; HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Jonas Scholz
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Franziska Jönsson
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anton Pembaur
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Valerie Orth
- HELIOS University Hospital Wuppertal, Department of Surgery II, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Victoria Wünsche
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Ping-Ping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark; School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Stefan Wirth
- HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Andreas C W Jenke
- Klinikum Kassel, Zentrum für Kinder- und Jugendmedizin, Neonatologie und allgemeine Pädiatrie, Mönchebergstr. 41-43, 34125 Kassel, Germany.
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| |
Collapse
|
28
|
The Arabidopsis endosperm is a temperature-sensing tissue that implements seed thermoinhibition through phyB. Nat Commun 2023; 14:1202. [PMID: 36882415 PMCID: PMC9992654 DOI: 10.1038/s41467-023-36903-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Seed thermoinhibition, the repression of germination under high temperatures, prevents seedling establishment under potentially fatal conditions. Thermoinhibition is relevant for phenology and agriculture, particularly in a warming globe. The temperature sensing mechanisms and signaling pathways sustaining thermoinhibition are unknown. Here we show that thermoinhibition in Arabidopsis thaliana is not autonomously controlled by the embryo but is rather implemented by the endosperm. High temperature is sensed through endospermic phyB by accelerating its reversion from the active signaling Pfr form into the inactive Pr form, as previously described in seedlings. This leads to thermoinhibition mediated by PIFs, mainly PIF1, PIF3 and PIF5. Endospermic PIF3 represses the expression of the endospermic ABA catabolic gene CYP707A1 and promotes endospermic ABA accumulation and release towards the embryo to block its growth. Furthermore, endospermic ABA represses embryonic PIF3 accumulation that would otherwise promote embryonic growth. Hence, under high temperatures PIF3 exerts opposite growth responses in the endosperm and embryo.
Collapse
|
29
|
Winkle M, Tayari MM, Kok K, Duns G, Grot N, Kazimierska M, Seitz A, de Jong D, Koerts J, Diepstra A, Dzikiewicz-Krawczyk A, Steidl C, Kluiver J, van den Berg A. The lncRNA KTN1-AS1 co-regulates a variety of Myc-target genes and enhances proliferation of Burkitt lymphoma cells. Hum Mol Genet 2022; 31:4193-4206. [PMID: 35866590 DOI: 10.1093/hmg/ddac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Translational Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mina M Tayari
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Human Genetics, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | | | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
30
|
Vegas AR, Podico G, Canisso IF, Bollwein H, Fröhlich T, Bauersachs S, Almiñana C. Dynamic regulation of the transcriptome and proteome of the equine embryo during maternal recognition of pregnancy. FASEB Bioadv 2022; 4:775-797. [PMID: 36479207 PMCID: PMC9721094 DOI: 10.1096/fba.2022-00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/26/2024] Open
Abstract
During initial maternal recognition of pregnancy (MRP), the equine embryo displays a series of unique events characterized by rapid blastocyst expansion, secretion of a diverse array of molecules, and transuterine migration to interact with the uterine surface. Up to date, the intricate transcriptome and proteome changes of the embryo underlying these events have not been critically studied in horses. Thus, the objective of this study was to perform an integrative transcriptomic (including mRNA, miRNAs, and other small non-coding RNAs) and proteomic analysis of embryos collected from days 10 to 13 of gestation. The results revealed dynamic transcriptome profiles with a total of 1311 differentially expressed genes, including 18 microRNAs (miRNAs). Two main profiles for mRNAs and miRNAs were identified, one with higher expression in embryos ≤5 mm and the second with higher expression in embryos ≥7 mm. At the protein level, similar results were obtained, with 259 differentially abundant proteins between small and large embryos. Overall, the findings demonstrated fine-tuned transcriptomic and proteomic regulations in the developing embryo associated with embryo growth. The identification of specific regulation of mRNAs, proteins, and miRNAs on days 12 and 13 of gestation suggested these molecules as pivotal for embryo development and as involved in MRP, and in establishment of pregnancy in general. In addition, the results revealed new insights into prostaglandin synthesis by the equine embryo, miRNAs and genes potentially involved in modulation of the maternal immune response, regulation of endometrial receptivity and of late implantation in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse‐FacultyUniversity of ZurichZurichSwitzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome AnalysisMunichGermany
| | - Stefan Bauersachs
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Carmen Almiñana
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| |
Collapse
|
31
|
Verediano TA, Sant'Ana C, Grancieri M, Tako E, Paes MCD, Martino HSD. Black corn (Zea mays L.) flour has the potential to improve the gut microbiota composition and goblet cell proliferation in mice fed a high-fat diet. Nutr Res 2022; 108:60-72. [PMID: 36403535 DOI: 10.1016/j.nutres.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022]
Abstract
High-fat diets are associated with intestinal dysbiosis and leaky gut leading to intestinal inflammation. Bioactive components, including phenolic compounds, isolated or in their original food matrix, have alleviated intestinal impairments promoted by a high-fat diet. Black corn (Zea mays L.) is a colored corn in which anthocyanins are the most abundant bioactive compound. Thus, we hypothesized that black corn flour may have preventive effects on poor intestinal health in mice fed a high-fat diet. To study this, 30 C57BL/6 mice were randomly divided into 3 experimental groups receiving the following diets for 8 weeks: normal control (fed a normal diet); high-fat (fed a high-fat diet: 60% of calories from fat); high-fat corn (fed a high-fat diet added with 20% of black corn whole flour). The cecal microbiota analyzed by 16S ribosomal RNA sequencing showed that black corn flour intake increased the relative abundance of Ruminococcus, Roseburia, and Prevotellaceae_UCG-001, and decreased Bacteroides and Faecalibaculum. No difference was observed in the cecal short-chain fatty acids and fecal pH among the experimental groups (P > .05). Further, the consumption of black corn flour improved cecal morphology by increasing the number of goblet cells but with no difference in the crypt depth and width. These findings suggest that black corn flour as a source of anthocyanins could have preventive effects on gut dysbiosis resulting from a high-fat diet. SCFA, short chain fatty acids.
Collapse
Affiliation(s)
- Thaisa Agrizzi Verediano
- Nutrition and Health Department, Universidade Federal de Viçosa, Viçosa, 36571-000, Minas Gerais, Brazil
| | - Cintia Sant'Ana
- Department of Food Tecnology, Universidade Federal de Viçosa, Viçosa, 36571-000, Minas Gerais, Brazil
| | - Mariana Grancieri
- Nutrition and Health Department, Universidade Federal de Viçosa, Viçosa, 36571-000, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
32
|
Xu L, Chen Z, Zhang Y, Cui L, Liu Z, Li X, Liu S, Li H. P53 maintains gallid alpha herpesvirus 1 replication by direct regulation of nucleotide metabolism and ATP synthesis through its target genes. Front Microbiol 2022; 13:1044141. [PMID: 36504811 PMCID: PMC9729838 DOI: 10.3389/fmicb.2022.1044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
P53, a well-known tumor suppressor, has been confirmed to regulate the infection of various viruses, including chicken viruses. Our previous study observed antiviral effect of p53 inhibitor Pifithrin-α (PFT-α) on the infection of avian infectious laryngotracheitis virus (ILTV), one of the major avian viruses economically significant to the poultry industry globally. However, the potential link between this antiviral effect of PFT-α and p53 remains unclear. Using chicken LMH cell line which is permissive for ILTV infection as model, we explore the effects of p53 on ILTV replication and its underlying molecular mechanism based on genome-wide transcriptome analysis of genes with p53 binding sites. The putative p53 target genes were validated by ChIP-qPCR and RT-qPCR. Results demonstrated that, consistent with the effects of PFT-α on ILTV replication we previously reported, knockdown of p53 repressed viral gene transcription and the genome replication of ILTV effectively. The production of infectious virions was also suppressed significantly by p53 knockdown. Further bioinformatic analysis of genes with p53 binding sites revealed extensive repression of these putative p53 target genes enriched in the metabolic processes, especially nucleotide metabolism and ATP synthesis, upon p53 repression by PFT-α in ILTV infected LMH cells. Among these genes, eighteen were involved in nucleotide metabolism and ATP synthesis. Then eight of the 18 genes were selected randomly for validations, all of which were successfully identified as p53 target genes. Our findings shed light on the mechanisms through which p53 controls ILTV infection, meanwhile expand our knowledge of chicken p53 target genes.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Shengwang Liu,
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China,Hai Li,
| |
Collapse
|
33
|
Chen Y, Cattoglio C, Dailey GM, Zhu Q, Tjian R, Darzacq X. Mechanisms governing target search and binding dynamics of hypoxia-inducible factors. eLife 2022; 11:e75064. [PMID: 36322456 PMCID: PMC9681212 DOI: 10.7554/elife.75064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro - the hypoxia response element (HRE) - but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live-cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, another main determinant of chromatin binding and diffusion behavior is the AD-containing intrinsically disordered region (IDR). Using Cut&Run and RNA-seq as orthogonal genomic approaches, we also confirmed IDR-dependent binding and activation of a specific subset of HIF target genes. These findings reveal a previously unappreciated role of IDRs in regulating the TF search and binding process that contribute to functional target site selectivity on chromatin.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Qiulin Zhu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
34
|
Oviductal Extracellular Vesicles Enhance Porcine In Vitro Embryo Development by Modulating the Embryonic Transcriptome. Biomolecules 2022; 12:biom12091300. [PMID: 36139139 PMCID: PMC9496104 DOI: 10.3390/biom12091300] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Oviductal extracellular vesicles (oEVs) have been identified as important components of the oviductal fluid (OF) and have been pointed to as key modulators of gamete/embryo-maternal interactions. Here, we determined the functional impact of oEVs on embryo development and the embryonic transcriptome in porcine. Experiment 1 examined the effect of oEVs and OF on embryo development. In vitro-produced embryos were cultured with oEVs or OF for 2 or 7 days using an in vitro sequential system or without supplementation (control). Experiment 2 analyzed transcriptomic alterations of EV-treated embryos versus control and the oEVs RNA cargo by RNA-sequencing. Two days of EV treatment enhanced embryo development over time when compared to other treatments. Different RNA expression profiles between embryos treated with EVs for two or seven days and untreated controls were obtained, with 54 and 59 differentially expressed (DE) genes and six and seven DE miRNAs, respectively. In oEV RNA cargo, 12,998 RNAs and 163 miRNAs were identified. Integrative analyses pointed to specific oEV components that might act as modulators of the embryonic transcriptome, such as S100A11, ANXA2 or miR-21-5p. Overall, the findings suggested that oEVs could be a potential strategy to improve porcine IVP outcomes, particularly by using two days of EV treatment.
Collapse
|
35
|
Maruthachalam BV, Barreto K, Hogan D, Kusalik A, Geyer CR. Generation of synthetic antibody fragments with optimal complementarity determining region lengths for Notch-1 recognition. Front Microbiol 2022; 13:931307. [PMID: 35992693 PMCID: PMC9381698 DOI: 10.3389/fmicb.2022.931307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic antibodies have been engineered against a wide variety of antigens with desirable biophysical, biochemical, and pharmacological properties. Here, we describe the generation and characterization of synthetic antigen-binding fragments (Fabs) against Notch-1. Three single-framework synthetic Fab libraries, named S, F, and modified-F, were screened against the recombinant human Notch-1 extracellular domain using phage display. These libraries were built on a modified trastuzumab framework, containing two or four diversified complementarity-determining regions (CDRs) and different CDR diversity designs. In total, 12 Notch-1 Fabs were generated with 10 different CDRH3 lengths. These Fabs possessed a high affinity for Notch-1 (sub-nM to mid-nM KDapp values) and exhibited different binding profiles (mono-, bi-or tri-specific) toward Notch/Jagged receptors. Importantly, we showed that screening focused diversity libraries, implementing next-generation sequencing approaches, and fine-tuning the CDR length diversity provided improved binding solutions for Notch-1 recognition. These findings have implications for antibody library design and antibody phage display.
Collapse
Affiliation(s)
| | - Kris Barreto
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Clarence Ronald Geyer,
| |
Collapse
|
36
|
Li J, Miao B, Wang S, Dong W, Xu H, Si C, Wang W, Duan S, Lou J, Bao Z, Zeng H, Yang Z, Cheng W, Zhao F, Zeng J, Liu XS, Wu R, Shen Y, Chen Z, Chen S, Wang M. Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Brief Bioinform 2022; 23:6620876. [PMID: 35788820 DOI: 10.1093/bib/bbac261] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.
Collapse
Affiliation(s)
- Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Benben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Dong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Houshi Xu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Si
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Zengzeng Yang
- Qinghai Academy of Animal and Veterinary Science, State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland Qinghai University, Xining, China
| | - Wenyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renxie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
37
|
Yu Y, Li X, Li Y, Wei R, Li H, Liu Z, Zhang Y. Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells. Int J Mol Sci 2022; 23:ijms23137029. [PMID: 35806048 PMCID: PMC9266935 DOI: 10.3390/ijms23137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the study on the regulatory mechanism of endothelial differentiation from the perspective of development provides references for endothelial cell (EC) derivation from pluripotent stem cells, incomplete reprogramming and donor-specific epigenetic memory are still thought to be the obstacles of iPSCs for clinical application. Thus, it is necessary to establish a stable iPSC-EC induction system and investigate the regulatory mechanism of endothelial differentiation. Based on a single-layer culture system, we successfully obtained ECs from porcine iPSCs (piPSCs). In vitro, the derived piPSC-ECs formed microvessel-like structures along 3D gelatin scaffolds. Under pathological conditions, the piPSC-ECs functioned on hindlimb ischemia repair by promoting blood vessel formation. To elucidate the molecular events essential for endothelial differentiation in our model, genome-wide transcriptional profile analysis was conducted, and we found that during piPSC-EC derivation, the synthesis and secretion level of TGF-β as well as the phosphorylation level of Smad2/3 changed dynamically. TGF-β-Smad2/3 signaling activation promoted mesoderm formation and prevented endothelial differentiation. Understanding the regulatory mechanism of iPSC-EC derivation not only paves the way for further optimization, but also provides reference for establishing a cardiovascular drug screening platform and revealing the molecular mechanism of endothelial dysfunction.
Collapse
Affiliation(s)
- Yang Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Xuechun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Yimei Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Hai Li
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- Correspondence: (Z.L.); (Y.Z.)
| | - Yu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (Z.L.); (Y.Z.)
| |
Collapse
|
38
|
Wang Y, Habekuß A, Jayakodi M, Mascher M, Snowdon RJ, Stahl A, Fuß J, Ordon F, Perovic D. High-Resolution Mapping of Barley mild mosaic virus Resistance Gene rym15. FRONTIERS IN PLANT SCIENCE 2022; 13:908170. [PMID: 35720548 PMCID: PMC9201720 DOI: 10.3389/fpls.2022.908170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), which are transmitted by the soil-borne plasmodiophorid Polymyxa graminis, cause high yield losses in barley. In previous studies, the recessive BaMMV resistance gene rym15, derived from the Japanese landrace Chikurin Ibaraki 1, was mapped on chromosome 6HS of Hordeum vulgare. In this study, 423 F4 segmental recombinant inbred lines (RILs) were developed from crosses of Chikurin Ibaraki 1 with two BaMMV-susceptible cultivars, Igri (139 RILs) and Uschi (284 RILs). A set of 32 competitive allele-specific PCR (KASP) assays, designed using single nucleotide polymorphisms (SNPs) from the barley 50 K Illumina Infinium iSelect SNP chip, genotyping by sequencing (GBS) and whole-genome sequencing (WGS), was used as a backbone for construction of two high-resolution maps. Using this approach, the target locus was narrowed down to 0.161 cM and 0.036 cM in the Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 1 × Uschi (C × U) populations, respectively. Corresponding physical intervals of 11.3 Mbp and 0.281 Mbp were calculated for I × C and C × U, respectively, according to the Morex v3 genome sequence. In the 0.281 Mbp target region, six high confidence (HC) and two low confidence (LC) genes were identified. Genome assemblies of BaMMV-susceptible cultivars Igri and Golden Promise from the barley pan-genome, and a HiFi assembly of Chikurin Ibaraki 1 together with re-sequencing data for the six HC and two LC genes in susceptible parental cultivar Uschi revealed functional SNPs between resistant and susceptible genotypes only in two of the HC genes. These SNPs are the most promising candidates for the development of functional markers and the two genes represent promising candidates for functional analysis.
Collapse
Affiliation(s)
- Yaping Wang
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Janina Fuß
- Institute for Clinical Molecular Biology, Competence Centre for Genomic Analysis (CCGA), Kiel University, Kiel, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
39
|
Kang H, Kim H, Bae S, Joh K. Fibrella aquatilis sp. nov., Fibrella rubiginis sp. nov. and Fibrella forsythiae sp. nov., isolated from freshwater, rusty iron and forsythia flower. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three novel strains, designated as HMF5036T, HMF5335T and HMF5405T, were isolated from freshwater, rusty iron and forsythia flower, in Yong-in, Republic of Korea, respectively. They were Gram-stain-negative, facultatively anaerobic, non-motile, reddish-pigmented and rod-shaped bacteria. The predominant fatty acids of three strains were C16 : 1
ω5c and summed feature 3 (comprising C16 : 1
ω7c and/or C16 : 1
ω6c). They were found to contain MK-7 as the predominant menaquinone. The major polar lipids are phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. Strains HMF5036T, HMF5335T and HMF5405T exhibited the highest 16S rRNA gene sequence similarities of 91.8, 92.6 and 93.6 % to
Fibrella aestuarina
BUZ 2T and less than 88.7 % to other members of the family
Spirosomaceae
. Similarity values among the three isolates ranged from 94.9 to 96.6 %. Phylogenetic analysis based on the 16S rRNA gene sequences of the three isolates revealed that they formed a distinct clade within the family
Spirosomaceae
. The genome sizes of strains HMF5036T, HMF5335T and HMF5405T were 6.8, 6.4 and 7.8 Mbp, and their DNA G+C contents were 54.9, 54.0 and 52.1 mol%, respectively. The average nucleotide identity, digital DNA–DNA hybridization and amino acid identity values between three isolates and
F. aestuarina
BUZ 2T were 73.8–82.2, 19.6–25.4 and 75.0–87.5 %, respectively. These values were lower than the recommended threshold values for species delimitation. Based on the results of the phenotypic, genotypic, chemotaxonomic and phylogenetic investigations, three novel species, Fibrella aquatilis sp. nov., Fibrella rubiginis sp. nov. and Fibrella forsythiae sp. nov. are proposed. The type strains are HMF5036T (=KCTC 82476T=NBRC 115092T), HMF5335T (=KCTC 82477T=NBRC 115093T) and HMF5405T (=KCTC 82478T=NBRC 115094T), respectively.
Collapse
Affiliation(s)
- Heeyoung Kang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Haneul Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Seokhyeon Bae
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Kiseong Joh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| |
Collapse
|
40
|
Hunt R, Cable J, Ellison A. Daily patterns in parasite processes: diel variation in fish louse transcriptomes. Int J Parasitol 2022; 52:509-518. [PMID: 35533730 DOI: 10.1016/j.ijpara.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
Parasites, similar to all other organisms, time themselves to environmental cues using a molecular clock to generate and maintain rhythms. Chronotherapeutic (timed treatment) techniques based on such rhythms offer great potential for improving control of chronic, problematic parasites. Fish lice are a key disease threat in aquaculture, with current control insufficient. Assessing the rhythmicity of fish lice transcriptomes offers not only insight into the viability of chronotherapy, but the opportunity to identify new drug targets. Here, for the first known time in any crustacean parasite, diel changes in gene transcription are examined, revealing that approximately half of the Argulus foliaceus annotated transcriptome displays significant daily rhythmicity. We identified rhythmically transcribed putative clock genes including core clock/cycle and period/timeless pairs, alongside rhythms in feeding-associated genes and processes involving immune response, as well as fish louse drug targets. A substantial number of gene pathways showed peak transcription in hours immediately preceding onset of light, potentially in anticipation of peak host anti-parasite responses or in preparation for increased feeding activity. Genes related to immune haemocyte activity and chitin development were more highly transcribed 4 h post light onset, although inflammatory gene transcription was highest during dark periods. Our study provides an important resource for application of chronotherapy in fish lice; timed application could increase efficacy and/or reduce dose requirement, improving the current landscape of drug resistance and fish health while reducing the economic cost of infection.
Collapse
Affiliation(s)
- R Hunt
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - A Ellison
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| |
Collapse
|
41
|
Widyarman AS, Udawatte NS, Roeslan MO, Rizal MI, Richi M, Kusnoto J, Seneviratne CJ. Short- term effect of probiotic Lactobacillus reuteri consumption on the salivary microbiome profile of subjects undergoing orthodontic treatment with fixed appliances. J Oral Microbiol 2022; 14:2067103. [PMID: 35497502 PMCID: PMC9045755 DOI: 10.1080/20002297.2022.2067103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/01/2022] Open
Abstract
Objective This prospective clinical study aim was to analyze the effect of the probiotic Lactobacillus reuteri Prodentis lozenges on salivary microbiome of subjects wearing fixed orthodontic appliances. Methods Saliva samples were collected prior to consumption and 14th-day post probiotic lozenges consumption (n=40, age 18-23). Oral hygiene index-score (OHI-S) and papilla bleeding index (PBI) were recorded. The salivary microbiome was profiled by next-generation sequencing using the V3-V4 region of 16S-rRNA. Microbial composition, diversity and taxonomic biomarkers were analysed in comparison to probiotic intervention and the clinical characteristics of the cohort using standard bioinformatics tools. Results The diversity and bacterial community structures did not change significantly in salivary microbiome of periodontally healthy subjects during short-term probiotic intervention. Probiotic consumption correlated with reduction of OHI and PBI scores (50% reduction of scores, P<0.001). The reduction of clinical indices was evident in conjunction with significantly reduced abundance of oral pathogens, such as Porphyromonas pasteri, Treponema sp., Fretibacterium fastidiosum, Kingella oralis and Propionibacterium acnes. Conclusion Short-term probiotic intervention helped maintaining good oral health in patients undergoing fixed orthodontic therapy. Although overall oral microbiome structure remained largely unchanged, a significant alteration in the abundance of health and disease-associated species highlighted the beneficial effect of probiotic.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Nadeeka S. Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore
| | | | - Muhammad Ihsan Rizal
- Department of Oral Biology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Mario Richi
- MiCORE Laboratory, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Joko Kusnoto
- Department of Orthodontics, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore
- School of Dentistry, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Yang X, Rutkovsky AC, Zhou J, Zhong Y, Reese J, Schnell T, Albrecht H, Owens WB, Nagarkatti PS, Nagarkatti M. Characterization of Altered Gene Expression and Histone Methylation in Peripheral Blood Mononuclear Cells Regulating Inflammation in COVID-19 Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1968-1977. [PMID: 35379747 PMCID: PMC9012677 DOI: 10.4049/jimmunol.2101099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
The pandemic of COVID-19 has caused >5 million deaths in the world. One of the leading causes of the severe form of COVID-19 is the production of massive amounts of proinflammatory cytokines. Epigenetic mechanisms, such as histone/DNA methylation, miRNA, and long noncoding RNA, are known to play important roles in the regulation of inflammation. In this study, we investigated if hospitalized COVID-19 patients exhibit alterations in epigenetic pathways in their PBMCs. We also compared gene expression profiles between healthy controls and COVID-19 patients. Despite individual variations, the expressions of many inflammation-related genes, such as arginase 1 and IL-1 receptor 2, were significantly upregulated in COVID-19 patients. We also found the expressions of coagulation-related genes Von Willebrand factor and protein S were altered in COVID-19 patients. The expression patterns of some genes, such as IL-1 receptor 2, correlated with their histone methylation marks. Pathway analysis indicated that most of those dysregulated genes were in the TGF-β, IL-1b, IL-6, and IL-17 pathways. A targeting pathway revealed that the majority of those altered genes were targets of dexamethasone, which is an approved drug for COVID-19 treatment. We also found that the expression of bone marrow kinase on chromosome X, a member of TEC family kinases, was increased in the PBMCs of COVID-19 patients. Interestingly, some inhibitors of TEC family kinases have been used to treat COVID-19. Overall, this study provides important information toward identifying potential biomarkers and therapeutic targets for COVID-19 disease.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Alex C Rutkovsky
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Juhua Zhou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Julian Reese
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Timothy Schnell
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Helmut Albrecht
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - William B Owens
- Prisma Health Richland Hospital, School of Medicine, University of South Carolina, Columbia, SC
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC; and
| |
Collapse
|
43
|
Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, Nomura K, Brassard S, Bolaji A, He SY, Moffett P. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 2022; 30:489-501.e4. [PMID: 35247330 PMCID: PMC9012689 DOI: 10.1016/j.chom.2022.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.
Collapse
Affiliation(s)
| | - Gaële Lajeunesse
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Méliane St-Amand
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Kinya Nomura
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Sandrine Brassard
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
44
|
Saenz-de-Juano MD, Silvestrelli G, Bauersachs S, Ulbrich SE. Determining extracellular vesicles properties and miRNA cargo variability in bovine milk from healthy cows and cows undergoing subclinical mastitis. BMC Genomics 2022; 23:189. [PMID: 35255807 PMCID: PMC8903571 DOI: 10.1186/s12864-022-08377-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subclinical mastitis, the inflammation of the mammary gland lacking clinical symptoms, is one of the most prevalent and costly diseases in dairy farming worldwide. Milk microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) have been proposed as potential biomarkers of different mammary gland conditions, including subclinical mastitis. However, little is known about the robustness of EVs analysis regarding sampling time-point and natural infections. To estimate the reliability of EVs measurements in raw bovine milk, we first evaluated changes in EVs size and concentration using Tunable Resistive Pulse Sensing (TRPS) during three consecutive days of sampling. Then, we analysed daily differences in miRNA cargo using small RNA-seq. Finally, we compared milk EVs differences from naturally infected udder quarters with their healthy adjacent quarters and quarters from uninfected udders, respectively. Results We found that the milk EV miRNA cargo was very stable over the course of three days regardless of the health status of the quarter, and that infected quarters did not induce relevant changes in milk EVs of adjacent healthy quarters. Chronic subclinical mastitis induced changes in milk EV miRNA cargo, but neither in EVs size nor concentration. We observed that the changes in immunoregulatory miRNAs in quarters with chronic subclinical mastitis were cow-individual, however, the most upregulated miRNA was bta-miR-223-3p across all individuals. Conclusions Our results showed that the miRNA profile and particle size characteristics remained constant throughout consecutive days, suggesting that miRNAs packed in EVs are physiological state-specific. In addition, infected quarters were solely affected while adjacent healthy quarters remained unaffected. Finally, the cow-individual miRNA changes pointed towards infection-specific alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08377-z.
Collapse
Affiliation(s)
- Mara D Saenz-de-Juano
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland
| | - Giulia Silvestrelli
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Functional Genomics, University of Zurich, Eschikon 27, AgroVet-Strickhof, 8315, Lindau, ZH, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092, Zurich, Switzerland.
| |
Collapse
|
45
|
Ciezarek A, Ford AG, Etherington GJ, Kasozi N, Malinsky M, Mehta TK, Penso-Dolfin L, Ngatunga BP, Shechonge A, Tamatamah R, Haerty W, Di Palma F, Genner MJ, Turner GF. Whole genome resequencing data enables a targeted SNP panel for conservation and aquaculture of Oreochromis cichlid fishes. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2022; 548:737637. [PMID: 35177872 PMCID: PMC8655616 DOI: 10.1016/j.aquaculture.2021.737637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industries. Broodstocks for aquaculture are often collected from wild populations, which in Africa may be from locations containing multiple Oreochromis species. However, many species are difficult to distinguish morphologically, hampering efforts to maintain good quality farmed strains. Additionally, non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species, which themselves are important for capture fisheries. The morphological identification of these hybrids is particularly unreliable. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity in hatcheries and helping to conserve unique endemic biodiversity.
Collapse
Affiliation(s)
- A. Ciezarek
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Antonia G.P. Ford
- Department of Life Sciences, Roehampton University, London SW15 4JD, UK
| | | | - Nasser Kasozi
- National Agricultural Research Organisation, Abi Zonal Agricultural Research and Development Institute, P.O. Box 219, Arua, Uganda
| | - Milan Malinsky
- Zoological Institute, Department of Environmental Sciences, University of Basel, 4051 Basel, Switzerland
| | - Tarang K. Mehta
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Luca Penso-Dolfin
- Silence Therapeutics GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Benjamin P. Ngatunga
- Tanzania Fisheries Research Institute (TAFIRI), PO. Box 9750, Dar es Salaam. Tanzania
| | - Asilatu Shechonge
- Tanzania Fisheries Research Institute (TAFIRI), PO. Box 9750, Dar es Salaam. Tanzania
| | - Rashid Tamatamah
- Tanzania Fisheries Research Institute (TAFIRI), PO. Box 9750, Dar es Salaam. Tanzania
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - George F. Turner
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
46
|
Martínez-García M, Hernández-Lemus E. Data Integration Challenges for Machine Learning in Precision Medicine. Front Med (Lausanne) 2022; 8:784455. [PMID: 35145977 PMCID: PMC8821900 DOI: 10.3389/fmed.2021.784455] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
A main goal of Precision Medicine is that of incorporating and integrating the vast corpora on different databases about the molecular and environmental origins of disease, into analytic frameworks, allowing the development of individualized, context-dependent diagnostics, and therapeutic approaches. In this regard, artificial intelligence and machine learning approaches can be used to build analytical models of complex disease aimed at prediction of personalized health conditions and outcomes. Such models must handle the wide heterogeneity of individuals in both their genetic predisposition and their social and environmental determinants. Computational approaches to medicine need to be able to efficiently manage, visualize and integrate, large datasets combining structure, and unstructured formats. This needs to be done while constrained by different levels of confidentiality, ideally doing so within a unified analytical architecture. Efficient data integration and management is key to the successful application of computational intelligence approaches to medicine. A number of challenges arise in the design of successful designs to medical data analytics under currently demanding conditions of performance in personalized medicine, while also subject to time, computational power, and bioethical constraints. Here, we will review some of these constraints and discuss possible avenues to overcome current challenges.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Clinical Research Division, National Institute of Cardiology ‘Ignacio Chávez’, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autnoma de Mexico, Mexico City, Mexico
| |
Collapse
|
47
|
Singh I, Parte P. Heterogeneity in the Epigenetic Landscape of Murine Testis-Specific Histone Variants TH2A and TH2B Sharing the Same Bi-Directional Promoter. Front Cell Dev Biol 2021; 9:755751. [PMID: 34938732 PMCID: PMC8685415 DOI: 10.3389/fcell.2021.755751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
Testis-specific histone variants are crucial to promote open chromatin structure to enable nucleosome disassembly in the final stages of spermiogenesis. However, even after histone replacement, mature sperm retain a proportion of these variants, the function of which is unknown. The present study aimed to understand the functional relevance of the retained H2B and H2A variants, TH2B and TH2A. While no literature is available on the phenotype of TH2A knockouts, TH2B/TH2A double knockout male mice are reported to be infertile. In this study, ChIP-seq analysis was done for TH2B and TH2A to understand the epigenomics of the retained TH2B and TH2A, using murine caudal sperm. Distribution across genomic partitions revealed ∼35% of the TH2B peaks within ±5 kb of TSS whereas TH2A peaks distribution was sparse at TSS. Gene Ontology revealed embryo development as the most significant term associated with TH2B. Also, based on genomic regions, TH2B was observed to be associated with spindle assembly and various meiosis-specific genes, which is an important finding as TH2A/TH2B DKO mice have been reported to have defective cohesin release. A comparison of mouse and human TH2B-linked chromatin revealed 26% overlap between murine and human TH2B-associated genes. This overlap included genes crucial for embryogenesis. Most importantly, heterogeneity in the epigenetic landscape of TH2A and TH2B was seen, which is intriguing as TH2B and TH2A are well reported to be present in the same nucleosomes to promote open chromatin. Additionally, unlike TH2B, TH2A was enriched on the mitochondrial chromosome. TH2A was found to be associated with Nuclear insertion of Mitochondrial DNA sequences (NUMTs) in sperm. A comprehensive analysis of these observations indicates novel functions for the sperm-retained TH2B and TH2A.
Collapse
Affiliation(s)
- Isha Singh
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
48
|
Widyarman AS, Theodorea CF, Udawatte NS, Drestia AM, Bachtiar EW, Astoeti TE, Bachtiar BM. Diversity of Oral Microbiome of Women From Urban and Rural Areas of Indonesia: A Pilot Study. FRONTIERS IN ORAL HEALTH 2021; 2:738306. [PMID: 35048055 PMCID: PMC8757682 DOI: 10.3389/froh.2021.738306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: The studies on the influence of geographical and socio-economic factors on the oral microbiome remain underrepresented. The Indonesia basic health research (RISKESDAS) 2018, showed an increasing trend in non-communicable diseases compared with the previous report in 2013. The prevalence of diabetes, heart disease, hypertension, and obesity are reported to be higher in urban areas than in rural areas. Interestingly, non-communicable diseases were found to be more prevalent in women than men. This pilot study aimed to examine the oral health and oral microbiome derived from tongue samples of healthy Indonesian women from urban and rural areas. Methods: Twenty women aged 21-47 years old from West Jakarta, residents of DKI Jakarta (n = 10) as representative of the urban area, and residents of Ende, Nangapanda, East Nusa Tenggara (n = 10) as representative of the rural area were recruited for this pilot study. The participants were evaluated by the Simplified Oral Hygiene Index (OHI-S) according to the criteria of Greene and Vermillion and divided into three groups. High-throughput DNA sequencing was performed on an Illumina iSeq 100 platform. Results: The principal component analysis displayed a marked difference in the bacterial community profiles between the urban and rural localities. The presence of manifest was associated with increased diversity and an altered oral bacterial community profile in the urban women. Two bacterial taxa were present at significantly higher levels (adjusted p < 0.01) in the urban oral microflora (Genus Prevotella and Leptotricia) could account for this difference irrespective of the individual oral hygiene status. The linear discriminant analysis effect size (LEfSe) analysis revealed several distinct urban biomarkers. At the species level, Leptotrichia wadei, Prevotella melaninogenica, Prevotella jejuni, and P. histicola, show an excellent discriminatory potential for distinguishing the oral microflora in women between urban and rural areas. Further, using SparCC co-occurrence network analysis, the co-occurrence pattern in the dominant core oral microbiome assembly was observed to be specific to its ecological niche between two populations. Conclusions: This is the first pilot study demonstrating the characterization of the oral microbiome in Indonesian women in urban and rural areas. We found that the oral microbiome in women displays distinct patterns consistent with geographic locality. The specific characterization of the microbiota of Indonesian women is likely linked to geographical specific dietary habits, cultural habits, and socio-economic status or the population studied.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department Head of Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | | | - Nadeeka S. Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS) National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | | | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| | - Tri Erri Astoeti
- Department Preventive and Public Health Dentistry, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
49
|
Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12:6267. [PMID: 34725353 PMCID: PMC8560862 DOI: 10.1038/s41467-021-26518-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes. Long-term expression of Cas9 following precision genome editing in vivo may lead to undesirable consequences. Here we show that a single-vector, self-inactivating AAV system containing Cas9 nuclease, guide, and DNA donor can use homology-directed repair to correct disease mutations in vivo.
Collapse
|
50
|
Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, Lin CH, Wang S, Zhong J, Liu K, Li Q, Wu C, Kuchroo VK. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med 2021; 218:e20210324. [PMID: 34287641 PMCID: PMC8424467 DOI: 10.1084/jem.20210324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis. Loss of Foxo1 in intestinal epithelial cells (IECs) results in defects in goblet cell autophagy and mucus secretion, leading to an impaired gut microenvironment and dysbiosis. Subsequently, due to changes in microbiota and disruption in microbiome metabolites of short-chain fatty acids, Foxo1 deficiency results in altered organization of tight junction proteins and enhanced susceptibility to intestinal inflammation. Our study demonstrates that Foxo1 is crucial for IECs to establish commensalism and maintain intestinal barrier integrity by regulating goblet cell function.
Collapse
Affiliation(s)
- Zuojia Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric S. Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sheng Xiao
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Bin Bao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Dingding An
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cheng-hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Jiaxin Zhong
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kuai Liu
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chuan Wu
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vijay K. Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|