1
|
Jiraanont P, Zafarullah M, Sulaiman N, Espinal GM, Randol JL, Durbin-Johnson B, Schneider A, Hagerman RJ, Hagerman PJ, Tassone F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J Mol Diagn 2024; 26:498-509. [PMID: 38522837 DOI: 10.1016/j.jmoldx.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Division of Molecular and Cellular Medicine, Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Noor Sulaiman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Blythe Durbin-Johnson
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, California
| | - Andrea Schneider
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California.
| |
Collapse
|
2
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Randol JL, Kim K, Ponzini MD, Tassone F, Falcon AK, Hagerman RJ, Hagerman PJ. Variation of FMRP Expression in Peripheral Blood Mononuclear Cells from Individuals with Fragile X Syndrome. Genes (Basel) 2024; 15:356. [PMID: 38540415 PMCID: PMC10969917 DOI: 10.3390/genes15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.
Collapse
Affiliation(s)
- Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Alexandria K. Falcon
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Gibson JM, Vazquez AH, Yamashiro K, Jakkamsetti V, Ren C, Lei K, Dentel B, Pascual JM, Tsai PT. Cerebellar contribution to autism-relevant behaviors in fragile X syndrome models. Cell Rep 2023; 42:113533. [PMID: 38048226 PMCID: PMC10831814 DOI: 10.1016/j.celrep.2023.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer M Gibson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Hernandez Vazquez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kunihiko Yamashiro
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chongyu Ren
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine Lei
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brianne Dentel
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter T Tsai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Protic D, Polli R, Hwang YH, Mendoza G, Hagerman R, Durbin-Johnson B, Hayward BE, Usdin K, Murgia A, Tassone F. Activation Ratio Correlates with IQ in Female Carriers of the FMR1 Premutation. Cells 2023; 12:1711. [PMID: 37443745 PMCID: PMC10341054 DOI: 10.3390/cells12131711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Roberta Polli
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA;
| | - Bruce E. Hayward
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Alessandra Murgia
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
| |
Collapse
|
6
|
Dias CM, Issac B, Sun L, Lukowicz A, Talukdar M, Akula SK, Miller MB, Walsh K, Rockowitz S, Walsh CA. Glial dysregulation in the human brain in fragile X-associated tremor/ataxia syndrome. Proc Natl Acad Sci U S A 2023; 120:e2300052120. [PMID: 37252957 PMCID: PMC10265985 DOI: 10.1073/pnas.2300052120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023] Open
Abstract
Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.
Collapse
Affiliation(s)
- Caroline M. Dias
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA02115
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Abigail Lukowicz
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Bioinformatics & Integrative Genomics, Harvard Medical School, Boston, MA02115
| | - Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
| | - Katherine Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
7
|
Aishworiya R, Hwang YH, Santos E, Hayward B, Usdin K, Durbin-Johnson B, Hagerman R, Tassone F. Clinical implications of somatic allele expansion in female FMR1 premutation carriers. Sci Rep 2023; 13:7050. [PMID: 37120588 PMCID: PMC10148869 DOI: 10.1038/s41598-023-33528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Carriers of a premutation allele (PM) in the FMR1 gene are at risk of developing a number of Fragile X premutation asssociated disorders (FXPAC), including Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-associated neuropsychiatric disorders (FXAND). We have recently reported somatic CGG allele expansion in female PM; however, its clinical significance remains unclear. The aim of this study was to examine the potential clinical association between somatic FMR1 allele instability and PM associated disorders. Participants comprised of 424 female PM carriers age 0.3- 90 years. FMR1 molecular measures and clinical information on the presence of medical conditions, were determined for all subjects for primary analysis. Two sub-groups of participants (age ≥ 25, N = 377 and age ≥ 50, N = 134) were used in the analysis related to presence of FXPOI and FXTAS, respectively. Among all participants (N = 424), the degree of instability (expansion) was significantly higher (median 2.5 vs 2.0, P = 0.026) in participants with a diagnosis of attention deficit hyperactivity disorder (ADHD) compared to those without. FMR1 mRNA expression was significantly higher in subjects with any psychiatric disorder diagnosis (P = 0.0017); specifically, in those with ADHD (P = 0.009), and with depression (P = 0.025). Somatic FMR1 expansion was associated with the presence of ADHD in female PM and FMR1 mRNA levels were associated with the presence of mental health disorders. The findings of our research are innovative as they suggest a potential role of the CGG expansion in the clinical phenotype of PM and may potentially guide clinical prognosis and management.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50Th Street, Sacramento, CA, 95817, USA
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50Th Street, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis, School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| | - Bruce Hayward
- Laboratory of Cell and Molecular Biology, Digestive and Kidney Diseases, National Institute of Diabetes, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, Digestive and Kidney Diseases, National Institute of Diabetes, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50Th Street, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis, School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50Th Street, Sacramento, CA, 95817, USA.
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, 4610 X St, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Zafarullah M, Li J, Tseng E, Tassone F. Structure and Alternative Splicing of the Antisense FMR1 (ASFMR1) Gene. Mol Neurobiol 2023; 60:2051-2061. [PMID: 36598648 PMCID: PMC10461537 DOI: 10.1007/s12035-022-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by an expansion of 55-200 CGG repeats (premutation) in the 5'-UTR of the FMR1 gene. Bidirectional transcription at FMR1 locus has been demonstrated and specific alternative splicing of the Antisense FMR1 (ASFMR1) gene has been proposed to have a contributing role in the pathogenesis of FXTAS. The structure of ASFMR1 gene is still uncharacterized and it is currently unknown how many isoforms of the gene are expressed and at what level in premutation carriers (PM) and if they may contribute to the premutation pathology. In this study, we characterized the ASFMR1 gene structure and the transcriptional landscape by using PacBio SMRT sequencing with target enrichment (IDT customized probe panel). We identified 45 ASFMR1 isoforms ranging in sizes from 523 bp to 6 Kb, spanning approximately 59 kb of genomic DNA. Multiplexing and sequencing of six human brain samples from PM samples and normal control (HC) were carried out on the PacBio Sequel platform. We validated the presence of these isoforms by qRT-PCR and Sanger sequencing and characterized the acceptor and donor splicing site consensus sequences. Consistent with previous studies conducted in other tissue types, we found a high expression of ASFMR1 isoform Iso131bp in brain samples of PM as compared to HC, while no differences in expression levels were observed for the newly identified isoforms IsoAS1 and IsoAS2. We investigated the role of the splicing regulatory protein Sam68 which we did not observe in the alternative splicing of the ASFMR1 gene. Our study provides a useful insight into the structure of ASFMR1 gene and transcriptional landscape along with the expression pattern of various newly identified novel isoforms and on their potential role in premutation pathology.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, 95616, USA
| | | | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Baker EK, Arpone M, Bui M, Kraan CM, Ling L, Francis D, Hunter MF, Rogers C, Field MJ, Santa María L, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Tissue mosaicism, FMR1 expression and intellectual functioning in males with fragile X syndrome. Am J Med Genet A 2023; 191:357-369. [PMID: 36349505 PMCID: PMC10952635 DOI: 10.1002/ajmg.a.63027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome (FXS) is caused by hypermethylation of the FMR1 promoter due to the full mutation expansion (full mutation [FM]: CGG ≥ 200 repeats) and silencing of FMR1. Assessment of mosaicism for active-unmethylated alleles has prognostic utility. This study examined relationships between FMR1 methylation in different tissues with FMR1 messenger ribonucleic acid (mRNA) and intellectual functioning in 87 males with FXS (1.89-43.17 years of age). Methylation sensitive Southern blot (mSB) and Methylation Specific-Quantitative Melt Aanalysis (MS-QMA) were used to examine FMR1 methylation. FMR1 mRNA levels in blood showed strong relationships with FMR1 methylation assessed using MS-QMA in blood (n = 68; R2 = 0.597; p = 1.4 × 10-10 ) and buccal epithelial cells (BEC) (n = 62; R2 = 0.24; p = 0.003), with these measures also showing relationships with intellectual functioning scores (p < 0.01). However, these relationships were not as strong for mSB, with ~40% of males with only FM alleles that were 100% methylated and non-mosaic by mSB, showing methylation mosaicism by MS-QMA. This was confirmed through presence of detectable levels of FMR1 mRNA in blood. In summary, FMR1 methylation levels in blood and BEC examined by MS-QMA were significantly associated with FMR1 mRNA levels and intellectual functioning in males with FXS. These relationships were not as strong for mSB, which underestimated prevalence of mosaicism.
Collapse
Affiliation(s)
- Emma K. Baker
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychology and Public HealthLa Trobe UniversityBundooraVictoriaAustralia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Brain and Mind, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Claudine M. Kraan
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research InstituteThe Royal Children's HospitalMelbourneVictoriaAustralia
| | - Mathew F. Hunter
- Monash GeneticsMonash HealthClaytonVictoriaAustralia
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Carolyn Rogers
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Michael J. Field
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Lorena Santa María
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Víctor Faundes
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Bianca Curotto
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Paulina Morales
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Cesar Trigo
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Isabel Salas
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | | | - David J. Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Neurodisability and Rehabilitation, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David E. Godler
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Bangert K, Scott KS, Adams C, Kisenwether JS, Giuffre L, Reed J, Thurman AJ, Abbeduto L, Klusek J. Cluttering in the Speech of Young Men With Fragile X Syndrome. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:954-969. [PMID: 35196138 PMCID: PMC9150725 DOI: 10.1044/2021_jslhr-21-00446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE Cluttering is a fluency disorder that has been noted clinically in individuals with fragile X syndrome (FXS). Yet, cluttering has not been systematically characterized in this population, hindering identification and intervention efforts. This study examined the rates of cluttering in male young adults with FXS using expert clinical opinion, the alignment between expert clinical opinion and objectively quantified features of cluttering from language transcripts, and the association between cluttering and aspects of the FXS phenotype. METHOD Thirty-six men with FXS (aged 18-26 years; M = 22, SD = 2.35) contributed language samples and completed measures of nonverbal cognition, autism symptoms, anxiety, and symptoms of attention-deficit/hyperactivity disorder (ADHD). The presence of cluttering was determined by the consensus of two clinical experts in fluency disorders based on characteristics exhibited in the language sample. Cluttering features (speech rate, disfluencies, etc.) were also objectively quantified from the language transcripts. RESULTS Clinical experts determined that 50% of participants met the criteria for a cluttering diagnosis. Phrase repetitions were the most salient feature that distinguished individuals who cluttered. Although the presence of cluttering was not associated with autism symptoms or mean length of utterance, cluttering was more likely to occur when nonverbal cognitive ability was higher, ADHD symptoms were elevated, and anxiety symptoms were low. CONCLUSIONS Half of the male young adults with FXS exhibited cluttering, which supports FXS as a genetic diagnosis that is highly enriched for risk of cluttering. Cluttering was associated with increased ADHD symptoms and cognitive ability and reduced anxiety symptoms. This study contributes a new description of the clinical presentation of cluttering in men with FXS and may lead to improved understanding of the potential underlying mechanisms of cluttering and eventual refinements to treatment and diagnosis.
Collapse
Affiliation(s)
- Katherine Bangert
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
- Department of Psychology, University of South Carolina, Columbia
| | | | - Charley Adams
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | | | - Lisa Giuffre
- Department of Speech-Language Pathology, Misericordia University, Dallas, PA
| | - Jenna Reed
- Department of Speech-Language Pathology, Misericordia University, Dallas, PA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento
- MIND Institute, University of California Davis Health, Sacramento
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento
- MIND Institute, University of California Davis Health, Sacramento
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| |
Collapse
|
11
|
Adayev T, LaFauci G, Xu W, Dobkin C, Kascsak R, Brown WT, Goodman JH. Development of a Quantitative FMRP Assay for Mouse Tissue Applications. Genes (Basel) 2021; 12:genes12101516. [PMID: 34680911 PMCID: PMC8535242 DOI: 10.3390/genes12101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome results from the absence of the FMR1 gene product—Fragile X Mental Retardation Protein (FMRP). Fragile X animal research has lacked a reliable method to quantify FMRP. We report the development of an array of FMRP-specific monoclonal antibodies and their application for quantitative assessment of FMRP (qFMRPm) in mouse tissue. To characterize the assay, we determined the normal variability of FMRP expression in four brain structures of six different mouse strains at seven weeks of age. There was a hierarchy of FMRP expression: neocortex > hippocampus > cerebellum > brainstem. The expression of FMRP was highest and least variable in the neocortex, whereas it was most variable in the hippocampus. Male C57Bl/6J and FVB mice were selected to determine FMRP developmental differences in the brain at 3, 7, 10, and 14 weeks of age. We examined the four structures and found a developmental decline in FMRP expression with age, except for the brainstem where it remained stable. qFMRPm assay of blood had highest values in 3 week old animals and dropped by 2.5-fold with age. Sex differences were not significant. The results establish qFMRPm as a valuable tool due to its ease of methodology, cost effectiveness, and accuracy.
Collapse
Affiliation(s)
- Tatyana Adayev
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Correspondence: ; Tel.: +1-718-494-5314
| | - Giuseppe LaFauci
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Weimin Xu
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Carl Dobkin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Richard Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - W. Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Perkins Center, University of Sydney Camperdown, Sydney, NSW 2006, Australia
| | - Jeffrey H. Goodman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| |
Collapse
|
12
|
Parental Reports on Early Autism Behaviors in Their Children with Fragile X Syndrome as a Function of Infant Feeding. Nutrients 2021; 13:nu13082888. [PMID: 34445048 PMCID: PMC8401950 DOI: 10.3390/nu13082888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the prevalence of autistic behaviors in fragile X syndrome as a function of infant diet. Retrospective survey data from the Fragile X Syndrome Nutrition Study, which included data on infant feeding and caregiver-reported developmental milestones for 190 children with fragile X syndrome enrolled in the Fragile X Online Registry with Accessible Database (FORWARD), were analyzed. Exploratory, sex-specific associations were found linking the use of soy-based infant formula with worse autistic behaviors related to language in females and self-injurious behavior in males. These findings prompt prospective evaluation of the effects of soy-based infant formula on disease comorbidities in fragile X syndrome, a rare disorder for which newborn screening could be implemented if there was an intervention. Gastrointestinal problems were the most common reason cited for switching to soy-based infant formula. Thus, these findings also support the study of early gastrointestinal problems in fragile X syndrome, which may underly the development and severity of disease comorbidities. In conjunction with comorbidity data from the previous analyses of the Fragile X Syndrome Nutrition Study, the findings indicate that premutation fragile X mothers should be encouraged to breastfeed.
Collapse
|
13
|
Bangert K, Moser C, Friedman L, Klusek J. Family as a Context for Child Development: Mothers with the FMR1 Premutation and Their Children with Fragile X Syndrome. Semin Speech Lang 2021; 42:277-286. [PMID: 34311480 PMCID: PMC11298790 DOI: 10.1055/s-0041-1730988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by changes of the FMR1 gene that is passed along among families. A range of developmental processes may be impacted with wide variation in abilities across individuals with FXS. Mothers of children with FXS are often carriers of a "premutation" expansion on the FMR1 gene, which is associated with its own clinical phenotype. These maternal features may increase individual and family vulnerabilities, including increased risk for depression and anxiety disorders and difficulties in social and cognitive ability. These characteristics may worsen with age, and potentially interact with a child's challenging behaviors and with family dynamics. Thus, families of children with FXS may experience unique challenges related to genetic risk, manifested across both children and parents, that should be considered in therapeutic planning to optimize outcomes for children and their families. In this article, we review core features of the FMR1 premutation as expressed in mothers and aspects of the family environment that interface with developmental outcomes of children with FXS. Recommendations for family-centered support services are discussed.
Collapse
Affiliation(s)
- Katherine Bangert
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Carly Moser
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
14
|
Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:799-812. [PMID: 33795824 DOI: 10.1038/s41436-021-01115-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Pathogenic variants in the FMR1 gene are associated with fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI). This document provides updated information regarding FMR1 pathogenic variants, including prevalence, genotype-phenotype correlations, and variant nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction (PCR) amplification of FMR1, including triplet repeat-primed and methylation-specific PCR.The American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has the mission of maintaining high technical standards for the performance and interpretation of genetic tests. In part, this is accomplished by the publication of the document ACMG Technical Standards for Clinical Genetics Laboratories, which is now maintained online ( http://www.acmg.net ). This subcommittee also reviews the outcome of national proficiency testing in the genetics area and may choose to focus on specific diseases or methodologies in response to those results. Accordingly, the subcommittee selected fragile X syndrome to be the first topic in a series of supplemental sections, recognizing that it is one of the most frequently ordered genetic tests and that it has many alternative methods with different strengths and weaknesses. This document is the fourth update to the original standards and guidelines for fragile X testing that were published in 2001, with revisions in 2005 and 2013, respectively.This versionClarifies the clinical features associated with different FMRI variants (Section 2.3)Discusses important reporting considerations (Section 3.3.1.3)Provides updates on technology (Section 4.1).
Collapse
|
15
|
Bhat SA, Yousuf A, Mushtaq Z, Kumar V, Qurashi A. Fragile X Premutation rCGG Repeats Impair Synaptic Growth and Synaptic Transmission at Drosophila larval Neuromuscular Junction. Hum Mol Genet 2021; 30:1677-1692. [PMID: 33772546 DOI: 10.1093/hmg/ddab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease that develops in some premutation (PM) carriers of the FMR1 gene with alleles bearing 55-200 CGG repeats. The discovery of a broad spectrum of clinical and cell developmental abnormalities among PM carriers with or without FXTAS and in model systems suggests that neurodegeneration seen in FXTAS could be the inevitable end-result of pathophysiological processes set during early development. Hence, it is imperative to trace early PM-induced pathological abnormalities. Previous studies have shown that transgenic Drosophila carrying PM-length CGG repeats are sufficient to cause neurodegeneration. Here, we used the same transgenic model to understand the effect of CGG repeats on the structure and function of the developing nervous system. We show that presynaptic expression of CGG repeats restricts synaptic growth, reduces the number of synaptic boutons, leads to aberrant presynaptic varicosities, and impairs synaptic transmission at the larval neuromuscular junctions. The postsynaptic analysis shows that both glutamate receptors and subsynaptic reticulum proteins were normal. However, a high percentage of boutons show a reduced density of Bruchpilot protein, a key component of presynaptic active zones required for vesicle release. The electrophysiological analysis shows a significant reduction in quantal content, a measure of total synaptic vesicles released per excitation potential. Together, these findings suggest that synapse perturbation caused by rCGG repeats mediates presynaptically during larval NMJ development. We also suggest that the stress-activated c-Jun N-terminal kinase protein Basket and CIDE-N protein Drep-2 positively mediate Bruchpilot active zone defects caused by rCGG repeats.
Collapse
Affiliation(s)
- Sajad A Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Zeeshan Mushtaq
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| |
Collapse
|
16
|
Nakayama Y, Adachi K, Shioda N, Maeta S, Nanba E, Kugoh H. Establishment of FXS-A9 panel with a single human X chromosome from fragile X syndrome-associated individual. Exp Cell Res 2020; 398:112419. [PMID: 33296661 DOI: 10.1016/j.yexcr.2020.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5' untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kaori Adachi
- Division of Genomic Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Nofirifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shoya Maeta
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Eiji Nanba
- Office for Research Strategy, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
17
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Urine-Derived Epithelial Cell Lines: A New Tool to Model Fragile X Syndrome (FXS). Cells 2020; 9:cells9102240. [PMID: 33027907 PMCID: PMC7600987 DOI: 10.3390/cells9102240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental condition associated with intellectual disability and behavioral problems due to the lack of the Fragile X mental retardation protein (FMRP), which plays a crucial role in synaptic plasticity and memory. A desirable in vitro cell model to study FXS would be one that can be generated by simple isolation and culture method from a collection of a non-invasive donor specimen. Currently, the various donor-specific cells can be isolated mainly from peripheral blood and skin biopsy. However, they are somewhat invasive methods for establishing cell lines from the primary subject material. In this study, we characterized a cost-effective and straightforward method to derive epithelial cell lines from urine samples collected from participants with FXS and healthy controls (TD). The urine-derived cells expressed epithelial cell surface markers via fluorescence-activated cell sorting (FACS). We observed inter, and the intra-tissue CGG mosaicism in the PBMCs and the urine-derived cells from participants with FXS potentially related to the observed variations in the phenotypic and clinical presentation FXS. We characterized these urine-derived epithelial cells for FMR1 mRNA and FMRP expression and observed some expression in the lines derived from full mutation mosaic participants. Further, FMRP expression was localized in the cytoplasm of the urine-derived epithelial cells of healthy controls. Deficient FMRP expression was also observed in mosaic males, while, as expected, no expression was observed in cells derived from participants with a hypermethylated full mutation.
Collapse
|
19
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
20
|
FMR1 mRNA from full mutation alleles is associated with ABC-C FX scores in males with fragile X syndrome. Sci Rep 2020; 10:11701. [PMID: 32678152 PMCID: PMC7367290 DOI: 10.1038/s41598-020-68465-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥ 200 CGG repeats, and a decrease in FMR1 mRNA and its protein. However, incomplete silencing from FM alleles has been associated with more severe autism features in FXS males. This study compared scores on the Aberrant Behavior Checklist-Community-FXS version (ABC-CFX) in 62 males affected with FXS (3 to 32 years) stratified based on presence or absence of mosaicism and/or FMR1 mRNA silencing. Associations between ABC-CFX subscales and FMR1 mRNA levels, assessed using real-time PCR relative standard curve method, were also examined. The FXS group mosaic for premutation (PM: 55–199 CGGs) and FM alleles had lower irritability (p = 0.014) and inappropriate speech (p < 0.001) scores compared to males with only FM alleles and complete loss of FMR1 mRNA. The PM/FM mosaic group also showed lower inappropriate speech scores compared to the incomplete silencing (p = 0.002) group. Increased FMR1 mRNA levels were associated with greater irritability (p < 0.001), and lower health-related quality of life scores (p = 0.004), but only in the incomplete silencing FM-only group. The findings suggest that stratification based on CGG sizing and FMR1 mRNA levels may be warranted in future research and clinical trials utilising ABC-CFX subscales as outcome measures.
Collapse
|
21
|
Zafarullah M, Tang HT, Durbin-Johnson B, Fourie E, Hessl D, Rivera SM, Tassone F. FMR1 locus isoforms: potential biomarker candidates in fragile X-associated tremor/ataxia syndrome (FXTAS). Sci Rep 2020; 10:11099. [PMID: 32632326 PMCID: PMC7338407 DOI: 10.1038/s41598-020-67946-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder that affects movement and cognition in male and female carriers of a premutation allele of 55-200 CGG repeats in the Fragile X mental retardation (FMR1) gene. It is currently unknown if and when an individual carrier of a premutation allele will develop FXTAS, as clinical assessment fails to identify carriers at risk before significant neurological symptoms are evident. The primary objective of this study was to investigate the alternative splicing landscape at the FMR1 locus in conjunction with brain measures in male individuals with a premutation allele enrolled in a very first longitudinal study, compared to age-matched healthy male controls, with the purpose of identifying biomarkers for early diagnosis, disease prediction and, a progression of FXTAS. Our findings indicate that increased expression of FMR1 mRNA isoforms, including Iso4/4b, Iso10/10b, as well as of the ASFMR1 mRNAs Iso131bp, are present in premutation carriers as compared to non-carrier healthy controls. More specifically, we observed a higher expression of Iso4/4b and Iso10/10b, which encode for truncated proteins, only in those premutation carriers who developed symptoms of FXTAS over time as compared to non-carrier healthy controls, suggesting a potential role in the development of the disorder. In addition, we found a significant association of these molecular changes with various measurements of brain morphology, including the middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), pons, and midbrain, indicating their potential contribution to the pathogenesis of FXTAS. Interestingly, the high expression levels of Iso4/4b observed both at visit 1 and visit 2 and found to be associated with a decrease in mean MCP width only in those individuals who developed FXTAS over time, suggests their role as potential biomarkers for early diagnosis of FXTAS.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA, USA
| | - Emily Fourie
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
22
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
23
|
Kover ST, Abbeduto L. Syntactic Ability of Girls With Fragile X Syndrome: Phonological Memory and Discourse Demands on Complex Sentence Use. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2019; 124:511-534. [PMID: 31756147 PMCID: PMC6876634 DOI: 10.1352/1944-7558-124.6.511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study was designed to establish the extent of delay in complex sentence use by females with fragile X syndrome (FXS) and to identify sources of variability among individuals. Females with FXS (n = 16; 10;2-15;7) and younger typically developing girls (n = 17; 4;1-8;11) were group-wise matched on nonverbal cognition and receptive syntax. Language samples (conversation and narration) yielded syntactic complexity in terms of mean length of C-unit (MLCU) and Developmental Level sentence coding (DLevel; Rosenberg & Abbeduto, 1987 ). Complex syntax was not weaker than developmental expectations; however, MLCU was lower than expected for age. Phonological memory and verbal working memory correlated with measures of syntactic complexity in narration. Discourse demands may play an important role in the language produced by females with FXS.
Collapse
Affiliation(s)
- Sara T Kover
- Sara T. Kover, University of Washington; and Leonard Abbeduto, University of California, Davis
| | - Leonard Abbeduto
- Sara T. Kover, University of Washington; and Leonard Abbeduto, University of California, Davis
| |
Collapse
|
24
|
Baker EK, Arpone M, Aliaga SM, Bretherton L, Kraan CM, Bui M, Slater HR, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field M, Cohen J, Cornish K, Santa Maria L, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Mol Autism 2019; 10:21. [PMID: 31073396 PMCID: PMC6499941 DOI: 10.1186/s13229-019-0271-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Fragile X syndrome (FXS) is a common monogenic cause of intellectual disability with autism features. While it is caused by loss of the FMR1 product (FMRP), mosaicism for active and inactive FMR1 alleles, including alleles termed premutation (PM: 55-199 CGGs), is not uncommon. Importantly, both PM and active full mutation (FM: ≥ 200 CGGs) alleles often express elevated levels of mRNA that are thought to be toxic. This study determined if complete FMR1 mRNA silencing from FM alleles and/or levels of FMR1 mRNA (if present) in blood are associated with intellectual functioning and autism features in FXS. Methods The study cohort included 98 participants (70.4% male) with FXS (FM-only and PM/FM mosaic) aged 1-43 years. A control group of 14 females were used to establish control FMR1 mRNA reference range. Intellectual functioning and autism features were assessed using the Mullen Scales of Early Learning or an age-appropriate Wechsler Scale and the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2), respectively. FMR1 mRNA was analysed in venous blood collected at the time of assessments, using the real-time PCR relative standard curve method. Results Females with FXS had significantly higher levels of FMR1 mRNA (p < 0.001) than males. FMR1 mRNA levels were positively associated with age (p < 0.001), but not with intellectual functioning and autistic features in females. FM-only males (aged < 19 years) expressing FM FMR1 mRNA had significantly higher ADOS calibrated severity scores compared to FM-only males with completely silenced FMR1 (p = 0.011). However, there were no significant differences between these subgroups on intellectual functioning. In contrast, decreased levels of FMR1 mRNA were associated with decreased intellectual functioning in FXS males (p = 0.029), but not autism features, when combined with the PM/FM mosaic group. Conclusion Incomplete silencing of toxic FM RNA may be associated with autistic features, but not intellectual functioning in FXS males. While decreased levels of mRNA may be more predictive of intellectual functioning than autism features. If confirmed in future studies, these findings may have implications for patient stratification, outcome measure development, and design of clinical and pre-clinical trials in FXS.
Collapse
Affiliation(s)
- Emma K. Baker
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Brain and Mind, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Solange M. Aliaga
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Claudine M. Kraan
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Australia
| | - Howard R. Slater
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC Australia
| | - Matthew F. Hunter
- Monash Genetics, Monash Health, Melbourne, VIC Australia
- Department of Paediatrics, Monash University, Clayton, VIC Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, North Caulfield, VIC and Center for Developmental Disability Health Victoria, Monash University, Clayton, Australia
| | - Kim Cornish
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, VIC Australia
| | - Lorena Santa Maria
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Victor Faundes
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Bianca Curotto
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Paulina Morales
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Cesar Trigo
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Isabel Salas
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - Angelica M. Alliende
- Molecular and Cytogenetics Laboratory, INTA, University of Chile, Santiago, Chile
| | - David J. Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Neurodisability and Rehabilitation, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - David E. Godler
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Wang Z, Khemani P, Schmitt LM, Lui S, Mosconi MW. Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers. J Neurodev Disord 2019; 11:2. [PMID: 30665341 PMCID: PMC6341725 DOI: 10.1186/s11689-018-9261-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS. METHODS We examined postural stability in 18 premutation carriers ages 46-77 years and 14 age-matched healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS. Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or neurological signs of FXTAS (FXTAS-), and four were inconclusive due to insufficient data. RESULTS Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP) direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition. FXTAS+ individuals showed reduced COPAP variability compared to FXTAS- carriers and healthy controls during dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically rated posture and gait abnormalities. CONCLUSION Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS- premutation carriers differed on their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence and onset.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, 32611, USA. .,University of Florida, 1225 Center Drive, PO Box 100164, Gainesville, FL, 326100164, USA.
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA, 98121, USA
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, 66045, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, 66045, USA.,Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
26
|
Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, Todd PK. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol Neurosci 2018; 11:282. [PMID: 30158855 PMCID: PMC6104480 DOI: 10.3389/fnmol.2018.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability and autism. It results from expansion of a CGG nucleotide repeat in the 5′ untranslated region (UTR) of FMR1. Large expansions elicit repeat and promoter hyper-methylation, heterochromatin formation, FMR1 transcriptional silencing and loss of the Fragile X protein, FMRP. Efforts aimed at correcting the sequelae resultant from FMRP loss have thus far proven insufficient, perhaps because of FMRP’s pleiotropic functions. As the repeats do not disrupt the FMRP coding sequence, reactivation of endogenous FMR1 gene expression could correct the proximal event in FXS pathogenesis. Here we utilize the Clustered Regularly Interspaced Palindromic Repeats/deficient CRISPR associated protein 9 (CRISPR/dCas9) system to selectively re-activate transcription from the silenced FMR1 locus. Fusion of the transcriptional activator VP192 to dCas9 robustly enhances FMR1 transcription and increases FMRP levels when targeted directly to the CGG repeat in human cells. Using a previously uncharacterized FXS human embryonic stem cell (hESC) line which acquires transcriptional silencing with serial passaging, we achieved locus-specific transcriptional re-activation of FMR1 messenger RNA (mRNA) expression despite promoter and repeat methylation. However, these changes at the transcript level were not coupled with a significant elevation in FMRP protein expression in FXS cells. These studies demonstrate that directing a transcriptional activator to CGG repeats is sufficient to selectively reactivate FMR1 mRNA expression in Fragile X patient stem cells.
Collapse
Affiliation(s)
- Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Gary D Smith
- Departments of Obstetrics/Gynecology, Physiology, and Urology, University of Michigan, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Lehmkuhl EM, Zarnescu DC. Lost in Translation: Evidence for Protein Synthesis Deficits in ALS/FTD and Related Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:283-301. [PMID: 29916024 DOI: 10.1007/978-3-319-89689-2_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells utilize a complex network of proteins to regulate translation, involving post-transcriptional processing of RNA and assembly of the ribosomal unit. Although the complexity provides robust regulation of proteostasis, it also offers several opportunities for translational dysregulation, as has been observed in many neurodegenerative disorders. Defective mRNA localization, mRNA sequatration, inhibited ribogenesis, mutant tRNA synthetases, and translation of hexanucleotide expansions have all been associated with neurodegenerative disease. Here, we review dysregulation of translation in the context of age-related neurodegeneration and discuss novel methods to interrogate translation. This review primarily focuses on amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum disorder heavily associated with RNA metabolism, while also analyzing translational inhibition in the context of related neurodegenerative disorders such as Alzheimer's disease and Huntington's disease and the translation-related pathomechanisms common in neurodegenerative disease.
Collapse
Affiliation(s)
- Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA. .,Department of Neuroscience, University of Arizona, Tucson, AZ, USA. .,Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Jiraanont P, Sweha SR, AlOlaby RR, Silva M, Tang HT, Durbin-Johnson B, Schneider A, Espinal GM, Hagerman PJ, Rivera SM, Hessl D, Hagerman RJ, Chutabhakdikul N, Tassone F. Clinical and molecular correlates in fragile X premutation females. eNeurologicalSci 2017; 7:49-56. [PMID: 28971146 PMCID: PMC5621595 DOI: 10.1016/j.ensci.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Stefan R. Sweha
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Reem R. AlOlaby
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andrea Schneider
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Neurocognitive Development Lab, Center for Mind and Brain UC Davis, Professor, Department of Psychology, University of California Davis Medical Center, Sacramento, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
| | - Randi J. Hagerman
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
29
|
Barad DH, Darmon S, Weghofer A, Latham GJ, Wang Q, Kushnir VA, Albertini DF, Gleicher N. Association of skewed X-chromosome inactivation with FMR1 CGG repeat length and anti-Mullerian hormone levels: a cohort study. Reprod Biol Endocrinol 2017; 15:34. [PMID: 28454580 PMCID: PMC5410032 DOI: 10.1186/s12958-017-0250-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Premutation range CGGn repeats of the FMR1 gene denote risk toward primary ovarian insufficiency (POI), also called premature ovarian failure (POF). This prospective cohort study was undertaken to determine if X-chromosome inactivation skew (sXCI) is associated with variations in FMR1 CGG repeat length and, if so, is also associated with age adjusted antimüllerian hormone (AMH) levels as an indicator of functional ovarian reserve (FOR). METHODS DNA samples of 58 women were analyzed for methylation status and confirmation of CGGn repeat length. Based on previously described FMR1 genotypes, there were 18 women with norm FMR1 (both alleles in range of CGG n=26-34), and 40 women who had at least one allele at CGGn<26 or CGG>34 ( not-norm FMR1). As part of a routine evaluation of ovarian reserve, patients at our fertility center have their serum AMH assessed at first visit. Regression models were used to test the association of ovarian reserve, as indicated by serum AMH, with sXCI. RESULTS sXCI was significantly lower among infertility patients with norm FMR1 (6.5 ± 11.1, median and IQR) compared to those with not-norm FMR1 (12.0 ± 14.6, P = 0.005), though among young oocyte donors the opposite effect was observed. Women age >30 to 38 years old demonstrated greater ovarian reserve in the presence of lower sXCI as evidenced by significantly higher AMH levels (GLM sXCI_10%, f = 11.27; P = 0.004). CONCLUSIONS Together these findings suggest that FMR1 CGG repeat length may have a role in determining X-chromosome inactivation which could represent a possible mechanism for previously observed association of low age adjusted ovarian reserve with FMR1 variations in repeat length. Further, larger, investigations will be required to test this hypothesis.
Collapse
Affiliation(s)
- David H. Barad
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- The Foundation for Reproductive Medicine, New York, NY USA
| | - Sarah Darmon
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
| | - Andrea Weghofer
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2286 1424grid.10420.37Department of Obstetrics and Gynecology, Vienna University School of Medicine, Vienna, Austria
| | | | - Qi Wang
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
| | - Vitaly A. Kushnir
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2185 3318grid.241167.7Department of Obstetrics and Gynecology, Wake Forest University, Winston Salem, NC USA
| | - David F. Albertini
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2177 6375grid.412016.0Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas, USA
| | - Norbert Gleicher
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- The Foundation for Reproductive Medicine, New York, NY USA
- 0000 0001 2166 1519grid.134907.8Stem Cell and Molecular Embryology Laboratory, The Rockefeller University, New York, NY USA
| |
Collapse
|
30
|
Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene. Genes (Basel) 2016; 7:genes7120123. [PMID: 27983607 PMCID: PMC5192499 DOI: 10.3390/genes7120123] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/28/2023] Open
Abstract
Menopause is a period of women’s life characterized by the cessation of menses in a definitive way. The mean age for menopause is approximately 51 years. Primary ovarian insufficiency (POI) refers to ovarian dysfunction defined as irregular menses and elevated gonadotrophin levels before or at the age of 40 years. The etiology of POI is unknown but several genes have been reported as being of significance. The fragile X mental retardation 1 gene (FMR1) is one of the most important genes associated with POI. The FMR1 gene contains a highly polymorphic CGG repeat in the 5′ untranslated region of exon 1. Four allelic forms have been defined with respect to CGG repeat length and instability during transmission. Normal (5–44 CGG) alleles are usually transmitted from parent to offspring in a stable manner. The full mutation form consists of over 200 repeats, which induces hypermethylation of the FMR1 gene promoter and the subsequent silencing of the gene, associated with Fragile X Syndrome (FXS). Finally, FMR1 intermediate (45–54 CGG) and premutation (55–200 CGG) alleles have been principally associated with two phenotypes, fragile X tremor ataxia syndrome (FXTAS) and fragile X primary ovarian insufficiency (FXPOI).
Collapse
|
31
|
Foote M, Arque G, Berman RF, Santos M. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice. CEREBELLUM (LONDON, ENGLAND) 2016; 15:611-22. [PMID: 27255703 PMCID: PMC5014696 DOI: 10.1007/s12311-016-0797-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some carriers of the fragile X premutation (PM). In PM carriers, there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the fragile X mental retardation protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that causes PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically, we will discuss the construct, face, and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms, and potential treatments.
Collapse
Affiliation(s)
- Molly Foote
- Department of Neurological Surgery, University of California, Davis, CA, USA.
| | - Gloria Arque
- Department of Molecular Neuroscience, Medical University of Vienna, Vienna, Austria
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Mónica Santos
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
32
|
Lozano R, Martinez-Cerdeno V, Hagerman RJ. Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder. Curr Pharm Des 2016; 21:4972-4979. [PMID: 26365141 DOI: 10.2174/1381612821666150914121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.
Collapse
Affiliation(s)
- Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, New York, NY USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Yrigollen CM, Pacini L, Nobile V, Lozano R, Hagerman RJ, Bagni C, Tassone F. Clinical and Molecular Assessment in a Female with Fragile X Syndrome and Tuberous Sclerosis. JOURNAL OF GENETIC DISORDERS & GENETIC REPORTS 2016; 5:139. [PMID: 28232951 PMCID: PMC5319728 DOI: 10.4172/2327-5790.1000139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Fragile X syndrome (FXS) and tuberous sclerosis (TSC) are genetic disorders that result in intellectual disability and an increased prevalence of autism spectrum disorders (ASD). While the clinical presentation of each disorder is distinct, the molecular causes are linked to a disruption in the mTORC1 (mammalian Target of Rapamycin Complex 1) and ERK1/2 (Extracellular signal-Regulated Kinase) signaling pathways. METHODS We assessed the clinical and molecular characteristics of an individual seen at the UC Davis MIND Institute with a diagnosis of FXS and TSC. Clinical evaluation of physical, behavioral, and cognitive impairments were performed. Additionally, total and phosphorylated proteins along the mTORC1 and ERK1/2 pathways were measured in primary fibroblast cell lines from the proband. RESULTS In this case the phenotypic effects that result in a human with both FXS and TSC are shown to be severe. Changes in mTORC1 and ERK1/2 signaling proteins and global protein synthesis were not found to be noticeably different between four cohorts (typically developing, FMR1 full mutation, FMR1 full mutation and TSC1 loss of function mutation, and TSC1 loss of function mutation); however cohort sizes prevented stringent comparisons. CONCLUSION It has previously been suggested that disruption of the mTORC1 pathway was reciprocal in TSC and FXS double knock-out mouse models so that the regulation of these pathways were more similar to wild-type mice compared to mice harboring a Fmr1-/y or Tsc2-/+ mutation alone. However, in this first reported case of a human with a diagnosis of both FXS and TSC, substantial clinical impairments, as a result of these two disorders were observed. Differences in the mTORC and ERK1/2 pathways were not clearly established when compared between individuals with either disorder, or both.
Collapse
Affiliation(s)
- Carolyn M Yrigollen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, USA
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Veronica Nobile
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Reymundo Lozano
- Department of Pediatrics, University of California, Davis, USA
| | - Randi J. Hagerman
- Department of Pediatrics, University of California, Davis, USA
- MIND Institute, University of California, Davis, USA
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
- VIB Center for the Biology of Disease and Center for Human Genetics, Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Flora Tassone
- MIND Institute, University of California, Davis, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| |
Collapse
|
34
|
FMR1 gene mutations in patients with fragile X syndrome and obligate carriers: 30 years of experience in Chile. Genet Res (Camb) 2016; 98:e11. [PMID: 27350105 DOI: 10.1017/s0016672316000082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and co-morbid autism. It is caused by an amplification of the CGG repeat (>200), which is known as the full mutation, within the 5'UTR of the FMR1 gene. Expansions between 55-200 CGG repeats are termed premutation and are associated with a greater risk for fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency. Intermediate alleles, also called the grey zone, include approximately 45-54 repeats and are considered borderline. Individuals with less than 45 repeats have a normal FMR1 gene. We report the occurrence of CGG expansions of the FMR1 gene in Chile among patients with ID and families with a known history of FXS. Here, we present a retrospective review conducted on 2321 cases (2202 probands and 119 relatives) referred for FXS diagnosis and cascade screening at the Institute of Nutrition and Food Technology (INTA), University of Chile. Samples were analysed using traditional cytogenetic methods and/or PCR. Southern blot was used to confirm the diagnosis. Overall frequency of FMR1 expansions observed among probands was 194 (8·8%), the average age of diagnosis was 8·8 ± 5·4 years. Of 119 family members studied, 72 (60%) were diagnosed with a CGG expansion. Our results indicated that the prevalence of CGG expansions of the FMR1 gene among probands is relatively higher than other populations. The average age of diagnosis is also higher than reference values. PCR and Southern blot represent a reliable molecular technique in the diagnosis of FXS.
Collapse
|
35
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
36
|
Saldarriaga W, Lein P, González Teshima LY, Isaza C, Rosa L, Polyak A, Hagerman R, Girirajan S, Silva M, Tassone F. Phenobarbital use and neurological problems in FMR1 premutation carriers. Neurotoxicology 2016; 53:141-147. [PMID: 26802682 DOI: 10.1016/j.neuro.2016.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/08/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by a CGG expansion in the FMR1 gene located at Xq27.3. Patients with the premutation in FMR1 present specific clinical problems associated with the number of CGG repeats (55-200 CGG repeats). Premutation carriers have elevated FMR1 mRNA expression levels, which have been associated with neurotoxicity potentially causing neurodevelopmental problems or neurological problems associated with aging. However, cognitive impairments or neurological problems may also be related to increased vulnerability of premutation carriers to neurotoxicants, including phenobarbital. Here we present a study of three sisters with the premutation who were exposed differentially to phenobarbital therapy throughout their lives, allowing us to compare the neurological effects of this drug in these patients.
Collapse
Affiliation(s)
- Wilmar Saldarriaga
- Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS),Universidad del Valle, Cali, Colombia; Departments of Morphology and Obstetrics & Gynecology, Universidad del Valle, Hospital Universitario Del Valle, Cali, Colombia.
| | - Pamela Lein
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA, USA; MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, USA
| | | | - Carolina Isaza
- Department of Morphology, Universidad del Valle, Cali, Colombia
| | - Lina Rosa
- La Misericordia International Clinic, Barranquilla, Colombia; Instituto Superior de Estudios Psicológicos, Barcelona, Spain; Autonomous University of Barcelona-Sant Joan de Déu Hospital, Barcelona, Spain
| | - Andrew Polyak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Randi Hagerman
- Department of Pediatrics and the MIND Institute, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Flora Tassone
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
37
|
Cordeiro L, Abucayan F, Hagerman R, Tassone F, Hessl D. Anxiety disorders in fragile X premutation carriers: Preliminary characterization of probands and non-probands. Intractable Rare Dis Res 2015; 4:123-30. [PMID: 26361563 PMCID: PMC4561241 DOI: 10.5582/irdr.2015.01029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022] Open
Abstract
A very high proportion of individuals with fragile X syndrome (FXS) (FMR1 full mutation, > 200 CGG repeats) experience clinically significant anxiety. Recent evidence suggests that adult fragile X premutation carriers (55-200 CGG repeats) also are at risk for anxiety disorders, and they demonstrate limbic system alterations mediated by FMRP and/or elevated FMR1 mRNA that may explain this heightened risk. However, less is known about psychiatric symptoms including anxiety among children and adolescents with the premutation. We completed structured DSM-IV based diagnostic interviews focused on current anxiety in 35 children, adolescents or young adults with the premutation (ages 5-23 years, M = 11.3 ± 4.3; 27 male; 20 probands and 15 non-probands) and 31 controls (ages 5-18 years, M = 9.9 ± 3.6; 22 males). Among premutation carriers, 70.6% met criteria for at least one anxiety disorder (most frequently generalized anxiety disorder, specific phobia, social phobia, or obsessive compulsive disorder), compared to 22.6% of controls and 9.8% of the general population in this age range. Premutation carriers with intellectual disability, male gender, and proband status were associated with the highest rates of anxiety disorders. However, non-probands did have higher rates of having any anxiety disorder (40.0%) compared to general population norms. Although the results implicate anxiety as a target of screening and intervention among youth with the premutation, larger studies of unselected samples from the population of premutation carriers are needed to confirm and specify the degree and extent of psychiatric disorders in this condition.
Collapse
Affiliation(s)
- Lisa Cordeiro
- Department of Pediatrics, University of Colorado, Denver, USA
| | | | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Pediatrics, University of California Davis, Sacramento, USA
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, USA
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, USA
- Address correspondence to: Dr. David Hessl, MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA. E-mail:
| |
Collapse
|
38
|
Renoux AJ, Carducci NM, Ahmady AA, Todd PK. Fragile X mental retardation protein expression in Alzheimer's disease. Front Genet 2014; 5:360. [PMID: 25452762 PMCID: PMC4233940 DOI: 10.3389/fgene.2014.00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/27/2014] [Indexed: 12/31/2022] Open
Abstract
The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP) mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer's disease (AD) in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer's autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1), we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer's patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, MI, USA ; Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | | | - Arya A Ahmady
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
39
|
Francis SM, Sagar A, Levin-Decanini T, Liu W, Carter CS, Jacob S. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res 2014; 1580:199-218. [PMID: 24462936 PMCID: PMC4305432 DOI: 10.1016/j.brainres.2014.01.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones found in many mammalian species, including humans. Dysregulation of these neuropeptides have been associated with changes in behavior, especially social interactions. We review how the OT and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader-Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS have identified genetic mutations, ASD stems from multiple genes with complex interactions. Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the developing brain. We present data from a FXS mouse model affecting the fragile X mental retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT pathways may be downstream from different etiological factors and perturbations in development. This has implications for ongoing studies of the therapeutic application of OT in NDD. This article is part of a Special Issue entitled Oxytocin and Social Behav.
Collapse
Affiliation(s)
- S M Francis
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
| | - A Sagar
- University of California at Irvine, Department of Psychiatry and Human Behavior, USA
| | - T Levin-Decanini
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA
| | - W Liu
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - C S Carter
- University of North Carolina, Department of Psychiatry, Chapel Hill, NC, USA
| | - S Jacob
- University of Minnesota, Department of Psychiatry, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Kumari D, Usdin K. Polycomb group complexes are recruited to reactivated FMR1 alleles in Fragile X syndrome in response to FMR1 transcription. Hum Mol Genet 2014; 23:6575-83. [PMID: 25055869 DOI: 10.1093/hmg/ddu378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The FMR1 gene is subject to repeat mediated-gene silencing when the CGG-repeat tract in the 5' UTR exceeds 200 repeat units. This results in Fragile X syndrome, the most common heritable cause of intellectual disability and a major cause of autism spectrum disorders. The mechanism of gene silencing is not fully understood, and efforts to reverse this gene silencing have had limited success. Here, we show that the level of trimethylation of histone H3 on lysine 27, a hallmark of the activity of EZH2, a component of repressive Polycomb Group (PcG) complexes like PRC2, is increased on reactivation of the silenced allele by either the DNA demethylating agent 5-azadeoxycytidine or the SIRT1 inhibitor splitomicin. The level of H3K27me3 increases and decreases in parallel with the FMR1 mRNA level. Furthermore, reducing the levels of the FMR1 mRNA reduces the accumulation of H3K27me3. This suggests a model for FMR1 gene silencing in which the FMR1 mRNA generated from the reactivated allele acts in cis to repress its own transcription via the recruitment of PcG complexes to the FMR1 locus.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 2014; 5:226. [PMID: 25101111 PMCID: PMC4101883 DOI: 10.3389/fgene.2014.00226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/29/2014] [Indexed: 01/01/2023] Open
Abstract
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Rachel A Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
42
|
Inaba Y, Schwartz CE, Bui QM, Li X, Skinner C, Field M, Wotton T, Hagerman RJ, Francis D, Amor DJ, Hopper JL, Loesch DZ, Bretherton L, Slater HR, Godler DE. Early Detection of Fragile X Syndrome: Applications of a Novel Approach for Improved Quantitative Methylation Analysis in Venous Blood and Newborn Blood Spots. Clin Chem 2014; 60:963-73. [DOI: 10.1373/clinchem.2013.217331] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
BACKGROUND
Standard fragile X syndrome (FXS) diagnostic tests that target methylation of the fragile X mental retardation 1 (FMR1) CpG island 5′ of the CGG expansion can be used to predict severity of the disease in males from birth, but not in females.
METHODS
We describe methylation specific–quantitative melt analysis (MS-QMA) that targets 10 CpG sites, with 9 within FMR1 intron 1, to screen for FXS from birth in both sexes. The novel method combines the qualitative strengths of high-resolution melt and the high-throughput, quantitative real-time PCR standard curve to provide accurate quantification of DNA methylation in a single assay. Its performance was assessed in 312 control (CGG <40), 143 premutation (PM) (CGG 56–170), 197 full mutation (FM) (CGG 200–2000), and 33 CGG size and methylation mosaic samples.
RESULTS
In male and female newborn blood spots, MS-QMA differentiated FM from control alleles, with sensitivity, specificity, and positive and negative predictive values between 92% and 100%. In venous blood of FM females between 6 and 35 years of age, MS-QMA correlated most strongly with verbal IQ impairment (P = 0.002). In the larger cohort of males and females, MS-QMA correlated with reference methods Southern blot and MALDI-TOF mass spectrometry (P < 0.05), but was not significantly correlated with age. Unmethylated alleles in high-functioning FM and PM males determined by both reference methods were also unmethylated by MS-QMA.
CONCLUSIONS
MS-QMA has an immediate application in FXS diagnostics, with a potential use of its quantitative methylation output for prognosis in both sexes.
Collapse
Affiliation(s)
- Yoshimi Inaba
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Charles E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC
| | - Quang M Bui
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Victoria, Australia
| | - Xin Li
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Cindy Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC
| | - Michael Field
- Genetics of Learning Disability Service, New South Wales, Australia
| | - Tiffany Wotton
- New South Wales Newborn Screening Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Randi J Hagerman
- The MIND Institute, University of California, Davis Medical Center, Sacramento, CA
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA
| | - David Francis
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David J Amor
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne Victoria, Australia
| | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Victoria, Australia
| | - Danuta Z Loesch
- School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lesley Bretherton
- Department of Paediatrics, University of Melbourne, Melbourne Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne; Melbourne Victoria, Australia
- Department of Clinical Psychology, The Royal Children's Hospital, Melbourne; Victoria, Australia
| | - Howard R Slater
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne Victoria, Australia
| | - David E Godler
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Abstract
Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Benjamin Delatte
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
44
|
Kover ST, Pierpont EI, Kim JS, Brown WT, Abbeduto L. A neurodevelopmental perspective on the acquisition of nonverbal cognitive skills in adolescents with fragile X syndrome. Dev Neuropsychol 2014; 38:445-60. [PMID: 24138215 DOI: 10.1080/87565641.2013.820305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This longitudinal study was designed to investigate trajectories of nonverbal cognitive ability in adolescents with fragile X syndrome with respect to the relative influence of fragile X mental retardation protein (FMRP), autism symptom severity, and environmental factors on visualization and fluid reasoning abilities. Males and females with fragile X syndrome (N = 53; ages 10-16 years) were evaluated with the Leiter-R at up to four annual assessments. On average, IQ declined with age. FMRP levels predicted change in fluid reasoning, but not in visualization. The role of FMRP in the neural development that underlies the fragile X syndrome cognitive phenotype is discussed.
Collapse
Affiliation(s)
- Sara T Kover
- a Waisman Center , University of Wisconsin-Madison , Madison , Wisconsin
| | | | | | | | | |
Collapse
|
45
|
von Leden RE, Curley LC, Greenberg GD, Hunsaker MR, Willemsen R, Berman RF. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation. Neurobiol Learn Mem 2014; 109:160-8. [PMID: 24462720 DOI: 10.1016/j.nlm.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Environmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model of the fragile X premutation. Fmrp, Arc, and c-Fos protein levels were quantified by Western blot in the contralateral motor cortex of mice following training to reach for sucrose pellets with a non-preferred paw and compared to levels in the ipsilateral motor cortex. After training, all mice showed increases in Fmrp, Arc, and c-Fos protein levels in the contralateral compared to the ipsilateral hemisphere; however, the increase in CGG KI mice was less than wildtype mice. Increases in Fmrp and Arc proteins scaled with learning, whereas this relationship was not observed with the c-Fos levels. These data suggest the possibility that reduced levels of activity-dependent proteins associated with synaptic plasticity such as Fmrp and Arc may contribute to the neurocognitive phenotype reported in the CGG KI mice and the fragile X premutation.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lindsey C Curley
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Gian D Greenberg
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Michael R Hunsaker
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA.
| | - Rob Willemsen
- CBG-Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; NeuroTherapeutic Research Institute, University of California, Davis, Davis, CA, USA
| | - Robert F Berman
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Davis, CA, USA; NeuroTherapeutic Research Institute, University of California, Davis, Davis, CA, USA
| |
Collapse
|
46
|
Kim SY, Tassone F, Simon TJ, Rivera SM. Altered neural activity in the 'when' pathway during temporal processing in fragile X premutation carriers. Behav Brain Res 2014; 261:240-8. [PMID: 24398265 DOI: 10.1016/j.bbr.2013.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Mutations of the fragile X mental retardation 1 (FMR1) gene are the genetic cause of fragile X syndrome (FXS). Large expansions of the CGG repeat (>200 repeats) consequently result in transcriptional silencing of the FMR1 gene and deficiency/absence of the FMR1 protein (FMRP). Carriers with a premutation allele (55-200 of CGG repeats) are often associated with mildly reduced levels of FMRP and/or elevated levels of FMR1 mRNA. Recent studies have shown that infants with FXS exhibit severely reduced resolution of temporal attention, whereas spatial resolution of attention is not impaired. Following from these findings in the full mutation, the current study used fMRI to examine whether premutation carriers would exhibit atypical temporal processing at behavioral and/or neural levels. Using spatial and temporal working memory (SWM and TWM) tasks, separately tagging spatial and temporal processing, we demonstrated that neurotypical adults showed greater activation in the 'when pathway' (i.e., the right temporoparietal junction: TPJ) during TWM retrieval than SWM retrieval. However, premutation carriers failed to show this increased involvement of the right TPJ during retrieval of temporal information. Further, multiple regression analyses on right TPJ activation and FMR1 gene expression (i.e., CGG repeat size and FMR1 mRNA) suggests that elevated FMR1 mRNA level is a powerful predictor accounting for reduced right TPJ activation associated with temporal processing in premutation carriers. In conclusion, the current study provides the first evidence on altered neural correlates of temporal processing in adults with the premutation, explained by their FMR1 gene expression.
Collapse
Affiliation(s)
- So-Yeon Kim
- Center for Mind and Brain, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Flora Tassone
- MIND Institute, University of California, Davis, USA
| | - Tony J Simon
- MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| |
Collapse
|
47
|
Polussa J, Schneider A, Hagerman R. Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers. BRAIN DISORDERS & THERAPY 2014; 3:1000119. [PMID: 25436181 PMCID: PMC4245015 DOI: 10.4172/2168-975x.1000119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
Collapse
Affiliation(s)
- Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
48
|
Hunsaker MR. Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field. F1000Res 2013; 2:287. [PMID: 24627796 PMCID: PMC3945770 DOI: 10.12688/f1000research.2-287.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the
FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the
Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).
Collapse
Affiliation(s)
- Michael R Hunsaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
49
|
Tassone F, Choudhary NS, Tassone F, Durbin-Johnson B, Hansen R, Hertz-Picciotto I, Pessah I. Identification of expanded alleles of the FMR1 Gene in the CHildhood Autism Risks from Genes and Environment (CHARGE) study. J Autism Dev Disord 2013; 43:530-9. [PMID: 22767137 DOI: 10.1007/s10803-012-1580-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder characterized by intellectual disabilities and autism spectrum disorders (ASD). Expansion of a CGG trinucleotide repeat (>200 repeats) in the 5'UTR of the fragile X mental retardation gene, is the single most prevalent cause of cognitive disabilities. Several screening studies for FXS, among individuals with ID from different ethnic populations, have indicated that the prevalence of the syndrome varies between 0.5 and 16 %. Because the high co-morbidity with autism, we have conducted a screening study of the cohort from CHARGE, a large-scale, population-based, case control study. We have identified six subjects carrying an expanded allele, which emphasize the importance of screening for FXS in a population with intellectual disabilities and ASD.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126:1-19. [PMID: 23793382 DOI: 10.1007/s00401-013-1138-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Collapse
|