1
|
Aghayeva A, Gok Yurtseven D, Hasanoglu Akbulut N, Eyigor O. Immunohistochemical determination of the excitatory and inhibitory axonal endings contacting NUCB2/nesfatin-1 neurons. Neuropeptides 2024; 103:102401. [PMID: 38157780 DOI: 10.1016/j.npep.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters. In double labeling applied on floating sections, the NUCB2/nesfatin-1 reaction was determined in brown color with diaminobenzidine, while vesicular carrier proteins were marked in black. Slides were analyzed to determine the ratio of nesfatin-1 neurons in the three hypothalamic nucleus in contact with a relevant vesicular carrier protein. The ratios of NUCB2/nesfatin-1 neurons with the innervation were compared among neurotransmitters. In addition, possible gender differences between males and females were examined. The difference in the number of VGLUT2-contacting NUCB2/nesfatin-1 neurons was significantly higher in males when compared to females. When both genders were compared in different nuclei, it was seen that there was no statistical significance in terms of the percentage of NUCB2/nesfatin-1 neuron apposition with VGLUT3. The statistical evaluation showed that number of NUCB2/nesfatin-1 neurons receiving GABAergic innervation is higher in males when compared to females (*p ≤ 0.05; p = 0.045). When the axonal contact of vesicular neurotransmitter transporter proteins was compared between the neurotransmitters, it was determined that the most prominent innervation is GABAergic. In the supraoptic region, no contacts of VAChT-containing axons were found on NUCB2/nesfatin-1 neurons in both female and male subjects. In conclusion, it is understood that both excitatory and inhibitory neurons can innervate the NUCB2/nesfatin-1 neurons and the glutamatergic system is effective in the excitatory innervation while the GABAergic system plays a role in the inhibitory mechanism.
Collapse
Affiliation(s)
- Aynura Aghayeva
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Duygu Gok Yurtseven
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye.
| |
Collapse
|
2
|
Edem EE, Oguntala OA, Ikuelogbon DA, Nebo KE, Fafure AA, Akinluyi ET, Isaac GT, Kunlere OE. Prolonged ketamine therapy differentially rescues psychobehavioural deficits via modulation of nitro-oxidative stress and oxytocin receptors in the gut-brain-axis of chronically-stressed mice. Psychoneuroendocrinology 2023; 158:106370. [PMID: 37678086 DOI: 10.1016/j.psyneuen.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Ketamine is an anaesthetic known to have short but rapid-acting anti-depressant effects; however, the neurobehavioural effects of its prolonged use and its role on the oxytocin system in the gut-brain axis are largely undetermined. Female BALB/c mice were either exposed to the chronic unpredictable mild stress (CUMS) paradigm for 21 days and then treated with ketamine in four doses for 14 days or exposed to CUMS and treated simultaneously in four doses of ketamine during the last two weeks of CUMS exposure. After each dose, the forced swim test was conducted to assess depressive-like behaviour. Before sacrifice, all the mice were subjected to behavioural tests to assess anxiety, memory, and social interaction. Prolonged treatment of depression with ketamine did not rescue depressive-like behaviour. It did, however, improve depression-associated anxiety-like behaviours, short-term memory and social interaction deficits when compared to the stressed untreated mice. Furthermore, ketamine treatment enhanced plasma oxytocin levels, expression of oxytocin receptors; as well as abrogated nitro-oxidative stress biomarkers in the intestinal and hippocampal tissues. Taken together, our findings indicate that while short-term use of ketamine has anti-depressant benefits, its prolonged therapeutic use does not seem to adequately resolve depressive-like behaviour in mice.
Collapse
Affiliation(s)
- Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria; Department of Anatomy, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Oluwatomisn Adeyosola Oguntala
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Kate Eberechukwu Nebo
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedamola Adediran Fafure
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Godspower Tochukwu Isaac
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Oladunni Eunice Kunlere
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
3
|
Rastegarmanesh A, Rostami B, Nasimi A, Hatam M. In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse 2023; 77:e22259. [PMID: 36271777 DOI: 10.1002/syn.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
Collapse
Affiliation(s)
- Ali Rastegarmanesh
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Rostami B, Nasimi A, Hatam M. Hypothalamic paraventricular nucleus augments baroreflex sensitivity, role of angiotensin II. Brain Res 2023; 1802:148218. [PMID: 36572371 DOI: 10.1016/j.brainres.2022.148218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is an important brain region involved in control of the cardiovascular system. Direct injection of angiotensin II (AngII) into the PVN produces a short or long pressor response. This study was performed in anesthetized rats to find whether the parvocellular part of the paraventricular nucleus (PVNp) affects the baroreflex. And if so, what is the effect of AngII injected into the PVNp on the baroreflex? Drugs were microinjected into the PVNp while blood pressure and heart rate were recorded continuously. We found that microinjection of AT1 and AT2 receptor antagonists into the PVNp region did not affect the baseline mean arterial pressure (MAP) and heart rate (HR) indicating that under normal conditions AngII may not provide tonic activity, at least in anaesthetized animals. Bilateral microinjections of a synaptic blocker (CoCl2) into the PVNp attenuated the baroreflex gains in responses to loading and unloading of baroreceptors, indicating that PVNp is involved in the baroreflex rate component. Microinjection of AngII into the PVNp increased MAP and HR. However, AngII slightly attenuated the baroreflex rate component using its two receptors AT1 and AT2. Collectively, these findings suggest that the PVNp as a whole is involved in the baroreflex. But AngII attenuates the heart rate response of the baroreflex through AT1 and AT2 receptors.
Collapse
Affiliation(s)
- Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhou JJ, Shao JY, Chen SR, Pan HL. Calcineurin Controls Hypothalamic NMDA Receptor Activity and Sympathetic Outflow. Circ Res 2022; 131:345-360. [PMID: 35862168 PMCID: PMC9357136 DOI: 10.1161/circresaha.122.320976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor–induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone.
Objective:
We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN.
Methods and Results:
Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment–induced hypertension in conscious rats.
Conclusions:
Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor–induced hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
7
|
Perampanel enhances the cardiovagal tone and heart rate variability (HRV) in patients with drug-resistant temporal lobe epilepsy. Seizure 2022; 99:16-23. [DOI: 10.1016/j.seizure.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
|
8
|
Wang G, Woods C, Johnson MA, Milner TA, Glass MJ. Angiotensin II Infusion Results in Both Hypertension and Increased AMPA GluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Neuroscience 2022; 485:129-144. [PMID: 34999197 PMCID: PMC9116447 DOI: 10.1016/j.neuroscience.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking. The increased plasma membrane GluA1 was paralleled by heightened AMPA currents in PVN-spinal cord projection neurons from AngII-infused male mice. Significantly, elevated AMPA currents in AngII-treated mice were blocked by 1-Naphthyl acetyl spermine trihydrochloride, pointing to the involvement of GluA2-lacking GluA1 receptors in the heightened AMPA signaling in PVN neurons. A further functional role for GluA1 in the PVN was demonstrated by the attenuated hypertensive response following silencing of GluA1 in the PVN of AngII-infused male mice. In female mice, AngII-infusion did not impact blood pressure or plasma membrane localization of GluA1 . Post-translational modifications that increase the plasma membrane localization of AMPA GluA1 and heighten the rapid excitatory signaling actions of glutamate in PVN neurons may serve as a molecular substrate underlying sex differences in hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Address correspondence to: Dr. Michael J. Glass, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065; Phone: (646) 962-8253;
| |
Collapse
|
9
|
Li Y, Lu YX, Chi HL, Xiao T, Chen YM, Fu LY, Zibrila AI, Qi J, Li HB, Su Q, Gao HL, Zhang Y, Shi XL, Yu XJ, Kang YM. Chronic Blockade of NMDAR Subunit 2A in the Hypothalamic Paraventricular Nucleus Alleviates Hypertension Through Suppression of MEK/ERK/CREB Pathway. Am J Hypertens 2021; 34:840-850. [PMID: 33856436 DOI: 10.1093/ajh/hpab047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND N-Methyl-d-aspartate receptor (NMDAR) in the hypothalamic paraventricular nucleus (PVN) plays critical roles in regulating sympathetic outflow. Studies showed that acute application of the antagonists of NMDAR or its subunits would reduce sympathetic nerve discharges. However, little is known about the effect of long-term management of NMDAR in hypertensive animals. METHODS PEAQX, the specific antagonist of NMDAR subunit 2A (GluN2A) was injected into both sides of the PVN of two-kidney, one-clip (2K1C) renal hypertensive rats and control (normotensive rats) for 3 weeks. RESULTS Three weeks of PEAQX infusion significantly reduced the blood pressure of the 2K1C rats. It managed to resume the balance between excitatory and inhibitory neural transmitters, reduce the level of proinflammatory cytokines and reactive oxygen species in the PVN, and reduce the level of norepinephrine in plasma of the 2K1C rats. PEAQX administration also largely reduced the transcription and translation levels of GluN2A and changed the expression levels of NMDAR subunits 1 and 2B (GluN1 and GluN2B). In addition, NMDAR was known to function through activating the extracellular regulated protein kinases (ERK) or phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways. In our study, we found that in the PVN of 2K1C rats treated with PEAQX, the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), ERK1/2, and cAMP-response element-binding protein (CREB) significantly reduced, while the phosphorylation level of PI3K did not change significantly. CONCLUSIONS Chronic blockade of GluN2A alleviates hypertension through suppression of MEK/ERK/CREB pathway.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yu-Xin Lu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Li Chi
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Tong Xiao
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’an, China
| |
Collapse
|
10
|
Abstract
Neuroanatomic and functional studies show the paraventricular (PVN) of the hypothalamus to have a central role in the autonomic control that supports cardiovascular regulation. Direct and indirect projections from the PVN preautonomic neurons to the sympathetic preganglionic neurons in the spinal cord modulate sympathetic activity. The preautonomic neurons of the PVN adjust their level of activation in response to afferent signals arising from peripheral viscerosensory receptors relayed through the nucleus tractus solitarius. The prevailing sympathetic tone is a balance between excitatory and inhibitory influences that arises from the preautonomic PVN neurons. Under physiologic conditions, tonic sympathetic inhibition driven by a nitric oxide-γ-aminobutyric acid-mediated mechanism is dominant, but in pathologic situation such as heart failure there is a switch from inhibition to sympathoexcitation driven by glutamate and angiotensin II. Angiotensin II, reactive oxygen species, and hypoxia as a result of myocardial infarction/ischemia alter the tightly regulated posttranslational protein-protein interaction of CAPON (carboxy-terminal postsynaptic density protein ligand of neuronal nitric oxide synthase (NOS1)) and PIN (protein inhibitor of NOS1) signaling mechanism. Within the preautonomic neurons of the PVN, the disruption of CAPON and PIN signaling leads to a downregulation of NOS1 expression and reduced NO bioavailability. These data support the notion that CAPON-PIN dysregulation of NO bioavailability is a major contributor to the pathogenesis of sympathoexcitation in heart failure.
Collapse
Affiliation(s)
- Susan Pyner
- Department of Biosciences, Durham University, Durham, United Kingdom.
| |
Collapse
|
11
|
Marsillo A, David L, Gerges B, Kerr D, Sadek R, Lasiychuk V, Salame D, Soliman Y, Menkes S, Chatterjee A, Mancuso A, Banerjee P. PKC epsilon as a neonatal target to correct FXS-linked AMPA receptor translocation in the hippocampus, boost PVN oxytocin expression, and normalize adult behavior in Fmr1 knockout mice. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166048. [PMID: 33359697 DOI: 10.1016/j.bbadis.2020.166048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Fragile X Syndrome (FXS) is an inherited developmental disorder caused by the non-expression of the Fmr1 gene. FXS is associated with abnormal social and anxiety behavior that is more prominent among males. Given that oxytocin (OXT) regulates both social and anxiety behavior, we studied the effect of FXS in the hypothalamic paraventricular nucleus (PVN), the major central source of OXT. We observed a significant suppression of protein kinase C epsilon (PKCε) (34%) in the ventral hippocampal CA1 region of postnatal day-18 (P18) male Fmr1 knockout (KO) mice, which displayed social behavior deficits and hyper-anxiety in adulthood. These mice also displayed a 39% increase in cell surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) at P18 (measured by the surface level of the AMPAR subunit GluR2), thereby indicating excitation of the CA1 neurons. It is known that neuronal activation at CA1 is linked to an inhibition of the PVN neurons. As expected, these mice also displayed a 25% suppression of oxytocin+ (OXT+) cells in the PVN at P20. Stimulating PKCε during postnatal days 6-,14 (P6-14) mice using a selective activator, dicyclopropyl-linoleic acid (DCP-LA), corrected AMPAR externalization in CA1 and suppression of OXT+ cell number in PVN in a PKCε dependent manner. Most notably, neonatal DCP-LA treatment rescued social behavior deficits and hyper-anxiety, displayed by adult (≥P60) male but not female KO mice. Thus, neonatal stimulation of PKCε could be a strategy to correct endophenotypic anomalies during brain development and aberrant adult behavior of the FXS males to the wild-type levels.
Collapse
Affiliation(s)
- Alexandra Marsillo
- CUNY Doctoral Programs in Biology, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Lovena David
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Bishoy Gerges
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Daniel Kerr
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Rodina Sadek
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Vitaliy Lasiychuk
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - David Salame
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Youstina Soliman
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Silvia Menkes
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Aheli Chatterjee
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Andrew Mancuso
- CUNY Doctoral Programs in Biochemistry, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America
| | - Probal Banerjee
- CUNY Doctoral Programs in Biology, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America; Department of Chemistry, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314-6609, United States of America.
| |
Collapse
|
12
|
Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sci 2020; 10:brainsci10090630. [PMID: 32932902 PMCID: PMC7564322 DOI: 10.3390/brainsci10090630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Nesfatin-1, identified as an anorexigenic peptide, regulates the energy metabolism by suppressing food intake. The majority of nesfatin-1-synthesizing neurons are concentrated in various hypothalamic nuclei, especially in the supraoptic (SON), arcuate (ARC) and paraventricular nuclei (PVN). We tested the hypothesis that the glutamatergic system regulates nesfatin-1 neurons through glutamate receptors. Therefore, the first aim of the proposed studies was to examine effects of different glutamate agonists in the activation of nesfatin-1 neurons using c-Fos double immunohistochemical labeling. Experimental groups were formed containing male and female rats which received intraperitoneal injections of glutamate agonists kainic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) while the control rats received vehicle. The significant increase in the number of c-Fos-expressing nesfatin-1 neurons after agonist injections were observed both in female and male subjects and some of these effects were found to be sexually dimorphic. In addition, treatment with specific glutamate antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or dizocilpine (MK-801) before each of the three agonist injections caused a statistically significant reduction in the number of activated nesfatin-1 neurons in the hypothalamic nuclei including supraoptic, paraventricular and arcuate nuclei. The second aim of the study was to determine the expression of glutamate receptor subunit proteins in the nesfatin-1 neurons by using a double immunofluorescence technique. The results showed that the glutamate receptor subunits, which may form homomeric or heteromeric functional receptor channels, were expressed in the nesfatin-1 neurons. In conclusion, the results of this study suggest that nesfatin-1 neurons respond to glutamatergic signals in the form of neuronal activation and that the glutamate receptors that are synthesized by nesfatin-1 neurons may participate in the glutamatergic regulation of these neurons.
Collapse
|
13
|
Glutamate receptors in domestication and modern human evolution. Neurosci Biobehav Rev 2020; 108:341-357. [DOI: 10.1016/j.neubiorev.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
|
14
|
Maejima Y, Kato S, Horita S, Ueta Y, Takenoshita S, Kobayashi K, Shimomura K. The hypothalamus to brainstem circuit suppresses late-onset body weight gain. Sci Rep 2019; 9:18360. [PMID: 31798010 PMCID: PMC6892811 DOI: 10.1038/s41598-019-54870-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Body weight (BW) is regulated in age-dependent manner; it continues to increase during growth period, and reaches a plateau once reaching adulthood. However, its underlying mechanism remains unknown. Regarding such mechanisms in the brain, we here report that neural circuits from the hypothalamus (paraventricular nucleus: PVN) to the brainstem (dorsal vagal complex: DVC) suppress late-onset BW gain without affecting food intake. The genetic suppression of the PVN-DVC circuit induced BW increase only in aged rats, indicating that this circuit contributes to suppress the BW at a fixed level after reaching adulthood. PVN neurons in the hypothalamus were inactive in younger rats but active in aged rats. The density of neuropeptide Y (NPY) terminal/fiber is reduced in the aged rat PVN area. The differences in neuronal activity, including oxytocin neurons in the PVN, were affected by the application of NPY or its receptor inhibitor, indicating that NPY is a possible regulator of this pathway. Our data provide new insights into understanding age-dependent BW regulation.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Seiichi Takenoshita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
15
|
Lake D, Corrêa SAL, Müller J. NMDA receptor-dependent signalling pathways regulate arginine vasopressin expression in the paraventricular nucleus of the rat. Brain Res 2019; 1722:146357. [PMID: 31369731 DOI: 10.1016/j.brainres.2019.146357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
The antidiuretic hormone arginine vasopressin (AVP) regulates water homeostasis, blood pressure and a range of stress responses. It is synthesized in the hypothalamus and released from the posterior pituitary into the general circulation upon a range of stimuli. While the mechanisms leading to AVP secretion have been widely investigated, the molecular mechanisms regulating AVP gene expression are mostly unclear. Here we investigated the neurotransmitters and signal transduction pathways that activate AVP gene expression in the paraventricular nucleus (PVN) of the rat using acute brain slices and quantitative real-time PCR. We show that stimulation with l-glutamate robustly induced AVP gene expression in acute hypothalamic brain slices containing the PVN. More specifically, we show that AVP transcription was stimulated by NMDA. Using pharmacological treatments, our data further reveal that the activation of ERK1/2 (PD184352), CaMKII (KN-62) and PI3K (LY294002; 740 Y-P) is involved in the NMDA-induced AVP gene expression in the PVN. Together, this study identifies NMDA-mediated cell signalling pathways that regulate AVP gene expression in the rat PVN.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
16
|
Ovalles AC, Contoreggi NH, Marques-Lopes J, Van Kempen TA, Iadecola C, Waters EM, Glass MJ, Milner TA. Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience 2019; 423:192-205. [PMID: 31682817 DOI: 10.1016/j.neuroscience.2019.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Sex and ovarian function contribute to hypertension susceptibility, however, the mechanisms are not well understood. Prior studies show that estrogens and neurogenic factors, including hypothalamic glutamatergic NMDA receptor plasticity, play significant roles in rodent hypertension. Here, we investigated the role of sex and ovarian failure on AMPA receptor plasticity in estrogen-sensitive paraventricular nucleus (PVN) neurons in naïve and angiotensin II (AngII) infused male and female mice and female mice at early and late stages of accelerated ovarian failure (AOF). High-resolution electron microscopy was used to assess the subcellular distribution of AMPA GluA1 in age-matched male and female estrogen receptor beta (ERβ) enhanced green fluorescent protein (EGFP) reporter mice as well as female ERβ-EGFP mice treated with 4-vinylcyclohexene diepoxide. In the absence of AngII, female mice at a late stage of AOF displayed higher levels of GluA1 on the plasma membrane, indicative of functional protein, in ERβ-expressing PVN dendrites when compared to male, naïve female and early stage AOF mice. Following slow-pressor AngII infusion, males, as well as early and late stage AOF females had elevated blood pressure. Significantly, only late stage-AOF female mice infused with AngII had an increase in GluA1 near the plasma membrane in dendrites of ERβ-expressing PVN neurons. In contrast, prior studies reported that plasmalemmal NMDA GluN1 increased in ERβ-expressing PVN dendrites in males and early, but not late stage AOF females. Together, these findings reveal that early and late stage AOF female mice display unique molecular signatures of long-lasting synaptic strength prior to, and following hypertension.
Collapse
Affiliation(s)
- Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Zhou X, Yang H, Song X, Wang J, Shen L, Wang J. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens Res 2019; 42:1142-1151. [PMID: 30842613 DOI: 10.1038/s41440-019-0242-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Glutamatergic activity in the rostral ventrolateral medulla (RVLM), which is an important brain area where angiotensin II (Ang II) elicits its pressor effects, contributes to the onset of hypertension. The present study aimed to explore the effect of central Ang II type 1 receptor (AT1R) blockade on glutamatergic actions in the RVLM of stress-induced hypertensive rats (SIHR). The stress-induced hypertension (SIH) model was established by electric foot shocks combined with noises. Normotensive Sprague-Dawley rats (control) and SIHR were intracerebroventricularly infused with the AT1R antagonist candesartan or artificial cerebrospinal fluid for 14 days. Mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine (NE), glutamate, and the expression of N-methyl-D-aspartic acid (NMDA) receptor subunit NR1, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in the RVLM increased in the SIH group. These increases were blunted by candesartan. Bilateral microinjection of the ionotropic glutamate receptor antagonist kynurenic acid, the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate, or the AMPA/kainate receptors antagonist 6-cyano-7-nitroquinoxaline-2,3-dione into the RVLM caused a depressor response in the SIH group, but not in other groups. NR1 and AMPA receptors expressed in the glutamatergic neurons of the RVLM, and glutamate levels, increased in the intermediolateral column of the spinal cord of SIHR. Central Ang II elicits release of glutamate, which binds to the enhanced ionotropic NMDA and AMPA receptors via AT1R, resulting in activation of glutamatergic neurons in the RVLM, increasing sympathetic excitation in SIHR.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoshan Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
19
|
Zhou JJ, Gao Y, Zhang X, Kosten TA, Li DP. Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats. Endocrinology 2018; 159:1537-1546. [PMID: 29390057 PMCID: PMC5839733 DOI: 10.1210/en.2017-03176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022]
Abstract
Chronic stress stimulates corticotrophin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus (PVN) of the hypothalamus and leads to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, but the mechanisms underlying this action are unknown. Because chronic stress enhances N-methyl-d-aspartate receptor (NMDAR) activity in various brain regions, we hypothesized that augmented NMDAR activity contributes to the hyperactivity of PVN-CRH neurons and the HPA axis in chronic stress. We performed whole-cell patch-clamp recordings on PVN-CRH neurons expressing CRH promoter-driven enhanced green fluorescent protein in brain slices from rats exposed to chronic unpredictable mild stress (CUMS) and unstressed rats. CUMS rats had significantly higher expression levels of the NMDAR subunits GluN1 in the PVN than unstressed rats. Furthermore, puff NMDA-elicited currents, evoked NMDAR currents, and the baseline frequency of the miniature excitatory postsynaptic currents (mEPSCs) in PVN-CRH neurons were significantly larger in CUMS rats than in unstressed rats. The NMDAR-specific antagonist 2-amino-5-phosphonopentanoic acid (AP5) significantly decreased the frequency of mEPSCs of PVN-CRH neurons in CUMS rats but did not change the frequency or amplitude of mEPSCs in unstressed rats. Bath application of AP5 normalized the elevated firing activity of PVN-CRH neurons in CUMS rats but not in unstressed rats. In addition, microinjection of the NMDAR antagonist memantine into the PVN normalized the elevated corticosterone (CORT) levels in CUMS rats to the levels in unstressed rats, but did not alter CORT levels in unstressed rats. Our findings suggest that synaptic NMDAR activity is enhanced in CUMS rats and contributes to the hyperactivity of PVN-CRN neurons and the HPA axis.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Department of Critical Care, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
| | - Therese A. Kosten
- Department of Psychology, University of Houston, Houston, Texas 77204
| | - De-Pei Li
- Department of Critical Care, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Correspondence: De-Pei Li, MD, Department of Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030. E-mail:
| |
Collapse
|
20
|
Huang MC, Chen LY, Chang HM, Liang XY, Chen CK, Cheng WJ, Xu K. Decreased Blood Levels of Oxytocin in Ketamine-Dependent Patients During Early Abstinence. Front Psychiatry 2018; 9:633. [PMID: 30534093 PMCID: PMC6275217 DOI: 10.3389/fpsyt.2018.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
Background: Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is a common drug of abuse worldwide. Existing evidence suggest a disruption of oxytocin system involves in the development of addiction. In this study, we aimed to investigate the role of oxytocin in ketamine addiction by measuring the blood oxytocin levels in ketamine-dependent (KD) patients. Methods: Sixty-five KD patients and 65 controls were enrolled. Fasting plasma levels of oxytocin were determined at baseline and 1 and 2 weeks after ketamine withdrawal. Ketamine use variables, Beck Depression Inventory, Beck Anxiety Inventory (BAI), Visual Analog Scale for craving, and Childhood Trauma Questionnaire-short form were assessed in KD patients. Results: KD patients had significantly lower levels of oxytocin at baseline compared to controls (5.89 ± 2.13 vs. 9.53 ± 4.17 ng/mL, P < 0.001). Oxytocin levels increased after one (6.74 ± 2.63, P < 0.002) and 2 weeks (6.89 ± 2.69, P = 0.01) of withdrawal in KD patient despite the levels were still lower than controls (P = 0.001 and 0.002, respectively). The clinical variables did not correlate with baseline oxytocin levels except BAI scores, which showed a negative correlation with the levels (r = -0.263; P = 0.039). Conclusion: We found a distinctively reduced oxytocin level in KD patients and the level did not normalize after early abstinence. Lower oxytocin might be associated with anxious phenotype of ketamine dependence. These results suggest that oxytocin system dysregulated following chronic ketamine abuse and might provide insight in evaluating the potential therapeutic use of oxytocin for treating ketamine dependence.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lian-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Hu-Ming Chang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Xiao-Yu Liang
- Department of Psychiatry, Yale University School of Medicine, New Heaven, CT, United States
| | - Chih-Ken Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan.,Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Wan-Ju Cheng
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Heaven, CT, United States
| |
Collapse
|
21
|
Bhatwadekar AD, Duan Y, Korah M, Thinschmidt JS, Hu P, Leley SP, Caballero S, Shaw L, Busik J, Grant MB. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 2017; 139:211-220. [PMID: 29042190 DOI: 10.1016/j.visres.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria Korah
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | | | - Ping Hu
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sameer P Leley
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sergio Caballero
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Sun Y, Sun B, He R. Effect of the changes of NMDA receptor in hypothalamic paraventricular nucleus on cardiac function and sympathetic nervous activity in rats with heart failure. Biochem Biophys Res Commun 2017; 493:1336-1341. [PMID: 28958939 DOI: 10.1016/j.bbrc.2017.09.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To observe the effect of the changes of n-methyl-d-aspartate receptor 1 (NMDAR1), tyrosine hydroxylase (TH), and glutamic acid decarboxylase 67 (GAD67) in the hypothalamic paraventricular nucleus (PVN) on cardiac function and sympathetic nervous activity in rats with heart failure (HF). METHODS Thirty-six adult male SD rats were randomly divided into the heart failure group (HF), the heart failure + NMDA receptors agonist AP5 intervention group (HF-AP5), and the Sham-operation group (SO) (n = 12). HF model in SD rats was induced by ligation of left coronary artery. AP5 (0.02 μg/h) was administrated by the paraventricular nucleus subsequently for 4 weeks. The cardiac function, renal sympathetic nerve activity (RSNA), lung/body weight ratio (L/BW), and right ventricle/body weight ratio (RV/BW), as well as the plasma noradrenaline (NE) and Angiotensin II (Ang II) level and the expressions of NMDAR1, GAD67, and TH in PVN, in different groups were recorded 4 weeks after the establishment of HF model. RESULTS After the coronary artery was ligated, LVEDP was increased, ±dp/dt max and LVEF were decreased, lung/BW and RV/BW were raised. RSNA, Ang II and NE were raised. Expression of NMDAR1 and TH were increased, but GAD67 was decreased. The levels of LVEDP, lung/BW, and RV/BW in group HF-AP5 were reduced while ± dp/dtmax was increased after the treatment. The blood Ang II and NE content was decreased, RSNA was reduced, expression of NMDAR1 and TH were downregulated, but GAD67 was upregulated. CONCLUSIONS NMDAR1 is significantly activated in PVN of HF rats, the activity of TH is increased, GAD67 is downregulated, RSNA is increased, and the heart function is decreased. NMDA receptor blockers can alleviate HF.
Collapse
Affiliation(s)
- Yaojun Sun
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Bingyi Sun
- Department of Medicine, The Hospital of Sinochem Second Construction Group Co., Ltd, Taiyuan, 030021, China
| | - Rongli He
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
23
|
Li DP, Pan HL. Glutamatergic Regulation of Hypothalamic Presympathetic Neurons in Hypertension. Curr Hypertens Rep 2017; 19:78. [PMID: 28929331 DOI: 10.1007/s11906-017-0776-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elevated sympathetic vasomotor tone emanating from the brain is a major mechanism involved in the development of hypertension. Increased glutamatergic excitatory input to presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus leads to increased sympathetic outflow in various animal models of hypertension. Recent studies have revealed molecular and cellular mechanisms underlying enhanced glutamatergic synaptic input to PVN presympathetic neurons in hypertension. In this review article, we summarize recent findings on changes in inotropic and metabotropic glutamate receptors, at both presynaptic and postsynaptic sites, responsible for increased glutamatergic input to PVN presympathetic neurons in hypertension. Particular emphasis is placed on the role of protein kinases and phosphatases in the potentiated activity of synaptic NMDA receptors in the PVN in hypertension. New findings about glutamatergic synaptic plasticity in the PVN not only improve the understanding of molecular mechanisms involved in heightened activity of the sympathetic nervous system but also suggest new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
Affiliation(s)
- De-Pei Li
- Center for Neuroscience and Pain Research, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2017; 38:25-35. [PMID: 28895001 DOI: 10.1007/s10571-017-0543-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
Abstract
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.
Collapse
Affiliation(s)
- James P Herman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Neuroscience, UC Neurobiology Research Center, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH, 45237-0506, USA.
| |
Collapse
|
25
|
Cote-Vélez A, Martínez Báez A, Lezama L, Uribe RM, Joseph-Bravo P, Charli JL. A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture. Neuropeptides 2017; 62:11-20. [PMID: 28173961 DOI: 10.1016/j.npep.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, β-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.
Collapse
Affiliation(s)
- Antonieta Cote-Vélez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Anabel Martínez Báez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Leticia Lezama
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico.
| |
Collapse
|
26
|
Xia JD, Chen J, Sun HJ, Zhou LH, Zhu GQ, Chen Y, Dai YT. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus. Andrology 2016; 5:153-159. [PMID: 27860425 DOI: 10.1111/andr.12274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/03/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J.-D. Xia
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - J. Chen
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L.-H. Zhou
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y. Chen
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - Y.-T. Dai
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| |
Collapse
|
27
|
Lopes-Azevedo S, Busnardo C, Corrêa FMA. Central mechanism of the cardiovascular responses caused by L-proline microinjected into the paraventricular nucleus of the hypothalamus in unanesthetized rats. Brain Res 2016; 1652:43-52. [PMID: 27693394 DOI: 10.1016/j.brainres.2016.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022]
Abstract
Previously, we reported that microinjection of L-proline (L-Pro) into the paraventricular nucleus of the hypothalamus (PVN) caused vasopressin-mediated pressor responses in unanesthetized rats. In the present study, we report on the central mechanisms involved in the mediation of the cardiovascular effects caused by the microinjection of L-Pro into the PVN. Microinjection of increasing doses of L-Pro (3-100nmol/100nL) into the PVN caused dose-related pressor and bradycardic responses. No cardiovascular responses were observed after the microinjection of equimolar doses (33nmol/100nL) of its isomer D-Proline (D-Pro) or Mannitol. The PVN pretreatment with either a selective non-NMDA (NBQX) or selective NMDA (LY235959 or DL-AP7) glutamate receptor antagonists blocked the cardiovascular response to L-Pro (33nmol/100nL). The dose-effect curve for the pretreatment with increasing doses of LY235959 was located at the left in relation to the curves for NBQX and DL-AP7, showing that LY235959 is more potent than NBQX, which is more potent than DL-AP7 in inhibiting the cardiovascular response to L-Pro. The cardiovascular response to the microinjection of L-Pro into the PVN was not affected by local pretreatment with Nω-Propyl-l-arginine (N-Propyl), a selective inhibitor of the neuronal nitric oxide synthase (nNOS), suggesting that NO does not mediate the responses to L-Pro in the PVN. In conclusion, the results suggest that ionotropic receptors in the PVN, blocked by both NMDA and non-NMDA receptor antagonists, mediate the pressor response to L-Pro that results from activation of PVN vasopressinergic magnocellular neurons and vasopressin release into the systemic circulation.
Collapse
Affiliation(s)
- Silvana Lopes-Azevedo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Cristiane Busnardo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
28
|
Chitravanshi VC, Kawabe K, Sapru HN. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. Am J Physiol Heart Circ Physiol 2016; 311:H433-44. [PMID: 27402666 DOI: 10.1152/ajpheart.00176.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
29
|
Busnardo C, Crestani CC, Fassini A, Resstel LBM, Corrêa FMA. NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats. Neuroscience 2016; 320:149-59. [PMID: 26861418 DOI: 10.1016/j.neuroscience.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Here we report the involvement of N-Methyl-d-Aspartate (NMDA) and non-NMDA glutamate receptors from the paraventricular nucleus of the hypothalamus (PVN) in the mediation of cardiovascular changes observed during hemorrhage and post-bleeding periods. In addition, the present study provides further evidence of the involvement of circulating vasopressin and cardiac sympathetic activity in cardiovascular responses to hemorrhage. Systemic treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 μg/kg, i.v.) increased the latency to the onset of hypotension during hemorrhage and slowed post-bleeding recovery of blood pressure. Systemic treatment with the β1-adrenergic receptor antagonist atenolol (1 mg/kg, i.v.) also increased the latency to the onset of hypotension during hemorrhage. Moreover, atenolol reversed the hemorrhage-induced tachycardia into bradycardia. Bilateral microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) into the PVN blocked the hypotensive response to hemorrhage and reduced the tachycardia during the post-hemorrhage period. Systemic treatment with dTyr(CH2)5(Me)AVP inhibited the effect of LY235959 on hemorrhage-induced hypotension, without affecting the post-bleeding tachycardia. PVN treatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) reduced the recovery of blood pressure to normal levels in the post-bleeding phase and reduced hemorrhage-induced tachycardia. Combined blockade of both NMDA and non-NMDA glutamate receptors in the PVN completely abolished the hypotensive response in the hemorrhage period and reduced the tachycardiac response in the post-hemorrhage period. These results indicate that local PVN glutamate neurotransmission is involved in the neural pathway mediating cardiovascular responses to hemorrhage, via an integrated control involving autonomic nervous system activity and vasopressin release into the circulation.
Collapse
Affiliation(s)
- C Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - C C Crestani
- School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - A Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
30
|
Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 2015; 16:377-88. [PMID: 26087679 DOI: 10.1038/nrn3881] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.
Collapse
Affiliation(s)
- Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jaclyn I Wamsteeker Cusulin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Wataru Inoue
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
31
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
32
|
Pelosi GG, Busnardo C, Tavares RF, Corrêa FMA. Involvement of non-NMDA glutamate receptors of the hypothalamic paraventricular nucleus in the cardiovascular response to the microinjection of noradrenaline into the dorsal periaqueductal gray area of rats. Brain Res 2015; 1602:96-105. [PMID: 25617821 DOI: 10.1016/j.brainres.2015.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Gislaine Garcia Pelosi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 São Paulo, Brazil; Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| | - Cristiane Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 São Paulo, Brazil
| | - Rodrigo Fiacadori Tavares
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 São Paulo, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 São Paulo, Brazil
| |
Collapse
|
33
|
Jia S, Xia Q, Zhang B, Wang L. Involvement of the paraventricular nucleus in the occurrence of arrhythmias in middle cerebral artery occlusion rats. J Stroke Cerebrovasc Dis 2015; 24:844-51. [PMID: 25724236 DOI: 10.1016/j.jstrokecerebrovasdis.2014.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Ischemic stroke complicating with arrhythmia is one of the main causes of sudden death. To investigate the association between ischemic stroke-induced arrhythmia and the activity of paraventricular nucleus (PVN), we used Fos protein as an objective indicator to illustrate the functional state of PVN neurons in middle cerebral artery occlusion (MCAO) rats, in single intracerebroventricular injection of l-glutamate rats and in application of MK-801 before l-glutamate injection and MCAO rats. METHODS The standard limb II electrocardiography was continuously recorded by a biological signal collecting and processing system. The experimental cerebral ischemic animal model was established by occluding the right middle cerebral artery. The Fos protein expression was detected by immunohistochemistry and Western blot. RESULTS The incidence of arrhythmia was significantly higher than that of controls (75.89% versus 0%), and Fos protein expression in the PVN also increased significantly in MCAO rats; both of them could be blocked by prior application of MK-801. Intracerebroventricular injection of l-glutamate induced changes in Fos protein expression and arrhythmia similar to that in the stroke, which could also be blocked by prior application of MK-801. CONCLUSIONS It was concluded that activation of the PVN in MCAO rats is likely mediated by glutamate via activation of N-methyl-D-aspartic acid (NMDA) receptors, which causes arrhythmias.
Collapse
Affiliation(s)
- Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Qing Xia
- Institute of Acupuncture, Tianjin Chinese Medical University, Tianjin, China
| | - Benping Zhang
- Department of Neurology of 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ling Wang
- Department of Physiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
pERK1/2 immunofluorescence in rat dorsal horn and paraventricular nucleus neurons as a marker for sensitization and inhibition in the pain pathway. Tissue Cell 2015; 47:55-60. [DOI: 10.1016/j.tice.2014.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/27/2022]
|
35
|
GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol 2015; 36:28-48. [PMID: 24929099 PMCID: PMC4349499 DOI: 10.1016/j.yfrne.2014.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.
Collapse
|
36
|
Holbein WW, Toney GM. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol 2014; 308:R351-9. [PMID: 25519737 DOI: 10.1152/ajpregu.00460.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P < 0.001; n = 6) splanchnic SNA (sSNA), phrenic nerve activity (PNA), and MAP. Bilateral PVN injections of muscimol (n = 6) prevented HTS-evoked increases of integrated sSNA and PNA (P < 0.001) and attenuated the accompanying pressor response (P < 0.01). Blockade of PVN NMDA receptors with d-(2R)-amino-5-phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA.
Collapse
Affiliation(s)
| | - Glenn M Toney
- Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
37
|
Zhang F, Sun HJ, Xiong XQ, Chen Q, Li YH, Kang YM, Wang JJ, Gao XY, Zhu GQ. Apelin-13 and APJ in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in spontaneously hypertensive rats. Acta Physiol (Oxf) 2014; 212:17-27. [PMID: 24995933 DOI: 10.1111/apha.12342] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/23/2014] [Accepted: 07/01/2014] [Indexed: 12/13/2022]
Abstract
AIMS Apelin is a specific endogenous ligand of orphan G protein-coupled receptor APJ. This study was designed to determine the roles and mechanisms of apelin-13 and APJ in paraventricular nucleus (PVN) in renal sympathetic nerve activity (RSNA), arginine vasopressin (AVP) release and mean arterial pressure (MAP) in spontaneously hypertensive rats (SHR). METHOD Acute experiment was carried out in 13-week-old male SHR and Wistar-Kyoto rats (WKY) under anaesthesia. RSNA and MAP responses to the PVN microinjection were determined. Apelin and APJ expressions were examined with quantitative real-time PCR and Western blot. AVP and noradrenaline were determined with ELISA. Osmotic minipumps were used for chronic PVN infusion in conscious WKY. RESULTS Apelin and APJ in the PVN were up-regulated in SHR. The PVN microinjection of apelin-13 increased, but APJ antagonist F13A decreased the RSNA, MAP, plasma noradrenaline and AVP levels in SHR. N-methyl-D-aspartate receptor (NMDAR) antagonist plus non-NMDAR antagonist abolished the apelin-13-induced sympathetic activation rather than AVP release. NMDAR antagonist or non-NMDAR antagonist alone attenuated the apelin-13-induced sympathetic activation. Chronic infusion of apelin-13 into the PVN in normotensive rats induced hypertension, increased plasma noradrenaline and AVP levels and promoted myocardial atrial natriuretic peptide and beta-myosin heavy chain mRNA expressions, two indicative markers of cardiac hypertrophy. CONCLUSION Apelin-13 and APJ in the PVN contribute to hypertension via sympathetic activation and AVP release in SHR. The sympatho-excitatory effect of apeline-13 is mediated by both NMDAR and non-NMDAR in the PVN. Persistent activation of APJ in the PVN induces hypertension.
Collapse
Affiliation(s)
- F. Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - X.-Q. Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Q. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-H. Li
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an China
| | - J.-J. Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - X.-Y. Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
38
|
Senst L, Bains J. Neuromodulators, stress and plasticity: a role for endocannabinoid signalling. ACTA ACUST UNITED AC 2014; 217:102-8. [PMID: 24353209 DOI: 10.1242/jeb.089730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Any unanticipated threat to survival triggers an immediate sequence of events in the brain that culminate in a coordinated neural, endocrine and behavioural response. There is increasing evidence that stress itself modifies neural circuits. In other words, neural stress circuits learn from stress. This self-teaching is surprising as one might expect these essential circuits to be hard-wired. Our recent findings, however, indicate that repeated homotypic stress in rats causes functional changes in neural circuitry in the hypothalamus. In particular, we focus on signalling via endocannabinoids and describe plasticity in this system that impacts fast retrograde signalling at synapses on to the stress command neurons in the brain. Interestingly, this plasticity appears to be limited to early adolescence, hinting at unique modes of control of neural circuits by stress during different developmental stages.
Collapse
Affiliation(s)
- Laura Senst
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | | |
Collapse
|
39
|
He Y, Zeng SY, Zhou SW, Qian GS, Peng K, Mo ZX, Zhou JY. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons. Fitoterapia 2014; 98:166-73. [PMID: 25110195 DOI: 10.1016/j.fitote.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline.
Collapse
Affiliation(s)
- Yan He
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China; College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Sheng-Ya Zeng
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Shi-Wen Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Gui-Sheng Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Kang Peng
- College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Zhi-Xian Mo
- College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Ji-Yin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
40
|
Stimulation of dopamine D4 receptors in the paraventricular nucleus of the hypothalamus of male rats induces hyperphagia: Involvement of glutamate. Physiol Behav 2014; 133:272-81. [DOI: 10.1016/j.physbeh.2014.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
|
41
|
Xiong XQ, Chen WW, Zhu GQ. Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol (Oxf) 2014; 210:468-78. [PMID: 24118791 DOI: 10.1111/apha.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 10/09/2013] [Indexed: 01/09/2023]
Abstract
Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.
Collapse
Affiliation(s)
- X.-Q. Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - W.-W. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| |
Collapse
|
42
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
43
|
Busnardo C, Alves FHF, Crestani CC, Scopinho AA, Resstel LBM, Correa FMA. Paraventricular nucleus of the hypothalamus glutamate neurotransmission modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Eur Neuropsychopharmacol 2013. [PMID: 23201369 DOI: 10.1016/j.euroneuro.2012.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Cui BP, Li P, Sun HJ, Ding L, Zhou YB, Wang JJ, Kang YM, Zhu GQ. Ionotropic glutamate receptors in paraventricular nucleus mediate adipose afferent reflex and regulate sympathetic outflow in rats. Acta Physiol (Oxf) 2013; 209:45-54. [PMID: 23782804 DOI: 10.1111/apha.12125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/27/2022]
Abstract
AIM Chemical stimulation of white adipose tissue (WAT) induces adipose afferent reflex (AAR) and results in increases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). The enhanced AAR contributes to sympathetic activation and hypertension in obesity rats. This study was designed to investigate whether N-methyl-D-aspartate receptors (NMDAR) and non-NMDAR in paraventricular nucleus (PVN) modulate AAR and sympathetic outflow. METHODS Renal sympathetic nerve activity and MAP were recorded in anesthetized rats. AAR was evaluated by the RSNA and MAP responses to the injection of capsaicin into the four sites of right inguinal WAT (8.0 nmol for each site). RESULTS Bilateral PVN microinjection of NMDAR antagonist AP5 or MK-801, or non-NMDAR antagonist CNQX attenuated AAR, RSNA and MAP. AP5 + CNQX caused greater effects than AP5 or CNQX alone and almost abolished AAR. NMDAR agonist NMDA or non-NMDAR agonist AMPA enhanced the AAR, and increased RSNA and MAP, which were prevented by AP5 or CNQX pre-treatment respectively. Casein kinase 2 inhibitor DRB, NR2A antagonist NVP-AAM077 or NR2B antagonist CP-101,606 attenuated AAR, RSNA and MAP. NVP-AAM077 + CP-101,606 caused greater effects than NVP-AAM077 or CP-101,606 alone. Bilateral baroreceptor denervation and vagotomy enhanced AAR, which was abolished by PVN pre-treatment with AP5 + CNQX. Furthermore, AP5 + CNQX abolished the AAR induced by leptin in iWAT. CONCLUSION Both NMDAR and non-NMDAR in the PVN mediate AAR and contribute to the tonic control of sympathetic outflow and blood pressure. CK2, NR2A and NR2B subunits of NMDAR in the PVN are involved in the NMDAR-mediated tonic control of AAR, RSNA and MAP.
Collapse
Affiliation(s)
- B.-P. Cui
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - P. Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - L. Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-B. Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - J.-J. Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an; China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| |
Collapse
|
45
|
Zwanzger P, Zavorotnyy M, Gencheva E, Diemer J, Kugel H, Heindel W, Ruland T, Ohrmann P, Arolt V, Domschke K, Pfleiderer B. Acute shift in glutamate concentrations following experimentally induced panic with cholecystokinin tetrapeptide--a 3T-MRS study in healthy subjects. Neuropsychopharmacology 2013; 38:1648-54. [PMID: 23463151 PMCID: PMC3717541 DOI: 10.1038/npp.2013.61] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
According to preclinical studies, glutamate has been implicated in the pathogenesis of anxiety. In order to elucidate the role of glutamate in anxiety and panic in humans, brain glutamate+glutamine (Glx) levels were measured during cholecystokinin-tetrapeptide (CCK-4)-induced panic using magnetic resonance spectroscopy (MRS). Eighteen healthy subjects underwent a CCK-4 challenge. MR spectra were obtained from the anterior cingulate cortex (ACC) using a single voxel point-resolved spectroscopy method and analyzed using LCModel. A combined fitting of Glx was performed. Panic was assessed using the Acute Panic Inventory (API) and Panic Symptom Scale (PSS) scores. Moreover, hypothalamic-pituitary-adrenal axis stimulation was monitored throughout the challenge. There was a significant panic response following CCK-4 as revealed by a marked increase in both the panic scores (API: F(1,17)=149.41; p<0.0001; PSS: F(1,17)=88.03; p<0.0001) and heart rate (HR: F(1,17)=72.79; p<0.0001). MRS measures showed a significant increase of brain Glx/creatine (Glx/Cr) levels peaking at 2-10 min after challenge (F(1,17)=15.94; p=0.001). There was also a significant increase in CCK-4-related cortisol release (F(6,11)=8.68; p=0.002). Finally, significant positive correlations were found between baseline Glx/Cr and both APImax (r=0.598; p=0.009) and maximum heart rate (HR(max)) during challenge (r=0.519; p=0.027). Our results suggest that CCK-4-induced panic is accompanied by a significant glutamate increase in the bilateral ACC. The results add to the hypothesis of a disturbance of the inhibitory-excitatory equilibrium and suggest that apart from static alterations rapid and dynamic neurochemical changes might also be relevant for the neural control of panic attacks.
Collapse
Affiliation(s)
- Peter Zwanzger
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.
| | - Maxim Zavorotnyy
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Elena Gencheva
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Julia Diemer
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Tillmann Ruland
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Patricia Ohrmann
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Volker Arolt
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Katharina Domschke
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany,Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| |
Collapse
|
46
|
Wang G, Coleman CG, Chan J, Faraco G, Marques-Lopes J, Milner TA, Guruju MR, Anrather J, Davisson RL, Iadecola C, Pickel VM. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1096-106. [PMID: 23576605 DOI: 10.1152/ajpregu.00367.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive changes in glutamatergic signaling within the hypothalamic paraventricular nucleus (PVN) may play a role in the neurohumoral dysfunction underlying the hypertension induced by "slow-pressor" ANG II infusion. We hypothesized that these adaptive changes alter production of gp91phox NADPH oxidase (NOX)-derived reactive oxygen species (ROS) or nitric oxide (NO), resulting in enhanced glutamatergic signaling in the PVN. Electron microscopic immunolabeling showed colocalization of NOX2 and N-methyl-D-aspartate receptor (NMDAR) NR1 subunits in PVN dendrites, an effect enhanced (+48%, P < 0.05 vs. saline) in mice receiving ANG II (600 ng·kg⁻¹·min⁻¹ sc). Isolated PVN cells or spinally projecting PVN neurons from ANG II-infused mice had increased levels of ROS at baseline (+40 ± 5% and +57.6 ± 7.7%, P < 0.01 vs. saline) and after NMDA (+24 ± 7% and +17 ± 5.5%, P < 0.01 and P < 0.05 vs. saline). In contrast, ANG II infusion suppressed NO production in PVN cells at baseline (-29.1 ± 5.2%, P < 0.05 vs. saline) and after NMDA (-18.9 ± 2%, P < 0.01 vs. saline), an effect counteracted by NOX inhibition. In whole cell recording of unlabeled and spinally labeled PVN neurons in slices, NMDA induced a larger inward current in ANG II than in saline groups (+79 ± 24% and +82.9 ± 6.6%, P < 0.01 vs. saline), which was reversed by the ROS scavenger MnTBAP and the NO donor S-nitroso-N-acetylpenicillamine (P > 0.05 vs. control). These findings suggest that slow-pressor ANG II increases the association of NR1 with NOX2 in dendrites of PVN neurons, resulting in enhanced NOX-derived ROS and reduced NO during glutamatergic activity. The resulting enhancement of NMDAR activity may contribute to the neurohumoral dysfunction underlying the development of slow-pressor ANG II hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kawabe T, Kawabe K, Sapru HN. Effect of barodenervation on cardiovascular responses elicited from the hypothalamic arcuate nucleus of the rat. PLoS One 2012; 7:e53111. [PMID: 23300873 PMCID: PMC3531379 DOI: 10.1371/journal.pone.0053111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that chemical stimulation of the hypothalamic arcuate nucleus (ARCN) in the rat elicited increases as well as decreases in blood pressure (BP) and sympathetic nerve activity (SNA). The type of response elicited from the ARCN (i.e., increase or decrease in BP and SNA) depended on the level of baroreceptor activity which, in turn, was determined by baseline BP in rats with intact baroreceptors. Based on this information, it was hypothesized that baroreceptor unloading may play a role in the type of response elicited from the ARCN. Therefore, the effect of barodenervation on the ARCN-induced cardiovascular and sympathetic responses and the neurotransmitters in the hypothalamic paraventricular nucleus (PVN) mediating the excitatory responses elicited from the ARCN were investigated in urethane-anesthetized adult male Wistar rats. Bilateral barodenervation converted decreases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA) elicited by chemical stimulation of the ARCN with microinjections of N-methyl-D-aspartic acid to increases in MAP and GSNA and exaggerated the increases in heart rate (HR). Combined microinjections of NBQX and D-AP7 (ionotropic glutamate receptor antagonists) into the PVN in barodenervated rats converted increases in MAP and GSNA elicited by the ARCN stimulation to decreases in MAP and GSNA and attenuated increases in HR. Microinjections of SHU9119 (a melanocortin 3/4 receptor antagonist) into the PVN in barodenervated rats attenuated increases in MAP, GSNA and HR elicited by the ARCN stimulation. ARCN neurons projecting to the PVN were immunoreactive for proopiomelanocortin, alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). It was concluded that increases in MAP and GSNA and exaggeration of tachycardia elicited by the ARCN stimulation in barodenervated rats may be mediated via release of alpha-MSH and/or ACTH and glutamate from the ARCN neurons projecting to the PVN.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kazumi Kawabe
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hreday N. Sapru
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
48
|
Carillo BA, Oliveira-Sales EB, Andersen M, Tufik S, Hipolide D, Santos AA, Tucci PJ, Bergamaschi CT, Campos RR. Changes in GABAergic inputs in the paraventricular nucleus maintain sympathetic vasomotor tone in chronic heart failure. Auton Neurosci 2012; 171:41-8. [PMID: 23146621 DOI: 10.1016/j.autneu.2012.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 02/07/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus is an important region of the brain involved in the regulation of sympathetic vasomotor tone. Accumulating evidence supports the idea that a change in hypothalamic γ-aminobutyric acid (GABA)-ergic inhibitory and glutamatergic excitatory inputs contribute to the exacerbated sympathetic drive in chronic heart failure (HF). The purpose of this study was to determine whether a possible imbalance between glutamatergic and GABAergic inputs to the PVN contributes to increased sympathetic outflow in HF in two different sympathetic territories. Renal (RSNA) and splanchnic sympathetic nerve activity (SSNA), mean arterial blood pressure (MAP) and heart rate were recorded from urethane-anesthetized HF or sham rats. The NMDA-glutamate and GABA-A receptor densities within the PVN were quantified in HF and sham rats by autoradiography. Bilateral microinjection of kynurenic acid (4nmol) into the PVN decreased MAP and RSNA and SSNA in HF but not in sham rats. Furthermore, in response to GABA-A blockade in the PVN by bicuculline (400 pmol), hypertension and SSNA were reduced in HF compared to sham. The quantification of ionotropic NMDA receptors and GABA-A receptors in the PVN showed a significant reduction of GABA-A in HF rats; however, the NMDA density in the PVN did not differ between groups. Thus, this study provides evidence that the sympathoexcitation is maintained by an imbalance between GABAergic and glutamatergic inputs in the PVN in HF. The reduced GABAergic input results in relatively augmented glutamatergic actions in the PVN of HF rats.
Collapse
Affiliation(s)
- B A Carillo
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE. Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 2012; 520:2369-94. [PMID: 22247025 DOI: 10.1002/cne.23043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple lines of evidence document a role for glutamatergic input to the hypothalamic paraventricular nucleus (PVH) in stress-induced activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. However, the neuroanatomical origins of the glutamatergic input have yet to be definitively determined. We have previously shown that vesicular glutamate transporter 2 (VGLUT2) is the predominant VGLUT isoform expressed in the basal forebrain and brainstem, including PVH-projecting regions, and that the PVH is preferentially innervated by VGLUT2-immunoreactive terminals/boutons. The present study employed a dual-labeling approach, combining immunolabeling for a retrograde tract tracer, Fluoro-Gold (FG), with in situ hybridization for VGLUT2 mRNA, to map the brainstem and caudal forebrain distribution of glutamatergic PVH-projecting neurons. The present report presents evidence for substantial dual labeling in the periaqueductal gray, caudal portions of the zona incerta and subparafascicular nucleus, and the lateral parabrachial nucleus. The current data also suggest that relatively few PVH-projecting neurons in ascending raphe nuclei, nucleus of the solitary tract, or ventrolateral medulla are VGLUT2 positive. The data reveal multiple brainstem origins of glutamatergic input to PVH that are positioned to play a role in transducing a diverse range of stressful stimuli.
Collapse
Affiliation(s)
- Dana R Ziegler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | | | | | | | | |
Collapse
|
50
|
Cardoso LM, Colombari E, Toney GM. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates sympathetic nerve activity responses to L-glutamate. J Appl Physiol (1985) 2012; 113:1423-31. [PMID: 22984242 DOI: 10.1152/japplphysiol.00912.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is important for maintenance of sympathetic nerve activity (SNA) and cardiovascular function. PVN-mediated increases of SNA often involve the excitatory amino acid L-glutamate (L-glu), whose actions can be positively and negatively modulated by a variety of factors, including reactive oxygen species. Here, we determined modulatory effects of the highly diffusible reactive oxygen species hydrogen peroxide (H(2)O(2)) on responses to PVN L-glu. Renal SNA (RSNA), arterial blood pressure, and heart rate were recorded in anesthetized rats. L-Glu (0.2 nmol in 100 nl) microinjected unilaterally into PVN increased RSNA (P < 0.05), without affecting mean arterial blood pressure or heart rate. Effects of endogenously generated H(2)O(2) were determined by comparing responses to PVN L-glu before and after PVN injection of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ; 100 nmol/200 nl, n = 5). ATZ alone was without effect on recorded variables, but attenuated the increase of RSNA elicited by PVN L-glu (P < 0.05). PVN injection of exogenous H(2)O(2) (5 nmol in 100 nl, n = 4) and vehicle (artificial cerebrospinal fluid) were without affect, but H(2)O(2), like ATZ, attenuated the increase of RSNA to PVN L-glu (P < 0.05). Tonic effects of endogenous H(2)O(2) were determined by PVN injection of polyethylene glycol-catalase (1.0 IU in 200 nl, n = 5). Whereas polyethylene glycol-catalase alone was without effect, increases of RSNA to subsequent PVN injection of L-glu were increased (P < 0.05). From these data, we conclude that PVN H(2)O(2) tonically, but submaximally, suppresses RSNA responses to L-glu, supporting the idea that a change of H(2)O(2) availability within PVN could influence SNA regulation under physiological and/or disease conditions.
Collapse
Affiliation(s)
- Leonardo M Cardoso
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|