1
|
Shmakov SV, Sosnovitskaia ZP, Makhneva EA, Anikina MA, Kuznetsov A, Kondratev VM, Solomonov N, Boitsov VM, Fedorov VV, Mukhin IS, Bukatin AS, Bolshakov AD. Cells have the ability to break and chemically modify GaP(As) nanowires. NANOSCALE 2024. [PMID: 39440788 DOI: 10.1039/d4nr02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Semiconductor nanowires are known for their unusual geometry, providing unique electronic and optical properties. Substrates with vertical nanowires have highly non-uniform surfaces, which are attractive in terms of the study of live cells that can interact and be labeled with the wires. Despite several previous works studying cells cultivated over nanowires, questions regarding cell rupture and interaction with the wires remain open. Here, we demonstrate that nanowires can not only penetrate the cell membrane, but even be broken by a cell and trapped inside it. Even after mechanical poration of the membrane manifested by the efficient transfection and delivery of a fluorescent protein encoding plasmid, the cells are found to be viable for 7 days of incubation. The endocytosed wires are then aligned along the nucleus periphery and ousted to pseudopodia with the formation of nanowire-rich fibrils as a result of complex intracellular processes. We demonstrate that endocytosis of the wires may lead to their chemical modification manifested by the red shift of the luminescence spectra. Analysis of the wires' breakdown reveals that the cells can generate forces as high as several hundreds of nN. Using this work, we demonstrate several phenomena with the potential to be used in intriguing methods for intracellular visualization and the development of biointerfaces.
Collapse
Affiliation(s)
- Stanislav V Shmakov
- Faculty of Physics, St Petersburg State University, Universitetskaya Emb. 7-9, 199034 St Petersburg, Russia.
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
| | | | | | - Maria A Anikina
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russia
| | - Alexey Kuznetsov
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russia
| | - Valeriy M Kondratev
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russia
| | - Nikita Solomonov
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
| | - Vitali M Boitsov
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
| | | | - Ivan S Mukhin
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Higher School of Engineering Physics, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya 29, Saint Petersburg 195251, Russia
| | - Anton S Bukatin
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Institute for Analytical Instrumentation of the RAS, St Petersburg, 190103, Russia
| | - Alexey D Bolshakov
- Faculty of Physics, St Petersburg State University, Universitetskaya Emb. 7-9, 199034 St Petersburg, Russia.
- Alferov University, Khlopina 8/3, St Petersburg, 194021, Russia.
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
2
|
Tochon L, Vouimba RM, Corio M, Henkous N, Béracochéa D, Guillou JL, David V. Chronic alcohol consumption shifts learning strategies and synaptic plasticity from hippocampus to striatum-dependent pathways. Front Psychiatry 2023; 14:1129030. [PMID: 37304443 PMCID: PMC10250670 DOI: 10.3389/fpsyt.2023.1129030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning. This cognitive imbalance could contribute to maintain addictive behaviors and increase the risk of relapse. Methods We first examined, in C57BL/6 J male mice, whether chronic alcohol consumption (CAC) and alcohol withdrawal (AW) might modulate the respective use of spatial vs. single cue-based learning strategies, using a competition protocol in the Barnes maze task. We then performed in vivo electrophysiological studies in freely moving mice to assess learning-induced synaptic plasticity in both the basolateral amygdala (BLA) to dorsal hippocampus (dCA1) and BLA to dorsolateral striatum (DLS) pathways. Results We found that both CAC and early AW promote the use of cue-dependent learning strategies, and potentiate plasticity in the BLA → DLS pathway while reducing the use of spatial memory and depressing BLA → dCA1 neurotransmission. Discussion These results support the view that CAC disrupt normal hippocampo-striatal interactions, and suggest that targeting this cognitive imbalance through spatial/declarative task training could be of great help to maintain protracted abstinence in alcoholic patients.
Collapse
Affiliation(s)
- Léa Tochon
- *Correspondence: Léa Tochon, ; Vincent David,
| | | | | | | | | | | | | |
Collapse
|
3
|
Wu X, Liu R, Li L, Yang F, Liu D, Wang L, Yu W, Xu J, Weng Z, Dong L, Wang Z. Single-cell patterning regulation by physically modified silicon nanostructures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1571-1578. [PMID: 35403643 DOI: 10.1039/d2ay00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemically and biologically modified substrates for single-cell patterning have been studied extensively, but physically modified structures for single-cell patterning still need further study. In this paper, physically modified silicon nanostructures were introduced to study their effect on SHSY5Y cells. Double-beam double exposure laser interference lithography combined with metal-assisted etching (MACE) was used to fabricate the physically modified silicon nanostructures. It was found that the cells on the gratings stretched and grew orderly along the grating with a small cell area and almost the same cell length compared with those on the Si wafer (control group). While on the grids, the cells were round with limited spreading, grew independently and had the smallest cell area and cell length. Moreover, the localization ratio of cells adhered onto the areas of nanopillars in the grid structures with different periods has been investigated. The results suggest that the physically modified grid silicon nanostructures can regulate the single-cell localization growth and the rational design of substrate structures can maximize the single-cell localization ratio. The findings provide guidance for the design of physically modified nanostructures and regulating single cell patterning, and a better understanding of single-cell localized growth.
Collapse
Affiliation(s)
- Xiaomin Wu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Li Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Wentao Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Junyang Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Litong Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
4
|
Arango-Santander S. Bioinspired Topographic Surface Modification of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2383. [PMID: 35407716 PMCID: PMC8999667 DOI: 10.3390/ma15072383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.
Collapse
|
5
|
Regulating MDA-MB-231 breast cancer cell adhesion on laser-patterned surfaces with micro- and nanotopography. Biointerphases 2022; 17:021002. [PMID: 35291767 DOI: 10.1116/6.0001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common type of cancer observed in women. Communication with the tumor microenvironment allows invading breast cancer cells, such as triple negative breast cancer cells, to adapt to specific substrates. The substrate topography modulates the cellular behavior among other factors. Several different materials and micro/nanofabrication techniques have been employed to develop substrates for cell culture. Silicon-based substrates present a lot of advantages as they are amenable to a wide range of processing techniques and they permit rigorous control over the surface structure. We investigate and compare the response of the triple negative breast cancer cells (MDA-MB-231) on laser-patterned silicon substrates with two different topographical scales, i.e., the micro- and the nanoscale, in the absence of any other biochemical modification. We develop silicon surfaces with distinct morphological characteristics by employing two laser systems with different pulse durations (nanosecond and femtosecond) and different processing environments (vacuum, SF6 gas, and water). Our findings demonstrate that surfaces with microtopography are repellent, while those with nanotopography are attractive for MDA-MB-231 cell adherence.
Collapse
|
6
|
Wu X, Li L, Wang L, Lei Z, Yang F, Liu R, Wang Y, Peng K, Wang Z. Cell spreading behaviors on hybrid nanopillar and nanohole arrays. NANOTECHNOLOGY 2021; 33:045101. [PMID: 34087811 DOI: 10.1088/1361-6528/ac084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Although nanopillars (NPs) provide a promising tool for capturing tumor cells, the effect of mixing NPs with other nanopatterns on cell behavior remains to be further studied. In this paper, a method of fabricating silicon nanoscale topographies by combining laser interference lithography with metal assisted chemical etching was introduced to investigate the behaviors and pseudopodia of A549 cells on the topologies. It was found that cells had a limited manner in spreading with small cell areas on the silicon nanopillar (SiNP) arrays, but a good manner in spreading with large cell areas on the silicon nanohole (SiNH) arrays. When on the hybrid SiNP/SiNH arrays, cells had medium cell areas and they arranged orderly along the boundaries of SiNPs and SiNHs, as well as 80% of cells displayed a preference for SiNPs over SiNHs. Furthermore, the lamellipodia and filopodia are dominant in the hybrid SiNP/SiNH and SiNP arrays, respectively, both of them are dominant in the SiNH arrays. In addition, the atomic force acoustic microscopy was also employed to detect the subsurface features of samples. The results suggest that the hybrid SiNP/SiNH arrays have a targeted trap and elongation effect on cells. The findings provide a promising method in designing hybrid nanostructures for efficient tumor cell traps, as well as regulating the cell behaviors and pseudopodia.
Collapse
Affiliation(s)
- Xiaomin Wu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Li Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Lu Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zecheng Lei
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Fan Yang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ri Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ying Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Kuiqing Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
7
|
Friguglietti J, Das S, Le P, Fraga D, Quintela M, Gazze SA, McPhail D, Gu J, Sabek O, Gaber AO, Francis LW, Zagozdzon-Wosik W, Merchant FA. Novel Silicon Titanium Diboride Micropatterned Substrates for Cellular Patterning. Biomaterials 2020; 244:119927. [DOI: 10.1016/j.biomaterials.2020.119927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
|
8
|
Recent advances in micro/nanoscale intracellular delivery. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wu Y, Chen H, Guo L. Opportunities and dilemmas of in vitro nano neural electrodes. RSC Adv 2020; 10:187-200. [PMID: 35492533 PMCID: PMC9047985 DOI: 10.1039/c9ra08917a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Developing electrophysiological platforms to capture electrical activities of neurons and exert modulatory stimuli lays the foundation for many neuroscience-related disciplines, including the neuron–machine interface, neuroprosthesis, and mapping of brain circuitry.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Haowen Chen
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Liang Guo
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
10
|
Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018; 205:372-395. [PMID: 30517922 PMCID: PMC6397084 DOI: 10.1159/000494667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA,
| |
Collapse
|
11
|
Vallejo-Giraldo C, Krukiewicz K, Calaresu I, Zhu J, Palma M, Fernandez-Yague M, McDowell B, Peixoto N, Farid N, O'Connor G, Ballerini L, Pandit A, Biggs MJP. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800863. [PMID: 29862640 DOI: 10.1002/smll.201800863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Katarzyna Krukiewicz
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Ivo Calaresu
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Jingyuan Zhu
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Matteo Palma
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Marc Fernandez-Yague
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - BenjaminW McDowell
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nathalia Peixoto
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nazar Farid
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Gerard O'Connor
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Abhay Pandit
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Manus Jonathan Paul Biggs
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| |
Collapse
|
12
|
Harris Bozer AL, Uhelski ML, Li AL. Extrapolating meaning from local field potential recordings. J Integr Neurosci 2018; 16:107-126. [PMID: 28891502 DOI: 10.3233/jin-170011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local field potentials (LFP) reflect the spatially weighted low-frequency activity nearest to a recording electrode. LFP recording is a window to a wide range of cellular activities and has gained increasing attention over recent years. We here review major conceptual issues related to LFP with the goal of creating a resource for non-experts considering implementing LFP into their research. We discuss the cellular activity that constitutes the local field potential; recording techniques, including recommendations and limitations; approaches to analysis of LFP data (with focus on power-banded analyses); and finally we discuss reports of the successful use of LFP in clinical applications.
Collapse
Affiliation(s)
- Amber L Harris Bozer
- Department of Psychological Sciences, Tarleton State University, Stephenville, Texas 76402, USA
| | - Megan L Uhelski
- Department of Diagnostic & Biological Sciences, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Ai-Ling Li
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, 47405, USA
| |
Collapse
|
13
|
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent 2018; 2018:4219625. [PMID: 29593793 PMCID: PMC5821979 DOI: 10.1155/2018/4219625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials.
Collapse
|
14
|
Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017; 1:862-877. [PMID: 30505625 PMCID: PMC6261524 DOI: 10.1038/s41551-017-0154-1] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
The use of implants that can electrically stimulate or record electrophysiological or neurochemical activity in nervous tissue is rapidly expanding. Despite remarkable results in clinical studies and increasing market approvals, the mechanisms underlying the therapeutic effects of neuroprosthetic and neuromodulation devices, as well as their side effects and reasons for their failure, remain poorly understood. A major assumption has been that the signal-generating neurons are the only important target cells of neural-interface technologies. However, recent evidence indicates that the supporting glial cells remodel the structure and function of neuronal networks and are an effector of stimulation-based therapy. Here, we reframe the traditional view of glia as a passive barrier, and discuss their role as an active determinant of the outcomes of device implantation. We also discuss the implications that this has on the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Joseph W. Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kip A. Ludwig
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Neurotech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Erin K. Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Hanak BW, Hsieh CY, Donaldson W, Browd SR, Lau KKS, Shain W. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J Biomed Mater Res B Appl Biomater 2017. [PMID: 28631360 DOI: 10.1002/jbm.b.33915] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The majority of patients with hydrocephalus are dependent on ventriculoperitoneal shunts for diversion of excess cerebrospinal fluid. Unfortunately, these shunts are failure-prone and over half of all life-threatening pediatric failures are caused by obstruction of the ventricular catheter by the brain's resident immune cells, reactive microglia and astrocytes. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels are widely used for biomedical implants. The extreme hydrophilicity of PHEMA confers resistance to protein fouling, making it a strong candidate coating for ventricular catheters. With the advent of initiated chemical vapor deposition (iCVD), a solvent-free coating technology that creates a polymer in thin film form on a substrate surface by introducing gaseous reactant species into a vacuum reactor, it is now possible to apply uniform polymer coatings on complex three-dimensional substrate surfaces. iCVD was utilized to coat commercially available ventricular catheters with PHEMA. The chemical structure was confirmed on catheter surfaces using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. PHEMA coating morphology was characterized by scanning electron microscopy. Testing PHEMA-coated catheters against uncoated clinical-grade catheters in an in vitro hydrocephalus catheter bioreactor containing co-cultured astrocytes and microglia revealed significant reductions in cell attachment to PHEMA-coated catheters at both 17-day and 6-week time points. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1268-1279, 2018.
Collapse
Affiliation(s)
- Brian W Hanak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Chia-Yun Hsieh
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania
| | - William Donaldson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Samuel R Browd
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Kenneth K S Lau
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania
| | - William Shain
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
16
|
Zhou Y, Xiao Y, Qiu Y, Yuan H, van Blitterswijk CA, Zhou X, Xu X, Bao C. Adhesion and proliferation of cells and bacteria on microchip with different surfaces microstructures. ACTA ACUST UNITED AC 2017; 61:475-482. [PMID: 26684347 DOI: 10.1515/bmt-2015-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/09/2015] [Indexed: 11/15/2022]
Abstract
Surface microstructure of implant materials is an essential factor for soft tissue healing around the implant. The purpose of this study was to explore the effect of different microchip surface microstructures on the adhesion and proliferation of cells and bacteria. Hydroxyapatite (HA) microchips with different microstructures (linear, decussate, circular and triangular) and their polydimethylsiloxane (PDMS) replica chips were prepared. Myoblast cells (C2C12), Staphylococcus aureus and Porphyromonas gingivalis were seeded on these chips to investigate the effect of different surface microstructures on the adhesion and proliferation. The results indicated that different surface microstructure in the same size did not show much difference on adhesion and proliferation of cell and bacteria; compared to microstructure region (grain ca. 2 μm), the cells preferred to adhesion and proliferate in the blank area (grain ca. 260 nm), in contrast, the bacteria were significantly preferable to the microstructure regions. In conclusion, it might be better for the implant materials to be manufactured in submicron-scale rather than micro-scale to improve the proliferation of cells and to inhibit the adhesion and growth of bacteria.
Collapse
|
17
|
Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal Fluid Shunting Complications in Children. Pediatr Neurosurg 2017; 52:381-400. [PMID: 28249297 PMCID: PMC5915307 DOI: 10.1159/000452840] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Although cerebrospinal fluid (CSF) shunt placement is the most common procedure performed by pediatric neurosurgeons, shunts remain among the most failure-prone life-sustaining medical devices implanted in modern medical practice. This article provides an overview of the mechanisms of CSF shunt failure for the 3 most commonly employed definitive CSF shunts in the practice of pediatric neurosurgery: ventriculoperitoneal, ventriculopleural, and ventriculoatrial. The text has been partitioned into the broad modes of shunt failure: obstruction, infection, mechanical shunt failure, overdrainage, and distal catheter site-specific failures. Clinical management strategies for the various modes of shunt failure are discussed as are research efforts directed towards reducing shunt complication rates. As it is unlikely that CSF shunting will become an obsolete procedure in the foreseeable future, it is incumbent on the pediatric neurosurgery community to maintain focused efforts to improve our understanding of and management strategies for shunt failure and shunt-related morbidity.
Collapse
Affiliation(s)
- Brian W. Hanak
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Robert H. Bonow
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Carolyn A. Harris
- Department of Neurosurgery, Wayne State University and Children’s Hospital of Michigan, Detroit, MI, USA
| | - Samuel R. Browd
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
18
|
Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells. Colloids Surf B Biointerfaces 2017; 154:1-9. [PMID: 28268191 DOI: 10.1016/j.colsurfb.2017.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment.
Collapse
|
19
|
Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion. MATERIALS 2017; 10:ma10020214. [PMID: 28772574 PMCID: PMC5459172 DOI: 10.3390/ma10020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022]
Abstract
A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.
Collapse
|
20
|
Varga M, Wolff P, Wolter KJ. Biocompatibility study of three distinct carbon pastes for application as electrode material in neural stimulations and recordings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:30. [PMID: 28108958 DOI: 10.1007/s10856-016-5840-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Neural interfaces hold great promise for research and treatment of a wide variety of neurological diseases. Medical electrodes are designed to interface with the nervous system and provide control signals for neural prostheses. We fabricated previously a hook-up neural electrode. Here we investigate the in vitro cytotoxicity of three commercial carbon pastes used for printing the conductor tracks of this electrode. At first, the carbon pastes were characterized with respect to their microstructure and chemical composition. SEM images showed a grainy texture that is associated to the carbon/graphite microparticles dispersed by the polymeric binder. All the three pastes contained in major proportions carbon and in different proportions other elements. The surface roughness analysis evidenced differences in the smoothness of the carbon paste surfaces. Sterilization procedures did not alter the microstructure or surface morphology of the pastes. Finally, cell viability based on -(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and fluorescence staining experiments proved non-cytotoxicity and suitability of the studied carbon pastes as electrode material for measuring neural activity during surgeries (up to a certain time period).
Collapse
Affiliation(s)
- Melinda Varga
- Department of Electrical Engineering and Information Technology, Technische Universität Dresden, Electronics Packaging Laboratory, Dresden, D-01069, Germany.
| | - Paul Wolff
- Department of Electrical Engineering and Information Technology, Technische Universität Dresden, Electronics Packaging Laboratory, Dresden, D-01069, Germany
| | - Klaus-Juergen Wolter
- Department of Electrical Engineering and Information Technology, Technische Universität Dresden, Electronics Packaging Laboratory, Dresden, D-01069, Germany
| |
Collapse
|
21
|
Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:398-405. [PMID: 28183624 DOI: 10.1016/j.msec.2016.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 01/17/2023]
Abstract
In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials.
Collapse
|
22
|
Hasturk O, Sivas A, Karasozen B, Demirci U, Hasirci N, Hasirci V. Quantification of Type, Timing, and Extent of Cell Body and Nucleus Deformations Caused by the Dimensions and Hydrophilicity of Square Prism Micropillars. Adv Healthc Mater 2016; 5:2972-2982. [PMID: 27925459 DOI: 10.1002/adhm.201600857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Indexed: 01/30/2023]
Abstract
Novel digital analysis strategies are developed for the quantification of changes in the cytoskeletal and nuclear morphologies of mesenchymal stem cells cultured on micropillars. Severe deformations of nucleus and distinct conformational changes of cell body ranging from extensive elongation to branching are visualized and quantified. These deformations are caused mainly by the dimensions and hydrophilicity of the micropillars.
Collapse
Affiliation(s)
- Onur Hasturk
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Abdullah Sivas
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Bulent Karasozen
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Utkan Demirci
- Bio-Acoustic-MEMs in Medicine (BAMM) Laboratory; Stanford School of Medicine; Palo Alto CA 94394 USA
| | - Nesrin Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Chemistry; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Vasif Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Biological Sciences; Middle East Technical University (METU); Ankara 06800 Turkey
| |
Collapse
|
23
|
Neurobiochemical changes in the vicinity of a nanostructured neural implant. Sci Rep 2016; 6:35944. [PMID: 27775024 PMCID: PMC5075914 DOI: 10.1038/srep35944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520–800 nm long nanopillars with a diameter of 150–200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings.
Collapse
|
24
|
Baldassarro VA, Dolci LS, Mangano C, Giardino L, Gualandi C, Focarete ML, Calzà L. In Vitro Testing of Biomaterials for Neural Repair: Focus on Cellular Systems and High-Content Analysis. Biores Open Access 2016; 5:201-11. [PMID: 27588220 PMCID: PMC4991583 DOI: 10.1089/biores.2016.0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Biomimetic materials are designed to stimulate specific cellular responses at the molecular level. To improve the soundness of in vitro testing of the biological impact of new materials, appropriate cell systems and technologies must be standardized also taking regulatory issues into consideration. In this study, the biological and molecular effects of different scaffolds on three neural systems, that is, the neural cell line SH-SY5Y, primary cortical neurons, and neural stem cells, were compared. The effect of poly(L-lactic acid) scaffolds having different surface geometry (conventional two-dimensional seeding flat surface, random or aligned fibers as semi3D structure) and chemical functionalization (laminin or ECM extract) were studied. The endpoints were defined for efficacy (i.e., neural differentiation and neurite elongation) and for safety (i.e., cell death/survival) using high-content analysis. It is demonstrated that (i) the definition of the biological properties of biomaterials is profoundly influenced by the test system used; (ii) the definition of the in vitro safety profile of biomaterials for neural repair is also influenced by the test system; (iii) cell-based high-content screening may well be successfully used to characterize both the efficacy and safety of novel biomaterials, thus speeding up and improving the soundness of this critical step in material science having medical applications.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Luisa Stella Dolci
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Chiara Mangano
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna , Bologna, Italy
| | - Luciana Giardino
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna , Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna, Bologna, Italy
| | - Laura Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
McCreery D, Cogan S, Kane S, Pikov V. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. J Neural Eng 2016; 13:036012. [PMID: 27108712 DOI: 10.1088/1741-2560/13/3/036012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. APPROACH 'Utah'-type intracortical microelectrode arrays were implanted into cats' sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson's product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). MAIN RESULTS S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. SIGNIFICANCE Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode's electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes' long-term functionality.
Collapse
|
26
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Samhaber R, Schottdorf M, El Hady A, Bröking K, Daus A, Thielemann C, Stühmer W, Wolf F. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device. J Neurosci Methods 2016; 257:194-203. [DOI: 10.1016/j.jneumeth.2015.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
28
|
Harris C, Pearson K, Hadley K, Zhu S, Browd S, Hanak BW, Shain W. Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissue obstruction in hydrocephalus. Fluids Barriers CNS 2015; 12:26. [PMID: 26578355 PMCID: PMC4650346 DOI: 10.1186/s12987-015-0023-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023] Open
Abstract
Background Shunt obstruction in the treatment of hydrocephalus is poorly understood, is multi-factorial, and in many cases is modeled ineffectively. Several mechanisms may be responsible, one of which involves shunt infiltration by reactive cells from the brain parenchyma. This has not been modeled in culture and cannot be consistently examined in vivo without a large sample size. Methods We have developed and tested a three-dimensional in vitro model of astrocyte migration and proliferation around clinical grade ventricular catheters and into catheter holes that mimics the development of cellular outgrowth from the parenchyma that may contribute to shunt obstruction. Results Cell attachment and growth was observed on shunt catheters for as long as 80 days with at least 77 % viability until 51 days. The model can be used to study cellular attachment to ventricular catheters under both static and pulsatile flow conditions, which better mimic physiological cerebrospinal fluid dynamics and shunt system flow rates (0.25 mL/min, 100 pulses/min). Pulsatile flow through the ventricular catheter decreased cell attachment/growth by 63 % after 18 h. Under both conditions it was possible to observe cells accumulating around and in shunt catheter holes. Conclusions Alone or in combination with previously-published culture models of shunt obstruction, this model serves as a relevant test bed to analyze mechanisms of shunt failure and to test catheter modifications that will prevent cell attachment and growth.
Collapse
Affiliation(s)
- Carolyn Harris
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurosurgery, Wayne State University, 3901 Beaubien Blvd, 2nd Floor Carls Building, Detroit, MI, 48201, USA.
| | - Kelsie Pearson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | - Kristen Hadley
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | - Shanshan Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | - Samuel Browd
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurological Surgery, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| | - Brian W Hanak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurological Surgery, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| | - William Shain
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurological Surgery, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
29
|
Short-term effects of microstructured surfaces: role in cell differentiation toward a contractile phenotype. J Appl Biomater Funct Mater 2015; 13:e92-9. [PMID: 24756781 PMCID: PMC6161806 DOI: 10.5301/jabfm.5000186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/20/2022] Open
Abstract
Cell adhesion plays a key role in cell behavior, in terms of migration, proliferation, differentiation and apoptosis. All of these events concur with tissue regeneration and remodeling mechanisms, integrating a complex network of intracellular signaling modules. Morphogenetic responses, which involve changes in cell shape, proliferation and differentiation, are thought to be controlled by both biochemical and biophysical cues. Indeed, the extracellular matrix not only displays adhesive ligands necessary for cell adhesion but also plays an essential biomechanical role — responsible, for instance, for the acquisition of the contractile phenotype. The substrate topography around the forming tissues and the associated mechanical stresses that are generated regulate cellular morphology, proliferation and differentiation. Thus, the ability to tailor topographical features around cells can be a crucial design parameter in tissue engineering applications, inducing cells to exhibit the required performances. In this work, we designed micropillared substrates using highly spaced arrays (interspacing equal to 25 μm) to evaluate the effects of topography on C2C12 myoblasts' adhesion and differentiation. Optical and fluorescence microscopy images were used to observe cell adhesion, together with Western blot analysis on vinculin and focal adhesion kinase (FAK) expression, a protein highly involved in adhesive processes. Differentiation marker (Myf5, myogenin and myosin heavy chain [MHC]) expression was also studied, in relation to the effect of different substrate topographies on the enhancement of a contractile phenotype. Our results demonstrated that microstructured surfaces may play a key role in the regeneration of functional tissues.
Collapse
|
30
|
|
31
|
Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte-neuron co-cultures. Biomaterials 2015; 46:82-94. [PMID: 25678118 DOI: 10.1016/j.biomaterials.2014.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite response to cellular boundaries created following spinal cord injury and suggest its usefulness to study cellular responses to any aligned-to-unorganized cellular boundaries seen in vivo.
Collapse
|
32
|
Lee CH, Cheng YW, Huang GS. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays. NANOSCALE RESEARCH LETTERS 2014; 9:250. [PMID: 24917700 PMCID: PMC4032869 DOI: 10.1186/1556-276x-9-250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.
Collapse
Affiliation(s)
- Chia-Hui Lee
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - Ya-Wen Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - G Steven Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| |
Collapse
|
33
|
Jeon H, Simon CG, Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 2014; 102:1580-94. [DOI: 10.1002/jbm.b.33158] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- HoJun Jeon
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| | - Carl G. Simon
- Biosystems and Biomaterials Division; National Institute of Standards and Technology; Gaithersburg Maryland
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
34
|
Response of bone marrow derived connective tissue progenitor cell morphology and proliferation on geometrically modulated microtextured substrates. Biomed Microdevices 2014; 15:385-96. [PMID: 23378044 DOI: 10.1007/s10544-012-9727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Varying geometry and layout of microposts on a cell culture substrate provides an effective technique for applying mechanical stimuli to living cells. In the current study, the optimal geometry and arrangement of microposts on the polydimethylsiloxane (PDMS) surfaces to enhance cell growth behavior were investigated. Human bone marrow derived connective tissue progenitor cells were cultured on PDMS substrates comprising unpatterned smooth surfaces and cylindrical post microtextures that were 10 μm in diameter, 4 heights (5, 10, 20 and 40 μm) and 3 pitches (10, 20, and 40 μm). With the same 10 μm diameter, post heights ranging from 5 to 40 μm resulted in a more than 535 fold range of rigidity from 0.011 nNμm⁻¹ (40 μm height) up to 5.888 nNμm⁻¹(5 μm height). Even though shorter microposts result in higher effective stiffness, decreasing post heights below the optimal value, 5 μm height micropost in this study decreased cell growth behavior. The maximum number of cells was observed on the post microtextures with 20 μm height and 10 μm inter-space, which exhibited a 675 % increase relative to the smooth surfaces. The cells on all heights of post microtextures with 10 μm and 20 μm inter-spaces exhibited highly contoured morphology. Elucidating the cellular response to various external geometry cues enables us to better predict and control cellular behavior. In addition, knowledge of cell response to surface stimuli could lead to the incorporation of specific size post microtextures into surfaces of implants to achieve surface-textured scaffold materials for tissue engineering applications.
Collapse
|
35
|
Santoro F, Schnitker J, Panaitov G, Offenhäusser A. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. NANO LETTERS 2013; 13:5379-5384. [PMID: 24088026 DOI: 10.1021/nl402901y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The quality of the recording and stimulation capabilities of multielectrode arrays (MEAs) substantially depends on the interface properties and the coupling of the cell with the underlying electrode area. The purpose of this work was the investigation of a three-dimensional nanointerface, enabling simultaneous guidance and recording of electrogenic cells (HL-1) by utilizing nanostructures with a mushroom shape on MEAs.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
36
|
Song Y, Ju Y, Morita Y, Song G. Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells. J Biosci Bioeng 2013; 116:509-15. [DOI: 10.1016/j.jbiosc.2013.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
37
|
Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem 2013; 85:8173-9. [PMID: 23927692 PMCID: PMC3799822 DOI: 10.1021/ac401201x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microdialysis sampling in the brain is employed frequently in the chemical analysis of neurological function and disease, but implanting the probes, which are substantially larger than the size and spacing of brain cells and blood vessels, is injurious and triggers ischemia, gliosis, and cell death at the sampling site. The nature of the interface between the brain and the microdialysis probe is critical to the use of microdialysis as a neurochemical analysis technique. The objective of the work reported here was to investigate the potential of two compounds, dexamethasone, a glucocorticoid anti-inflammatory agent, and XJB-5-131, a mitochondrially targeted reactive oxygen species scavenger, to mitigate the penetration injury. Measurements were performed in the rat brain striatum, which is densely innervated by axons that release dopamine, an electroactive neurotransmitter. We used voltammetry to measure electrically evoked dopamine release next to microdialysis probes during the retrodialysis of dexamethasone or XJB-5-131. After the in vivo measurements, the brain tissue containing the microdialysis probe tracks was examined by fluorescence microscopy using markers for ischemia, neuronal nuclei, macrophages, and dopamine axons and terminals. Dexamethasone and XJB-5-131 each diminished the loss of evoked dopamine activity, diminished ischemia, diminished the loss of neuronal nuclei, diminished the appearance of extravasated macrophages, and diminished the loss of dopamine axons and terminals next to the probes. Our findings confirm the ability of dexamethasone and XJB-5-131 to mitigate, but not eliminate, the effects of the penetration injury caused by implanting microdialysis probes into brain tissue.
Collapse
Affiliation(s)
- Kathryn M. Nesbitt
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Erin M. Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
38
|
Limongi T, Cesca F, Gentile F, Marotta R, Ruffilli R, Barberis A, Dal Maschio M, Petrini EM, Santoriello S, Benfenati F, Di Fabrizio E. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:402-12. [PMID: 23027505 DOI: 10.1002/smll.201201377] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/10/2012] [Indexed: 05/20/2023]
Abstract
The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS NANO 2012; 6:6222-30. [PMID: 22717194 DOI: 10.1021/nn301654e] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanobiomaterials are introducing new capabilities to coordinate cell selection, growth, morphology, and differentiation. Herein, we report that tuning the geometry of ordered arrays of nanopillars (NP) elicits specialized morphologies in adherent cells. Systematic analysis of the effects of the NP radius, height, and spacing reveals that stem cells assume either flattened, polarized, or stellate morphologies in direct response to interpillar spacing. Notably, on NPs of pitch near a critical spacing (d(crit) ≈ 2 μm for C3H10T1/2 cells), cells exhibit rounding of the cell body, pronounced polarization, and extension of narrow axon-like cell projections aligned with the square lattice of the NP array and extending hundreds of micrometers. Furthermore, increasing the NPs' aspect ratio from 12:1 to 50:1 to produce NPs with a corresponding reduction in the NP bending stiffness of 2 orders of magnitude amplified the cellular response and resulted in a previously unseen degree of cell polarization and alignment. The rapid morphological transformation is reproducible on surfaces that maintain key parameters of the NP geometry and spacing, is influenced by the cell seeding density, and persists for different stem cell lines and primary mesenchymal stem cells. The demonstrated ability to support various morphogenetic trends in stem cells by simply tuning the geometry of the NP substrates provides a stepping-stone for the future design of scaffolds where cellular morphology and alignment are crucial.
Collapse
Affiliation(s)
- Michael A Bucaro
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, and Kavli Institute for Bionano Science and Technology, Harvard, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | |
Collapse
|
40
|
Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers (Basel) 2012. [DOI: 10.3390/polym4031349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
41
|
Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials 2012; 33:5230-46. [PMID: 22521491 PMCID: PMC3619386 DOI: 10.1016/j.biomaterials.2012.03.079] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/12/2023]
Abstract
Cells in their in vivo microenvironment constantly encounter and respond to a multitude of signals. While the role of biochemical signals has long been appreciated, the importance of biophysical signals has only recently been investigated. Biophysical cues are presented in different forms including topography and mechanical stiffness imparted by the extracellular matrix and adjoining cells. Microfabrication technologies have allowed for the generation of biomaterials with microscale topographies to study the effect of biophysical cues on cellular function at the cell-substrate interface. Topographies of different geometries and with varying microscale dimensions have been used to better understand cell adhesion, migration, and differentiation at the cellular and sub-cellular scales. Furthermore, quantification of cell-generated forces has been illustrated with micropillar topographies to shed light on the process of mechanotransduction. In this review, we highlight recent advances made in these areas and how they have been utilized for neural, cardiac, and musculoskeletal tissue engineering application.
Collapse
Affiliation(s)
- Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sam Manoucheri
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
42
|
Peer E, Artzy-Schnirman A, Gepstein L, Sivan U. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS NANO 2012; 6:4940-4946. [PMID: 22632128 DOI: 10.1021/nn300443h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a novel hollow nanoneedle array (NNA) device capable of simultaneously delivering diverse cargo into a group of cells in a culture over prolonged periods. The silica needles are fed by a common reservoir whose content can be replenished and modified in real time while maintaining contact with the same cells. The NNA, albeit its submicrometer features, is fabricated in a silicon-on-insulator wafer using conventional, large scale, silicon technology. 3T3-NIH fibroblast cells and HEK293 human embryonic kidney cells are shown to grow and proliferate successfully on the NNAs. Cargo delivery from the reservoir through the needles to a group of HEK293 cells in the culture is demonstrated by repeated administration of fluorescently labeled dextran to the same cells and transfection with DNA coding for red fluorescent protein. The capabilities demonstrated by the NNA device open the door to large scale studies of the effect of selected cells on their environment as encountered, for instance, in the study of cell-fate decisions, the role of cell-autonomous versus nonautonomous mechanisms in developmental biology, and in the study of excitable cell-networks.
Collapse
Affiliation(s)
- Elad Peer
- Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
43
|
Ross AM, Jiang Z, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates: topography, roughness, and elasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:336-55. [PMID: 22162324 DOI: 10.1002/smll.201100934] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 05/26/2023]
Abstract
The cellular environment impacts a myriad of cellular functions by providing signals that can modulate cell phenotype and function. Physical cues such as topography, roughness, gradients, and elasticity are of particular importance. Thus, synthetic substrates can be potentially useful tools for exploring the influence of the aforementioned physical properties on cellular function. Many micro- and nanofabrication processes have been employed to control substrate characteristics in both 2D and 3D environments. This review highlights strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in-vitro settings. While both hard and soft materials are discussed, emphasis is placed on soft substrates. Moreover, methods for creating synthetic substrates for cell studies, substrate properties, and impact of substrate properties on cell behavior are the main focus of this review.
Collapse
Affiliation(s)
- Aftin M Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
44
|
Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater 2012; 8:72-81. [PMID: 21884831 DOI: 10.1016/j.actbio.2011.08.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/15/2011] [Accepted: 08/11/2011] [Indexed: 02/02/2023]
Abstract
Staphylococci are among the most important pathogens causing bloodstream infections associated with implanted medical devices. Control of bacterial adhesion to material surfaces is important for prevention of biofilm formation and biomaterial-associated infections. In this study, we hypothesized that submicron (staphylococcal bacterial dimension) surface textures may reduce the bacterial adhesion via a decrease in surface area that bacteria can contact, and subsequently inhibit biofilm formation. Poly(urethane urea) films were textured with two different sizes of submicron pillars via a two-stage replication process. Adhesion of two bacterial strains (Staphylococcus epidermidis RP62A and S. aureus Newman) was assessed over a shear stress range of 0-13.2 dyn cm(-2) using a rotating disk system in physiological buffer solutions. Significant decreases in bacterial adhesion were observed on textured surfaces for both strains compared with smooth controls. Biofilm formation was further tested on surfaces incubated in solution for either 2 or 5 days and it was found that biofilm formation was dramatically inhibited on textured surfaces. The results of the approaches used in this work demonstrate that patterned surface texturing of biomaterials provides an effective means to reduce staphylococcal adhesion and biofilm formation on biomaterial surfaces, and thus to prevent biomaterial-associated infections.
Collapse
|
45
|
Ng CKM, Chong EYW, Roy VAL, Cheung KMC, Yeung KWK, Yu KN. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films. Appl Radiat Isot 2011; 70:1432-5. [PMID: 22130471 DOI: 10.1016/j.apradiso.2011.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas.
Collapse
Affiliation(s)
- C K M Ng
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
46
|
MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays. Biomaterials 2011; 32:7625-32. [DOI: 10.1016/j.biomaterials.2011.06.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 12/28/2022]
|
47
|
Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater 2011; 2:88-106. [PMID: 24956299 PMCID: PMC4030934 DOI: 10.3390/jfb2030088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 01/23/2023] Open
Abstract
As our population ages, there is a greater need for a suitable supply of engineered tissues to address a range of debilitating ailments. Stem cell based therapies are envisioned to meet this emerging need. Despite significant progress in controlling stem cell differentiation, it is still difficult to engineer human tissue constructs for transplantation. Recent advances in micro- and nanofabrication techniques have enabled the design of more biomimetic biomaterials that may be used to direct the fate of stem cells. These biomaterials could have a significant impact on the next generation of stem cell based therapies. Here, we highlight the recent progress made by micro- and nanoengineering techniques in the biomaterials field in the context of directing stem cell differentiation. Particular attention is given to the effect of surface topography, chemistry, mechanics and micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural stem cells.
Collapse
|
48
|
Pelaez-Vargas A, Gallego-Perez D, Magallanes-Perdomo M, Fernandes MH, Hansford DJ, De Aza AH, Pena P, Monteiro FJ. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent Mater 2011; 27:581-9. [PMID: 21459429 DOI: 10.1016/j.dental.2011.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. OBJECTIVES To develop alternative surface modification techniques to promote guided tissue regeneration on zirconia materials, for applications in dental implantology. METHODS A methodology that combined soft lithography and sol-gel chemistry was used to obtain isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates. The materials were characterized via chemical, structural, surface morphology approaches. In vitro biological behavior was evaluated in terms of early adhesion and viability/metabolic activity of human osteoblast-like cells. Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. RESULTS Isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates were obtained using a combined approach based on sol-gel technology and soft lithography. Micropatterned silica surfaces exhibited a biocompatible behavior, and modulated cell responses (i.e. inducing early alignment of osteoblast-like cells). After 7d of culture, the cells fully covered the top surfaces of pillar microstructured silica films. SIGNIFICANCE The micropatterned silica films on zirconia showed a biocompatible response, and were capable of inducing guided osteoblastic cell adhesion, spreading and propagation. The results herein presented suggest that surface-modified ceramic implants via soft lithography and sol-gel chemistry could potentially be used to guide periodontal tissue regeneration, thus promoting tight tissue apposition, and avoiding gingival retraction and peri-implantitis.
Collapse
Affiliation(s)
- A Pelaez-Vargas
- Instituto de Engenharia Biomédica, Divisão de Biomateriais, Universidade do Porto, Rua do Campo Alegre 823, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell.
Collapse
|
50
|
Georgiev D, Baird R, Avrutsky I, Auner G, Newaz G, Tokranova N. A Systematic Study of the Formation of Nano-Tips on Silicon Thin Films by Excimer Laser Irradiation. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-872-j13.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractRecently, we reported conditions for controllable, direct laser fabrication of sharp conical tips with heights of about one micrometer and apical radii of curvature of several tens of nanometers. An individual cone is formed when a single-crystal silicon film on an insulator substrate is irradiated in air environment with a single pulse from a KrF excimer laser, homogenized and shaped to a circular spot several microns in diameter. In this work, we present a study of the formation of such tips as a function of the laser fluence, the film thickness, and the diameter of the irradiated spot. Atomic force microscopy and scanning electron microscopy were used to study the topography of the structures. A simple mechanism of formation based on movement of melted material is proposed. We have also studied structures (nano-ridges) that resulted from irradiation with narrow lines (width of several microns) instead of circular spots.
Collapse
|