1
|
Zhang Y, Zhang M, Li W, Hu T, Liu Y, Huang H, Kang Z. Improving the mechanical property of silk by feeding silkworm with chiral carbon dots. Int J Biol Macromol 2024; 281:136644. [PMID: 39423973 DOI: 10.1016/j.ijbiomac.2024.136644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The influence of chiral materials on organisms is crucial. However, there is little research on the impact of chiral carbon dots (CDs), a kind of typical chiral materials, on biology. Herein, chiral CDs (L-/D-CDs) were synthesized using the thermal polymerization method from citric acid and chiral cysteine. The effect of chiral CDs on silkworms was explored through feeding silkworms with chiral CDs. The breaking strength of silk fibers (667.9 MPa) in D-CDs group exhibit a 71.4 % increase compared with control-silk (389.5 MPa), while the breaking strength of silk fibers in L-CDs group increases by 51.6 %. In addition, Fourier transform infrared spectra display CDs can prevent the transformation from random coil/α-helix structures to β-sheet structures. Furthermore, D-CDs group exhibit the highest percentage of four primary amino acids (glycine, alanine, serine, and tyrosine) relative to the total amino acids in silkworm hemolymph. This percentage is elevated by 70.5 % compared to the control group, thereby furnishing an ample supply of raw materials for the synthesis of silk proteins. In contrast, L-CDs group exhibit increase by 39.3 %. Our work provides new ideas and approaches for studying the effects of chiral materials on living organisms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| |
Collapse
|
2
|
Su R, Ai Y, Wang J, Wu L, Sun H, Ding M, Xie R, Liang Q. Engineered Microfibers for Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5823-5840. [PMID: 39145987 DOI: 10.1021/acsabm.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Hydrogel microfibers are hydrogel materials engineered into fiber structures. Techniques such as wet spinning, microfluidic spinning, and 3D bioprinting are often used to prepare microfibers due to their ability to precisely control the size, morphology, and structure of the microfibers. Microfibers with different structural morphologies have different functions; they provide a flow-through culture environment for cells to improve viability, and can also be used to induce the differentiation of cells such as skeletal muscle and cardiac muscle cells to eventually form functional organs in vitro through special morphologies. This Review introduces recent advances in microfluidics, 3D bioprinting, and wet spinning in the preparation of microfibers, focusing on the materials and fabrication methods. The applications of microfibers in tissue engineering are highlighted by summarizing their contributions in engineering biomimetic blood vessels, vascularized tissues, bone, heart, pancreas, kidney, liver, and fat. Furthermore, applications of engineered fibers in tissue repair and drug screening are also discussed.
Collapse
Affiliation(s)
- Riguga Su
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Jingyu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Ruoxiao Xie
- Department of Materials, Design and Manufacturing Engineering, School of Engineering, University of Liverpool, Liverpool L69 3BX, U.K
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
3
|
Shi R, Lu W, Yang J, Ma S, Wang A, Sun L, Xia Q, Zhao P. Ectopic expression of BmeryCA in Bombyx mori increases silk yield and mechanical properties by altering the pH of posterior silk gland. Int J Biol Macromol 2024; 271:132695. [PMID: 38810858 DOI: 10.1016/j.ijbiomac.2024.132695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The silk glands are the specialized tissue where silk protein synthesis, secretion, and conformational transitions take place, with pH playing a critical role in both silk protein synthesis and fiber formation. In the present study, we have identified erythrocyte carbonic anhydrase (BmeryCA) belonging to the α-CA class in the silk gland, which is a Zn2+ dependent metalloenzyme capable of efficiently and reversibly catalyzing the hydrated reaction of CO2 to HCO3-, thus participating in the regulation of acid-base balance. Multiple sequence alignments revealed that the active site of BmeryCA was highly conserved. Tissue expression profiling showed that BmeryCA had relatively high expression levels in hemolymph and epidermis but is barely expressed in the posterior silk gland (PSG). By specifically overexpressing BmeryCA in the PSG, we generated transgenic silkworms. Ion-selective microelectrode (ISM) measurements demonstrated that specifically overexpression of BmeryCA in the PSG led to a shift in pH from weakly alkaline to slightly neutral conditions. Moreover, the resultant PSG-specific BmeryCA overexpression mutant strain displayed a significant increase in both silk yield and silk fiber mechanical properties. Our research provided new insights into enhancing silk yield and improving the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Chen R, Liu Z, Cui T, Zhang X, Wang CF, Li GX, Wang G, Chen S. HE@PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46322-46332. [PMID: 37748017 DOI: 10.1021/acsami.3c09713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Hydrogels have attracted increasing attention in the biomedical field due to their similarity in structure and composition to natural extracellular matrices. However, they have been greatly limited by their low mechanical strength and self-adhesion for further application. Here, a gel-nanofiber material is designed for wound healing, which synergistically combines the benefits of hydrogels and nanofibers and can overcome the bottleneck of poor mechanical strength and self-adhesion in hydrogels and inadequate healing environment created by nanofibers. First, a nanofiber scaffold composed of polycaprolactone/poly(citric acid)-ε-lysine (PCL/PCE) nanofibers is fabricated via a new strategy of microfluidic electrospinning, which could provide a base for hyaluronic acid-polylysine (HE) gel growth on nanofibers. The prepared HE@PCL/PCE gel-nanofiber possesses high tensile strength (24.15 ± 1.67 MPa), excellent air permeability (656 m3/m2 h kPa), outstanding self-adhesion property, and positive hydrophilicity. More importantly, the prepared gel-nanofiber dressing shows good cytocompatibility and antibacterial properties, achieving a high wound-healing rate (92.48%) and 4.685 mm granulation growth thickness within 12 days. This material may open a promising avenue for accelerating wound healing and tissue regeneration, providing potential applications in clinical medicine.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Zhiting Liu
- Department of General Surgery, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Xiaoying Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Guo-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Gefei Wang
- Department of General Surgery, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Macromol Biosci 2023; 23:e2200429. [PMID: 36543751 DOI: 10.1002/mabi.202200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Microfibers, a type of long, thin, and flexible material, can be assembled into functional 3D structures by folding, binding, and weaving. As a novel spinning method, combining microfluidic technology and wet spinning, microfluidic spinning technology can precisely control the size, morphology, structure, and composition of the microfibers. Particularly, the process is mild and rapid, which is suitable for preparing microfibers using biocompatible materials and without affecting the viability of cells encapsulated. Furthermore, owing to the controllability of microfluidic spinning, microfibers with well-defined structures (such as hollow structures) will contribute to the exchange of nutrients or guide cell orientation. Thus, this method is often used to fabricate microfibers as cell scaffolds for cell encapsulation or adhesion and can be further applied to biomimetic fibrous tissues. In this review, the focus is on different fiber structures prepared by microfluidic spinning technology, including solid, hollow, and heterogeneous structures, generated from three essential elements: spinning platform, fiber composition, and solidification methods. Furthermore, the application of microfibers is described with different structures in tissue engineering, such as blood vessels, skeletal muscle, bone, nerves, and lung bronchi. Finally, the challenges and future development prospects of microfluidic spinning technology in tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Li Huili Hospital, 57 Xingning Road, Ningbo, Zhejiang, 315100, P. R. China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xu Zhang
- CAS Key Laboratory of SSAC, Department of biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Huang H, Trentle M, Liu Z, Xiang K, Higgins W, Wang Y, Xue B, Yang S. Polymer Complex Fiber: Property, Functionality, and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7639-7662. [PMID: 36719982 DOI: 10.1021/acsami.2c19583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Miranda Trentle
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Kehui Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - William Higgins
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| |
Collapse
|
7
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
8
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
9
|
Aykar SS, Alimoradi N, Taghavimehr M, Montazami R, Hashemi NN. Microfluidic Seeding of Cells on the Inner Surface of Alginate Hollow Microfibers. Adv Healthc Mater 2022; 11:e2102701. [PMID: 35142451 PMCID: PMC11468499 DOI: 10.1002/adhm.202102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Mimicking microvascular tissue microenvironment in vitro calls for a cytocompatible technique of manufacturing biocompatible hollow microfibers suitable for cell-encapsulation/seeding in and around them. The techniques reported to date either have a limit on the microfiber dimensions or undergo a complex manufacturing process. Here, a microfluidic-based method for cell seeding inside alginate hollow microfibers is designed whereby mouse astrocytes (C8-D1A) are passively seeded on the inner surface of these hollow microfibers. Collagen I and poly-d-lysine, as cell attachment additives, are tested to assess cell adhesion and viability; the results are compared with nonadditive-based hollow microfibers (BARE). The BARE furnishes better cell attachment and higher cell viability immediately after manufacturing, and an increasing trend in the cell viability is observed between Day 0 and Day 2. Swelling analysis using percentage initial weight and width is performed on BARE microfibers furnishing a maximum of 124.1% and 106.1%, respectively. Degradation analysis using weight observed a 62% loss after 3 days, with 46% occurring in the first 12 h. In the frequency sweep test performed, the storage modulus (G') remains comparatively higher than the loss modulus (G″) in the frequency range 0-20 Hz, indicating high elastic behavior of the hollow microfibers.
Collapse
Affiliation(s)
- Saurabh S. Aykar
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nima Alimoradi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Reza Montazami
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nicole N. Hashemi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
10
|
Razzaq W, Serra C, Chan-Seng D. Production of Janus/Hecate microfibers by microfluidic photopolymerization and evaluation of their potential in dye removal. Chem Commun (Camb) 2022; 58:4619-4622. [PMID: 35311855 DOI: 10.1039/d2cc00214k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microfluidic production of Janus/Hecate polymer microfibers with well-defined interfaces from miscible phases is reported. The process offers tunability of the width and composition of each part of the fibers by controlling the flow rate and nature of the monomers in a single step. The enhanced performances of the fibers are outlined for the simultaneous removal of dyes of opposite charges using amphoteric Janus fibers.
Collapse
Affiliation(s)
- Wasif Razzaq
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France. .,Department of Materials, National Textile University, Sheikhupura Road, Faisalabad, 37610, Pakistan
| | - Christophe Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France.
| | - Delphine Chan-Seng
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France.
| |
Collapse
|
11
|
Zhang M, Peng X, Fan P, Zhou Y, Xiao P. Recent Progress in Preparation and Application of Fibers using Microfluidic Spinning Technology. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Xiaotong Peng
- Research School of Chemistry Australian National University Canberra 2601 Australia
| | - Penghui Fan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
- College of Materials Science and Engineering Wuhan Textile University Wuhan 430073 People's Republic of China
- Humanwell Healthcare Group Medical Supplies Co. Ltd. Wuhan 430073 People's Republic of China
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra 2601 Australia
| |
Collapse
|
12
|
Zhao W, Zhang Y, Liu L, Gao Y, Sun W, Sun Y, Ma Q. Microfluidic-based functional materials: new prospects for wound healing and beyond. J Mater Chem B 2022; 10:8357-8374. [DOI: 10.1039/d2tb01464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Microfluidics has been applied to fabricate high-performance functional materials contributing to all physiological stages of wound healing. The advances of microfluidic-based functional materials for wound healing have been summarized.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yage Zhang
- Department of Mechanical, University of Hong Kong, Hong Kong SAR, China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yang Gao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
14
|
Liu J, Du X, Chen S. A Phase Inversion‐Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ji‐Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Xiang‐Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
15
|
Liu JD, Du XY, Chen S. A Phase Inversion-Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin. Angew Chem Int Ed Engl 2021; 60:25089-25096. [PMID: 34505753 DOI: 10.1002/anie.202110888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Microfluidic spinning technology (MST), incorporating microfluidics with chemical reactions, has gained considerable interest for constructing anisotropic advanced microfibers, especially helical microfibers. However, these efforts suffer from the limited material choices, restricting their applications. Here, a new phase inversion-based microfluidic spinning (PIMS) method is proposed for producing helical microfibers. This method undergoes a physicochemical phase inversion process, which is capable of efficiently manufacturing strong (tensile stress of more than 25 MPa), stretchable, flexible and biocompatible helical microfibers. The helical microfibers can be used to fabricate bi-oriented stretchable artificial abdominal skin, preventing incisional hernia formation and promoting the wound healing without conglutination. This research not only offers a universal approach to design helical microfibers but also provides a new insight into artificial skin.
Collapse
Affiliation(s)
- Ji-Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, vJiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
16
|
Gupta P, Mandal BB. Silk biomaterials for vascular tissue engineering applications. Acta Biomater 2021; 134:79-106. [PMID: 34384912 DOI: 10.1016/j.actbio.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.
Collapse
|
17
|
Abstract
Resilin, an insect structural protein, exhibits rubberlike elasticity characterized by low stiffness, high extensibility, efficient energy storage, exceptional resilience, and fatigue lifetime. The outstanding mechanical properties of native resilin have motivated recent research about resilin-like biomaterials for a wide range of applications. The systematic understanding of the resilin structure provides theoretical guidance for its applications. In this chapter, we systematically introduce its special structure, providing useful information for the structure and elastic mechanism of native resilin protein.
Collapse
|
18
|
Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
20
|
Gao W, Lei Z, Liu X, Chen Y. Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1438-1445. [PMID: 33448224 DOI: 10.1021/acs.langmuir.0c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developments in spinning systems have triggered revolutions ranging from bioengineering tissue scaffolds to emerging smart wearable fabrics, but the structures of the spinning fibers are usually limited by intrinsic channel configurations and the "dead" nozzle's geometry. In contrast, natural living systems, such as a spider spinning apparatus, use a "live" gate to coordinate microstructures via shearing and expanding at both axial and radial directions. Herein, for the first time, we introduce a dynamic liquid gating effect in artificial systems to mimic the spinning in biological organisms. Theoretical modeling and experimental regime diagram demonstrate that the topographies and microstructures of the fibers self-evolve after passing through the liquid gate and they could be tuned over a wide range, which successfully exceeds the limits of current "dead" spinning channels. In particular, fibers with a periodic spindle-knot structure self-evolve from a water gate and show fast directional water collecting and intelligent sensing ability. The liquid gating design not only sheds new light on fiber structure control in multiple spatiotemporal dimensions but also contributes to the development of high-performance fibers with sophisticated functions.
Collapse
Affiliation(s)
- Wei Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Zhouyue Lei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, PR China
| | - Xiangdong Liu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
21
|
Xu Q, Ying P, Ren J, Kong N, Wang Y, Li YG, Yao Y, Kaplan DL, Ling S. Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:411-429. [PMID: 33138695 DOI: 10.1089/ten.teb.2020.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urgent demand for transplanted organs has motivated the development of regenerative medicine to biomimetically reconstruct the structure and function of natural tissues or organs. The prerequisites for constructing multicellular organs include specific cell sources, suitable scaffolding material, and interconnective biofunctional interfaces. As some of the most complex systems in nature, human organs, tissues, and cellular units have unique "bio-matrix" physicochemical interfaces. Human tissues support a large number of cells with distinct biofunctional interfaces for compartmentalization related to metabolism, material exchange, and physical barriers. These naturally shaped biofunctional interfaces support critical metabolic functions that drive adaptive human behavior. In contrast, mutations and disorders during organogenesis can disrupt these interfaces as a consequence of disease and trauma. To replicate the appropriate structure and physiological function of tissues and organs, the biomaterials used in these approaches should have properties that mimic those of natural biofunctional interfaces. In this review, the focus is on the biomimetic design of functional interfaces and hierarchical structures for four regenerative organs, liver, kidney, lung, heart, and the immune system. Research on these organs provides understanding of cell-matrix interactions for hierarchically bioinspired material engineering, and guidance for the design of bioartificial organs. Finally, we provide perspectives on future challenges in biofunctional interface designs and discuss the obstacles that remain toward the generation of functional bioartificial organs.
Collapse
Affiliation(s)
- Quanfu Xu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Ying
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
22
|
Cui T, Li X, He S, Xu D, Yin L, Huang X, Deng S, Yue W, Zhong W. Instant Self-Assembly Peptide Hydrogel Encapsulation with Fibrous Alginate by Microfluidics for Infected Wound Healing. ACS Biomater Sci Eng 2020; 6:5001-5011. [DOI: 10.1021/acsbiomaterials.0c00581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tianyu Cui
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xiuping Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Suyun He
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Danhan Xu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Li Yin
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xiaoling Huang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Siwei Deng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Wenying Zhong
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
23
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
24
|
Yao K, Li W, Li K, Wu Q, Gu Y, Zhao L, Zhang Y, Gao X. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning. Macromol Biosci 2020; 20:e1900395. [PMID: 32141708 DOI: 10.1002/mabi.201900395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Indexed: 01/12/2023]
Abstract
Microfluidic spinning, as a combination of wet spinning and microfluidic technology, has been used to develop microfibers with special structures to facilitate cell 3D culture/co-culture and microtissue formation in vitro. In this study, a simple microchip-based microfluidic spinning strategy is presented for the fabrication of multicomponent heterogeneous calcium alginate microfibers. The use of two kinds of microchip enables the one-step preparation of multicomponent heterogeneous microfibers with various arrangement patterns, including the preparation of one-, two-, and three-component microfibers by a two-layer microchip and preparation of four component microfibers with different arrangement by a membrane-sandwiched three-layer microchip. The obtained microfibers could be used to encapsulate various kinds of cells, such as the human non-small cell lung cancer cell NCI-H1650, the human fetal lung fibroblast HFL1, the normal pulmonary bronchial epithelial cell 16HBE, and human umbilical vein endothelial cells. By adding chitosan to the medium to keep the fibers stable, 3D long-term in vitro cell co-culture has been carried out up to 21 days. This method is very simple and easy to operate, continuously produces spatially well-defined heterogeneous microfibers, has important applications for composite functional biomaterials, and shows great potential in organs-on-a-chip and biomimetic systems.
Collapse
Affiliation(s)
- Kun Yao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Qirui Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yarong Gu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
25
|
Kristen M, Ainsworth MJ. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020; 9:e1900775. [PMID: 31603288 PMCID: PMC7116178 DOI: 10.1002/adhm.201900775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Collapse
Affiliation(s)
- Marleen Kristen
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Madison J. Ainsworth
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
26
|
Du XY, Li Q, Wu G, Chen S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903733. [PMID: 31573714 DOI: 10.1002/adma.201903733] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 05/28/2023]
Abstract
Superfine multifunctional micro/nanoscale fibrous materials with high surface area and ordered structure have attracted intensive attention for widespread applications in recent years. Microfluidic spinning technology (MST) has emerged as a powerful and versatile platform because of its various advantages such as high surface-area-to-volume ratio, effective heat transfer, and enhanced reaction rate. The resultant well-defined micro/nanoscale fibers exhibit controllable compositions, advanced structures, and new physical/chemical properties. The latest developments and achievements in microfluidic spun fiber materials are summarized in terms of the underlying preparation principles, geometric configurations, and functionalization. Variously architected structures and shapes by MST, including cylindrical, grooved, flat, anisotropic, hollow, core-shell, Janus, heterogeneous, helical, and knotted fibers, are emphasized. In particular, fiber-spinning chemistry in MST for achieving functionalization of fiber materials by in situ chemical reactions inside fibers is introduced. Additionally, the applications of the fabricated functional fibers are highlighted in sensors, microactuators, photoelectric devices, flexible electronics, tissue engineering, drug delivery, and water collection. Finally, recent progress, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
27
|
Vasireddi R, Kruse J, Vakili M, Kulkarni S, Keller TF, Monteiro DCF, Trebbin M. Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Sci Rep 2019; 9:14297. [PMID: 31586141 PMCID: PMC6778068 DOI: 10.1038/s41598-019-50477-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers using a microfluidic gas flow focusing nozzle (Gas Dynamic Virtual Nozzle (GDVN)) relinquishing the need for external fiber pulling mechanisms. Compared to other methods, this technique is inexpensive, user-friendly and permits precise fiber diameter control (~250 nm to ~15 µm), high production rate (m/s-range) and direct fiber deposition without clogging due to stable, gas-focused jetting. Control over shape (flat or round) and surface patterning are achieved by simply tuning the air pressure and polymer concentration. The main thinning process happens after the polymer exits the device and is, therefore, mostly independent of the nozzle's internal geometry. Nevertheless, the lithography-based device design is versatile, allowing for precise flow-field control for operation stability as well as particle alignment control. As an example, we demonstrate the successful production of endless hematite nanocomposite fibers which highlights this technology's exciting possibilities that can lead to the fabrication of multifunctional/stimuli-responsive fibers with thermal and electrical conductivity, magnetic properties and enhanced mechanical stability.
Collapse
Affiliation(s)
- Ramakrishna Vasireddi
- The Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Joscha Kruse
- The Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018, San Sebastian, Spain
| | - Mohammad Vakili
- The Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Thomas F Keller
- Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany
- Department of Physics, University of Hamburg, 20355, Hamburg, Germany
| | - Diana C F Monteiro
- The Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Martin Trebbin
- Department of Chemistry, The State University of New York, University at Buffalo, 760 Natural Sciences Complex, Buffalo, New York, 14260-3000, USA.
| |
Collapse
|
28
|
Calejo I, Costa‐Almeida R, Reis RL, Gomes ME. A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds. Adv Healthc Mater 2019; 8:e1900200. [PMID: 31190369 DOI: 10.1002/adhm.201900200] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Tendon-to-bone interfaces exhibit a hierarchical multitissue transition. To replicate the progression from mineralized to nonmineralized tissue, a novel 3D fibrous scaffold is fabricated with spatial control over mineral distribution and cellular alignment. For this purpose, wet-spun continuous microfibers are produced using polycaprolactone (PCL)/ gelatin and PCL/gelatin/hydroxyapatite nano-to-microparticles (HAp). Higher extrusion rates result in aligned PCL/gelatin microfibers while, in the case of PCL/gelatin/HAp, the presence of minerals leads to a less organized structure. Biological performance using human adipose-derived stem cells (hASCs) demonstrates that topography of PCL/gelatin microfibers can induce cytoskeleton elongation, resembling native tenogenic organization. Matrix mineralization on PCL/gelatin/HAp wet-spun composite microfibers suggest the production of an osteogenic-like matrix, without external addition of osteogenic medium supplementation. As proof of concept, a 3D gradient structure is produced by assembling PCL/gelatin and PCL/gelatin/HAp microfibers, resulting in a fibrous scaffold with a continuous topographical and compositional gradient. Overall, the feasibility of wet-spinning for the generation of continuously aligned and textured microfibers is demonsrated, which can be further assembled into more complex 3D gradient structures to mimic characteristic features of tendon-to-bone interfaces.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Groupi3Bs ‐ Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's‐ PT Government Associate Laboratory 4806‐909 Braga Guimarães Portugal
| | - Raquel Costa‐Almeida
- 3B's Research Groupi3Bs ‐ Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's‐ PT Government Associate Laboratory 4806‐909 Braga Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Groupi3Bs ‐ Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's‐ PT Government Associate Laboratory 4806‐909 Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Groupi3Bs ‐ Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's‐ PT Government Associate Laboratory 4806‐909 Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
29
|
Ng PF, Lee KI, Meng S, Zhang J, Wang Y, Fei B. Wet Spinning of Silk Fibroin-Based Core–Sheath Fibers. ACS Biomater Sci Eng 2019; 5:3119-3130. [DOI: 10.1021/acsbiomaterials.9b00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pui Fai Ng
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Ka I Lee
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Shengfei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Yuhong Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Bin Fei
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| |
Collapse
|
30
|
Zhang X, Weng L, Liu Q, Li D, Deng B. Facile fabrication and characterization on alginate microfibres with grooved structure via microfluidic spinning. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181928. [PMID: 31218029 PMCID: PMC6549971 DOI: 10.1098/rsos.181928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Alginate microfibres were fabricated by a simple microfluidic spinning device consisting of a coaxial flow. The inner profile and spinnability of polymer were analysed by rheology study, including the analysis of viscosity, storage modulus and loss modulus. The effect of spinning parameters on the morphological structure of fibres was studied by SEM, while the crystal structure and chemical group were characterized by FTIR and XRD, respectively. Furthermore, the width and depth of grooves on the fibres was investigated by AFM image analysis and the formation mechanism of grooves was finally analysed. It was illustrated that the fibre diameter increased with an increase in the core flow rate, whereas on the contrary of sheath flow rate. Fibre diameter exhibited an increasing tendency as the concentration of alginate solution increased, and the minimum spinning concentration of alginate solution was 1% with the finest diameter being around 25 µm. Importantly, the grooved structure was obtained by adjusting the concentration of solutions and flow rates, the depth of groove increased from 278.37 ± 2.23 µm to 727.52 ± 3.52 µm as the concentration varied from 1 to 2%. Alginate fibres, with topological structure, are candidates for wound dressing or the engineering tissue scaffolds.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Lin Weng
- Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Qingsheng Liu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dawei Li
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
31
|
Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering. Molecules 2019; 24:molecules24081633. [PMID: 31027249 PMCID: PMC6515047 DOI: 10.3390/molecules24081633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Fibrous hydrogel scaffolds have recently attracted increasing attention for tissue engineering applications. While a number of approaches have been proposed for fabricating microfibers, it remains difficult for current methods to produce materials that meet the essential requirements of being simple, flexible and bio-friendly. It is especially challenging to prepare cell-laden microfibers which have different structures to meet the needs of various applications using a simple device. In this study, we developed a facile two-flow microfluidic system, through which cell-laden hydrogel microfibers with various structures could be easily prepared in one step. Aiming to meet different tissue engineering needs, several types of microfibers with different structures, including single-layer, double-layer and hollow microfibers, have been prepared using an alginate-methacrylated gelatin composite hydrogel by merely changing the inner and outer fluids. Cell-laden single-layer microfibers were obtained by subsequently seeding mouse embryonic osteoblast precursor cells (MC3T3-E1) cells on the surface of the as-prepared microfibers. Cell-laden double-layer and hollow microfibers were prepared by directly encapsulating MC3T3-E1 cells or human umbilical vein endothelial cells (HUVECs) in the cores of microfibers upon their fabrication. Prominent proliferation of cells happened in all cell-laden single-layer, double-layer and hollow microfibers, implying potential applications for them in tissue engineering.
Collapse
|
32
|
Cui T, Zhu Z, Cheng R, Tong YL, Peng G, Wang CF, Chen S. Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30785-30793. [PMID: 30113800 DOI: 10.1021/acsami.8b11926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidic spinning technology (MST) has drawn much attention owing to its ideal platform for ordered fluorescent fibers, along with their large-scale manipulation, high efficiency, flexibility, and environment friendliness. Here, we employed the MST to fabricate a series of uniform fluorescent microfibers. By adjusting the microfluidic spinning parameters, the as-prepared microfibers of different diameters are successfully obtained. For more practice, these regular arranged fibers could be formed to versatile fluorescent codes by using various microfluidic chips. Also, these versatile fluorescent fibers could be further weaved into a white fluorescent film via continuous and cross-spinning process, which could be applied in a white light emitting diode (WLED) and a wearable device. Besides, we investigated the MST-directed microreactors to carry out green synthesis of CdSe quantum dots (QDs) fibers by the knot of Y-type microfluidic chip. The as-prepared CdSe QDs show nice optical property and are good candidate as phosphors in WLED. This strategy offers a facile and environment-friendly route to fluorescent hybrid microfibers and might open their potential application in optical devices, security, and fluorescent coding.
Collapse
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Zhijie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Yu-Long Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Gang Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| |
Collapse
|
33
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
34
|
Ghelich P, Salehi Z, Mohajerzedeh S, Jafarkhani M. Experimental and numerical study on a novel microfluidic method to fabricate curcumin loaded calcium alginate microfibres. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pejman Ghelich
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| | - Zeinab Salehi
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| | - Shams Mohajerzedeh
- School of Electrical and Computer Engineering, College of Electrical Engineering; University of Tehran; North Kargar Street Tehran Iran
| | - Mahboubeh Jafarkhani
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| |
Collapse
|
35
|
Wu Y, Ranjan VD, Zhang Y. A Living 3D In Vitro Neuronal Network Cultured inside Hollow Electrospun Microfibers. ACTA ACUST UNITED AC 2018; 2:e1700218. [DOI: 10.1002/adbi.201700218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yingjie Wu
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
36
|
Mredha MTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29341264 DOI: 10.1002/adma.201704937] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/19/2017] [Indexed: 05/11/2023]
Abstract
Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications.
Collapse
Affiliation(s)
| | - Yun Zhou Guo
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
37
|
Park D, Yong IS, Cho KJ, Cheng J, Jung Y, Kim SH, Lee SH. Thae use of microfluic spinning fiber as an ophthalmology suture showing the good anastomotic strength control. Sci Rep 2017; 7:16264. [PMID: 29176617 PMCID: PMC5701120 DOI: 10.1038/s41598-017-16462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Adjusting the mechanical strength of a biomaterial to suit its intended application is very important for realizing beneficial outcomes. Microfluidic spinning fiber have been attracting attention recently due to their various advantages, but their mechanical strength has unfortunately not been a subject of concentrated research, and this lack of research has severely limited their applications. In the current work, we showed the mechanical properties of microfibers can be tuned easily and provided a mathematical explanation for how the microfluidic spinning method intrinsically controls the mechanical properties of a microfluidic spinning fiber. But we were also able to adjust the mechanical properties of such fibers in various other ways, including by using biomolecules to coat the fiber or mixing the biomolecules with the primary component of the fiber and by using a customized twisting machine to change the number of single microfiber strands forming the fiber. We used the bundle fiber as an ophthalmology suture that resulted in a porcine eye with a smoother post-operative surface than did a nylon suture. The results showed the possibility that the proposed method can solve current problems of the microfibers in practical applications, and can thus extend the range of applications of these microfibers.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In Sung Yong
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, 119 Danaeo-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Jie Cheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
38
|
Homaeigohar S, Davoudpour Y, Habibi Y, Elbahri M. The Electrospun Ceramic Hollow Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E383. [PMID: 29120403 PMCID: PMC5707600 DOI: 10.3390/nano7110383] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging-discharging rate). In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D) nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Nanochemistry and Nanoengineering, School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 00076 Aalto, Finland.
| | - Yalda Davoudpour
- The Institute of Mineralogy, Crystallography and Material Science, Faculty of Chemistry and Mineralogy, University of Leipzig, 04109 Leipzig, Germany.
| | - Youssef Habibi
- Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg.
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 00076 Aalto, Finland.
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany.
| |
Collapse
|
39
|
Yang Y, Sun J, Liu X, Guo Z, He Y, Wei D, Zhong M, Guo L, Fan H, Zhang X. Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment. Regen Biomater 2017; 4:299-307. [PMID: 29026644 PMCID: PMC5633694 DOI: 10.1093/rb/rbx017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/20/2022] Open
Abstract
Native tissue is naturally comprised of highly-ordered cell-matrix assemblies in a multi-hierarchical way, and the nano/submicron alignment of fibrous matrix is found to be significant in supporting cellular functionalization. In this study, a self-designed wet-spinning device appended with a rotary receiving pool was used to continuously produce shear-patterned hydrogel microfibers with aligned submicron topography. The process that the flow-induced shear force reshapes the surface of hydrogel fiber into aligned submicron topography was systematically analysed. Afterwards, the effect of fiber topography on cellular longitudinal spread and elongation was investigated by culturing rat neuron-like PC12 cells and human osteosarcoma MG63 cells with the spun hydrogel microfibers, respectively. The results suggested that the stronger shear flow force would lead to more distinct aligned submicron topography on fiber surface, which could induce cell orientation along with fiber axis and therefore form the cell-matrix dual-alignment. Finally, a multi-hierarchical tissue-like structure constructed by dual-oriented cell-matrix assemblies was fabricated based on this wet-spinning method. This work is believed to be a potentially novel biofabrication scheme for bottom-up constructing of engineered linear tissue, such as nerve bundle, cortical bone, muscle and hepatic cord.
Collapse
Affiliation(s)
- You Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Xiaolu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Zhenzhen Guo
- Department of Gastroenterology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan, Chengdu 610072, P. R. China
| | - Yunhu He
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Meiling Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan, Chengdu 610064, P. R. China
| |
Collapse
|
40
|
Bradner SA, Partlow BP, Cebe P, Omenetto FG, Kaplan DL. Fabrication of elastomeric silk fibers. Biopolymers 2017; 107:10.1002/bip.23030. [PMID: 28555880 PMCID: PMC5524596 DOI: 10.1002/bip.23030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications.
Collapse
Affiliation(s)
- Sarah A Bradner
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
41
|
Ma J, Wang Y, Liu J. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications. MICROMACHINES 2017; 8:E255. [PMID: 30400445 PMCID: PMC6190052 DOI: 10.3390/mi8080255] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Microfluidics is characterized by laminar flow at micro-scale dimension, high surface to volume ratio, and markedly improved heat/mass transfer. In addition, together with advantages of large-scale integration and flexible manipulation, microfluidic technology has been rapidly developed as one of the most important platforms in the field of functional biomaterial synthesis. Compared to biomaterials assisted by conventional strategies, functional biomaterials synthesized by microfluidics are with superior properties and performances, due to their controllable morphology and composition, which have shown great advantages and potential in the field of biomedicine, biosensing, and tissue engineering. Take the significance of microfluidic engineered biomaterials into consideration; this review highlights the microfluidic synthesis technologies and biomedical applications of materials. We divide microfluidic based biomaterials into four kinds. According to the material dimensionality, it includes: 0D (particulate materials), 1D (fibrous materials), 2D (sheet materials), and 3D (construct forms of materials). In particular, micro/nano-particles and micro/nano-fibers are introduced respectively. This classification standard could include all of the microfluidic biomaterials, and we envision introducing a comprehensive and overall evaluation and presentation of microfluidic based biomaterials and their applications.
Collapse
Affiliation(s)
- Jingyun Ma
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yachen Wang
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
42
|
Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun 2017; 8:15902. [PMID: 28722016 PMCID: PMC5524934 DOI: 10.1038/ncomms15902] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules. Silk fibres currently used in biotechnology are chemically reconstituted silk fibroins (RSF), which are more stable than native silk fibroin (NSF) but possess different biophysical properties. Here, the authors use microfluidic droplets to encapsulate and store NSF, preserving their native structure.
Collapse
|
43
|
Park D, Park J, Jang H, Cheng J, Hyun Kim S, Lee SH. Simultaneous microfluidic spinning of multiple strands of submicron fiber for the production of free-standing porous membranes for biological application. Biofabrication 2017; 9:025026. [PMID: 28504242 DOI: 10.1088/1758-5090/aa7307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microfibers produced using electrospinning and microfluidics-based technologies have been developed as a powerful tool in tissue engineering applications such as drug delivery and scaffolds. The applications of these fibers, however, have been limited because of the hazardous solvents used to make them, difficulties in controlling the pore sizes of their membrane forms, and downscaling the size of the fiber. Nevertheless, extending the use of these fibers, for example in the production of a free-standing porous membrane appropriate for cell-based research, is highly needed for tissue engineering, organ-on-a-chip, and drug delivery research and applications. Here, we fabricated a free-standing porous membrane by using a novel method that involved simultaneously spinning multiple strands of submicron-thick 'noodle-like' fibers. In addition to the novelty of the single noodle fiber in overcoming the size-reducing limitations of conventional microfluidic spinning methods, these fibers can hence form the units of 'noodle membranes' whose pores have sizes that the convention electrospinning method cannot achieve. We confirmed the potential of the noodle membrane to serve as a free-standing porous membrane in two simple experiments. Also, we found that noodle membranes have an advantage in loading different amounts of different materials in itself that it was also shown to be of use as a new type of scaffold for complex tissue regeneration. Therefore, the proposed noodle membrane can be an effective tool in tissue engineering applications and biological studies.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Hou X, Zhang YS, Trujillo-de Santiago G, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A. Interplay between materials and microfluidics. NATURE REVIEWS. MATERIALS 2017; 2:17016. [PMID: 38993477 PMCID: PMC11237287 DOI: 10.1038/natrevmats.2017.16] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties - in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.
Collapse
Affiliation(s)
- Xu Hou
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- College of Chemistry and Chemical Engineering, Xiamen University
- College of Physical Science and Technology, Xiamen University
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - João Ribas
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Children's Discovery and Innovation Institute, University of California, Los Angeles
- California NanoSystems Institute and Departments of Chemistry and Biochemistry, and of Materials Science and Engineering, University of California, Los Angeles
| | - Paul S Weiss
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- California NanoSystems Institute and Departments of Chemistry and Biochemistry, and of Materials Science and Engineering, University of California, Los Angeles
| | - Anne M Andrews
- California NanoSystems Institute and Departments of Psychiatry and Biobehavioral Sciences, and of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017; 114:121-143. [DOI: 10.1016/j.biomaterials.2016.10.040] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022]
|
46
|
Konwarh R, Gupta P, Mandal BB. Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnol Adv 2016; 34:845-858. [PMID: 27165254 DOI: 10.1016/j.biotechadv.2016.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
|
47
|
Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber Based Approaches as Medicine Delivery Systems. ACS Biomater Sci Eng 2016; 2:1411-1431. [DOI: 10.1021/acsbiomaterials.6b00281] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farrokh Sharifi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | | | - Hayriye Altural
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Marissa Nichole Rylander
- Department
of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nastaran Hashemi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
48
|
Cheng J, Park D, Jun Y, Lee J, Hyun J, Lee SH. Biomimetic spinning of silk fibers and in situ cell encapsulation. LAB ON A CHIP 2016; 16:2654-2661. [PMID: 27296229 DOI: 10.1039/c6lc00488a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In situ embedding of sensitive materials (e.g., cells and proteins) in silk fibers without damage presents a significant challenge due to the lack of mild and efficient methods. Here, we report the development of a microfluidic chip-based method for preparation of meter-long silk fibroin (SF) hydrogel fibers by mimicking the silkworm-spinning process. For the spinning of SF fibers, alginate was used as a sericin-like material to induce SF phase separation and entrap liquid SFs, making it possible to shape the outline of SF-based fibers under mild physicochemical conditions. L929 fibroblasts were encapsulated in the fibric hydrogel and displayed excellent viability. Cell-laden SF fibric hydrogels prepared using our method offer a new type of SF-based biomedical device with potential utility in biomedicine.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 136-713, Republic of Korea
| | - DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea.
| | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea.
| | - JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea.
| | - Jinho Hyun
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Sang-Hoon Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 136-713, Republic of Korea and KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
49
|
Zuo Y, He X, Yang Y, Wei D, Sun J, Zhong M, Xie R, Fan H, Zhang X. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomater 2016; 38:153-62. [PMID: 27130274 DOI: 10.1016/j.actbio.2016.04.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Microfluidic-based fiber system displays great potential in reconstructing naturally complex tissues. In these systems, fabrication of the basic fiber is a significant factor in ensuring a functional construction. The fiber should possess the strong mechanical rigidity for assembly, predefined microenvironment for cell spatial distribution and high biocompatibility for cell functional expression. Herein we presented a composite material by the combination of methacrylated gelatin (GelMA) and alginate for fiber engineering with capillary microfluidic device. Being regulated by GelMA incorporation, the composite hydrogels exhibited higher mechanical moduli, better stretching performance, and lower swelling compared to pure alginate one. On the basis of the composite material and capillary microfluidic device, we constructed the double-layer hollow microfibers to simulate complex tissues. The microfibers could be precisely controlled in size and multi-layered structure by varying flow rates and outlet diameter, and it showed satisfied application in woven-structure assembly. As an example to mimic a functional tissue, a biomimetic osteon-like structure was fabricated by encapsulating human umbilical vascular endothelial cells (HUVECs) in middle layer to imitate vascular vessel and human osteoblast-like cells (MG63) in the outer layer to act role of bone. During the incubation period, both MG63 and HUVECs exhibited not only a robust growth, but also up-regulated gene expression. These results demonstrated this microfluidic-based composite microfibers system is a promising alternative in complex tissue regeneration. STATEMENT OF SIGNIFICANCE Cell-laden microfibers based on microfluidic device is attracting interest for reconstructing naturally complex tissues. One shortage is the lack of suitable materials which satisfy microfluidic fabrication and cell biofunctional survival. This study reports the first combination of alginate-GelMA composite and capillary-based microfluidic technology. The composite materials possess high mechanical properties for fabrication and assembly, and tunable environment for cell spatial encapsulation. Significantly, the engineered double-layer hollow microfiber with osteon-like structure showed enhanced cellular bioactivity and realized initially functional establishment. This microfluidic-based composite microfiber not only explores a competitive candidate in complex tissues reconstruction, but also expands the biological application of microfluidic technology. This developing interdisciplinary area should be widely interested to the readers of biofabrication, biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Yicong Zuo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoheng He
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - You Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Meiling Zhong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
50
|
Mun CH, Hwang JY, Lee SH. Microfluidic spinning of the fibrous alginate scaffolds for modulation of the degradation profile. Tissue Eng Regen Med 2016; 13:140-148. [PMID: 30603393 DOI: 10.1007/s13770-016-9048-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
In tissue engineering, alginate has been an attractive material due to its biocompatibility and ability to form hydrogels, unless its uncontrollable degradation could be an undesirable feature. Here, we developed a simple and easy method to tune the degradation profile of the fibrous alginate scaffolds by the microfluidic wet spinning techniques, according with the use of isopropyl alcohol for dense packing of alginate chains in the microfiber production and the increase of crosslinking with Ca2+ ion. The degradation profiling was analyzed by mass losses, swelling ratios, and also observation of the morphologic changes. The results demonstrated that high packing density might be provided by self-aggregation of polymer chains through high dipole interactions between sheath and core fluids and that the increase of crosslinking rates could make degradation of alginate scaffold controllable. We suggest that the tunable degradation of the alginate fibrous scaffolds may expand its utilities for biomedical applications such as drug delivery, in vitro cell culture, wound healing, tissue engineering and regenerative medicine. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-9048-7 and is accessible for authorized users.
Collapse
Affiliation(s)
- Cho Hay Mun
- 1Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Korea
| | - Ji-Young Hwang
- 1Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Korea
| | - Sang-Hoon Lee
- 1Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Korea.,2Department of Bio-convergence Engineering, College of Health Science, Korea University, Seoul, Korea.,3KU-KIST Graduate School of Converging Sciences & Technology, Korea University, Seoul, Korea
| |
Collapse
|