1
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Bardea A, Cohen A, Axelevitch A, Patolsky F. A Flexible Organomagnetic Single-Layer Composite Film with Built-In Multistimuli Responsivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60686-60698. [PMID: 39465549 DOI: 10.1021/acsami.4c14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Materials possessing multiple properties and functionalities, that can be controlled or modulated by external stimuli, are a central focus of current research in materials sciences due to their potential to significantly enhance various future technological applications. Herein, we report a significant advancement in this field through the development of a smart, multifunctional organomagnetic composite material. By utilizing a thin layer of polydimethylsiloxane (PDMS) and polypyrrole (PPy) precursors, doped with nickel nanoparticles (NiNPs), we have created an innovative organomagnetic, PDMS/PPy/NiNPs (PPN), single-layer composite film that displays multistimuli responsivity. The study presents the first demonstration of a multifunctional flexible, three-component film structure integrating the structural and flexible PDMS component, together with a conductive polymer component and metal-based nanoparticles into a single-layer design, which displays enhanced and unprecedented responsivity properties against multiple different stimuli. Unlike typical stacked multilayered structures, that exhibit one or two functionalities at most, this novel configuration exhibits multiple functionalities, including magnetoresistance, mechanical stress response, piezoresistivity, and temperature change sensitivity. The as-prepared film demonstrates notable magnetoresistance responsivity, with a relative electrical resistance, ΔR/R0, changing under a weak magnetic field and under ambient conditions. The significance of our study lies in the film's versatility, stability, and sensitivity, especially within the physiological temperature range, making it highly relevant for future biomedical applications. Furthemore, the film's sensitivity to mechanical deformation reveals an impressive piezoresistance behavior. Unlike existing multilayer architectures of higher complexity, our single-layer thin film offers a simpler, more flexible, and reliable solution with a broad range of stimuli-sensing capabilities. The significance of this novel multiresponsive composite material is underscored by the growing demand for advanced materials in biomedical devices, magnetic switches, sensors, electronic skin, transistors, and organic spintronic devices. These promising organomagnetic self-standing layers provide a robust platform for future technological innovations.
Collapse
Affiliation(s)
- Amos Bardea
- Faculty of Engineering, Holon Institute of Technology (HIT), 52 Golomb Street, P.O. Box 305, Holon 5810201, Israel
| | - Adam Cohen
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexander Axelevitch
- Faculty of Engineering, Holon Institute of Technology (HIT), 52 Golomb Street, P.O. Box 305, Holon 5810201, Israel
| | - Fernando Patolsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Li S, Wu Y, Asghar W, Li F, Zhang Y, He Z, Liu J, Wang Y, Liao M, Shang J, Ren L, Du Y, Makarov D, Liu Y, Li R. Wearable Magnetic Field Sensor with Low Detection Limit and Wide Operation Range for Electronic Skin Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304525. [PMID: 38037314 PMCID: PMC11462294 DOI: 10.1002/advs.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Flexible electronic devices extended abilities of humans to perceive their environment conveniently and comfortably. Among them, flexible magnetic field sensors are crucial to detect changes in the external magnetic field. State-of-the-art flexible magnetoelectronics do not exhibit low detection limit and large working range simultaneously, which limits their application potential. Herein, a flexible magnetic field sensor possessing a low detection limit of 22 nT and wide sensing range from 22 nT up to 400 mT is reported. With the detection range of seven orders of magnitude in magnetic field sensor constitutes at least one order of magnitude improvement over current flexible magnetic field sensor technologies. The sensor is designed as a cantilever beam structure accommodating a flexible permanent magnetic composite and an amorphous magnetic wire enabling sensitivity to low magnetic fields. To detect high fields, the anisotropy of the giant magnetoimpedance effect of amorphous magnetic wires to the magnetic field direction is explored. Benefiting from mechanical flexibility of sensor and its broad detection range, its application potential for smart wearables targeting geomagnetic navigation, touchless interactivity, rehabilitation appliances, and safety interfaces providing warnings of exposure to high magnetic fields are explored.
Collapse
Affiliation(s)
- Shengbin Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Waqas Asghar
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Mechanical Engineering DepartmentUniversity of Engineering and Technology TaxilaTaxila47050Pakistan
| | - Fali Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ye Zhang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Zidong He
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuwei Wang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Meiyong Liao
- National Institute for Materials ScienceTsukubaIbaraki305‐0044Japan
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of TechnologyWuhan430070P. R. China
| | - Yi Du
- School of PhysicsBeihang UniversityBeijing100191P. R. China
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 40001328DresdenGermany
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Run‐Wei Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
4
|
Pan W, Ao Y, Zhou P, Fetisov L, Fetisov Y, Zhang T, Qi Y. A Flexible Magnetic Field Sensor Based on PZT/CFO Bilayer via van der Waals Oxide Heteroepitaxy. SENSORS (BASEL, SWITZERLAND) 2023; 23:9147. [PMID: 38005533 PMCID: PMC10674278 DOI: 10.3390/s23229147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Magnetoelectric (ME) magnetic field sensors utilize ME effects in ferroelectric ferromagnetic layered heterostructures to convert magnetic signals into electrical signals. However, the substrate clamping effect greatly limits the design and fabrication of ME composites with high ME coefficients. To reduce the clamping effect and improve the ME response, a flexible ME sensor based on PbZr0.2Ti0.8O3 (PZT)/CoFe2O4 (CFO) ME bilayered heterostructure was deposited on mica substrates via van der Waals oxide heteroepitaxy. A saturated magnetization of 114.5 emu/cm3 was observed in the bilayers. The flexible sensor exhibited a strong ME coefficient of 6.12 V/cm·Oe. The local ME coupling has been confirmed by the evolution of the ferroelectric domain under applied magnetic fields. The flexible ME sensor possessed a stable response with high sensitivity to both AC and DC weak magnetic fields. A high linearity of 0.9988 and sensitivity of 72.65 mV/Oe of the ME sensor were obtained under flat states. The ME output and limit-of-detection under different bending states showed an inferior trend as the bending radius increased. A flexible proximity sensor has been demonstrated, indicating a promising avenue for wearable device applications and significantly broadening the potential application of the flexible ME magnetic field sensors.
Collapse
Affiliation(s)
- Weijuan Pan
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Yuan Ao
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Peng Zhou
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Leonid Fetisov
- Research-Education Center “Magnetoelectric Materials and Devices”, MIREA—Russian Technological University, Moscow 119454, Russia; (L.F.); (Y.F.)
| | - Yuri Fetisov
- Research-Education Center “Magnetoelectric Materials and Devices”, MIREA—Russian Technological University, Moscow 119454, Russia; (L.F.); (Y.F.)
| | - Tianjin Zhang
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Yajun Qi
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| |
Collapse
|
5
|
Han Y, Cao Y, Zhou J, Yao Y, Wu X, Bolisetty S, Diener M, Handschin S, Lu C, Mezzenga R. Interfacial Electrostatic Self-Assembly of Amyloid Fibrils into Multifunctional Protein Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206867. [PMID: 36698306 PMCID: PMC10037951 DOI: 10.1002/advs.202206867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Amyloid fibrils have generated steadily increasing traction in the development of natural and artificial materials. However, it remains a challenge to construct bulk amyloid films directly from amyloid fibrils due to their intrinsic brittleness. Here, a facile and general methodology to fabricate macroscopic and tunable amyloid films via fast electrostatic self-assembly of amyloid fibrils at the air-water interface is introduced. Benefiting from the excellent templating properties of amyloid fibrils for nanoparticles (such as conductive carbon nanotubes or magnetic Fe3 O4 nanoparticles), multifunctional amyloid films with tunable properties are constructed. As proof-of-concept demonstrations, a magnetically oriented soft robotic swimmer with well-confined movement trajectory is prepared. In addition, a smart magnetic sensor with high sensitivity to external magnetic fields is fabricated via the combination of the conductive and magnetic amyloid films. This strategy provides a convenient, efficient, and controllable approach for the preparation of amyloid-based multifunctional films and related smart devices.
Collapse
Affiliation(s)
- Yangyang Han
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Yiping Cao
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Jiangtao Zhou
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Yang Yao
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Xiaodong Wu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
| | - Sreenath Bolisetty
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
- BluAct Technologies GmbHZurich8092Switzerland
| | - Michael Diener
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Stephan Handschin
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| | - Canhui Lu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversitySichuan610065P. R. China
| | - Raffaele Mezzenga
- ETH ZurichDepartment of Health Science and TechnologySchmelzbergstrasse 9, LFO E23Zurich8092Switzerland
| |
Collapse
|
6
|
Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee SW, Wang G, Park C. Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS NANO 2021; 15:20116-20126. [PMID: 34793113 DOI: 10.1021/acsnano.1c08005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extrasensory neuromorphic devices that can recognize, memorize, and learn stimuli imperceptible to human beings are of considerable interest in interactive intelligent electronics research. This study presents an artificially intelligent magnetoreceptive synapse inspired by the magnetocognitive ability used by birds for navigation and orientation. The proposed synaptic platform is based on arrays of ferroelectric field-effect transistors with air-suspended magneto-interactive top-gates. A suspended gate of an elastomeric composite with superparamagnetic particles laminated with an electrically conductive polymer is mechanically deformed under a magnetic field, facilitating control of the magnetic-field-dependent contact area of the suspended gate with an underlying ferroelectric layer. The remanent polarization of the ferroelectric layer is electrically programmed with the deformed suspended gate, resulting in analog conductance modulation as a function of the magnitude, number, and time interval of the input magnetic pulses. The proposed extrasensory magnetoreceptive synapse may be used as an artificially intelligent synaptic compass that facilitates barrier-adaptable navigation and mapping of a moving object.
Collapse
Affiliation(s)
- Youngwoo Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseok Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghoon Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunhaeng Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Gao HL, Wang ZY, Cui C, Bao JZ, Zhu YB, Xia J, Wen SM, Wu HA, Yu SH. A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102724. [PMID: 34387379 DOI: 10.1002/adma.202102724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon materials demonstrate extensive applications for their attractive characteristics. Mechanical flexibility is an essential property guaranteeing their durability. After decades of research efforts, compressive brittleness of porous carbon materials is well resolved. However, reversible stretchability remains challenging to achieve due to the intrinsically weak connections and fragile joints of the porous carbon networks. Herein, it is presented that a porous all-carbon material achieving both elastic compressibility and stretchability at large strain from -80% to 80% can be obtained when a unique long-range lamellar multi-arch microstructure is introduced. Impressively, the porous all-carbon material can maintain reliable structural robustness and durability under loading condition of cyclic compressing-stretching process, similar to a real metallic spring. The unique performance renders it as a promising platform for making smart vibration and magnetism sensors, even capable of operating at extreme temperatures. Furthermore, this study provides valuable insights for creating highly stretchable and compressible porous materials from other neat inorganic components for diverse applications in future.
Collapse
Affiliation(s)
- Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ze-Yu Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Zheng Bao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shao-Meng Wen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Zighem F, Faurie D. A review on nanostructured thin films on flexible substrates: links between strains and magnetic properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233002. [PMID: 33973532 DOI: 10.1088/1361-648x/abe96c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
This paper provides a topical review of work on systems based on magnetic nanostructured thin films on polymer substrates. This topic has indeed experienced a significant growth in the last ten years. Several studies show a strong potential of these systems for a number of applications requiring functionalities on non-planar surfaces. However, the deformations necessary for this type of applications are likely to modify their magnetic properties, and the relationships between strain fields, potential damages and functional properties must be well understood. This review focuses both on the development of techniques dedicated to this research, on the synthesis of the experimental results obtained over the last ten years and on the perspectives related to stretchable or flexible magnetoelectric systems. In particular, the article focuses on the links between magnetic behavior and the strain field developing during the whole history of these systems (elaboration, reversible and irreversible loading).
Collapse
Affiliation(s)
- F Zighem
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - D Faurie
- LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| |
Collapse
|
9
|
Cao W, Yin S, Plank M, Chumakov A, Opel M, Chen W, Kreuzer LP, Heger JE, Gallei M, Brett CJ, Schwartzkopf M, Eliseev AA, Anokhin EO, Trusov LA, Roth SV, Müller-Buschbaum P. Spray-Deposited Anisotropic Ferromagnetic Hybrid Polymer Films of PS- b-PMMA and Strontium Hexaferrite Magnetic Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1592-1602. [PMID: 33355441 DOI: 10.1021/acsami.0c19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors.
Collapse
Affiliation(s)
- Wei Cao
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Shanshan Yin
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martina Plank
- Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andrei Chumakov
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Matthias Opel
- Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Walther-Meissner-Straße 8, 85748 Garching, Germany
| | - Wei Chen
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Lucas P Kreuzer
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Julian E Heger
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Calvin J Brett
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Department of Engineering Mechanics, KTH Royal Institute of Technology, Teknikringen 8, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | - Artem A Eliseev
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Evgeny O Anokhin
- Department of Materials Science, Moscow State University, 119991 Moscow, Russia
| | - Lev A Trusov
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
10
|
Lee SW, Baek S, Park SW, Koo M, Kim EH, Lee S, Jin W, Kang H, Park C, Kim G, Shin H, Shim W, Yang S, Ahn JH, Park C. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat Commun 2020; 11:6072. [PMID: 33247086 PMCID: PMC7695719 DOI: 10.1038/s41467-020-19523-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Development of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce non-volatile and rewritable magnetic field-dependent display. By constructing mechanically flexible arrays of magneto-interactive displays, a spin-patchable and pixelated platform is realised. The magnetic field varying along the z-axis enables the 3D motion tracking (monitoring and memorisation) on 2D pixelated display. This 3D motion tracking display is successfully used as a non-destructive surgery-path guiding, wherein a pathway for a surgical robotic arm with a magnetic probe is visualised and recorded on a display patched on the abdominal skin of a rat, thereby helping the robotic arm to find an optimal pathway. Designing human-interactive displays enabling the simultaneous sensing, visualization, and memorization of a magnetic field remains a challenge. Here, the authors present a skin-patchable magneto-interactive electroluminescent display by employing a magnetic field-dependent conductive gate, thereby enabling 3D motion tracking.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Soyeon Baek
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sung-Won Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wookyeong Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Hansol Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Heechang Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Jong-Hyun Ahn
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
11
|
Patil BB, Takeda Y, Singh S, Wang T, Singh A, Do TT, Singh SP, Tokito S, Pandey AK, Sonar P. Electrode and dielectric layer interface device engineering study using furan flanked diketopyrrolopyrrole-dithienothiophene polymer based organic transistors. Sci Rep 2020; 10:19989. [PMID: 33203904 PMCID: PMC7673034 DOI: 10.1038/s41598-020-76962-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
We successfully demonstrated a detailed and systematic enhancement of organic field effect transistors (OFETs) performance using dithienothiophene (DTT) and furan-flanked diketopyrrolopyrrole based donor-acceptor conjugated polymer semiconductor namely PDPPF-DTT as an active semiconductor. The self-assembled monolayers (SAMs) treatments at interface junctions of the semiconductor-dielectric and at the semiconductor-metal electrodes has been implemented using bottom gate bottom contact device geometry. Due to SAM treatment at the interface using tailored approach, the significant reduction of threshold voltage (Vth) from - 15.42 to + 5.74 V has been observed. In addition to tuning effect of Vth, simultaneously charge carrier mobility (µFET) has been also enhanced the from 9.94 × 10-4 cm2/Vs to 0.18 cm2/Vs. In order to calculate the trap density in each OFET device, the hysteresis in transfer characteristics has been studied in detail for bare and SAM treated devices. Higher trap density in Penta-fluoro-benzene-thiol (PFBT) treated OFET devices enhances the gate field, which in turn controls the charge carrier density in the channel, and hence gives lower Vth = + 5.74 V. Also, PFBT treatment enhances the trapped interface electrons, which helps to enhance the mobility in this OFET architecture. The overall effect has led to possibility of reduction in the Vth with simultaneous enhancements of µFET in OFETs, following systematic device engineering methodology.
Collapse
Affiliation(s)
- Basanagouda B Patil
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Subhash Singh
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Tony Wang
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Amandeep Singh
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thu Trang Do
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Samarendra P Singh
- Department of Physics, School of Natural Sciences, Shiv Nadar University (SNU), Gautam Buddha Nagar, Uttar Pradesh, 201307, India
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan.
| | - Ajay K Pandey
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
12
|
Weng Z, Gillin WP, Kreouzis T. Fitting the magnetoresponses of the OLED using polaron pair model to obtain spin-pair dynamics and local hyperfine fields. Sci Rep 2020; 10:16806. [PMID: 33033322 PMCID: PMC7544898 DOI: 10.1038/s41598-020-73953-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Organic light-emitting diode (OLED) displays a sign reversal magnetic field effect (MFE) when the applied magnetic field range is reduced to the sub-milliTesla range and the Polaron Pair Model has been successful in explaining the ultra-small MFE. Here, we obtained high resolution (~ 1 µT) magnetoconductance (MC) and magnetoelectroluminescence (MEL) of a tris-(8-hydroxyquinoline)aluminium-based (Alq3) OLED within the magnetic field range of ± 500 µT with the earth magnetic field components cancelled. A clear "W" shaped MC with a dip position of ± 250 µT and a monotonic MEL were observed. We demonstrate a fitting technique using the polaron pair model to the experimentally obtained MC and MEL. The fitting process extracts physically significant parameters within a working OLED: the local hyperfine fields for electron and hole in Alq3: Bhf1 = (0.63 ± 0.01) mT (electron), Bhf2 = (0.24 ± 0.01) mT (hole); the separation rates for singlet and triplet polaron pairs: kS,s = (44.59 ± 0.01) MHz, kT,s = (43.97 ± 0.01) MHz, and the recombination rate for singlet polaron pair kS,r = (88 ± 6) MHz. The yielded parameters are highly reproducible across different OLEDs and are in broad agreement with density functional theory (DFT) calculations and reported experimental observations. This demonstrates the feasibility of this fitting technique to approach any working OLED for obtaining significant microscopic parameters.
Collapse
Affiliation(s)
- Zhichao Weng
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - William P Gillin
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Theo Kreouzis
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
13
|
Nguyen AHT, Nguyen MC, Cho S, Nguyen AD, Kim H, Seok Y, Yoon J, Choi R. Double-gate thin film transistor with suspended-gate applicable to tactile force sensor. NANO CONVERGENCE 2020; 7:31. [PMID: 32930906 PMCID: PMC7492326 DOI: 10.1186/s40580-020-00240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/28/2020] [Indexed: 05/23/2023]
Abstract
This paper presents a straightforward, low-cost, and effective integration process for the fabrication of membrane gate thin film transistors (TFTs) with an air gap. The membrane gate TFT with an air gap can be used as the highly sensitive tactile force sensor. The suspended membrane gate with an air gap as the insulator layer is formed by multiple photolithography steps and photoresist sacrificial layers. The viscosity of the photoresist and the spin speed was used to modify the thickness of the air gap during the coating process. The tactile force was measured by monitoring the drain current of the TFT as the force changed the thickness of the air gap. The sensitivity of the devices was enhanced by an optimal gate size and low Young's modulus of the gate material. This simple process has the potential for the production of small, versatile, and highly sensitive sensors.
Collapse
Affiliation(s)
- An Hoang-Thuy Nguyen
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Manh-Cuong Nguyen
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Seongyong Cho
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Anh-Duy Nguyen
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Hyewon Kim
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Yeongcheol Seok
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Jiyeon Yoon
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Rino Choi
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
14
|
Yang B, Lu Y, Jiang D, Li Z, Zeng Y, Zhang S, Ye Y, Liu Z, Ou Q, Wang Y, Dai S, Yi Y, Huang J. Bioinspired Multifunctional Organic Transistors Based on Natural Chlorophyll/Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001227. [PMID: 32500583 DOI: 10.1002/adma.202001227] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Inspired by the photosynthesis process of natural plants, multifunctional transistors based on natural biomaterial chlorophyll and organic semiconductors (OSCs) are reported. Functions as photodetectors (PDs) and light-stimulated synaptic transistors (LSSTs) can be switched by gate voltage. As PDs, the devices exhibit ultrahigh photoresponsivity up to 2 × 106 A W-1 , detectivity of 6 × 1015 Jones, and Iphoto /Idark ratio of 2.7 × 106 , which make them among the best reported organic PDs. As LSSTs, important synaptic functions similar to biological synapses are demonstrated, together with a dynamic learning and forgetting process and image-processing function. Significantly, benefiting from the ultrahigh photosensitivity of chlorophyll, the lowest operating voltage and energy consumption of the LSSTs can be 10-5 V and 0.25 fJ, respectively. The devices also exhibit high flexibility and long-term air stability. This work provides a new guide for developing organic electronics based on natural biomaterials.
Collapse
Affiliation(s)
- Ben Yang
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yang Lu
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Donghan Jiang
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhenchao Li
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yan Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Beijing, 100190, P. R. China
| | - Shen Zhang
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yi Ye
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhen Liu
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Qingqing Ou
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yan Wang
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Beijing, 100190, P. R. China
| | - Jia Huang
- Putuo District People's Hospital, School of Material Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Interdisciplinary Materials Research Center, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
15
|
Mandal S, Mandal A, Jana G, Mallik S, Roy S, Ghosh A, Chattaraj PK, Goswami DK. Low Operating Voltage Organic Field-Effect Transistors with Gelatin as a Moisture-Induced Ionic Dielectric Layer: The Issues of High Carrier Mobility. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19727-19736. [PMID: 32233358 DOI: 10.1021/acsami.0c01499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have developed low-voltage (<2 V) flexible organic field-effect transistors (OFETs) with high carrier mobility using gelatin as a moisture-induced ionic gate dielectric system. Ionic concentration in the gelatin layer depends on the relative humidity condition during the measurement. The capacitance of the dielectric layer used for the calculation of field-effect carrier mobility for the OFETs crucially depends on the frequency at which the capacitance was measured. The results of frequency-dependent gate capacitance together with the anomalous bias-stress effect have been used to determine the exact frequency at which the carrier mobility should be calculated. The observed carrier mobility of the devices is 0.33 cm2/Vs with the capacitance measured at frequency 20 mHz. It can be overestimated to 14 cm2/Vs with the capacitance measured at 100 kHz. The devices can be used as highly sensitive humidity sensors. About three orders of magnitude variation in device current have been observed on the changes in relative humidity (RH) levels from 10 to 80%. The devices show a fast response with a response and recovery times of ∼100 and ∼110 ms, respectively. The devices are flexible up to a 5 mm bending radius.
Collapse
Affiliation(s)
- Suman Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajoy Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourhari Jana
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samik Mallik
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharapur 721302, India
| | - Satyajit Roy
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arnab Ghosh
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipak K Goswami
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharapur 721302, India
| |
Collapse
|
16
|
Chen H, Zhang W, Li M, He G, Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem Rev 2020; 120:2879-2949. [PMID: 32078296 DOI: 10.1021/acs.chemrev.9b00532] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weining Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mingliang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Gen He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Di CA, Shen H, Zhang F, Zhu D. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport. Acc Chem Res 2019; 52:1113-1124. [PMID: 30908012 DOI: 10.1021/acs.accounts.9b00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organic field-effect transistors (OFETs) are promising candidates for many electronic applications not only because of the intrinsic features of organic semiconductors in mechanical flexibility and solution processability but also owing to their multifunctionalities promised by combined signal switching and transduction properties. In contrast to rapid developments of high performance devices, the construction of multifunctional OFETs remains challenging. A key issue is fine-tuning the charge transport by modulating electric fields that are coupled with various external stimuli. Given that the charge transport is determined by complicated factors involving material and device engineering, the development of effective strategies to manipulate charge transport is highly desired toward state-of-the-art multifunctional OFETs. In this Account, we present our recent progress on device-engineered OFETs for sensing applications and thermoelectric studies of organic semiconductors. The interactions between organic semiconductors and the target analyte determine the performance of chemical sensors based on OFETs. We introduced gas receptors and in situ tailored molecular antenna on the surface of ultrathin active layers. The engineered interfaces enable direct and specific semiconductor-analyte interactions, as demonstrated in developed chemical sensors and biosensors with prominent sensitivity and good selectivity. In comparison with chemical stimuli, many physical stimuli such as pressure typically possess a limit effect on the charge transport properties of organic semiconductors. By utilizing the suspended-gate geometry, the carrier concentration in a conductive channel can be controlled quantitatively by the pressure dominated changes in the capacitance of an air dielectric layer, allowing for ultrasensitive pressure detection in a unique manner. More importantly, the transduced current can be further processed by a synaptic OFET, in which the proton/electron coupling interfaces contribute to the dynamic modulation of carrier concentration, thus mimicking biological synapses. The integrated pressure sensor and synaptic OFETs, namely, the dual-organic-transistor-based tactile-perception element, has exhibited promising applications in artificial intelligence elements. Aiming at revealing thermoelectric (TE) properties of organic semiconductors, we also investigated field-modulated TE performance of several high-mobility semiconductors by varying the driving electric field to the temperature gradient. This has been confirmed to offer a strategy to accelerate the search for promising TE materials from well-developed organic semiconductors. By tuning the charge transport process in the device, the functional modulation of OFETs has experienced significant progress in the preceding years. The exploration of new ways to create OFETs with more fascinating functionalities is still full of opportunities to obtain greater benefit from organic transistors.
Collapse
Affiliation(s)
- Chong-an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongguang Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjiao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Hu M, Butt HJ, Landfester K, Bannwarth MB, Wooh S, Thérien-Aubin H. Shaping the Assembly of Superparamagnetic Nanoparticles. ACS NANO 2019; 13:3015-3022. [PMID: 30802035 PMCID: PMC6728097 DOI: 10.1021/acsnano.8b07783] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Superparamagnetism exists only in nanocrystals, and to endow micro/macro-materials with superparamagnetism, superparamagnetic nanoparticles have to be assembled into complex materials. Most techniques currently used to produce such assemblies are inefficient in terms of time and material. Herein, we used evaporation-guided assembly to produce superparamagnetic supraparticles by drying ferrofluid droplets on a superamphiphobic substrate in the presence of an external magnetic field. By tuning the concentration of ferrofluid droplets and controlling the magnetic field, barrel-like, cone-like, and two-tower-like supraparticles were obtained. These assembled supraparticles preserved the superparamagnetism of the original nanoparticles. Moreover, other colloids can easily be integrated into the ferrofluid suspension to produce, by co-assembly, anisotropic binary supraparticles with additional functions. Additionally, the magnetic and anisotropic nature of the resulting supraparticles was harnessed to prepare magnetically actuable microswimmers.
Collapse
Affiliation(s)
- Minghan Hu
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Markus B. Bannwarth
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sanghyuk Wooh
- School of Chemical
Engineering and Materials Science, Chung-Ang
University, Seoul 06974, Republic of Korea
| | | |
Collapse
|
19
|
Bica I, Anitas EM, Chirigiu L, Daniela C, Chirigiu LME. Hybrid magnetorheological suspension: effects of magnetic field on the relative dielectric permittivity and viscosity. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Liu Z, Qi D, Leow WR, Yu J, Xiloyannnis M, Cappello L, Liu Y, Zhu B, Jiang Y, Chen G, Masia L, Liedberg B, Chen X. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707285. [PMID: 29774617 DOI: 10.1002/adma.201707285] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/09/2018] [Indexed: 05/21/2023]
Abstract
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Michele Xiloyannnis
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leonardo Cappello
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bowen Zhu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lorenzo Masia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Liedberg
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Cai SY, Chang CH, Lin HI, Huang YF, Lin WJ, Lin SY, Liou YR, Shen TL, Huang YH, Tsao PW, Tzou CY, Liao YM, Chen YF. Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17393-17400. [PMID: 29706071 DOI: 10.1021/acsami.8b04950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human-machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems.
Collapse
Affiliation(s)
- Shu-Yi Cai
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Cheng-Han Chang
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Hung-I Lin
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Yuan-Fu Huang
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Wei-Ju Lin
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Shih-Yao Lin
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Yi-Rou Liou
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Tien-Lin Shen
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Yen-Hsiang Huang
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Po-Wei Tsao
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Chen-Yang Tzou
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Yu-Ming Liao
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| | - Yang-Fang Chen
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
22
|
Jang HJ, Lee T, Song J, Russell L, Li H, Dailey J, Searson PC, Katz HE. Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16233-16237. [PMID: 29701946 PMCID: PMC6026499 DOI: 10.1021/acsami.7b18855] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A field-effect transistor-based cortisol sensor was demonstrated in physiological conditions. An antibody-embedded polymer on the remote gate was proposed to overcome the Debye length issue (λD). The sensing membrane was made by linking poly(styrene- co-methacrylic acid) (PSMA) with anticortisol before coating the modified polymer on the remote gate. The embedded receptor in the polymer showed sensitivity from 10 fg/mL to 10 ng/mL for cortisol and a limit of detection (LOD) of 1 pg/mL in 1× PBS where λD is 0.2 nm. A LOD of 1 ng/mL was shown in lightly buffered artificial sweat. Finally, a sandwich ELISA confirmed the antibody binding activity of antibody-embedded PSMA.
Collapse
Affiliation(s)
- Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Taein Lee
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Luisa Russell
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Peter C. Searson
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
| | - Howard E. Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2608, United States
- Corresponding Author: (H.E.K.)
| |
Collapse
|
23
|
Huang J, Zhang G, Zhao X, Wu X, Liu D, Chu Y, Katz HE. Direct Detection of Dilute Solid Chemicals with Responsive Lateral Organic Diodes. J Am Chem Soc 2017; 139:12366-12369. [PMID: 28837328 DOI: 10.1021/jacs.7b06223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic field-effect transistors (OFETs) have emerged as promising sensors targeting chemical analytes in vapors and liquids. However, the direct detection of solid chemicals by OFETs has not been achieved. Here for the first time, we describe the direct detection of solid chemical analytes by organic electronics. An organic diode structure based on a horizontal side-by-side p-n junction was adopted and shown to be superior to OFETs for this purpose. The diodes showed more than 40% current decrease upon exposure to 1 ppm melamine powders. The estimated detection limit to melamine can potentially reach the ppb range. This is the first demonstration of an electronic signal from an interaction between a solid and an organic p-n junction directly, which suggests that our lateral organic diodes are excellent platforms for the development of future sensors when direct detection of solid chemicals is needed. The approach developed here is general and can be extended to chemical sensors targeting various analytes, opening unprecedented opportunities for the development of low-cost and high-performance solid chemical sensors.
Collapse
Affiliation(s)
- Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , Shanghai 201804, China
| | - Guoqian Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , Shanghai 201804, China
| | - Xingang Zhao
- Department of Material Science and Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Xiaohan Wu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , Shanghai 201804, China
| | - Dapeng Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , Shanghai 201804, China
| | - Yingli Chu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , Shanghai 201804, China
| | - Howard E Katz
- Department of Material Science and Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Song J, Dailey J, Li H, Jang HJ, Zhang P, Wang JTH, Everett AD, Katz HE. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1606506. [PMID: 29606930 PMCID: PMC5873605 DOI: 10.1002/adfm.201606506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (Vg). The sensitivity increased after we decreased Vg from -5 V to -2 V, because the lower Vg is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.
Collapse
Affiliation(s)
- Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pengfei Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jeff Tza-Huei Wang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Allen D Everett
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States; Johns Hopkins Medical Institutes, Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, United States
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Pieralisi M, Di Mattia V, Petrini V, De Leo A, Manfredi G, Russo P, Scalise L, Cerri G. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device). SENSORS 2017; 17:s17020381. [PMID: 28212348 PMCID: PMC5335952 DOI: 10.3390/s17020381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 11/16/2022]
Abstract
Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.
Collapse
Affiliation(s)
- Marco Pieralisi
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Valentina Di Mattia
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Valerio Petrini
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Alfredo De Leo
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Giovanni Manfredi
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Paola Russo
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Lorenzo Scalise
- Department of Industrial Engineering and Mathematical Science, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| | - Graziano Cerri
- Department of Information Engineering, Universita' Politecnica delle Marche, 60121 Ancona, Italy.
| |
Collapse
|
26
|
Yang ZW, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang ZL. Tribotronic Transistor Array as an Active Tactile Sensing System. ACS NANO 2016; 10:10912-10920. [PMID: 28024389 DOI: 10.1021/acsnano.6b05507] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm2, the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.
Collapse
Affiliation(s)
- Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Limin Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Cunxin Lu
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Jian Chen
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Tao Zhou
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Zang Y, Huang D, Di CA, Zhu D. Device Engineered Organic Transistors for Flexible Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4549-4555. [PMID: 26833747 DOI: 10.1002/adma.201505034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Organic thin-film transistors (OFETs) represent a promising candidate for next-generation sensing applications because of the intrinsic advantages of organic semiconductors. The development of flexible sensing devices has received particular interest in the past few years. The recent efforts of developing OFETs for sensitive and specific flexible sensors are summarized from the standpoint of device engineering. The tuning of signal transduction and signal amplification are highlighted based on an overview of active-layer thickness modulation, functional receptor implantation and device geometry optimization.
Collapse
Affiliation(s)
- Yaping Zang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dazhen Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|