1
|
Wang K, Chen S, Bao G, Sun T, Zhang J, Chen D, Sun L, Han Z, Liu C, Wang Q. Biomechanics on Ultra-Sensitivity of Venus Flytrap's Micronewton Trigger Hairs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405544. [PMID: 39258595 PMCID: PMC11538643 DOI: 10.1002/advs.202405544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Numerous plants evolve ingeniously microcantilever-based hairs to ultra-sensitively detect out-of-plane quasi-static tactile loads, providing a natural blueprint for upgrading the industrial static mode microcantilever sensors, but how do the biological sensory hairs work mechanically? Here, the action potential-producing trigger hairs of carnivorous Venus flytraps (Dionaea muscipula) are investigated in detail from biomechanical perspective. Under tiny mechanical stimulation, the deformable trigger hair, composed of distal stiff lever and proximal flexible podium, will lead to rapid trap closure and prey capture. The multiple features determining the sensitivity such as conical morphology, multi-scale functional structures, kidney-shaped sensory cells, and combined deformation under tiny mechanical stimulation are comprehensively researched. Based on materials mechanics, finite element simulation, and bio-inspired original artificial sensors, it is verified that the omnidirectional ultra-sensitivity of trigger hair is attributed to the stiff-flexible coupling of material, the double stress concentration, the circular distribution of sensory cells, and the positive local buckling. Also, the balance strategy of slender hair between sensitivity and structural stability (i.e., avoiding disastrous collapse) is detailed revealed. The unique basic biomechanical mechanism underlying trigger hairs is essential for significantly enhancing the performance of the traditional industrial static mode microcantilever sensors, and ensure the stability of arbitrary load perception.
Collapse
Affiliation(s)
- Kejun Wang
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| | - Siyuan Chen
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| | - Guanyu Bao
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| | - Tao Sun
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130022P. R. China
| | - Junqiu Zhang
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130022P. R. China
| | - Daobing Chen
- The Institute of Technological ScienceWuhan UniversityWuhan430072P. R. China
| | - Lining Sun
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130022P. R. China
| | - Chao Liu
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| | - Qian Wang
- Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
2
|
Liu X, Li K, Qian S, Niu L, Chen W, Wu H, Song X, Zhang J, Bi X, Yu J, Hou X, He J, Chou X. A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications. MICROSYSTEMS & NANOENGINEERING 2024; 10:149. [PMID: 39428516 PMCID: PMC11491448 DOI: 10.1038/s41378-024-00749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 10/22/2024]
Abstract
Bionic tentacle sensors are important in various fields, including obstacle avoidance, human‒machine interfaces, and soft robotics. However, most traditional tentacle sensors are based on rigid substrates, resulting in difficulty in detecting multidirectional forces originating from the external environment, which limits their application in complex environments. Herein, we proposed a high-sensitivity flexible bionic tentacle sensors (FBTSs). Specifically, the FBTS featured an ultrahigh sensitivity of 37.6 N-1 and an ultralow detection limit of 2.4 mN, which benefited from the design of a whisker-like signal amplifier and crossbeam architecture. Moreover, the FBTS exhibited favorable linearity (R2 = 0.98) and remarkable durability (more than 5000 cycles). This was determined according to the improvement in the uniformity of the sensing layer through a high-shear dispersion process. In addition, the FBTS could accurately distinguish the direction of external stimuli, resulting in the FBTS achieving roughness recognition, wind speed detection and autonomous obstacle avoidance. In particular, the ability of autonomous obstacle avoidance was suitably demonstrated by leading a bionic rat through a maze with the FBTS. Notably, the proposed FBTS could be widely applied in tactile sensing, orientation perception, and obstacle avoidance.
Collapse
Affiliation(s)
- Xinyu Liu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Kunru Li
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Shuo Qian
- School of Software, North University of China, 030051, Taiyuan, China
| | - Lixin Niu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Wei Chen
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Hui Wu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaoguang Song
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Jie Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaoxue Bi
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Junbin Yu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaojuan Hou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China.
| | - Jian He
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China.
| | - Xiujian Chou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| |
Collapse
|
3
|
Wu XP, Luo XM, Chen HL, Man Y, Bai YY, Qin TZ, Zhang B, Zhang GP. Fatigue crack-based strain sensors achieving flow detection and motion monitoring for reconnaissance robot applications. MATERIALS HORIZONS 2024; 11:4207-4222. [PMID: 38915265 DOI: 10.1039/d4mh00419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Crack-based flexible strain sensors with ultra-high sensitivity under tiny strain are highly desired for environmental perception and motion detection of novel flexible and miniature robots. However, previously reported methods for fabricating crack patterns have often sacrificed the cyclic stability of the sensor, leading to a trade-off relationship between the sensitivity and the cyclic stability. Here, a universal and simple strategy based on fatigue loading with an ultra-large cumulative strain of up to ∼1.2 × 107%, rather than the traditionally quasi-static pre-overloading methods, is proposed to introduce channel cracks in the sensing layer without sacrificing the cyclic stability. The developed flexible strain sensors exhibit high strain-sensitivity (gauge factor = 5798) under tiny strain (< 3%), high cyclic stability (15 000 cycles) and a low strain detecting limit (0.02%). Furthermore, a leaf-like mechanosensor is developed using the fatigue crack-based strain sensor for the realization of multifunctional applications in environment perception and micro-motion detection. Brilliant airflow sensing performance with a wide sensing range (0.93-11.93 m s-1) and a fast response time (0.28 s) for amphibious applications is demonstrated. This work provides a new strategy for overcoming limits of crack-based flexible strain sensors and the developed leaf-like mechanosensor shows great application potential in miniature and flexible reconnaissance robots.
Collapse
Affiliation(s)
- Xu-Ping Wu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xue-Mei Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| | - Hong-Lei Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| | - Yi Man
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Yao-Yao Bai
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China
| | - Tian-Ze Qin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Bin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China
| | - Guang-Ping Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Chen C, Xu JL, Wang Q, Li XL, Xu FQ, Gao YC, Zhu YB, Wu HA, Liu JW. Biomimetic Multimodal Receptors for Comprehensive Artificial Human Somatosensory System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313228. [PMID: 38330391 DOI: 10.1002/adma.202313228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Electronic skin (e-skin) capable of acquiring environmental and physiological information has attracted interest for healthcare, robotics, and human-machine interaction. However, traditional 2D e-skin only allows for in-plane force sensing, which limits access to comprehensive stimulus feedback due to the lack of out-of-plane signal detection caused by its 3D structure. Here, a dimension-switchable bioinspired receptor is reported to achieve multimodal perception by exploiting film kirigami. It offers the detection of in-plane (pressure and bending) and out-of-plane (force and airflow) signals by dynamically inducing the opening and reclosing of sensing unit. The receptor's hygroscopic and thermoelectric properties enable the sensing of humidity and temperature. Meanwhile, the thermoelectric receptor can differentiate mechanical stimuli from temperature by the voltage. The development enables a wide range of sensory capabilities of traditional e-skin and expands the applications in real life.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie-Long Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Quan Wang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Lin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng-Qi Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu-Cheng Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yin-Bo Zhu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Su J, Zhang H, Li H, He K, Tu J, Zhang F, Liu Z, Lv Z, Cui Z, Li Y, Li J, Tang LZ, Chen X. Skin-Inspired Multi-Modal Mechanoreceptors for Dynamic Haptic Exploration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311549. [PMID: 38363810 DOI: 10.1002/adma.202311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Active sensing is a fundamental aspect of human and animal interactions with the environment, providing essential information about the hardness, texture, and tackiness of objects. This ability stems from the presence of diverse mechanoreceptors in the skin, capable of detecting a wide range of stimuli and from the sensorimotor control of biological mechanisms. In contrast, existing tactile sensors for robotic applications typically excel in identifying only limited types of information, lacking the versatility of biological mechanoreceptors and the requisite sensing strategies to extract tactile information proactively. Here, inspired by human haptic perception, a skin-inspired artificial 3D mechanoreceptor (SENS) capable of detecting multiple mechanical stimuli is developed to bridge sensing and action in a closed-loop sensorimotor system for dynamic haptic exploration. A tensor-based non-linear theoretical model is established to characterize the 3D deformation (e.g., tensile, compressive, and shear deformation) of SENS, providing guidance for the design and optimization of multimode sensing properties with high fidelity. Based on SENS, a closed-loop robotic system capable of recognizing objects with improved accuracy (≈96%) is further demonstrated. This dynamic haptic exploration approach shows promise for a wide range of applications such as autonomous learning, healthcare, and space and deep-sea exploration.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hang Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Haicheng Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Zhisheng Lv
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Zequn Cui
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiaofu Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leng Ze Tang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
6
|
Jiang Q, Leu K, Gong X, Wang F, Li R, Wang K, Zhu P, Zhao Y, Zang Y, Zhang R. High-Performance Airflow Sensors Based on Suspended Ultralong Carbon Nanotube Crossed Networks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597816 DOI: 10.1021/acsami.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Airflow sensors are in huge demand in many fields such as the aerospace industry, weather forecasting, environmental monitoring, chemical and biological engineering, health monitoring, wearable smart devices, etc. However, traditional airflow sensors can hardly meet the requirements of these applications in the aspects of sensitivity, response speed, detection threshold, detection range, and power consumption. Herein, this work reports high-performance airflow sensors based on suspended ultralong carbon nanotube (CNT) crossed networks (SCNT-CNs). The unique topologies of SCNT-CNs with abundant X junctions can fully exhibit the extraordinary intrinsic properties of ultralong CNTs and significantly improve the sensing performance and robustness of SCNT-CNs-based airflow sensors, which simultaneously achieved high sensitivity, fast response speed, low detection threshold, and wide detection range. Moreover, the capability for encapsulation also guaranteed the practicality of SCNT-CNs, enabling their applications in respiratory monitoring, flow rate display and transient response analysis. Simulations were used to unveil the sensing mechanisms of SCNT-CNs, showing that the piezoresistive responses were mainly attributed to the variation of junction resistances. This work shows that SCNT-CNs have many superiorities in the fabrication of advanced airflow sensors as well as other related applications.
Collapse
Affiliation(s)
- Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Khaixien Leu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingwang Gong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ping Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yonglu Zang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Jia J, Peng Y, Ke K, Liu ZY, Yang W. Achieving a Wide-Range Linear Piezoresistive Response in Electrowritten Soft-Hard Polymer Blends via Salami-Inspired Heterostructure Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7939-7949. [PMID: 38300761 DOI: 10.1021/acsami.3c18967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Flexible electronics capable of acquiring high-precision signals are in great demand for the development of the internet of things and intelligent artificial. However, it is currently a challenge to simultaneously achieve high signal linearity and sensitivity for stretchable resistive sensors over a wide strain range toward advanced application scenarios requiring high signal accuracy, e.g., sophisticated physiological signal discrimination and displacement measurement. Herein, a film strain sensor, which has an electrical and mechanical dual heterostructure, was fabricated via a direct near-field electrowriting and molecule-guided in situ growth of silver nanoparticles with different concentrations on high-modulus polystyrene domains and low-modulus styrene-butadiene copolymers with a salami-like morphology. Mechanism analyses from both theoretical and experimental investigations reveal that the salami-like heteromodulus microstructure regulates microcrack propagation routes, while the heteroconductivity changes the electron transport paths and amplifies the resistance increase during crack propagation. Therefore, the as-designed strain sensor shows a linear resistive response within ca. 70% strain with a gauge factor of 25, unveiling a simple and scalable strategy for trading off signal linearity and sensitivity over a wide strain range for the fabrication of high-performance linear strain sensors.
Collapse
Affiliation(s)
- Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Key Laboratory of Basalt Fiber and Composites of Sichuan Province, Dazhou, Sichuan 635756, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Key Laboratory of Basalt Fiber and Composites of Sichuan Province, Dazhou, Sichuan 635756, China
| |
Collapse
|
8
|
Wang M, Lin Z, Ma S, Yu Y, Chen B, Liang Y, Ren L. Composite Flexible Sensor Based on Bionic Microstructure to Simultaneously Monitor Pressure and Strain. Adv Healthc Mater 2023; 12:e2301005. [PMID: 37449945 DOI: 10.1002/adhm.202301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
To achieve the human sense of touch, a strain sensor needs to be coupled with a pressure sensor to identify the compliance of the contacted material. However, monitoring the pressure-strain signals simultaneously and ensuring no coupling effect between the two signals is the technical bottleneck for the flexible tactile sensor to. Herein, a composite flexible sensor based on microstructures of lotus leaf is designed and manufactured, which integrates the capacitive pressure sensor and the resistance strain sensor into one pixel to realize the simultaneous detection of pressure and strain. The electrode layer of the capacitance sensor also plays the role of the resistance strain sensor, which greatly simplifies the structure of the composite flexible sensor and obtains the compact size to integrate more easily. The device can simultaneously detect pressure and deformation, and more importantly, there is no coupling effect between the two kinds of signals. Here, the sensor has high pressure sensitivity (0.784 kPa-1 when pressure less than 100 kPa), high strain sensitivity (gauge factor = 4.03 for strain 0-40%), and can identify materials with different compliance, which indicates the tactile ability as the human skin performs.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Yingqing Yu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Boya Chen
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Lei Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
9
|
Bhat A, Ambrose JW, Yeow RCH. Ultralow-Latency Textile Sensors for Wearable Interfaces with a Human-in-Loop Sensing Approach. Soft Robot 2023; 10:431-442. [PMID: 36318510 DOI: 10.1089/soro.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
The evolution of wearable technologies has led to the development of novel types of sensors customized for a wide range of applications. Wearable sensors need to possess a low form factor and be ergonomic, causing minimal impediment of the user's natural movement. Various principles have been explored to meet these requirements, ranging from optical, magnetic, resistive flex sensing to 3D printed sensors and liquid metals such as those using eutectic gallium-indium. However, manufacturing techniques for most current wearable sensors tend to be complex and difficult to scale. Challenges also exist in achieving high sensitivity with noise resistance and robustness to false detections, especially in capacitive sensors. In this research, a novel ultralow-latency soft tactile and pressure sensor developed using off-the-shelf e-textiles is proposed, which overcomes some of these limitations. The sensor does not use any specialized equipment or materials for manufacture. A human-in-loop (HIL) sensing technique is demonstrated, which provides high sensitivity, high sensing bandwidth, as well as ultralow latency, which makes it ideal as a wearable input device. In addition, the HIL method provides other advantages such as high noise rejection and resistance to accidental triggers that could be caused by other humans or environmental factors owing to its high signal to noise ratio. Finally, two applications-a wearable keyboard and gaming input device-were demonstrated using these sensors.
Collapse
Affiliation(s)
- Ajinkya Bhat
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School-Integrative Science and Engineering Program (ISEP), National University of Singapore, Singapore, Singapore
| | - Jonathan William Ambrose
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Raye Chen-Hua Yeow
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kight A, Pirozzi I, Liang X, McElhinney DB, Han AK, Dual SA, Cutkosky M. Decoupling Transmission and Transduction for Improved Durability of Highly Stretchable, Soft Strain Sensing: Applications in Human Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:1955. [PMID: 36850551 PMCID: PMC9967534 DOI: 10.3390/s23041955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, they can be optimized independently for application-specific mechanical and electrical performance. This work investigates the potential of this approach for human health monitoring as an implantable cardiac strain sensor for measuring global longitudinal strain (GLS). The durability of the sensor was evaluated by conducting cyclic loading tests over one million cycles, and the results showed negligible drift. To account for hysteresis and frequency-dependent effects, a lumped-parameter model was developed to represent the viscoelastic behavior of the sensor. Multiple model orders were considered and compared using validation and test data sets that mimic physiologically relevant dynamics. Results support the choice of a second-order model, which reduces error by 73% compared to a linear calibration. In addition, we evaluated the suitability of this sensor for the proposed application by demonstrating its ability to operate on compliant, curved surfaces. The effects of friction and boundary conditions are also empirically assessed and discussed.
Collapse
Affiliation(s)
- Ali Kight
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ileana Pirozzi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xinyi Liang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Doff B. McElhinney
- Department of Cardiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94305, USA
| | - Amy Kyungwon Han
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seraina A. Dual
- Department of Biomedical Engineering, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Mark Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Liu G, Jiang Y, Wu P, Ma Z, Chen H, Zhang D. Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses. Soft Robot 2023; 10:97-105. [PMID: 35483088 DOI: 10.1089/soro.2021.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Harbor seal whiskers possess an undulated surface morphology that can effectively modify the vortex street behind the whiskers and suppress vortex-induced vibrations (VIVs). In this study, we propose a novel piezoresistive flow sensor that mimics the function of seal whiskers. The sensor consists of a bionic whisker with an undulated morphology and integrated out-of-plane piezoresistors. The piezoresistors are formed using a novel directional liquid spreading method to deliver a conductive nanocomposite ink into four Ω-shaped microchannels. Steady flow experiments indicate that the undulated morphology of the artificial whisker significantly reduces the drag forces and VIVs of the whisker at an angle of attack of 0°. Moreover, the whisker sensor can measure the oscillatory flow, which reaches a threshold detection limit of 8 mm/s. In addition, we demonstrate the function of the artificial whisker sensor to distinguish various wakes induced by upstream cylinders. Therefore, the facile fabrication and preliminary experiments of the artificial whisker sensor demonstrate its potential application in diverse flow analyses.
Collapse
Affiliation(s)
- Gongchao Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.,International Research Institute of Multidisciplinary Science, Beihang University, Beijing, China
| | - Peng Wu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Zhiqiang Ma
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
12
|
Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, Zhang Y. Carbon-Based Flexible Devices for Comprehensive Health Monitoring. SMALL METHODS 2023; 7:e2201340. [PMID: 36617527 DOI: 10.1002/smtd.202201340] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Traditional public health systems suffer from incomprehensive, delayed, and inefficient medical services. Convenient and comprehensive health monitoring has been highly sought after recently. Flexible and wearable devices are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Using carbon materials with overall superiorities can facilitate the development of wearable and flexible devices with various functions and excellent performance, which can comprehensively and real-time monitor human health status and prevent diseases. Herein, the latest advances in the rational design and controlled fabrication of carbon materials for applications in health-related flexible and wearable electronics are reviewed. The fabrication strategies, working mechanism, performance, and applications in health monitoring of carbon-based flexible devices, including electromechanical sensors, temperature/humidity sensors, chemical sensors, and flexible conductive wires/electrodes, are reviewed. Furthermore, integrating multiple carbon-based devices into multifunctional wearable systems is discussed. Finally, the existing challenges and future opportunities in this field are also proposed.
Collapse
Affiliation(s)
- Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xunen Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Shape morphing of plastic films. Nat Commun 2022; 13:7294. [DOI: 10.1038/s41467-022-34844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThree-dimensional (3D) architectures have qualitatively expanded the functions of materials and flexible electronics. However, current fabrication techniques for devices constrain their substrates to 2D geometries and current post-shape transformation strategies are limited to heterogenous or responsive materials and are not amenable to free-standing inert plastic films such as polyethylene terephthalate (PET) and polyimide (PI), which are vital substrates for flexible electronics. Here, we realize the shape morphing of homogeneous plastic films for various free-standing 3D frameworks from their 2D precursors by introducing a general strategy based on programming the plastic strain in films under peeling. By modulating the peeling parameters, previously inaccessible free-standing 3D geometries ranging from millimeter to micrometer were predicted theoretically and obtained experimentally. This strategy is applicable to most materials capable of plastic deformation, including polymers, metals, and composite materials, and can even enable 4D transformation with responsive plastic films. Enhanced performance of 3D circuits and piezoelectric systems demonstrates the enormous potential of peeling-induced shape morphing for 3D devices.
Collapse
|
14
|
Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one? NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhu T, Wu K, Xia Y, Yang C, Chen J, Wang Y, Zhang J, Pu X, Liu G, Sun J. Topological Gradients for Metal Film-Based Strain Sensors. NANO LETTERS 2022; 22:6637-6646. [PMID: 35931465 DOI: 10.1021/acs.nanolett.2c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures. The topological gradient strain sensor exhibits an ultrawide stretchability of 100% while simultaneously maintaining a high sensitivity at an optimal topological gradient of 4.5, due to the topological gradients-induced multistage film cracking. Additionally, it possesses a decent cyclic stability for >10 000 cycles between 0 and 40% strain enabled by the gradient-mixed metal/elastomer interfaces. It can monitor the full-range human activities from subtle pulse signals to vigorous joint movements.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yun Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Chao Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P.R. China
| | - Jiaorui Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiong Pu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P.R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
16
|
Xue Z, Jin T, Xu S, Bai K, He Q, Zhang F, Cheng X, Ji Z, Pang W, Shen Z, Song H, Shuai Y, Zhang Y. Assembly of complex 3D structures and electronics on curved surfaces. SCIENCE ADVANCES 2022; 8:eabm6922. [PMID: 35947653 PMCID: PMC9365271 DOI: 10.1126/sciadv.abm6922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/27/2022] [Indexed: 05/25/2023]
Abstract
Electronic devices with engineered three-dimensional (3D) architectures are indispensable for frictional-force sensing, wide-field optical imaging, and flow velocity measurement. Recent advances in mechanically guided assembly established deterministic routes to 3D structures in high-performance materials, through controlled rolling/folding/buckling deformations. The resulting 3D structures are, however, mostly formed on planar substrates and cannot be transferred directly onto another curved substrate. Here, we introduce an ordered assembly strategy to allow transformation of 2D thin films into sophisticated 3D structures on diverse curved surfaces. The strategy leverages predefined mechanical loadings that deform curved elastomer substrates into flat/cylindrical configurations, followed by an additional uniaxial/biaxial prestretch to drive buckling-guided assembly. Release of predefined loadings results in an ordered assembly that can be accurately captured by mechanics modeling, as illustrated by dozens of complex 3D structures assembled on curved substrates. Demonstrated applications include tunable dipole antennas, flow sensors inside a tube, and integrated electronic systems capable of conformal integration with the heart.
Collapse
Affiliation(s)
- Zhaoguo Xue
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Shiwei Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ke Bai
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Qi He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ziyao Ji
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Wenbo Pang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yumeng Shuai
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
17
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
18
|
Jiang Q, Li R, Wang F, Shi X, Chen F, Huang Y, Wang B, Zhang W, Wu X, Wei F, Zhang R. Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107062. [PMID: 35245967 DOI: 10.1002/adma.202107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
High-performance airflow sensors are in great demand in numerous fields but still face many challenges, such as slow response speed, low sensitivity, large detection threshold, and narrow sensing range. Carbon nanotubes (CNTs) exhibit many advantages in fabricating airflow sensors due to their nanoscale diameters, excellent mechanical and electrical properties, and so on. However, the intrinsic extraordinary properties of CNTs are not fully exhibited in previously reported CNT-based airflow sensors due to the mixed structures of macroscale CNT assemblies. Herein, this article presents suspended CNT networks (SCNTNs) as high-performance airflow sensors, which are self-assembled by ultralong CNTs and short CNTs in a one-step floating catalyst chemical vapor deposition process. The SCNTN-based airflow sensors achieved a record-breaking short response time of 0.021 s, a high sensitivity of 0.0124 s m-1 , a small detection threshold of 0.11 m s-1 , and a wide detection range of ≈0.11-5.51 m s-1 , superior to most of the state-of-the-art airflow sensors. To reveal the sensing mechanism, an acoustic response testing system and a mathematical model are developed. It is found that the airflow-caused intertube stress change resulted in the resistance variation of SCNTNs.
Collapse
Affiliation(s)
- Qinyuan Jiang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Run Li
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Shi
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fengxiang Chen
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Ya Huang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Baoshun Wang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Wenshuo Zhang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Xueke Wu
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Rufan Zhang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Bio-Inspired Mechano-Sensor Based on the Deformation of Slit Wake. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Internal mechano-sensors, as an indispensable part of the proprioceptive system of intelligent equipment, have attracted enormous research interest because of their extremely crucial role in monitoring machining processes, real-time diagnosis of equipment faults, adaptive motor control and so on. The mechano-sensory structure with signal-transduction function is an important factor in determining the sensing performance of a mechano-sensor. However, contrary to the wide application of the cantilever beam as the sensory structure of external mechano-sensors in order to guarantee their exteroceptive ability, there is still a lack of an effective and widely used sensory structure to significantly improve the sensing performance of internal mechano-sensors. Here, inspired by the scorpion using the specialized slit as the sensory structure of internal mechano-sensilla, the slit is ingeniously used in the design of the engineered internal mechano-sensor. In order to improve the deformability of the slit wake, the hollowed-out design around the slit tail of biological mechano-sensilla is researched. Meanwhile, to mimic the easily deformed flexible cuticular membrane covering the slit, the ultrathin, flexible, crack-based strain sensor is used as the sensing element to cover the controllable slit wake. Based on the coupling deformation of the slit wake, as well as the flexible strain sensor, the slit-based mechano-sensor shows excellent sensing performance to various mechanical signals such as displacement and vibration signals.
Collapse
|
20
|
Li Y, Jia J, Yu H, Wang S, Jin ZY, Zhang YH, Ma HZ, Zhang K, Ke K, Yin B, Yang MB. Macromolecule Relaxation Directed 3D Nanofiber Architecture in Stretchable Fibrous Mats for Wearable Multifunctional Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15678-15686. [PMID: 35321545 DOI: 10.1021/acsami.2c02090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.
Collapse
Affiliation(s)
- Yan Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Jin Jia
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Hua Yu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Shan Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Zhao-Yuan Jin
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Yu-Hao Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Hong-Zhi Ma
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Kai Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Bo Yin
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| |
Collapse
|
21
|
Sayegh MA, Daraghma H, Mekid S, Bashmal S. Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:2705. [PMID: 35408319 PMCID: PMC9003453 DOI: 10.3390/s22072705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Whisker sensors are a class of tactile sensors that have recently attracted attention. Inspired by mammals' whiskers known as mystacial vibrissae, they have displayed tremendous potential in a variety of applications e.g., robotics, underwater vehicles, minimally invasive surgeries, and leak detection. This paper provides a supplement to the recent tactile sensing techniques' designs of whiskers that only sense at their base, as well as the materials employed, and manufacturing techniques. The article delves into the technical specifications of these sensors, such as the resolution, measurement range, sensitivity, durability, and recovery time, which determine their performance. The sensors' sensitivity varies depending on the measured physical quantity; for example, the pressure sensors had an intermediate sensitivity of 58%/Pa and a response time of around 90 ms, whereas the force sensors that function based on piezoelectric effects exhibited good linearity in the measurements with a resolution of 3 µN and sensitivity of 0.1682 mV/µN. Some sensors were used to perform spatial mapping and the identification of the geometry and roughness of objects with a reported resolution of 25 nm. The durability and recovery time showed a wide range of values, with the maximum durability being 10,000 cycles and the shortest recovery time being 5 ms. Furthermore, the paper examines the fabrication of whiskers at the micro- and nanoscales, as well as their contributions to mechanical and thermal behavior. The commonly used manufacturing techniques of 3D printing, PDMS casting, and screen printing were used in addition to several micro and nanofabrication techniques such as photolithography, etching, and chemical vapor deposition. Lastly, the paper discusses the main potential applications of these sensors and potential research gaps in this field. In particular, the operation of whisker sensors under high temperatures or high pressure requires further investigation, as does the design of sensors to explore larger topologies.
Collapse
Affiliation(s)
- Mohamad-Ammar Sayegh
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.-A.S.); (H.D.); (S.B.)
| | - Hammam Daraghma
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.-A.S.); (H.D.); (S.B.)
| | - Samir Mekid
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.-A.S.); (H.D.); (S.B.)
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem Bashmal
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.-A.S.); (H.D.); (S.B.)
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
22
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
23
|
Wu T, Gao S, Wang W, Huang J, Yan Y. Wearable Sensors Based on Solid-Phase Molecular Self-Assembly: Moisture-Strain Dual Responsiveness Facilitated Extremely High and Damage-Resistant Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41997-42004. [PMID: 34431657 DOI: 10.1021/acsami.1c10717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable sensing technologies have gained increasing interest in biomedical fields because they are convenient and could efficiently monitor health conditions by detecting various physiological signals in real time. However, common film sensors often neglect body moisture and enhance the sensitivity by enhancing the conductive dopants and self-healing ability. We report in this work a supramolecular film sensor based on solid-phase molecular self-assembly (SPMSA), which smartly utilizes the body moisture to enhance the sensitivity for human-machine interaction. The carbon nanotube (CNT)-doped SPMSA film is able to capture environmental moisture quickly. Upon contact to human skin, the moisture not only promotes the junction between CNTs but also contributes to the conductivity. As a result, the sensitivity can be enhanced 4 times. In this way, we are able to obtain the highest sensitivity of 700% with the lowest CNT doping rate of 0.5%. Furthermore, the current sensor displays damage-inert sensing performance. In the presence of a hole of up to 50% of the film area, the sensitivity remains unaffected due to the decreases in the absolute conductivity of the film sensor before and after a trigger to the same extent. In this way, we have developed a new principle in the design of a film sensor for human-machine interaction, which releases the sensor from focus on promoting conductivity and self-healing materials.
Collapse
Affiliation(s)
- Tongyue Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuitao Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Huang S, Zhang B, Lin Y, Lee CS, Zhang X. Compact Biomimetic Hair Sensors Based on Single Silicon Nanowires for Ultrafast and Highly-Sensitive Airflow Detection. NANO LETTERS 2021; 21:4684-4691. [PMID: 34053221 DOI: 10.1021/acs.nanolett.1c00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wearable sensors that can mimic functionalities of human bodies have attracted intense recent attention. However, research on wearable airflow sensors is still lagging behind. Herein, we report a biomimetic hair sensor based on a single ultralong silicon nanowire (SiNW-BHS) for airflow detection. In our device, the SiNW can provide both mechanical and electrical responses in airflow, which enables a simple and compact design. The SiNW-BHSs can detect airflow with a low detection limit (<0.15 m/s) and a record-high response speed (response time <40 ms). The compact design of the SiNW-BHSs also enables easy integration of an array of devices onto a flexible substrate to mimic human skin to provide comprehensive airflow information including wind speed, incident position, incident angle, and so forth. This work provides novel-designed BHSs for ultrafast and highly sensitive airflow detection, showing great potential for applications such as e-skins, wearable electronics, and robotics.
Collapse
Affiliation(s)
- Siyi Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou 215123, Jiangsu People's Republic of China
| | - Yuan Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSADF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Kaur M, Kim TH, Kim WS. New Frontiers in 3D Structural Sensing Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002534. [PMID: 33458908 DOI: 10.1002/adma.202002534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Advanced robotics is the result of various contributions from complex fields of science and engineering and has tremendous value in human society. Sensing robots are highly desirable in practical settings such as healthcare and manufacturing sectors through sensing activities from human-robot interaction. However, there are still ongoing research and technical challenges in the development of ideal sensing robot systems. The sensing robot should synergically merge sensors and robotics. Geometrical difficulty in the sensor positioning caused by the structural complexity of sensing robots and their corresponding processing have been the main challenges in the production of sensing robots. 3D electronics integrated into 3D objects prepared by the 3D printing process can be the potential solution for designing realistic sensing robot systems. 3D printing provides the advantage to manufacture complex 3D structures in electronics in a single setup, allowing the ease of design flexibility, and customized functions. Therefore, the platform of 3D sensing systems is investigated and their expansion into sensing robots is studied further. The progress toward sensing robots from 3D electronics integrated into 3D objects and the advanced material strategies, used to overcome the challenges, are discussed.
Collapse
Affiliation(s)
- Manpreet Kaur
- Additive Manufacturing Laboratory, School of Mechatronics System Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada
| | - Tae-Ho Kim
- Additive Manufacturing Laboratory, School of Mechatronics System Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada
| | - Woo Soo Kim
- Additive Manufacturing Laboratory, School of Mechatronics System Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada
| |
Collapse
|
26
|
Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable Electronics Based on PDMS Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003155. [PMID: 32830370 DOI: 10.1002/adma.202003155] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Indexed: 05/27/2023]
Abstract
Stretchable electronics, which can retain their functions under stretching, have attracted great interest in recent decades. Elastic substrates, which bear the applied strain and regulate the strain distribution in circuits, are indispensable components in stretchable electronics. Moreover, the self-healing property of the substrate is a premise to endow stretchable electronics with the same characteristics, so the device may recover from failure resulting from large and frequent deformations. Therefore, the properties of the elastic substrate are crucial to the overall performance of stretchable devices. Poly(dimethylsiloxane) (PDMS) is widely used as the substrate material for stretchable electronics, not only because of its advantages, which include stable chemical properties, good thermal stability, transparency, and biological compatibility, but also because of its capability of attaining designer functionalities via surface modification and bulk property tailoring. Herein, the strategies for fabricating stretchable electronics on PDMS substrates are summarized, and the influence of the physical and chemical properties of PDMS, including surface chemical status, physical modulus, geometric structures, and self-healing properties, on the performance of stretchable electronics is discussed. Finally, the challenges and future opportunities of stretchable electronics based on PDMS substrates are considered.
Collapse
Affiliation(s)
- Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
27
|
Guo X, Ni X, Li J, Zhang H, Zhang F, Yu H, Wu J, Bai Y, Lei H, Huang Y, Rogers JA, Zhang Y. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004919. [PMID: 33289278 DOI: 10.1002/adma.202004919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Advanced mechanical metamaterials with unusual thermal expansion properties represent an area of growing interest, due to their promising potential for use in a broad range of areas. In spite of previous work on metamaterials with large or ultralow coefficient of thermal expansion (CTE), achieving a broad range of CTE values with access to large thermally induced dimensional changes in structures with high filling ratios remains a key challenge. Here, design concepts and fabrication strategies for a kirigami-inspired class of 2D hierarchical metamaterials that can effectively convert the thermal mismatch between two closely packed constituent materials into giant levels of biaxial/uniaxial thermal expansion/shrinkage are presented. At large filling ratios (>50%), these systems offer not only unprecedented negative and positive biaxial CTE (i.e., -5950 and 10 710 ppm K-1 ), but also large biaxial thermal expansion properties (e.g., > 21% for 20 K temperature increase). Theoretical modeling of thermal deformations provides a clear understanding of the microstructure-property relationships and serves as a basis for design choices for desired CTE values. An Ashby plot of the CTE versus density serves as a quantitative comparison of the hierarchical metamaterials presented here to previously reported systems, indicating the capability for substantially enlarging the accessible range of CTE.
Collapse
Affiliation(s)
- Xiaogang Guo
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Ni
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiahong Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hang Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fan Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Huabin Yu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Wu
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yun Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hongshuai Lei
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Wu C, Wang H, Li Y, Kim T, Kwon SJ, Park B, He Z, Lee SB, Um MK, Byun JH, Chou TW. Sensitivity Improvement of Stretchable Strain Sensors by the Internal and External Structural Designs for Strain Redistribution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50803-50811. [PMID: 33135419 DOI: 10.1021/acsami.0c13427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fiber strain sensors that are directly woven into smart textiles play an important role in wearable systems. These sensors require a high sensitivity to detect the subtle strain in practical applications. However, traditional fiber strain sensors with constant diameters undergo homogeneous strain distribution in the axial direction, thereby limiting the sensitivity improvement. Herein, a novel strategy of internal or external structural design is proposed to significantly improve the sensitivity of fiber strain sensors. The fibers are produced with directional increases in diameter (internal design) or polydimethylsiloxane (PDMS) microbeads attached to surfaces (external design) by combining hollow glass tubes used as templates with PDMS drops. The structural modification of the fiber significantly impacts the sensing performance. After optimizing structural parameters, the highest gauge factor reaches 123.1 in the internal-external structure design at 25% strain. A comprehensive analysis reveals that the desirable scheme is the internal structural design, which features a high sensitivity of 110 with a 100% improvement at ∼5-20% strain. Because of the sufficiently robust interface, even at the 800th cycle, fiber sensors still possessed an excellent stable performance. The morphology evolution mechanism indicates that the resistance increase is closely related with the increased peak width and distance, and the appearance of gaps. Based on the finite element modeling simulation, the quantified effective contributions of different strategies positively correlate with the improved sensitivity. The proposed fiber strain sensors, which are woven into the two-dimensional network structure, exhibit an excellent capability for displacement monitoring and facilitate the traffic control of crossroads.
Collapse
Affiliation(s)
- Chunjin Wu
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Huai Wang
- Materials Processing Innovation Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Ying Li
- School of Material Science & Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Taehoon Kim
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Suk Jin Kwon
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Byeongjin Park
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Sang-Bok Lee
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Moon-Kwang Um
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Joon-Hyung Byun
- Composites Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, South Korea
| | - Tsu-Wei Chou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Liu Q, Zhao C, Chen M, Liu Y, Zhao Z, Wu F, Li Z, Weiss PS, Andrews AM, Zhou C. Flexible Multiplexed In 2O 3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. iScience 2020; 23:101469. [PMID: 33083757 PMCID: PMC7509003 DOI: 10.1016/j.isci.2020.101469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 11/05/2022] Open
Abstract
Flexible sensors are essential for advancing implantable and wearable bioelectronics toward monitoring chemical signals within and on the body. Developing biosensors for monitoring multiple neurotransmitters in real time represents a key in vivo application that will increase understanding of information encoded in brain neurochemical fluxes. Here, arrays of devices having multiple In2O3 nanoribbon field-effect transistors (FETs) were fabricated on 1.4-μm-thick polyethylene terephthalate (PET) substrates using shadow mask patterning techniques. Thin PET-FET devices withstood crumpling and bending such that stable transistor performance with high mobility was maintained over >100 bending cycles. Real-time detection of the small-molecule neurotransmitters serotonin and dopamine was achieved by immobilizing recently identified high-affinity nucleic-acid aptamers on individual In2O3 nanoribbon devices. Limits of detection were 10 fM for serotonin and dopamine with detection ranges spanning eight orders of magnitude. Simultaneous sensing of temperature, pH, serotonin, and dopamine enabled integration of physiological and neurochemical data from individual bioelectronic devices. We fabricated flexible In2O3 nanoribbon transistors using cleanroom-free processes Flexible In2O3 transistors withstood crumpling and bending with stable performance Flexible aptamer biosensors detect neurotransmitters in real time Multiplexed sensors monitor temperature, pH, serotonin, and dopamine simultaneously
Collapse
Affiliation(s)
- Qingzhou Liu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingrui Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yihang Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiyuan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fanqi Wu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chongwu Zhou
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
30
|
He K, Liu Z, Wan C, Jiang Y, Wang T, Wang M, Zhang F, Liu Y, Pan L, Xiao M, Yang H, Chen X. An On-Skin Electrode with Anti-Epidermal-Surface-Lipid Function Based on a Zwitterionic Polymer Brush. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001130. [PMID: 32374473 DOI: 10.1002/adma.202001130] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
On-skin flexible devices provide a noninvasive approach for continuous and real-time acquisition of biological signals from the skin, which is essential for future chronic disease diagnosis and smart health monitoring. Great progress has been achieved in flexible devices to resolve the mechanical mismatching between conventional rigid devices and human skin. However, common materials used for flexible devices including silicon-based elastomers and various metals exhibit no resistance to epidermal surface lipids (skin oil and grease), which restricts the long-term and household usability. Herein, an on-skin electrode with anti-epidermal-surface-lipid function is reported, which is based on the grafting of a zwitterionic poly(2-methacryl-oyloxyethyl, methacryloyl-oxyethyl, or meth-acryloyloxyethyl phosphorylcholine) (PMPC) brush on top of gold-coated poly(dimethylsiloxane) (Au/PDMS). Such an electrode allows the skin-lipids-fouled surface to be cleaned by simple water rinsing owing to the superhydrophilic zwitterionic groups. As a proof-of-concept, the PMPC-Au/PDMS electrodes are employed for both electrocardiography (ECG) and electromyography (EMG) recording. The electrodes are able to maintain stable skin-electrode impedance and good signal-to noise ratio (SNR) by water rinsing alone. This work provides a material-based solution to improve the long-term reusability of on-skin electronics and offers a unique prospective on developing next generation wearable healthcare devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meng Xiao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
31
|
Ahmad Tarar A, Mohammad U, K. Srivastava S. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. BIOSENSORS 2020; 10:E56. [PMID: 32481598 PMCID: PMC7345448 DOI: 10.3390/bios10060056] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Wearable technology and mobile healthcare systems are both increasingly popular solutions to traditional healthcare due to their ease of implementation and cost-effectiveness for remote health monitoring. Recent advances in research, especially the miniaturization of sensors, have significantly contributed to commercializing the wearable technology. Most of the traditional commercially available sensors are either mechanical or optical, but nowadays transdermal microneedles are also being used for micro-sensing such as continuous glucose monitoring. However, there remain certain challenges that need to be addressed before the possibility of large-scale deployment. The biggest challenge faced by all these wearable sensors is our skin, which has an inherent property to resist and protect the body from the outside world. On the other hand, biosensing is not possible without overcoming this resistance. Consequently, understanding the skin structure and its response to different types of sensing is necessary to remove the scientific barriers that are hindering our ability to design more efficient and robust skin sensors. In this article, we review research reports related to three different biosensing modalities that are commonly used along with the challenges faced in their implementation for detection. We believe this review will be of significant use to researchers looking to solve existing problems within the ongoing research in wearable sensors.
Collapse
Affiliation(s)
- Ammar Ahmad Tarar
- Department of Biological Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Umair Mohammad
- Department of Electrical & Computer Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Soumya K. Srivastava
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
32
|
Beker L, Matsuhisa N, You I, Ruth SRA, Niu S, Foudeh A, Tok JBH, Chen X, Bao Z. A bioinspired stretchable membrane-based compliance sensor. Proc Natl Acad Sci U S A 2020; 117:11314-11320. [PMID: 32385155 PMCID: PMC7260970 DOI: 10.1073/pnas.1909532117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compliance sensation is a unique feature of the human skin that electronic devices could not mimic via compact and thin form-factor devices. Due to the complex nature of the sensing mechanism, up to now, only high-precision or bulky handheld devices have been used to measure compliance of materials. This also prevents the development of electronic skin that is fully capable of mimicking human skin. Here, we developed a thin sensor that consists of a strain sensor coupled to a pressure sensor and is capable of identifying compliance of touched materials. The sensor can be easily integrated into robotic systems due to its small form factor. Results showed that the sensor is capable of classifying compliance of materials with high sensitivity allowing materials with various compliance to be identified. We integrated the sensor to a robotic finger to demonstrate the capability of the sensor for robotics. Further, the arrayed sensor configuration allows a compliance mapping which can enable humanlike sensations to robotic systems when grasping objects composed of multiple materials of varying compliance. These highly tunable sensors enable robotic systems to handle more advanced and complicated tasks such as classifying touched materials.
Collapse
Affiliation(s)
- Levent Beker
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul, 34450, Turkey
| | - Naoji Matsuhisa
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Insang You
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, Korea
| | | | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Amir Foudeh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305;
| |
Collapse
|
33
|
Chu J, Cai J. Flexible pressure sensors with a highly pressure- and strain-sensitive layer based on nitroxyl radical-grafted hollow carbon spheres. NANOSCALE 2020; 12:9375-9384. [PMID: 32347281 DOI: 10.1039/d0nr01192d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spherical structure of hollow carbon spheres (HCSs) makes their contact resistance and tunnel resistance extremely sensitive to the distance between them, which can be used as a conductive filler for high-sensitivity pressure sensors. Compared with one- and two-dimensional carbon-based materials, HCSs require a higher filling concentration for constructing an effective conductive network due to their average conductivity, which affects the mechanical properties of the sensor. In a single-electron system, electrons are transferred by hopping between the nitroxyl radical monomers and when the distance between the monomers is shortened, the electron transfer rate of nitroxyl radical compounds can be increased, thus further improving their conductivity. In this work, a composite of nitroxyl radical-modified hollow carbon spheres (HCS-g-NO˙) and polydimethylsiloxane (PDMS) polymer is introduced, and the resistivity of HCS-g-NO˙ is about one magnitude lower than that of HCSs at the same filling concentration. A flexible piezoresistive sensor with HCS-g-NO˙@PDMS as the sensitive layer coated on the PET electrode is presented, in which the spacing between HCS-g-NO˙ changes, causing changes in the contact and tunnel resistances in the sensitive layer when mechanical stresses are applied. The sensor achieved a piezoresistive response of -0.55 kPa-1 and the tensile response of 211 , and a sensor array of nine pixels was successfully demonstrated; thus, it can be used as a high sensitivity pressure and strain sensor.
Collapse
Affiliation(s)
- Jie Chu
- School of Microelectronics, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China.
| | - Jueping Cai
- School of Microelectronics, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
34
|
Ding L, Wang Y, Sun C, Shu Q, Hu T, Xuan S, Gong X. Three-Dimensional Structured Dual-Mode Flexible Sensors for Highly Sensitive Tactile Perception and Noncontact Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20955-20964. [PMID: 32290648 DOI: 10.1021/acsami.0c03996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports a three-dimensional (3D) structured multifunctional sensor by connecting a magnetowhisker with a superflexible patterned skin film. Composed of percolation networks of silver nanowires, the patterned skin film is integrated via a simple template manufacturing method without increasing the complexity and sacrificing the flexibility. The as-prepared 3D structured sensor can realize the multimodal detection of out-of-plane tactile stimuli and details of noncontact environmental obstacles in multiple directions. Here, the sensor's perception behaviors on compression, pulling, magnetic field, sound waves, airflow, water level, water flow, and backwash are presented. Furthermore, the 3D structured sensor obtains outstanding mechanical robustness and stability for 8000 cycles, excellent sensitivity (12 800% when the applied pulling displacement was 3.5 mm; 152% T-1 when the magnetic flux density variation was 40.6 mT), ultrahigh response time, and ultrahigh recovery time (∼5 ms), which may meet the industrial sensing requirement for artificial tactile electronics. Facile manufacturing processes and outstanding multimodal sensing characteristics make the 3D structured sensor to possess great potential to be implemented in the next-generation intelligent bionic equipment or systems.
Collapse
Affiliation(s)
- Li Ding
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Chuanlin Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Quan Shu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Tao Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| |
Collapse
|
35
|
Fan Z, Yang Y, Zhang F, Xu Z, Zhao H, Wang T, Song H, Huang Y, Rogers JA, Zhang Y. Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908424. [PMID: 32100406 DOI: 10.1002/adma.201908424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Deterministic transformations of 2D patterns of materials into well-controlled 3D mesostructures serve as the basis for manufacturing methods that can bypass limitations of conventional 3D micro/nanofabrication. Here, guided mechanical buckling processes provide access to a rich range of complex 3D mesostructures in high-performance materials, from inorganic and organic semiconductors, metals and dielectrics, to ceramics and even 2D materials (e.g., graphene, MoS2 ). Previous studies demonstrate that iterative computational procedures can define design parameters for certain targeted 3D configurations, but without the ability to address complex shapes. A technical need is in efficient, generalized inverse design algorithms that directly yield sets of optimized parameters. Here, such schemes are introduced, where the distributions of thicknesses across arrays of separated or interconnected ribbons provide scalable routes to 3D surfaces with a broad range of targeted shapes. Specifically, discretizing desired shapes into 2D ribbon components allows for analytic solutions to the inverse design of centrally symmetric and even general surfaces, in an approximate manner. Combined theoretical, numerical, and experimental studies of ≈20 different 3D structures with characteristic sizes (e.g., ribbon width) ranging from ≈200 µm to ≈2 cm and with geometries that resemble hemispheres, fire balloons, flowers, concave lenses, saddle surfaces, waterdrops, and rodents, illustrate the essential ideas.
Collapse
Affiliation(s)
- Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yiyuan Yang
- Departments of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hangbo Zhao
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Taoyi Wang
- Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906270. [PMID: 32022440 DOI: 10.1002/smll.201906270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human-friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.
Collapse
Affiliation(s)
- Hyunwoo Joo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Wang T, Wang M, Yang L, Li Z, Loh XJ, Chen X. Cyber-Physiochemical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905522. [PMID: 31944425 DOI: 10.1002/adma.201905522] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Living things rely on various physical, chemical, and biological interfaces, e.g., somatosensation, olfactory/gustatory perception, and nervous system response. They help organisms to perceive the world, adapt to their surroundings, and maintain internal and external balance. Interfacial information exchanges are complicated but efficient, delicate but precise, and multimodal but unisonous, which has driven researchers to study the science of such interfaces and develop techniques with potential applications in health monitoring, smart robotics, future wearable devices, and cyber physical/human systems. To understand better the issues in these interfaces, a cyber-physiochemical interface (CPI) that is capable of extracting biophysical and biochemical signals, and closely relating them to electronic, communication, and computing technology, to provide the core for aforementioned applications, is proposed. The scientific and technical progress in CPI is summarized, and the challenges to and strategies for building stable interfaces, including materials, sensor development, system integration, and data processing techniques are discussed. It is hoped that this will result in an unprecedented multi-disciplinary network of scientific collaboration in CPI to explore much uncharted territory for progress, providing technical inspiration-to the development of the next-generation personal healthcare technology, smart sports-technology, adaptive prosthetics and augmentation of human capability, etc.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuyun Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
He K, Liu Y, Wang M, Chen G, Jiang Y, Yu J, Wan C, Qi D, Xiao M, Leow WR, Yang H, Antonietti M, Chen X. An Artificial Somatic Reflex Arc. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905399. [PMID: 31803996 DOI: 10.1002/adma.201905399] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Indexed: 05/19/2023]
Abstract
The emulation of human sensation, perception, and action processes has become a major challenge for bioinspired intelligent robotics, interactive human-machine interfacing, and advanced prosthetics. Reflex actions, enabled through reflex arcs, are important for human and higher animals to respond to stimuli from environment without the brain processing and survive the risks of nature. An artificial reflex arc system that emulates the functions of the reflex arc simplifies the complex circuit design needed for "central-control-only" processes and becomes a basic electronic component in an intelligent soft robotics system. An artificial somatic reflex arc that enables the actuation of electrochemical actuators in response to the stimulation of tactile pressures is reported. Only if the detected pressure by the pressure sensor is above the stimulus threshold, the metal-organic-framework-based threshold controlling unit (TCU) can be activated and triggers the electrochemical actuators to complete the motion. Such responding mechanism mimics the all-or-none law in the human nervous system. As a proof of concept, the artificial somatic reflex arc is successfully integrated into a robot to mimic the infant grasp reflex. This work provides a unique and simplifying strategy for developing intelligent soft robotics, next-generation human-machine interfaces, and neuroprosthetics.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meng Xiao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
39
|
Wu Z, Ai J, Ma Z, Zhang X, Du Z, Liu Z, Chen D, Su B. Flexible Out-of-Plane Wind Sensors with a Self-Powered Feature Inspired by Fine Hairs of the Spider. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44865-44873. [PMID: 31686494 DOI: 10.1021/acsami.9b15382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The quest for out-of-plane and self-powered wind sensors has motivated the field of outdoor sports, exploration, space perception, and positioning. Fine hairs of spiders act as hundreds of individual wind sensors, allowing them to feel the nearby wind change caused by the predators or the prey. Inspired by this natural teacher, here, we demonstrate the fabrication of bioinspired self-powered out-of-plane wind sensors based on flexible magnetoelectric material systems. The shape of flexible sensors, by patterning silver nanoparticles on a thin polyethylene terephthalate film through a screen printing technique, mimics fine hairs of the spiders, allowing for out-of-plane tactile perceptual monitoring caused by the wind. Owing to the employment of flexible magnetoelectric materials, the sensors can distinguish forward/backward winds and are totally self-powered. The working mechanism for sensors has been explained by the Maxwell numerical simulation, allowing for further improvement of their performance by tuning diverse factors. Furthermore, the wind sensor can detect the wind with a velocity down to 1.2 m/s and distinguish multidegree wind by their arrays. It is expected that, in the near future, our design can provide new findings for out-of-plane wind sensors with superior self-powered properties toward new flexible electronics.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Jingwei Ai
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Xuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
- ARC Hub for Computational Particle Technology, Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Zhuolin Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Ziwei Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Dezhi Chen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| |
Collapse
|
40
|
Yu L, Feng Y, S/O M Tamil Selven D, Yao L, Soon RH, Yeo JC, Lim CT. Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33347-33355. [PMID: 31424908 DOI: 10.1021/acsami.9b10937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Wearable sensors for smart textile applications have garnered tremendous interest in recent years and can have enormous potential for human machine interfaces and digital health monitoring. Here, we report a soft capacitive microfiber sensor that can be woven seamlessly into textiles for strain measurement. Comprising a dual-lumen elastomeric microtube and liquid metallic alloy, the microfiber sensor enables continual strain perception even after being completely severed. In addition, our microfiber sensor is highly stretchable and flexible and exhibits tunable sensitivity, excellent linearity, a fast response, and negligible hysteresis. More importantly, the microfiber sensor is minimally affected by train rate and compression during strain sensing. Even under drastic environmental changes, the microfiber sensor presents good electrical stability. By integrating the microfiber sensor imperceptibly with textiles, we devise smart textile wearables to interpret hand gestures, detect limb motion, and monitor respiration rate. We believe that this sensor presents enormous potential in unobtrusive continuous health monitoring.
Collapse
Affiliation(s)
- Longteng Yu
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Yuqin Feng
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore 119077 , Singapore
| | - Dinesh S/O M Tamil Selven
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Liangsong Yao
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Ren Hao Soon
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology , National University of Singapore , Singapore 117599 , Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore 119077 , Singapore
- Institute for Health Innovation and Technology , National University of Singapore , Singapore 117599 , Singapore
- Mechanobiology Institute , National University of Singapore , Singapore 117411 , Singapore
| |
Collapse
|
41
|
Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. NANO CONVERGENCE 2019; 6:28. [PMID: 31495907 PMCID: PMC6732266 DOI: 10.1186/s40580-019-0198-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 05/04/2023]
Abstract
Sensors are becoming more demanding in all spheres of human activities for their advancement in terms of fabrication and cost. Several methods of fabrication and configurations exist which provide them myriad of applications. However, the advantage of fabrication for sensors lies with bulk fabrication and processing techniques. Exhaustive study for process advancement towards miniaturization from the advent of MEMS technology has been going on and progressing at high pace and has reached a highly advanced level wherein batch production and low cost alternatives provide a competitive performance. A look back to this advancement and thus understanding the route further is essential which is the core of this review in light of nanomaterials and printed technology based sensors. A subjective appraisal of these developments in sensor architecture from the advent of MEMS technology converging present date novel materials and process technologies through this article help us understand the path further.
Collapse
Affiliation(s)
- Chithra Parameswaran
- Plastic Electronics and Energy Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Dipti Gupta
- Plastic Electronics and Energy Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076 India
| |
Collapse
|
42
|
Liu Z, Wang H, Huang P, Huang J, Zhang Y, Wang Y, Yu M, Chen S, Qi D, Wang T, Jiang Y, Chen G, Hu G, Li W, Yu J, Luo Y, Loh XJ, Liedberg B, Li G, Chen X. Highly Stable and Stretchable Conductive Films through Thermal-Radiation-Assisted Metal Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901360. [PMID: 31282042 DOI: 10.1002/adma.201901360] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pingao Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yu Zhang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guoyu Hu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Bo Liedberg
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
43
|
Peng M, Wen Z, Xie L, Cheng J, Jia Z, Shi D, Zeng H, Zhao B, Liang Z, Li T, Jiang L. 3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902930. [PMID: 31267581 DOI: 10.1002/adma.201902930] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Indexed: 05/24/2023]
Abstract
Biological materials with hierarchical architectures (e.g., a macroscopic hollow structure and a microscopic cellular structure) offer unique inspiration for designing and manufacturing advanced biomimetic materials with outstanding mechanical performance and low density. Most conventional biomimetic materials only benefit from bioinspired architecture at a single length scale (e.g., microscopic material structure), which largely limits the mechanical performance of the resulting materials. There exists great potential to maxime the mechanical performance of biomimetic materials by leveraging a bioinspired hierarchical structure. An ink-based three-dimensional (3D) printing strategy to manufacture an ultralight biomimetic hierarchical graphene material (BHGMs) with exceptionally high stiffness and resilience is demonstrated. By simultaneously engineering 3D-printed macroscopic hollow structures and constructing an ice-crystal-induced cellular microstructure, BHGMs can achieve ultrahigh elasticity and stability at compressive strains up to 95%. Multiscale finite element analyses indicate that the hierarchical structures of BHGMs effectively reduce the macroscopic strain and transform the microscopic compressive deformation into the rotation and bending of the interconnected graphene flakes. This 3D printing strategy demonstrates the great potential that exists for the assembly of other functional materials into hierarchical cellular structures for various applications where high stiffness and resilience at low density are simultaneously required.
Collapse
Affiliation(s)
- Meiwen Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Lingjie Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jian Cheng
- Department of Mechanical Engineering, University of Maryland College Park, College Park, MD, 20742, USA
| | - Zheng Jia
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Danli Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Huajie Zeng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Bo Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland College Park, College Park, MD, 20742, USA
| | - Lin Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
44
|
Pan S, Liu Z, Wang M, Jiang Y, Luo Y, Wan C, Qi D, Wang C, Ge X, Chen X. Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903130. [PMID: 31259453 DOI: 10.1002/adma.201903130] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/08/2019] [Indexed: 05/26/2023]
Abstract
Stretchable strain sensors have aroused great interest for their application in human activity recognition, health monitoring, and soft robotics. For various scenarios involving the application of different strain ranges, specific sensitivities need to be developed, due to a trade-off between sensor sensitivity and stretchability. Traditional stretchable strain sensors are developed based on conductive sensing materials and still lack the function of customizable sensitivity. A novel strategy of mechanocombinatorics is proposed to screen the sensor sensitivity based on mechanically heterogeneous substrates. Strain redistribution over substrates is optimized by mechanics and structure parameters, which gives rise to customizable sensitivity. As a proof of concept, a local illumination method is used to fabricate heterogeneous substrates with customizable mechanics and structure parameters. A library of mechanocombinatorial strain sensors is created for extracting the specific sensitivity. Thus, not only is an effective strategy for screening of sensor sensitivity demonstrated, but a contribution to the mechanocombinatorial strategy for personalized stretchable electronics is also made.
Collapse
Affiliation(s)
- Shaowu Pan
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Zhiyuan Liu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Dianpeng Qi
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xiang Ge
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
45
|
Wang B, Facchetti A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901408. [PMID: 31106490 DOI: 10.1002/adma.201901408] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Indexed: 05/23/2023]
Abstract
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of "Internet-of-Things" concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2 ), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so-called electronic skins and electronic textiles.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
46
|
Chun S, Son W, Choi C, Min H, Kim J, Lee HJ, Kim D, Kim C, Koh JS, Pang C. Bioinspired Hairy Skin Electronics for Detecting the Direction and Incident Angle of Airflow. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13608-13615. [PMID: 30868878 DOI: 10.1021/acsami.9b01427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The human skin has inspired multimodal detection using smart devices or systems in fields including biomedical engineering, robotics, and artificial intelligence. Hairs of a high aspect ratio (AR) connected to follicles, in particular, detect subtle structural displacements by airflow or ultralight touch above the skin. Here, hairy skin electronics assembled with an array of graphene sensors (16 pixels) and artificial microhairs for multimodal detection of tactile stimuli and details of airflows (e.g., intensity, direction, and incident angle) are presented. Composed of percolation networks of graphene nanoplatelet sheets, the sensor array can simultaneously detect pressure, temperature, and vibration, all of which correspond to the sensing range of human tactile perceptions with ultrahigh response time (<0.5 ms, 2 kHz) for restoration. The device covered with microhairs (50 μm diameter and 300 μm height, AR = 6, hexagonal layout, and ∼4400/cm2) exhibits mapping of electrical signals induced by noncontact airflow and identifying the direction, incident angle, and intensity of wind to the sensor. For potential applications, we implement the hairy electronics to a sailing robot and demonstrate changes in locomotion and speed by detecting the direction and intensity of airflow.
Collapse
Affiliation(s)
| | - Wonkyeong Son
- Department of Smart Textile Convergence Research , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Changsoon Choi
- Department of Smart Textile Convergence Research , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988 , Republic of Korea
| | | | | | | | - Dongjin Kim
- Department of Mechanical Engineering , Ajou University , Suwon , Gyeonggi-do 16499 , Republic of Korea
| | - Changhwan Kim
- Department of Mechanical Engineering , Ajou University , Suwon , Gyeonggi-do 16499 , Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering , Ajou University , Suwon , Gyeonggi-do 16499 , Republic of Korea
| | | |
Collapse
|
47
|
Li T, Li Y, Zhang T. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Acc Chem Res 2019; 52:288-296. [PMID: 30653299 DOI: 10.1021/acs.accounts.8b00497] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, flexible and stretchable biomimetic sensing electronics have obtained a great deal of attention in various areas, such as human-machine interfaces, robotic smart skins, health care monitoring, and biointegrated devices. In contrast with the traditional rigid and fragile silicon-based electronics, flexible and stretchable sensing electronics can efficiently capture high-quality signals when integrated on curved surfaces due to their elastic and conformal characters, which are expected to play many important roles in the foreseeable age of intelligence. Its realization strongly relies on rapid advances in the development of high-performance and versatile flexible and stretchable sensors, and effective ways to achieve high performance are rational designs of the sensing materials and microstructural configurations. This Account showcases the recent progress in flexible and stretchable biomimetic sensors covering several critical aspects of materials, structures, and applications. Nature-inspired active matter and architectures, which have been well-tuned by evolution through millions of years of optimization, provide us the best learning choices to overcome the restrictions of current sensor techniques such as low sensitivity, instability, and delayed response time. Biomimetic sensing materials and microstructural patterns can efficiently acquire synthetic response abilities, endowing the new-type flexible sensors considered as "smart" electronic components on account of the counterparts to living organisms. Moreover, the developments of diverse functions and multifunctional applications become more and more important in the creation of novel flexible electronics beyond those existing technologies. For instance, flexible and stretchable sensors with the capability of mimicking various human behavioral patterns can be developed to boost the emergence of artificial robots, which can take the place of human beings in strenuous activities, enabling progress in social science, technology, and productivity to improve the quality of human life. For the above purpose, inspired by the in-depth understanding of working principles of living organisms how to operate their natural characteristics, sensing materials with stimuli response (light, humidity, mechanics, etc.) and multifunctionalities (superhydrophobicity, degradation, self-healing, etc.) provide distinctive and multiple detection features generally encountered in their traditional counterparts. In addition, artificial micro- to nanostructures derived from naturally existing high sensitivity structures (such as insect crack or leaves) and stretchable configurations (wrinkle, texture, mesostructures, etc.) offer additional feasible strategies for producing favorable sensitivity and stretchability. Flexible and stretchable biomimetic sensors with analogous senses to those of human beings (such as tactile and auditory senses) have attracted tremendous attention for their diverse applications for next generation smart electronics. The long-term progress of these novel sensors influencing the next generations of bioinspired intelligence systems and medical electronics are also envisioned.
Collapse
Affiliation(s)
- Tie Li
- i-Lab and Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Yue Li
- i-Lab and Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Ting Zhang
- i-Lab and Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| |
Collapse
|
48
|
Jiang Y, Liu Z, Wang C, Chen X. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Acc Chem Res 2019; 52:82-90. [PMID: 30586278 DOI: 10.1021/acs.accounts.8b00499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stretchable strain sensors, which convert mechanical stimuli into electrical signals, largely fuel the growth of wearable bioelectronics due to the ubiquitous, health-related strain in biological systems. In contrast to rigid conventional strain sensors, stretchable strain sensors present advantages of conformality and stretchability, solving the mechanical mismatch between electronics and the human body. However, the great challenge of stretchable strain sensors lies in achieving high sensitivity, which is required for both signal fidelity and cost considerations. Recent advances to solve this sensitivity challenge have focused on material optimization, in search of the optimum combination of conductive active materials and elastomer substrates among a myriad of artificial or natural materials. However, high sensitivity with a gauge factor larger than 50 remains a grand challenge, especially within large-strain regions. Here we present heterogeneous strain distribution of elastomer substrates as a powerful strategy to significantly enhance the sensitivity of stretchable strain sensors. The theoretical foundation of this strategy is mathematically proven on the basis of Ohm's law in electrics and mechanics of materials. First, the extent of the sensitivity enhancement is proved to be determined by the local strain in resistance-testing segments of heterogeneous strain sensors. Next, the local strain is proved to be quantitatively decided by material properties such as section area and Young's modulus. Thus, the necessary and sufficient condition to achieve high sensitivity in heterogeneous strain sensors is that the Young's modulus reciprocal or section area reciprocal in the resistance-testing segment is larger than the mean value. This provides a theoretical design guideline to achieve high sensitivity via heterogeneous strain distribution. On the basis of this guideline, we systematically summarize concrete instances of heterogeneity-induced sensitivity improvement in stretchable strain sensors, in sequence of increasing dimensionality. A typical example of a one-dimensional heterogeneous strain sensor is a structured fiber with microbeads, where the varied section area along the fiber axis results in heterogeneous strain and sensitivity improvement. Two-dimensional heterogeneous sensors in the form of thin films contain thickness gradient sensors and auxetic mechanical metamaterial sensors. The former exhibit heterogeneous section area via the self-pinning method, while the latter show heterogeneity in both the strain direction and amplitude, leading to a 24-fold improvement in sensitivity. Three-dimensional strain sensors include rationally structured sensors for out-of-plane force detection and asymmetric active materials in electronic whiskers. The resultant enhanced sensitivity in these heterogeneous strain sensors is beneficial for applications such as continuous health monitoring, biomedical diagnostics, and replacement prosthetics, taking advantage of augmented detection accuracy and declined device cost. Finally, we discuss possible future work in exploiting heterogeneous strain distributions, involving extended methodology to achieve heterogeneity, employing suppressed strain for stretchable electrodes, cyclic durability for long-term applications, and multifunctional system-level integration. We believe that this strategy of using heterogeneous strain distribution to enhance sensitivity can strongly promote the development of stretchable strain sensors for both practical and theoretical requirements.
Collapse
Affiliation(s)
- Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
49
|
Wang R, Xu W, Shen W, Shi X, Huang J, Song W. A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00989b] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transparent film strain sensors based on silver nanowires and thermoplastic polyurethane are promising candidates for detecting various human motions and monitoring the mass of some kinetic objects.
Collapse
Affiliation(s)
- Runfei Wang
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
- School of Material Science and Engineering
| | - Wei Xu
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Wenfeng Shen
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Xiaoqing Shi
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Jian Huang
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
- Center of Materials Science and Optoelectronics Engineering
| |
Collapse
|
50
|
Wang X, Guo X, Ye J, Zheng N, Kohli P, Choi D, Zhang Y, Xie Z, Zhang Q, Luan H, Nan K, Kim BH, Xu Y, Shan X, Bai W, Sun R, Wang Z, Jang H, Zhang F, Ma Y, Xu Z, Feng X, Xie T, Huang Y, Zhang Y, Rogers JA. Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805615. [PMID: 30370605 DOI: 10.1002/adma.201805615] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Indexed: 05/23/2023]
Abstract
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro-electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.
Collapse
Affiliation(s)
- Xueju Wang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Xiaogang Guo
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jilong Ye
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Punit Kohli
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dongwhi Choi
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, South Korea
| | - Yi Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Zhaoqian Xie
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qihui Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Haiwen Luan
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kewang Nan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bong Hoon Kim
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiwei Shan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wubin Bai
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Rujie Sun
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Zizheng Wang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hokyung Jang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Fan Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yinji Ma
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xu
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xue Feng
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - John A Rogers
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|