1
|
Nugraha MI, Yang Y, Liu Z, Harrison GT, Ardhi REA, Firdaus Y, He Q, Luo L, Hedhili MN, Thaler M, Ling Z, Zeilerbauer M, Patera LL, Tsetseris L, Fatayer S, Heeney M, Anthopoulos TD. Thiol Carbazole Self-Assembled Monolayers as Tunable Carrier Injecting Interlayers for Organic Transistors and Complementary Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413157. [PMID: 39659080 PMCID: PMC11795717 DOI: 10.1002/adma.202413157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Indexed: 12/12/2024]
Abstract
The significant contact resistance at the metal-semiconductor interface is a well-documented issue for organic thin-film transistors (OTFTs) that hinders device and circuit performance. Here, this issue is tackled by developing three new thiol carbazole-based self-assembled monolayer (SAM) molecules, namely tBu-2SCz, 2SCz, and Br-2SCz, and utilizing them as carrier-selective injection interlayers. The SAMs alter the work function of gold electrodes by more than 1 eV, making them suitable for use in hole and electron-transporting OTFTs. Scanning tunneling microscopy analysis indicates that 2SCz and Br-2SCz form highly ordered molecular rows, resulting in work function values of 4.86 and 5.48 eV, respectively. The latter value is higher than gold electrodes modified by the commonly used pentafluorobenzenethiol (≈5.33 eV), making Br-2SCz promising for hole injection. Conversely, tBu-2SCz appears disordered with a lower work function of 4.52 eV, making it more suitable for electron injection. These intriguing properties are leveraged to demonstrate hole- and electron-transporting OTFTs with improved operating characteristics. All-organic complementary inverters are finally demonstrated by integrating p- and n-channel OTFTs, showcasing the potential of this simple yet powerful contact work function engineering approach. The present study highlights the versatility of thiol carbazole SAMs as carrier injecting interlayers for OTFTs and integrated circuits.
Collapse
Affiliation(s)
- Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
- Research Center for Nanotechnology SystemsNational Research and Innovation Agency (BRIN)South TangerangBanten15314Indonesia
- Collaboration Research Center for Advanced Energy MaterialsNational Research and Innovation Agency – Institut Teknologi BandungJl Ganesha 10Bandung40132Indonesia
| | - Yu‐Ying Yang
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - Zhongzhe Liu
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - George T. Harrison
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - Ryanda Enggar Anugrah Ardhi
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - Yuliar Firdaus
- Research Center for ElectronicsNational Research and Innovation AgencyBandung40135Indonesia
| | - Qiao He
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonWhite City CampusLondonW12 0BZUnited Kingdom
| | - Linqu Luo
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core LabsKing Abdullah University of Science and Technology (KAUST)Thuwal23955–6900Saudi Arabia
| | - Marco Thaler
- Department of Physical ChemistryUniversity of InnsbruckInnsbruck6020Austria
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | | | - Laerte L. Patera
- Department of Physical ChemistryUniversity of InnsbruckInnsbruck6020Austria
| | - Leonidas Tsetseris
- Department of PhysicsSchool of Applied Mathematical and Physical SciencesNational Technical University of Athens9 Heroon Polytechniou Street, Zografou CampusAthensGR‐15780Greece
| | - Shadi Fatayer
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
- Applied Physics ProgramPhysical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955–6900Saudi Arabia
| | - Martin Heeney
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
| | - Thomas D. Anthopoulos
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955–6900Saudi Arabia
- Henry Royce Institute and Photon Science InstituteDepartment of Electrical and Electronic EngineeringThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
2
|
Ge GY, Xu J, Wang X, Sun W, Yang M, Mei Z, Deng XY, Li P, Pan X, Li JT, Wang XQ, Zhang Z, Lv S, Dai X, Lei T. On-site biosignal amplification using a single high-spin conjugated polymer. Nat Commun 2025; 16:396. [PMID: 39755691 DOI: 10.1038/s41467-024-55369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025] Open
Abstract
On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification. Here, we propose using high-spin, hydrophilic conjugated polymers and a computational screening approach to address this challenge. We designed a high-spin polymer, namely P(TII-2FT), which exhibits satisfactory, stable, and balanced ambipolar OECT performance. The figure-of-merits achieved by the P(TII-2FT) devices surpass those of the current leading materials by 5 to 20 times, resulting in remarkable voltage gains while maintaining a compact form factor. Based on this amplifier, we have successfully achieved on-site capture and amplification of various electrophysiological signals with greatly enhanced signal quality.
Collapse
Affiliation(s)
- Gao-Yang Ge
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jingcao Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xinyue Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Wenxi Sun
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mo Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zi Mei
- School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xin-Yu Deng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peiyun Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiran Pan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jia-Tong Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xue-Qing Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhi Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shixian Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaochuan Dai
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Ting Lei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
3
|
Li CY, Jiang GH, Higashihara T, Lin YC. Interfacial Stabilization of Organic Electrochemical Transistors Conferred Using Polythiophene-Based Conjugated Block Copolymers with a Hydrophobic Coil Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52753-52765. [PMID: 39287510 PMCID: PMC11450721 DOI: 10.1021/acsami.4c13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The recent interest in developing low-cost, biocompatible, and lightweight bioelectronic devices has focused on organic electrochemical transistors (OECTs), which have the potential to fulfill these requirements. In this study, three types of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) incorporating different insulating blocks (poly(nbutyl acrylate) (PBA), polystyrene, and poly(ethylene oxide) (PEO)) were synthesized for application in OECTs. The morphological, crystallographic, and electrochemical properties of these BCPs are systematically investigated. Accordingly, P3HT-b-PBA demonstrates superior performance in the KCl-based aqueous electrolyte, with a higher product of mobility and capacitance (μC*) at 170 F s-1 cm-1 V-1 than that of the P3HT homopolymer at 58 F s-1 cm-1 V-1. P3HT-b-PBA exhibits better stability over 50 ON/OFF switching cycles than do other BCPs and P3HT homopolymers. With regard to the performance in the KPF6-based aqueous electrolyte, P3HT-b-PBA outperforms with a higher μC* of 9.2 F s-1 cm-1 V-1 than that of 8.6 F s-1 cm-1 V-1 observed from P3HT. Notably, both polymers exhibited almost no decay in device performance over 110 ON/OFF switching cycles. The strongly different performance of polymers in these two electrolytes is due to the side chain's hydrophobicity and interdigitated lamellar structures, thereby retarding the doping kinetics of the highly hydrated Cl- ions compared with the slightly hydrated PF6- ions. Concerning the improved performance of P3HT-b-PBA, this is attributed to its soft and hydrophobic backbone. Our morphological and crystallographic analyses reveal that P3HT-b-PBA experiences minimal structural disorder when swelled by the electrolyte, maintaining its original structure better than the P3HT homopolymer and the hydrophilic BCP of P3HT-b-PEO. The hydrophobic nature of P3HT-b-PBA contributes to the stability of its backbone structure, ensuring enhanced capacitance during the operation of the OECT operation. These findings provide reassurance about the stability and performance of P3HT-b-PBA in the field of OECT applications. In summary, this study represents the first exploration of P3HT-based BCPs for OECT applications and investigates their structure-performance relationships in mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Chia-Ying Li
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Guo-Hao Jiang
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Tomoya Higashihara
- Department
of Organic Materials Science, Graduate School of Organic Materials
Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
5
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
6
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
7
|
Zeglio E, Wang Y, Jain S, Lin Y, Avila Ramirez AE, Feng K, Guo X, Ose H, Mozolevskis G, Mawad D, Yue W, Hamedi MM, Herland A. Mixing Insulating Commodity Polymers with Semiconducting n-type Polymers Enables High-Performance Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2302624. [PMID: 38431796 DOI: 10.1002/adma.202302624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n-type conjugated polymer p(N-T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility-volumetric capacitance product (µC*) with respect to the pristine p(N-T) (from 4.3 to 13.4 F V-1 cm-1 s-1 ) while drastically decreasing the amount of conjugated polymer (six times less). This improvement in µC* is due to a dramatic increase in electronic mobility by two orders of magnitude, from 0.059 to 1.3 cm2 V-1 s-1 for p(N-T):Polystyrene 10 KDa 1:6. Moreover, devices made with this polymer blend show better stability, retaining 77% of the initial drain current after 60 minutes operation in contrast to 12% for pristine p(N-T). These results open a new generation of low-cost organic mixed ionic-electronic conductors where the bulk of the film is made by a commodity polymer.
Collapse
Affiliation(s)
- Erica Zeglio
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solna, 171 77, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, 171 65, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 114 18, Sweden
- Digital Futures, Stockholm, SE-100 44, Sweden
| | - Yazhou Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Saumey Jain
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, 171 65, Sweden
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden
| | - Yunfan Lin
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, 171 65, Sweden
| | - Alan Eduardo Avila Ramirez
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, 171 65, Sweden
| | - Kui Feng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Helena Ose
- Micro and nanodevices laboratory, Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., Riga, LV-1063, Latvia
| | - Gatis Mozolevskis
- Micro and nanodevices laboratory, Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., Riga, LV-1063, Latvia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Wan Yue
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - Mahiar Max Hamedi
- Digital Futures, Stockholm, SE-100 44, Sweden
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 100 44, Sweden
| | - Anna Herland
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solna, 171 77, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, 171 65, Sweden
| |
Collapse
|
8
|
Yang W, Feng K, Ma S, Liu B, Wang Y, Ding R, Jeong SY, Woo HY, Chan PKL, Guo X. High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305416. [PMID: 37572077 DOI: 10.1002/adma.202305416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Paddy Kwok Leung Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science and Technology Park, Shatin, Hong Kong, 999077, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
9
|
Nieuwenhuis AF, Duarte Sánchez DF, Cui JZ, Lemay SG. Stochastic Electrical Detection of Single Ion-Gated Semiconducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307912. [PMID: 37758267 DOI: 10.1002/adma.202307912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Indexed: 10/03/2023]
Abstract
Semiconducting polymer chains constitute the building blocks for a wide range of electronic materials and devices. However, most of their electrical characteristics at the single-molecule level have received little attention. Elucidating these properties can help understanding performance limits and enable new applications. Here, coupled ionic-electronic charge transport is exploited to measure the quasi-1D electrical current through long single conjugated polymer chains as they form transient contacts with electrodes separated by ≈10 nm. Fluctuations between internal conformations of the individual polymers are resolved as abrupt, multilevel switches in the electrical current. This behavior is consistent with the theoretical simulations based on the worm-like-chain (WLC) model for semiflexible polymers. In addition to probing the intrinsic properties of single semiconducting polymer chains, the results provide an unprecedented window into the dynamics of random-coil polymers and enable the use of semiconducting polymers as electrical labels for single-molecule (bio)sensing assays.
Collapse
Affiliation(s)
- Ab F Nieuwenhuis
- University of Twente, Drienerlolaan 5, Enschede, 7522 NB, Netherlands
| | | | - Jin Z Cui
- University of Twente, Drienerlolaan 5, Enschede, 7522 NB, Netherlands
| | - Serge G Lemay
- University of Twente, Drienerlolaan 5, Enschede, 7522 NB, Netherlands
| |
Collapse
|
10
|
Alarcon-Espejo P, Sarabia-Riquelme R, Matrone GM, Shahi M, Mahmoudi S, Rupasinghe GS, Le VN, Mantica AM, Qian D, Balk TJ, Rivnay J, Weisenberger M, Paterson AF. High-Hole-Mobility Fiber Organic Electrochemical Transistors for Next-Generation Adaptive Neuromorphic Bio-Hybrid Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305371. [PMID: 37824715 DOI: 10.1002/adma.202305371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Indexed: 10/14/2023]
Abstract
The latest developments in fiber design and materials science are paving the way for fibers to evolve from parts in passive components to functional parts in active fabrics. Designing conformable, organic electrochemical transistor (OECT) structures using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) fibers has excellent potential for low-cost wearable bioelectronics, bio-hybrid devices, and adaptive neuromorphic technologies. However, to achieve high-performance, stable devices from PEDOT:PSS fibers, approaches are required to form electrodes on fibers with small diameters and poor wettability, that leads to irregular coatings. Additionally, PEDOT:PSS-fiber fabrication needs to move away from small batch processing to roll-to-roll or continuous processing. Here, it is shown that synergistic effects from a superior electrode/organic interface, and exceptional fiber alignment from continuous processing, enable PEDOT:PSS fiber-OECTs with stable contacts, high µC* product (1570.5 F cm-1 V-1 s-1 ), and high hole mobility over 45 cm2 V-1 s-1 . Fiber-electrochemical neuromorphic organic devices (fiber-ENODes) are developed to demonstrate that the high mobility fibers are promising building blocks for future bio-hybrid technologies. The fiber-ENODes demonstrate synaptic weight update in response to dopamine, as well as a form factor closely matching the neuronal axon terminal.
Collapse
Affiliation(s)
- Paula Alarcon-Espejo
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Ruben Sarabia-Riquelme
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Maryam Shahi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Siamak Mahmoudi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Gehan S Rupasinghe
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Vianna N Le
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Antonio M Mantica
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Dali Qian
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - T John Balk
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew Weisenberger
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Alexandra F Paterson
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
11
|
Le VN, Bombile JH, Rupasinghe GS, Baustert KN, Li R, Maria IP, Shahi M, Alarcon Espejo P, McCulloch I, Graham KR, Risko C, Paterson AF. New Chemical Dopant and Counterion Mechanism for Organic Electrochemical Transistors and Organic Mixed Ionic-Electronic Conductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207694. [PMID: 37466175 PMCID: PMC10520668 DOI: 10.1002/advs.202207694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Indexed: 07/20/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low-cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n-dopant, tetrabutylammonium hydroxide (TBA-OH), and identifying a new design consideration underpinning its success. TBA-OH behaves as both a chemical n-dopant and morphology additive in donor acceptor co-polymer naphthodithiophene diimide-based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+ counterion adopts an "edge-on" location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped-OECTs and doped-OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.
Collapse
Affiliation(s)
- Vianna N. Le
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Joel H. Bombile
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Gehan S. Rupasinghe
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Kyle N. Baustert
- Department of ChemistryUniversity of KentuckyLexingtonKY40506USA
| | | | - Iuliana P. Maria
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Maryam Shahi
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Paula Alarcon Espejo
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Iain McCulloch
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
- King Abdullah University of Science and TechnologyKAUST Solar CentreThuwal23955‐6900Saudi Arabia
| | | | - Chad Risko
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Alexandra F. Paterson
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| |
Collapse
|
12
|
Ding B, Jo IY, Yu H, Kim JH, Marsh AV, Gutiérrez-Fernández E, Ramos N, Rapley CL, Rimmele M, He Q, Martín J, Gasparini N, Nelson J, Yoon MH, Heeney M. Enhanced Organic Electrochemical Transistor Performance of Donor-Acceptor Conjugated Polymers Modified with Hybrid Glycol/Ionic Side Chains by Postpolymerization Modification. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3290-3299. [PMID: 37123107 PMCID: PMC10134426 DOI: 10.1021/acs.chemmater.3c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.
Collapse
Affiliation(s)
- Bowen Ding
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
| | - Il-Young Jo
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hang Yu
- Department
of Physics and Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ji Hwan Kim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Adam V. Marsh
- KAUST
Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edgar Gutiérrez-Fernández
- POLYMAT
University of the Basque Country UPV/EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Nicolás Ramos
- POLYMAT
University of the Basque Country UPV/EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Charlotte L. Rapley
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
| | - Martina Rimmele
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
| | - Qiao He
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
| | - Jaime Martín
- POLYMAT
University of the Basque Country UPV/EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Grupo de
Polímeros, Departamento de Física e Ciencias da Terra,
Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, Esteiro, 15471 Ferrol, Spain
| | - Nicola Gasparini
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
| | - Jenny Nelson
- Department
of Physics and Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Myung-Han Yoon
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Martin Heeney
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane
Shepherd’s Bush, London W12 0BZ, United Kingdom
- KAUST
Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
DiTullio BT, Savagian LR, Bardagot O, De Keersmaecker M, Österholm AM, Banerji N, Reynolds JR. Effects of Side-Chain Length and Functionality on Polar Poly(dioxythiophene)s for Saline-Based Organic Electrochemical Transistors. J Am Chem Soc 2023; 145:122-134. [PMID: 36563183 DOI: 10.1021/jacs.2c08850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the impact of side chains on the aqueous redox properties of conjugated polymers is crucial to unlocking their potential in bioelectrochemical devices, such as organic electrochemical transistors (OECTs). Here, we report a series of polar propylenedioxythiophene-based copolymers functionalized with glyme side chains of varying lengths as well as an analogue with short hydroxyl side chains. We show that long polar side chains are not required for achieving high volumetric capacitance (C*), as short hydroxy substituents can afford facile doping and high C* in saline-based electrolytes. Furthermore, we demonstrate that varying the length of the polar glyme chains leads to subtle changes in material properties. Increasing the length of glyme side chain is generally associated with an enhancement in OECT performance, doping kinetics, and stability, with the polymer bearing the longest side chains exhibiting the highest performance ([μC*]OECT = 200 ± 8 F cm-1 V-1 s-1). The origin of this performance enhancement is investigated in different device configurations using in situ techniques (e.g., time-resolved spectroelectrochemistry and chronoamperometry). These studies suggest that the performance improvement is not due to significant changes in C* but rather due to variations in the inferred mobility. Through a thorough comparison of two different architectures, we demonstrate that device geometry can obfuscate the benchmarking of OECT active channel materials, likely due to contact resistance effects. By complementing all electrochemical and spectroscopic experiments with in situ measurements performed within a planar OECT device configuration, this work seeks to unambiguously assign material design principles to fine-tune the properties of poly(dioxythiophene)s relevant for application in OECTs.
Collapse
Affiliation(s)
- Brandon T DiTullio
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Lisa R Savagian
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Olivier Bardagot
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Bern3012, Switzerland
| | - Michel De Keersmaecker
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Anna M Österholm
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Natalie Banerji
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Bern3012, Switzerland
| | - John R Reynolds
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
15
|
Vertical organic electrochemical transistors for complementary circuits. Nature 2023; 613:496-502. [PMID: 36653571 PMCID: PMC9849123 DOI: 10.1038/s41586-022-05592-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.
Collapse
|
16
|
Liang Y, Tang H, Zhang C, Liu C, Lan L, Huang F. Synergistic Effect of Oxoammonium Salt and Its Counterions for Fabricating Organic Electrochemical Transistors with Low Power Consumption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51165-51174. [PMID: 36335598 DOI: 10.1021/acsami.2c15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The state-of-the-art poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-based organic electrochemical transistors (OECTs) are gaining importance for a variety of biological applications due to their mixed electronic and ionic conductivities featuring ion-to-electron conversion. A low operation voltage without sacrificing device performance is desired to realize long-term monitoring of biological activities. In the present work, oxoammonium salts with two different counterions (TEMPO+X-, where TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxoammonium; X = Br- and TFSI-) are employed as secondary dopants to modulate the device performance. Both oxoammonium salts feature a distinct dopant concentration-dependent doping effect, allowing precise control in improving the performance of OECTs. A zero-gate bias, corresponding to the maximum transconductance, and a low threshold voltage are realized by optimizing the dopant concentrations. In addition, TEMPO+TFSI- dopant exerts great capability in modulating the work function and in morphology reconstruction of PEDOT:PSS, ensuring a well-matched work function at the gold electrode-channel material interface and condensed microstructure stacking with an edge-on orientation in the doped PEDOT:PSS films. The synergistic effect of TEMPO and the TFSI- counterion endows the device with superior performance to its counterparts due to the resultant higher μC* figure, benefiting from the efficient injection/extraction of holes at the interface and enhanced intra- and inter-chain carrier transport. The excellent device performance makes the OECT a promising neuromorphic device to mimic basic brain functions.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Chunyang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Chunchen Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Linfeng Lan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
17
|
Li P, Shi J, Lei Y, Huang Z, Lei T. Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering. Nat Commun 2022; 13:5970. [PMID: 36216813 PMCID: PMC9551099 DOI: 10.1038/s41467-022-33553-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
High-performance n-type organic electrochemical transistors (OECTs) are essential for logic circuits and sensors. However, the performances of n-type OECTs lag far behind that of p-type ones. Conventional wisdom posits that the LUMO energy level dictates the n-type performance. Herein, we show that engineering the doped state is more critical for n-type OECT polymers. By balancing more charges to the donor moiety, we could effectively switch a p-type polymer to high-performance n-type material. Based on this concept, the polymer, P(gTDPP2FT), exhibits a record high n-type OECT performance with μC* of 54.8 F cm-1 V-1 s-1, mobility of 0.35 cm2 V-1 s-1, and response speed of τon/τoff = 1.75/0.15 ms. Calculations and comparison studies show that the conversion is primarily due to the more uniform charges, stabilized negative polaron, enhanced conformation, and backbone planarity at negatively charged states. Our work highlights the critical role of understanding and engineering polymers' doped states.
Collapse
Affiliation(s)
- Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Junwei Shi
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuqiu Lei
- College of Engineering, Peking University, Beijing, 100871, China
| | - Zhen Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Keene ST, Gueskine V, Berggren M, Malliaras GG, Tybrandt K, Zozoulenko I. Exploiting mixed conducting polymers in organic and bioelectronic devices. Phys Chem Chem Phys 2022; 24:19144-19163. [PMID: 35942679 DOI: 10.1039/d2cp02595g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.
Collapse
Affiliation(s)
- Scott T Keene
- Electrical Engineering Division, Department of Engineering, Cambridge University, 9 JJ Thompson Ave., CB3 0FA Cambridge, UK
| | - Viktor Gueskine
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, Cambridge University, 9 JJ Thompson Ave., CB3 0FA Cambridge, UK
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| |
Collapse
|
19
|
Zojer E, Terfort A, Zharnikov M. Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Acc Chem Res 2022; 55:1857-1867. [PMID: 35658405 PMCID: PMC9260959 DOI: 10.1021/acs.accounts.2c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusControlling the physical and chemical properties of surfaces and interfaces is of fundamental relevance in various areas of physical chemistry and a key issue of modern nanotechnology. A highly promising strategy for achieving that control is the use of self-assembled monolayers (SAMs), which are ordered arrays of rodlike molecules bound to the substrate by a suitable anchoring group and carrying a functional tail group at the other end of the molecular backbone. Besides various other applications, SAMs are frequently used in organic electronics for the electrostatic engineering of interfaces by controlling the interfacial level alignment. This is usually achieved by introducing a dipolar tail group at the SAM-semiconductor interface. Such an approach, however, also changes the chemical character of that interface, for example, affecting the growth of subsequent layers. A strategy for avoiding this complication is to embed polar groups into the backbones of the SAM-forming molecules. This allows disentangling electronic interface engineering and the nucleation of further layers, such that both can be optimized independently. This novel concept was successfully demonstrated for both aliphatic and aromatic SAMs on different application-relevant substrates, such as gold, silver, and indium tin oxide. Embedding, for example, ester and pyrimidine groups in different orientations into the backbones of the SAM-forming molecules results in significant work-function changes. These can then be fine-tuned over a wide energy range by growing mixed monolayers consisting of molecules with oppositely oriented polar groups. In such systems, the variation of the work function is accompanied by pronounced shifts of the peaks in X-ray photoelectron spectra, which demonstrates that electrostatically triggered core-level shifts can be as important as the well-established chemical shifts. This illustrates the potential of X-ray photoelectron spectroscopy (XPS) as a tool for probing the local electrostatic energy within monolayers and, in systems like the ones studied here, makes XPS a powerful tool for studying the composition and morphology of binary SAMs. All these experimental observations can be rationalized through simulations, which show that the assemblies of embedded dipolar groups introduce a potential discontinuity within the monolayer, shifting the energy levels above and below the dipoles relative to each other. In molecular and monolayer electronics, embedded-dipole SAMs can be used to control transition voltages and current rectification. In devices based on organic and 2D semiconductors, such as MoS2, they can reduce contact resistances by several orders of magnitude without adversely affecting film growth even on flexible substrates. By varying the orientation of the embedded dipolar moieties, it is also possible to build p- and n-type organic transistors using the same electrode materials (Au). The extensions of the embedded-dipole concept from hybrid interfaces to systems such as metal-organic frameworks is currently underway, which further underlines the high potential of this approach.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Feng K, Shan W, Wang J, Lee JW, Yang W, Wu W, Wang Y, Kim BJ, Guo X, Guo H. Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201340. [PMID: 35429014 DOI: 10.1002/adma.202201340] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
n-Type organic mixed ionic-electronic conductors (OMIECs) with high electron mobility are scarce and highly challenging to develop. As a result, the figure-of-merit (µC*) of n-type organic electrochemical transistors (OECTs) lags far behind the p-type analogs, restraining the development of OECT-based low-power complementary circuits and biosensors. Here, two n-type donor-acceptor (D-A) polymers based on fused bithiophene imide dimer f-BTI2 as the acceptor unit and thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. The cyanation of TVT enables polymer f-BTI2g-TVTCN with simultaneously enhanced ion-uptake ability, film structural order, and charge-transport property. As a result, it is able to obtain a high volumetric capacitance (C*) of 170 ± 22 F cm-3 and a record OECT electron mobility (μe,OECT ) of 0.24 cm2 V-1 s-1 for f-BTI2g-TVTCN, subsequently achieving a state-of-the-art µC* of 41.3 F cm-1 V-1 s-1 and geometry-normalized transconductance (gm,norm ) of 12.8 S cm-1 in n-type accumulation-mode OECTs. In contrast, only a moderate µC* of 1.50 F cm-1 V-1 s-1 is measured for the non-cyanated polymer f-BTI2g-TVT. These remarkable results demonstrate the great power of cyano functionalization of polymer semiconductors in developing n-type OMIECs with substantial electron mobility in aqueous environment for high-performance n-type OECTs.
Collapse
Affiliation(s)
- Kui Feng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wentao Shan
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
21
|
Shi J, Jie J, Deng W, Luo G, Fang X, Xiao Y, Zhang Y, Zhang X, Zhang X. A Fully Solution-Printed Photosynaptic Transistor Array with Ultralow Energy Consumption for Artificial-Vision Neural Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200380. [PMID: 35243701 DOI: 10.1002/adma.202200380] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Photosynaptic organic field-effect transistors (OFETs) represent a viable pathway to develop bionic optoelectronics. However, the high operating voltage and current of traditional photosynaptic OFETs lead to huge energy consumption greater than that of the real biological synapses, hindering their further development in new-generation visual prosthetics and artificial perception systems. Here, a fully solution-printed photosynaptic OFET (FSP-OFET) with substantial energy consumption reduction is reported, where a source Schottky barrier is introduced to regulate charge-carrier injection, and which operates with a fundamentally different mechanism from traditional devices. The FSP-OFET not only significantly lowers the working voltage and current but also provides extraordinary neuromorphic light-perception capabilities. Consequently, the FSP-OFET successfully emulates visual nervous responses to external light stimuli with ultralow energy consumption of 0.07-34 fJ per spike in short-term plasticity and 0.41-19.87 fJ per spike in long-term plasticity, both approaching the energy efficiency of biological synapses (1-100 fJ). Moreover, an artificial optic-neural network made from an 8 × 8 FSP-OFET array on a flexible substrate shows excellent image recognition and reinforcement abilities at a low energy cost. The designed FSP-OFET offers an opportunity to realize photonic neuromorphic functionality with extremely low energy consumption dissipation.
Collapse
Affiliation(s)
- Jialin Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Wei Deng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Gan Luo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaochen Fang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanling Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yujian Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
22
|
Tan STM, Gumyusenge A, Quill TJ, LeCroy GS, Bonacchini GE, Denti I, Salleo A. Mixed Ionic-Electronic Conduction, a Multifunctional Property in Organic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110406. [PMID: 35434865 DOI: 10.1002/adma.202110406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design. Leveraging the infinite possibilities of the organic synthetic toolbox, this perspective highlights several chemical and structural design approaches to modify OMIECs' properties important in device applications such as electronic and ionic conductivity, color, modulus, etc. Additionally, the ability for OMIECs to respond to external stimuli and transduce signals to myriad types of outputs has accelerated their development in smart systems. This perspective further illustrates how various stimuli such as electrical, chemical, and optical inputs fundamentally change OMIECs' properties dynamically and how these changes can be utilized in device applications.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tyler James Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett Swain LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Giorgio Ernesto Bonacchini
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, Milano, 20133, Italy
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
25
|
Wu HY, Yang CY, Li Q, Kolhe NB, Strakosas X, Stoeckel MA, Wu Z, Jin W, Savvakis M, Kroon R, Tu D, Woo HY, Berggren M, Jenekhe SA, Fabiano S. Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106235. [PMID: 34658088 DOI: 10.1002/adma.202106235] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm ≈ 11 S cm-1 ) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm-1 V-1 s-1 ), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Nagesh B Kolhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Marios Savvakis
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-Ink AB, Teknikringen 7, Linköping, SE-58330, Sweden
| | - Samson A Jenekhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-Ink AB, Teknikringen 7, Linköping, SE-58330, Sweden
| |
Collapse
|
26
|
Nawaz A, Liu Q, Leong WL, Fairfull-Smith KE, Sonar P. Organic Electrochemical Transistors for In Vivo Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101874. [PMID: 34606146 DOI: 10.1002/adma.202101874] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors (OECTs) are presently a focus of intense research and hold great potential in expanding the horizons of the bioelectronics industry. The notable characteristics of OECTs, including their electrolyte-gating, which offers intimate interfacing with biological environments, and aqueous stability, make them particularly suitable to be operated within a living organism (in vivo). Unlike the existing in vivo bioelectronic devices, mostly based on rigid metal electrodes, OECTs form a soft mechanical contact with the biological milieu and ensure a high signal-to-noise ratio because of their powerful amplification capability. Such features make OECTs particularly desirable for a wide range of in vivo applications, including electrophysiological recordings, neuron stimulation, and neurotransmitter detection, and regulation of plant processes in vivo. In this review, a systematic compilation of the in vivo applications is presented that are addressed by the OECT technology. First, the operating mechanisms, and the device design and materials design principles of OECTs are examined, and then multiple examples are provided from the literature while identifying the unique device properties that enable the application progress. Finally, one critically looks at the future of the OECT technology for in vivo bioelectronic applications.
Collapse
Affiliation(s)
- Ali Nawaz
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba, PR, 81531-990, Brazil
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
27
|
Zhu YC, Cai B, Jiang Q, Zhang Y, Sha J, Xie S. MXene-assisted organic electrochemical transistor biosensor with multiple spiral interdigitated electrodes for sensitive quantification of fPSA/tPSA. J Nanobiotechnology 2021; 19:386. [PMID: 34819078 PMCID: PMC8611845 DOI: 10.1186/s12951-021-01121-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background The ratio of fPSA/tPSA in the "grey zone" of tPSA with the concentration range between 4 ng/ml and 10 ng/ml is significant for diagnosis of prostate cancer, and highly efficiency quantification of the ratio of fPSA/tPSA remain elusive mainly because of their extremely low concentration in patients' peripheral blood with high biosample complexity. Methods We presented an interdigitated spiral-based MXene-assisted organic electrochemical transistors (isMOECTs) biosensor for highly sensitive determination of fPSA/tPSA. The combination of MXene and the interdigitated multiple spiral architecture synergistically assisted the amplification of amperometric signal of biosensor with dual functionalizations of anti-tPSA and anti-fPSA. Results The ultrasensitivity of the biosensor was enhanced by tunable multiple spiral architecture and MXene nanomaterials; and the sensor exhibited improved detection limit of tPSA and fPSA down to 0.01 pg/ml and acceptable performance of selectivity, repeatability and stability. Moreover, the isMOECTs displayed area under the curve (AUC) value of 0.8138, confirming the potential applications of isMOECTs in clinics. Conclusions The merits of isMOECTs biosensor demonstrated the reliability of MXene-assisted organic electrochemical transistor biosensor with multiple interdigitated spiral for ultrasensitive quantification of fPSA/tPSA, suggesting potential current and future point-of-care testing applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01121-x.
Collapse
Affiliation(s)
- Yi-Cheng Zhu
- Department of Ultrasound, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201200, China
| | - Biao Cai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Quan Jiang
- Department of Ultrasound, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201200, China
| | - Yuan Zhang
- Department of Ultrasound, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201200, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Shaowei Xie
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
28
|
Wang S, Zhao X, Zhang C, Yang Y, Liang J, Ni Y, Zhang M, Li J, Ye X, Zhang J, Tong Y, Tang Q, Liu Y. Suppressing Interface Strain for Eliminating Double-Slope Behaviors: Towards Ideal Conformable Polymer Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101633. [PMID: 34480384 DOI: 10.1002/adma.202101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/13/2021] [Indexed: 06/13/2023]
Abstract
High-mobility polymer field-effect transistors (PFETs) are being actively explored for applications in soft electronic skin and low-cost flexible displays because of their superior solution processability, mechanical flexibility, and stretchability. However, most of high-mobility PFETs often deviate from the idealized behavior with variable mobility, large threshold voltage, and high off-state current, which masks their intrinsic properties and significantly impedes their practical applications. Here, it is first revealed that interface strain between polymer thin film and rigid substrate plays a crucial role in determining the ideality of PFETs, and demonstrate that various ideal conformable PFETs can be successfully fabricated by releasing strain. It is found that strain in film can be released by one-step peeling strategy, which can reduce π-π stacking distance and suppress generation of oxygen doped carriers, thereby obtaining linearly injected charge carriers and decreased carrier concentration in channel, eventually realizing ideal PFETs. More impressively, the fabricated ideal conformable PFET array displays outstanding conformability to curved objects, and meanwhile showing excellent organic light-emitting display driving capability. The work clarifies the effect of the interface strain on the device ideality, and strain can be effectively released by a facile peeling strategy, thus offering useful guidance for the construction of ideal conformable PFETs.
Collapse
Affiliation(s)
- Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jing Liang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Juntong Li
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jidong Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
29
|
|
30
|
Luo X, Shen H, Perera K, Tran DT, Boudouris BW, Mei J. Designing Donor-Acceptor Copolymers for Stable and High-Performance Organic Electrochemical Transistors. ACS Macro Lett 2021; 10:1061-1067. [PMID: 35549113 DOI: 10.1021/acsmacrolett.1c00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organic electrochemical transistors (OECTs) are oft-used for bioelectronic applications, and a variety of OECT channel materials have been developed in recent years. However, the majority of these materials are still limited by long-term performance and stability challenges. To resolve these issues, we implemented a next-generation design of polymers for OECTs. Specifically, diketopyrrolopyrrole (DPP) building blocks were copolymerized with propylene dioxythiophene-based (Pro-based) monomers to create a donor-acceptor-type conjugated polymer (PProDOT-DPP). These PProDOT-DPP macromolecules were synthesized using a straightforward direct arylation polymerization synthetic route. The PProDOT-DPP polymer thin film exhibited excellent electrochemical response, low oxidation potential, and high crystallinity, as evidenced by spectroelectrochemical measurements and grazing incidence wide-angle X-ray scattering measurements. Thus, the resultant polymer thin films had high charge mobility and volumetric capacitance values (i.e., μC* as high as 310 F cm-1 V-1 s-1) when they were used as the active layer materials in OECT devices, which places PProDOT-DPP among the highest performing accumulation-mode OECT polymers reported to date. The performance of the PProDOT-DPP thin films was also retained for 100 cycles and over 2000 s of ON-OFF cycling, indicating the robust stability of the materials. Therefore, this effort provides a clear roadmap for the design of electrochemically active macromolecules for accumulation-mode OECTs, where crystalline acceptor cores are incorporated into an all-donor polymer. We anticipate that this will ultimately inspire future polymer designs to enable OECTs with both high electrical performance and operational stability.
Collapse
Affiliation(s)
- Xuyi Luo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hongguang Shen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dung Trong Tran
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Mandal S, Mandal A, Verma SP, Goswami DK. Interface engineering of moisture-induced ionic albumen dielectric layers through self-crosslinking of cysteine amino acids for low voltage, high-performance organic field-effect transistors. NANOSCALE 2021; 13:11913-11920. [PMID: 34190295 DOI: 10.1039/d1nr02759j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interface roughness between the semiconducting and dielectric layers of organic field-effect transistors (OFETs) plays a crucial role in the charge transport mechanism through the device. Here we report the interface engineering of a moisture induced ionic albumen material through systematic control of the temperature-dependent self-crosslinking of cysteine amino acids in the dielectric layer. The evolution of the surface morphologies of albumen and pentacene semiconducting films has been studied to achieve a smooth interface for enhanced charge transport. A structural transition of pentacene films from crystalline dendrite to amorphous was induced by the higher surface roughness of the albumen film. The devices showed a high transconductance of 11.68 μS at a lower threshold voltage of -0.9 V.
Collapse
Affiliation(s)
- Suman Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | | | | | | |
Collapse
|
32
|
Ferro LMM, Merces L, de Camargo DHS, Bof Bufon CC. Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101518. [PMID: 34061409 DOI: 10.1002/adma.202101518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Organic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes-jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices. Toward high-performance OECTs, microtubular electrochemical devices based on strain-engineering are presented here by taking advantage of the exclusive shape features of self-curled nanomembranes. Such novel OECTs outperform the state-of-the-art organic liquid-gated transistors, reaching lower operating voltage, improved ion doping, and a signal amplification with a >104 intrinsic gain. The multipurpose OECT concept is validated with different electrolytes and distinct nanometer-thick molecular films, namely, phthalocyanine and thiophene derivatives. The OECTs are also applied as transducers to detect a biomarker related to neurological diseases, the neurotransmitter dopamine. The self-curled OECTs update the premises of electrochemical energy conversion in liquid-gated transistors, yielding a substantial performance improvement and new chemical sensing capabilities within picoliter sampling volumes.
Collapse
Affiliation(s)
- Letícia M M Ferro
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
| | - Leandro Merces
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Davi H S de Camargo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Carlos C Bof Bufon
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| |
Collapse
|
33
|
Ding L, Wang ZY, Yao ZF, Liu NF, Wang XY, Zhou YY, Luo L, Shen Z, Wang JY, Pei J. Controllable Transformation between the Kinetically and Thermodynamically Stable Aggregates in a Solution of Conjugated Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Nai-Fu Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yang-Yang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
34
|
Moser M, Savva A, Thorley K, Paulsen BD, Hidalgo TC, Ohayon D, Chen H, Giovannitti A, Marks A, Gasparini N, Wadsworth A, Rivnay J, Inal S, McCulloch I. Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Achilleas Savva
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Karl Thorley
- University of Kentucky Department of Chemistry Lexington KY 40506-0055 USA
| | - Bryan D. Paulsen
- Northwestern University Department of Biomedical Engineering Chicago IL 60208 USA
| | - Tania Cecilia Hidalgo
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST) Physical Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | | | - Adam Marks
- Imperial College London Department of Chemistry and Center for Plastic Electronics London W12 0BZ UK
| | - Nicola Gasparini
- Imperial College London Department of Chemistry and Center for Plastic Electronics London W12 0BZ UK
| | | | - Jonathan Rivnay
- Northwestern University Department of Biomedical Engineering Chicago IL 60208 USA
- Northwestern University Simpson Querrey Institute Chicago IL 60611 USA
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Iain McCulloch
- University of Oxford Department of Chemistry Oxford OX1 3TA UK
- King Abdullah University of Science and Technology (KAUST) Physical Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
35
|
Moser M, Savva A, Thorley K, Paulsen BD, Hidalgo TC, Ohayon D, Chen H, Giovannitti A, Marks A, Gasparini N, Wadsworth A, Rivnay J, Inal S, McCulloch I. Polaron Delocalization in Donor-Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angew Chem Int Ed Engl 2021; 60:7777-7785. [PMID: 33259685 DOI: 10.1002/anie.202014078] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Indexed: 01/25/2023]
Abstract
Donor-acceptor (D-A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side-reactions during OECT operation, yet their steady-state OECT performance still lags far behind their all-donor counterparts. We report three D-A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all-donor polymers, hence representing a significant improvement to the previously developed D-A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also reveal a positive correlation between hole polaron delocalization and steady-state OECT performance, providing new insights into the design of OECT materials. Importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers' conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.
Collapse
Affiliation(s)
- Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Achilleas Savva
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Karl Thorley
- University of Kentucky, Department of Chemistry, Lexington, KY, 40506-0055, USA
| | - Bryan D Paulsen
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, 60208, USA
| | - Tania Cecilia Hidalgo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Alexander Giovannitti
- Stanford University, TomKatCenter for Sustainable Energy, Stanford, CA, 94305-4125, USA
| | - Adam Marks
- Imperial College London, Department of Chemistry and Center for Plastic Electronics, London, W12 0BZ, UK
| | - Nicola Gasparini
- Imperial College London, Department of Chemistry and Center for Plastic Electronics, London, W12 0BZ, UK
| | - Andrew Wadsworth
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Jonathan Rivnay
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, 60208, USA.,Northwestern University, Simpson Querrey Institute, Chicago, IL, 60611, USA
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK.,King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Ohayon D, Savva A, Du W, Paulsen BD, Uguz I, Ashraf RS, Rivnay J, McCulloch I, Inal S. Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4253-4266. [PMID: 33439636 DOI: 10.1021/acsami.0c18599] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
n-Type (electron transporting) polymers can make suitable interfaces to transduce biological events that involve the generation of electrons. However, n-type polymers that are stable when electrochemically doped in aqueous media are relatively scarce, and the performance of the existing ones lags behind their p-type (hole conducting) counterparts. Here, we report a new family of donor-acceptor-type polymers based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bi-thiophene (NDI-T2) backbone where the NDI unit always bears an ethylene glycol (EG) side chain. We study how small variations in the side chains tethered to the acceptor as well as the donor unit affect the performance of the polymer films in the state-of-the-art bioelectronic device, the organic electrochemical transistor (OECT). First, we find that substitution of the T2 core with an electron-withdrawing group (i.e., methoxy) or an EG side chain leads to ambipolar charge transport properties and causes significant changes in film microstructure, which overall impairs the n-type OECT performance. We thus show that the best n-type OECT performer is the polymer that has no substitution on the T2 unit. Next, we evaluate the distance of the oxygen from the NDI unit as a design parameter by varying the length of the carbon spacer placed between the EG unit and the backbone. We find that the distance of the EG from the backbone affects the film order and crystallinity, and thus, the electron mobility. Consequently, our work reports the best-performing NDI-T2-based n-type OECT material to date, i.e., the polymer without the T2 substitution and bearing a six-carbon spacer between the EG and the NDI units. Our work provides new guidelines for the side-chain engineering of n-type polymers for OECTs and insights on the structure-performance relationships for mixed ionic-electronic conductors, crucial for devices where the film operates at the aqueous electrolyte interface.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Achilleas Savva
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Weiyuan Du
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ilke Uguz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Raja S Ashraf
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Iain McCulloch
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Patil BB, Takeda Y, Singh S, Wang T, Singh A, Do TT, Singh SP, Tokito S, Pandey AK, Sonar P. Electrode and dielectric layer interface device engineering study using furan flanked diketopyrrolopyrrole-dithienothiophene polymer based organic transistors. Sci Rep 2020; 10:19989. [PMID: 33203904 PMCID: PMC7673034 DOI: 10.1038/s41598-020-76962-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
We successfully demonstrated a detailed and systematic enhancement of organic field effect transistors (OFETs) performance using dithienothiophene (DTT) and furan-flanked diketopyrrolopyrrole based donor-acceptor conjugated polymer semiconductor namely PDPPF-DTT as an active semiconductor. The self-assembled monolayers (SAMs) treatments at interface junctions of the semiconductor-dielectric and at the semiconductor-metal electrodes has been implemented using bottom gate bottom contact device geometry. Due to SAM treatment at the interface using tailored approach, the significant reduction of threshold voltage (Vth) from - 15.42 to + 5.74 V has been observed. In addition to tuning effect of Vth, simultaneously charge carrier mobility (µFET) has been also enhanced the from 9.94 × 10-4 cm2/Vs to 0.18 cm2/Vs. In order to calculate the trap density in each OFET device, the hysteresis in transfer characteristics has been studied in detail for bare and SAM treated devices. Higher trap density in Penta-fluoro-benzene-thiol (PFBT) treated OFET devices enhances the gate field, which in turn controls the charge carrier density in the channel, and hence gives lower Vth = + 5.74 V. Also, PFBT treatment enhances the trapped interface electrons, which helps to enhance the mobility in this OFET architecture. The overall effect has led to possibility of reduction in the Vth with simultaneous enhancements of µFET in OFETs, following systematic device engineering methodology.
Collapse
Affiliation(s)
- Basanagouda B Patil
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Subhash Singh
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Tony Wang
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Amandeep Singh
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thu Trang Do
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Samarendra P Singh
- Department of Physics, School of Natural Sciences, Shiv Nadar University (SNU), Gautam Buddha Nagar, Uttar Pradesh, 201307, India
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan.
| | - Ajay K Pandey
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
38
|
Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun 2020; 11:3004. [PMID: 32532975 PMCID: PMC7293298 DOI: 10.1038/s41467-020-16648-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Abstract
From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices. Improving electron transport and stability of n-type organic electrochemical transistors (OECTs) is required to realize a commercially-viable technology for bioelectronics applications. Here, the authors report water-stable doped n-type OECTs with enhanced transconductance and record stability.
Collapse
|