1
|
Cheng Q, Chen W, Li Y, Li Y. Recent Progress in Dopant-Free and Green Solvent-Processable Organic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307152. [PMID: 38417119 PMCID: PMC11077692 DOI: 10.1002/advs.202307152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Indexed: 03/01/2024]
Abstract
Dopant-free hole transport layers (HTLs) are crucial in enhancing perovskite solar cells (pero-SCs). Nevertheless, conventional processing of these HTL materials involves using toxic solvents, which gives rise to substantial environmental concerns and renders them unsuitable for large-scale industrial production. Consequently, there is a pressing need to develop dopant-free HTL materials processed using green solvents to facilitate the production of high-performance pero-SCs. Recently, several strategies have been developed to simultaneously improve the solubility of these materials and regulate molecular stacking for high hole mobility. In this review, a comprehensive overview of the methodologies utilized in developing dopant-free HTL materials processed from green solvents is provided. First, the study provides a brief overview of fundamental information about green solvents and Hansen solubility parameters, which can serve as a guideline for the molecular design of optimal HTL materials. Second, the intrinsic relationships between molecular structure, solubility in green solvents, molecular stacking, and device performance are discussed. Finally, conclusions and perspectives are presented along with the rational design of highly efficient, stable, and green solvent-processable dopant-free HTL materials.
Collapse
Affiliation(s)
- Qinrong Cheng
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Key Laboratory of Advanced Functional Polymer Design andApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
2
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
3
|
Ma L, Zhang S, Ryu DH, Wang G, Song CE, Shin WS, Ren J, Hou J. Design of Chlorinated Indaceno[1,2-b:5,6-b']dithiophene Acceptors toward Efficient Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1243-1250. [PMID: 38143313 DOI: 10.1021/acsami.3c16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Chlorinated modifications have been extensively employed to modulate the optoelectronic properties of π-conjugated materials. Herein, the Cl substitution in designing nonfullerene acceptors (NFAs) with various bandgaps is studied. Four narrow-bandgap electron acceptors (GS-40, GS-41, GS-42, and GS-43) were synthesized by tuning the electrostatic potential distributions of the molecular conjugated backbones. The optical absorption onset of these NFAs ranges from 900 to 1030 nm. Compared to the nonchlorinated analogue, the introduction of Cl atoms on the core of indaceno[1,2-b:5,6-b'] dithiophene (IDT) and π spacer results in an upward shift of the lowest unoccupied molecular orbital levels and induces a blue shift in the absorption spectra of the NFAs. This alteration facilitates achieving appropriate energy-level alignment and favorable bulk heterojunction morphology when blended with the widely used donor PBDB-TF. The PBDB-TF:GS-43-based solar cells show an optimal power conversion efficiency of 13.3%. This work suggests the potential of employing chlorine-modified IDT and thiophene units as fundamental building blocks for developing high-performance photoactive materials.
Collapse
Affiliation(s)
- Lijiao Ma
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Du Hyeon Ryu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 34114, South Korea
| | - Guanlin Wang
- State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chang Eun Song
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 34114, South Korea
| | - Won Suk Shin
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 34114, South Korea
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhui Hou
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Li D, Zhang H, Cui X, Chen YN, Wei N, Ran G, Lu H, Chen S, Zhang W, Li C, Liu Y, Liu Y, Bo Z. Halogenated Nonfused Ring Electron Acceptor for Organic Solar Cells with a Record Efficiency of over 17. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310362. [PMID: 37994270 DOI: 10.1002/adma.202310362] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Three nonfused ring electron acceptors (NFREAs), namely, 3TT-C2-F, 3TT-C2-Cl, and 3TT-C2, are purposefully designed and synthesized with the concept of halogenation. The incorporation of F or/and Cl atoms into the molecular structure (3TT-C2-F and 3TT-C2-Cl) enhances the π-π stacking, improves electron mobility, and regulates the nanofiber morphology of blend films, thus facilitating the exciton dissociation and charge transport. In particular, blend films based on D18:3TT-C2-F demonstrate a high charge mobility, an extended exciton diffusion distance, and a well-formed nanofiber network. These factors contribute to devices with a remarkable power conversion efficiency of 17.19%, surpassing that of 3TT-C2-Cl (16.17%) and 3TT-C2 (15.42%). To the best of knowledge, this represents the highest efficiency achieved in NFREA-based devices up to now. These results highlight the potential of halogenation in NFREAs as a promising approach to enhance the performance of organic solar cells.
Collapse
Affiliation(s)
- Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Huarui Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinyue Cui
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Ya-Nan Chen
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shenhua Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Yuqiang Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Rimmele M, Qiao Z, Panidi J, Furlan F, Lee C, Tan WL, McNeill CR, Kim Y, Gasparini N, Heeney M. A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells. MATERIALS HORIZONS 2023; 10:4202-4212. [PMID: 37599602 DOI: 10.1039/d3mh00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The dramatic improvement of the PCE (power conversion efficiency) of organic photovoltaic devices in the past few years has been driven by the development of new polymer donor materials and non-fullerene acceptors (NFAs). In the design of such materials synthetic scalability is often not considered, and hence complicated synthetic protocols are typical for high-performing materials. Here we report an approach to readily introduce a variety of solubilizing groups into a benzo[c][1,2,5]thiadiazole acceptor comonomer. This allowed for the ready preparation of a library of eleven donor polymers of varying side chains and comonomers, which facilitated a rapid screening of properties and photovoltaic device performance. Donor FO6-T emerged as the optimal material, exhibiting good solubility in chlorinated and non-chlorinated solvents and achieving 15.4% PCE with L8BO as the acceptor (15.2% with Y6) and good device stability. FO6-T was readily prepared on the gram scale, and synthetic complexity (SC) analysis highlighted FO6-T as an attractive donor polymer for potential large scale applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Francesco Furlan
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Chulyeon Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Liu K, Jiang Y, Liu F, Ran G, Huang F, Wang W, Zhang W, Zhang C, Hou J, Zhu X. Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300363. [PMID: 37243566 DOI: 10.1002/adma.202300363] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The π-expansion of non-fullerene acceptors is a promising method for boosting the organic photovoltaic performance by allowing the fine-tuning of electronic structures and molecular packing. In this work, highly efficient organic solar cells (OSCs) are fabricated using a 2D π-expansion strategy to design new non-fullerene acceptors. Compared with the quinoxaline-fused cores of AQx-16, the π-expanded phenazine-fused cores of AQx-18 induce more ordered and compact packing between adjacent molecules, affording an optimized morphology with rational phase separation in the blend film. This facilitates efficient exciton dissociation and inhibited charge recombination. Consequently, a power conversion efficiency (PCE) of 18.2% with simultaneously increasing Voc , Jsc , and fill factor is achieved in the AQx-18-based binary OSCs. Significantly, AQx-18-based ternary devices fabricated via a two-in-one alloy acceptor strategy exhibit a superior PCE of 19.1%, one of the highest values ever reported for OSCs, along with a high Voc of 0.928 V. These results indicate the importance of the 2D π-expansion strategy for the delicate regulation of the electronic structures and crystalline behaviors of the non-fullerene acceptors to achieve superior photovoltaic performance, aimed at significantly promoting further development of OSCs.
Collapse
Affiliation(s)
- Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Fei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Guan H, Liao Q, Huang T, Geng S, Cao Z, Zhang Z, Wang D, Zhang J. Solid Additive Enables Organic Solar Cells with Efficiency up to 18.6. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37193670 DOI: 10.1021/acsami.3c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Additive strategies play a critical role in improving the performance of organic solar cells (OSCs). There are only a few reports on the application of solid additives for OSCs, which leaves a large space for further improvement of solid additives and further study on the relationship between material structure and property. PM6:BTP-eC9-based organic solar cells (OSCs) were prepared by using a small molecule BTA3 as a solid additive, and a high energy conversion efficiency of 18.65% is achieved. BTA3 has good compatibility with the acceptor component (BTP-eC9) and optimizes the morphology of the thin films. Moreover, the introduction of a small amount of BTA3 (5 wt %) effectively promotes exciton dissociation and charge transfer and suppresses charge recombination, and the relationship between the BTA3 content and the device parameter is deeply revealed. The use of BTA3 in the active layers is an attractive and effective strategy for high-performance OSCs.
Collapse
Affiliation(s)
- Hao Guan
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Qiaogan Liao
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Tianhuan Huang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Shuang Geng
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Ziliang Cao
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zheling Zhang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Dongjie Wang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jian Zhang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
8
|
Han G, Zhang Y, Zheng W, Yi Y. Electron Transport in Organic Photovoltaic Acceptor Materials: Improving the Carrier Mobilities by Intramolecular and Intermolecular Modulations. J Phys Chem Lett 2023; 14:4497-4503. [PMID: 37156008 DOI: 10.1021/acs.jpclett.3c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
High carrier mobility is beneficial to increase the active-layer thickness while maintaining a high fill factor, which is crucial to further improve the light harvesting and organic photovoltaic efficiency. The aim of this Perspective is to elucidate the electron transport mechanisms in prototypical non-fullerene (NF) acceptors through our recent theoretical studies. The electron transport in A-D-A small-molecule acceptors (SMAs), e.g., ITIC and Y6, is mainly determined by end-group π-π stacking. Relative to ITIC, the angular backbone along with more flexible side chains leads to Y6 having a closer stacking and enhanced intermolecular electronic connectivity. For polymerized rylene diimide acceptors, to achieve high electron mobilities, they need to simultaneously increase intramolecular and intermolecular connectivity. Finally, finely tuning the π-bridge modes to enhance intramolecular superexchange coupling is essential to develop novel polymerized A-D-A SMAs.
Collapse
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Wenyu Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Xiao C, Wang X, Zhong T, Zhou R, Zheng X, Liu Y, Hu T, Luo Y, Sun F, Xiao B, Liu Z, Yang C, Yang R. Hybrid Cycloalkyl-Alkyl Chain-Based Symmetric/Asymmetric Acceptors with Optimized Crystal Packing and Interfacial Exciton Properties for Efficient Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206580. [PMID: 36592412 PMCID: PMC9982590 DOI: 10.1002/advs.202206580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hybrid cycloalkyl-alkyl side chains are considered a unique composite side-chain system for the construction of novel organic semiconductor materials. However, there is a lack of fundamental understanding of the variations in the single-crystal structures as well as the optoelectronic and energetic properties generated by the introduction of hybrid side chains in electron acceptors. Herein, symmetric/asymmetric acceptors (Y-C10ch and A-C10ch) bearing bilateral and unilateral 10-cyclohexyldecyl are designed, synthesized, and compared with the symmetric acceptor 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9 bis(ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5] pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10- diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (L8-BO). The stepwise introduction of 10-cyclohexyldecyl side chains decreases the optical bandgap, deepens the energy level, and enables the acceptor molecules to pack closely in a regular manner. Crystallographic analysis demonstrates that the 10-cyclohexyldecyl chain endows the acceptor with a more planar skeleton and enforces more compact 3D network packing, resulting in an active layer with higher domain purity. Moreover, the 10-cyclohexyldecyl chain affects the donor/acceptor interfacial energetics and accelerates exciton dissociation, enabling a power conversion efficiency (PCE) of >18% in the 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6) (PM6):A-C10ch-based organic solar cells (OSCs). Importantly, the incorporation of Y-C10ch as the third component of the PM6:L8-BO blend results in a higher PCE of 19.1%. The superior molecular packing behavior of the 10-cyclohexyldecyl side chain is highlighted here for the fabrication of high-performance OSCs.
Collapse
Affiliation(s)
- Cong Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
- State Key Laboratory of Fine BlastingJianghan UniversityWuhan430056China
| | - Tian Zhong
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Ruixue Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Xufan Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Yirui Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Tianyu Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Yixuan Luo
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Fengbo Sun
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Chunming Yang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| |
Collapse
|
10
|
An S, Wu Z, Jeong H, Lee J, Jeong SY, Lee W, Kim S, Han JW, Lim J, Cha H, Woo HY, Chung DS. Synergistic Contribution of Oligo(ethylene glycol) and Fluorine Substitution of Conjugated Polymer Photocatalysts toward Solar Driven Sacrificial Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204905. [PMID: 36446633 DOI: 10.1002/smll.202204905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
To separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains. Fluorine substituents on the polymer backbone produce highly ordered lamellar stacks with distinct π-π stacking features; subsequently, the long-lived polarons toward hydrogen evolution are observed by transient absorption spectroscopy. In addition, a new nanoparticle synthesis strategy using a methanol/water mixed solvent is first adopted, thereby avoiding the screening effect of surfactants between the nanoparticles and water. Finally, hydrogen evolution rate of 26 000 µmol g-1 h-1 is obtained for the copolymer incorporated with both OEG side chains and fluorine substituents under visible-light irradiation (λ > 420 nm). This study demonstrates how the glycol side chain strategy can be further optimized for polymer photocatalysts by controlling the backbone planarity.
Collapse
Affiliation(s)
- Sanghyeok An
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hayoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunkyu Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Young Woo
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
11
|
Ma DL, Zhang QQ, Li CZ. Unsymmetrically Chlorinated Non-Fused Electron Acceptor Leads to High-Efficiency and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202214931. [PMID: 36433656 DOI: 10.1002/anie.202214931] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.
Collapse
Affiliation(s)
- De-Li Ma
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qian-Qian Zhang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
12
|
Z-scheme π-π stacking MXene/GO/PDI composite aerogels to construct interface electron transport network for photocatalytic CO2 reduction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
14
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
15
|
Wang J, Xue P, Jiang Y, Huo Y, Zhan X. The principles, design and applications of fused-ring electron acceptors. Nat Rev Chem 2022; 6:614-634. [PMID: 37117709 DOI: 10.1038/s41570-022-00409-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Fused-ring electron acceptors (FREAs) have a donor-acceptor-donor structure comprising an electron-donating fused-ring core, electron-accepting end groups, π-bridges and side chains. FREAs possess beneficial features, such as feasibility to tailor their structures, high property tunability, strong visible and near-infrared light absorption and excellent n-type semiconducting characteristics. FREAs have initiated a revolution to the field of organic solar cells in recent years. FREA-based organic solar cells have achieved unprecedented efficiencies, over 20%, which breaks the theoretical efficiency limit of traditional fullerene acceptors (~13%), and boast potential operational lifetimes approaching 10 years. Based on the original studies of FREAs, a variety of new structures, mechanisms and applications have flourished. In this Review, we introduce the fundamental principles of FREAs, including their structures and inherent electronic and physical properties. Next, we discuss the way in which the properties of FREAs can be modulated through variations to the electronic structure or molecular packing. We then present the current applications and consider the future areas that may benefit from developments in FREAs. Finally, we conclude with the position of FREA chemistry, reflecting on the challenges and opportunities that may arise in the future of this burgeoning field.
Collapse
|
16
|
Zhao Y, Liu X, Jing X, Liu Y, Liu H, Li S, Yu L, Dai S, Sun M. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells. J Colloid Interface Sci 2022; 627:880-890. [PMID: 35901567 DOI: 10.1016/j.jcis.2022.07.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
A series of molecules with imide units bridged by the core of thiophene-based groups, namely N-dimethylaminopropyl-4-thiophene-1,8- naphthalimide (NT), bis(N-dimethylaminopropyl)-4-thiophene-1,8-naphthalimide (NTN), and bis(N-dimethylaminopropyl)-4-bithiophene-1,8-naphthalimide (N2TN), have been reported as cathode interfacial materials (CIMs) to realize low interfacial tension with the blend in organic solar cells (OSCs). We evaluated the Ohmic contact between the active layer and these cathode interlayers basedon various characterizations, which is of great significance for further understanding these imide-based interlayers. It turned out that the homogeneous and continuous NTN interlayer as a CIM balanced the factors of crystallization and film-forming property, and broke through the limitation of poor conductivity and high aggregation in our previous work. Moreover, compared with NT and N2TN, the NTN interlayer achieve a combination of good solubility in methanol, efficient electron mobility, and aligned work function. These advantages of NTN are conducive to the realization of high-efficient interfacial electron collection and transfer, thus improving the short-circuit current density (JSC) and filling factor (FF) of devices. Therefore, the binary OSCs (PM6:Y6) based on NTN engineered aluminium-cathode with excellent stability demonstrate a maximum power conversion efficiency (PCE) of 16.56 %, which is higher than NT (PCE = 1.34 %) and N2TN (PCE = 13.90 %). The enhanced performance is ascribed to the improvement of JSC and FF, which is originated from the outstanding conductivity and high-quality interface of NTN. Surprisingly, the PM6:Y6-based semitransparent device with NTN obtain a PCE of 13.43 % with an average visible transmittance of 17.79 %, which is better than traditional PDINO. This study highlights a potential strategy for enhancing the performance of OSCs by the interface engineering via decreasing the interfacial intension.
Collapse
Affiliation(s)
- Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Jing
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hao Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaonan Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuixing Dai
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China.
| |
Collapse
|
17
|
Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Recent progress in organic solar cells (Part II device engineering). Sci China Chem 2022. [DOI: 10.1007/s11426-022-1256-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Yan Y, Zhang Y, Memon WA, Wang M, Zhang X, Wei Z. The role of entropy gains in the exciton separation in organic solar cells. Macromol Rapid Commun 2022; 43:e2100903. [PMID: 35338684 DOI: 10.1002/marc.202100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Indexed: 11/06/2022]
Abstract
In organic solar cell (OSC), the lower dielectric constant of organic semiconductor material induces a strong Coulomb attraction between electron-hole pairs, which leads to a low exciton separation efficiency, especially the charge transfer (CT) state. The CT state formed at the electron-donor (D) and electron-acceptor (A) interface is regarded as an unfavorable property of organic photovoltaic devices. Since the OSC works in a nonzero temperature condition, the entropy effect would be one of the main reasons to overcome the Coulomb energy barrier and must be taken into account. In this review, we review the present understanding of the entropy-driven charge separation and describe how factors such as the dimensionality of the organic semiconductor, energy disorder effect, the morphology of the active layer, and the nonequilibrium effect affect the entropy contribution in compensating the Coulomb dissociation barrier for CT exciton separation and charge generation process. We focus on the investigation of the entropy effect on exciton dissociation mechanism from both theoretical and experimental aspects, which provides pathways for understanding the underlying mechanisms of exciton separation and further enhancing the efficiency of OSCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yangjun Yan
- School of Science, Beijing Jiaotong University, Beijing, 100044, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengni Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
19
|
Wang J, Zhan X. From Perylene Diimide Polymers to
Fused‐Ring
Electron Acceptors: A
15‐Year
Exploration Journey of Nonfullerene Acceptors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiayu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
20
|
Bi P, Zhang S, Ren J, Chen Z, Zheng Z, Cui Y, Wang J, Wang S, Zhang T, Li J, Xu Y, Qin J, An C, Ma W, Hao X, Hou J. A High-Performance Nonfused Wide-Bandgap Acceptor for Versatile Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108090. [PMID: 34784077 DOI: 10.1002/adma.202108090] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Wide-bandgap (WBG) nonfullerene acceptors (NFAs) with nonfused conjugated structures play a critical role in organic photovoltaic (OPV) cells. Here, NFAs named GS-OEH, GS-OC6, and GS-ISO, with optical bandgaps larger than 1.70 eV, are synthesized without using the fused ring structures. Compared with GS-OEH and GS-OC6, GS-ISO exhibits much stronger crystallinity, leading to a smaller energetic disorder and a larger exciton diffusion coefficient. GS-ISO also possesses a higher electroluminescence external quantum efficiency of 1.0 × 10-2 . The OPV cell based on PBDB-TF:GS-ISO demonstrates a power conversion efficiency (PCE) of 11.62% under the standard one sun illumination. Besides, the PBDB-TF:GS-ISO-based cell with effective area of 1.0 cm2 exhibits a PCE of 28.37% under 2700 K illumination of 500 lux. A tandem OPV cell using PBDB-TF:GS-ISO as the front subcell shows an outstanding efficiency of 19.10%. Importantly, the GS-ISO-based OPV cell exhibits promising stability under the continuous illumination of simulated sunlight. This study indicates that the molecular design strategy demonstrated in this work has great superiority in developing nonfused NFAs and also that GS-ISO is a promising WBG acceptor for versatile photovoltaic applications.
Collapse
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhong Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinzhao Qin
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Liu Y, Zhou K, Zhou X, Xue W, Bi Z, Wu H, Ma Z, Ma W. Strengthening the Intermolecular Interaction of Prototypical Semicrystalline Conjugated Polymer Enables Improved Photocurrent Generation at the Heterojunction. Macromol Rapid Commun 2022; 43:e2100871. [PMID: 35075733 DOI: 10.1002/marc.202100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Indexed: 11/10/2022]
Abstract
The molecular packing structure of conjugated polymers are crucial in determining their optoelectronic properties. The intra and intermolecular interactions (J- and H-type aggregation) in the conjugated polymer films were found to readily facilitate the electron and hole transport, respectively. However, how those different aggregation types influence the photocurrent generation process at the heterojunction is still mysterious, especially for the newly developed semicrystalline conjugated polymers. Here, the prototypical copolymer PM6 is used as a model semicrystalline polymer to tune the relative content of aggregation types with various halogen-free processing solvents. Various measurements reveal that the toluene-processed PM6 film exhibits the increased H-aggregates and crystallinity in the π-π stacking direction compared to its o-Xylene- and trimethylbenzene (TMB)-processed counterparts. This is partly resulted from the weak steric effect and good solubility in the PM6 solution prepared with toluene bearing small molar volume, which strengthens the intermolecular interaction of adjacent polymer segments. After analyzing the photovoltaic properties of the different PM6/Y6 bilayer devices, the faster charge carrier transport, smaller charge recombination, lower energy losses and interfacial energetic disorder can be observed in the toluene-processed device, leading to the synergistically improved short-circuit current density (JSC ) and open-circuit voltage (VOC ). Our findings indicate that the control of the molecular packing structure in terms of aggregation types is a powerful strategy to promote the photocurrent generation process at the conjugated polymer-based heterojunction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenyue Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
22
|
Xue P, Cheng P, Han RPS, Zhan X. Printing fabrication of large-area non-fullerene organic solar cells. MATERIALS HORIZONS 2022; 9:194-219. [PMID: 34679154 DOI: 10.1039/d1mh01317c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic solar cells (OSCs) based on a bulk heterojunction structure exhibit inherent advantages, such as low cost, light weight, mechanical flexibility, and easy processing, and they are emerging as a potential renewable energy technology. However, most studies are focused on lab-scale, small-area (<1 cm2) devices. Large-area (>1 cm2) OSCs still exhibit considerable efficiency loss during upscaling from small-area to large-area, which is a big challenge. In recent years, along with the rapid development of high-performance non-fullerene acceptors, many researchers have focused on developing large-area non-fullerene-based devices and modules. There are three essential issues in upscaling OSCs from small-area to large-area: fabrication technology, equipment development, and device component processing strategy. In this review, the challenges and solutions in fabricating high-performance large-area OSCs are discussed in terms of the abovementioned three aspects. In addition, the recent progress of large-area OSCs based on non-fullerene electron acceptors is summarized.
Collapse
Affiliation(s)
- Peiyao Xue
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Pei Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ray P S Han
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
23
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
24
|
Zhao Y, Liu Y, Liu X, Kang X, Yu L, Dai S, Sun M. Aminonaphthalimide-Based Molecular Cathode Interlayers for As-Cast Organic Solar Cells. CHEMSUSCHEM 2021; 14:4783-4792. [PMID: 34463047 DOI: 10.1002/cssc.202101383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A series of imide-based small molecules, namely NA, NAA, and NEA with simple structures, were designed and synthesized by introducing different amine side-chains into the benzene unit of imide, which were used as cathode interfacial materials in organic solar cells (OSCs). The amine side-chain substitution positions were systematically investigated with these small-molecule imides. Compared with NA without amide chains-NAA, and NEA, with 3-dimethylaminopropylamine and ethylenediamine chains, respectively-show bathochromic shifts in absorption, decreased band gaps, and higher highest occupied molecular orbital (HOMO) energy levels. A power conversion efficiency (PCE) of 15.04 % was obtained with the NEA-based as-cast OSCs with a high open-circuit voltage and fill factor for PM6 : Y6 blend and the maximum PCE of 15.80 % was reached for as-cast PM6 : Y6 : IT-M ternary OSCs. NEA exhibits better conductivity, higher electron mobility, and stronger the capability of lower work function of cathode among three molecules, affording OSCs with better photovoltaic performance. Additionally, these three molecules show excellent thermal stability both in solution and in films at 150 °C. The results indicate that imide-based small molecules are promising cathode interfacial materials for commercial OSCs.
Collapse
Affiliation(s)
- Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiao Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, P. R. China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuixing Dai
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, P. R. China
| |
Collapse
|
25
|
Kim M, Ryu SU, Park SA, Pu YJ, Park T. Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics. Chem Sci 2021; 12:14004-14023. [PMID: 34760184 PMCID: PMC8565376 DOI: 10.1039/d1sc03908c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Organic photovoltaics (OPVs) have emerged as a promising next-generation technology with great potential for portable, wearable, and transparent photovoltaic applications. Over the past few decades, remarkable advances have been made in non-fullerene acceptor (NFA)-based OPVs, with their power conversion efficiency exceeding 18%, which is close to the requirements for commercial realization. Novel molecular NFA designs have emerged and evolved in the progress of understanding the physical features of NFA-based OPVs in relation to their high performance, while there is room for further improvement. In this review, the molecular design of representative NFAs is described, and their blend characteristics are assessed via statistical comparisons. Meanwhile, the current understanding of photocurrent generation is reviewed along with the significant physical features observed in high-performance NFA-based OPVs, while the challenging issues and the strategic perspectives for the commercialization of OPV technology are also discussed.
Collapse
Affiliation(s)
- Minjun Kim
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Seung Un Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| | - Sang Ah Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| |
Collapse
|
26
|
Liu KK, Huang H, Wang JL, Wan SS, Zhou X, Bai HR, Ma W, Zhang ZG, Li Y. Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50163-50175. [PMID: 34664507 DOI: 10.1021/acsami.1c12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a series of acceptor-donor-acceptor (A-D-A) architecture isomeric acceptors (SeCT-IC, CSeT-IC, and CTSe-IC), which have an identical electron-deficient terminal A-group and three different central D-cores with the selenophene at the innermost, relatively outer, and outermost positions of the central core, respectively. From CSeT-IC to the atom regioisomer of CTSe-IC and to the conjugated skeleton isomer of SeCT-IC, the optical band gap of neat films continuously reduced and highest occupied molecular orbitals (HOMO) gradually upshifted with changing the selenophene from relatively outer position to the outermost position and to the innermost position of the central core. More importantly, the single-crystal structure and the GIWAXS measurements revealed that CTSe-IC presents the closest π-π stacking distance, the largest CCL, and the best molecular order and crystallinity, which led to the highest electron mobility in neat films. Furthermore, the J71:CTSe-IC blend film presents a more ordered film morphology with more proper phase separation domain size, more dominant face-on orientation, and relatively higher and more balanced electron-hole mobilities in comparison with that of J71:SeCT-IC and J71:CSeT-IC. Consequently, the J71:CTSe-IC-based organic solar cell gave a superior power conversion efficiency (PCE) of 11.59%, which was obviously higher than those for J71:SeCT-IC (10.89%) and J71:CSeT-IC (8.52%). Our results demonstrate that the acceptor with selenophene in the outermost position led to significantly enhance the PCE. More importantly, rational modulation of the central fused core in combination with the conjugated skeleton isomeric method and the atom regioisomeric method provides an effective way to understand the structure-crystallinity-photovoltaic property relationship of selenophene-based regioisomers.
Collapse
Affiliation(s)
- Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - He Huang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Sheng Wan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Guo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
An K, Peng F, Zhong W, Deng W, Zhang D, Ying L, Wu H, Huang F, Cao Y. Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1078-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Avalos-Quiroz YA, Bardagot O, Kervella Y, Aumaître C, Cabau L, Rivaton A, Margeat O, Videlot-Ackermann C, Vongsaysy U, Ackermann J, Demadrille R. Non-Fullerene Acceptors with an Extended π-Conjugated Core: Third Components in Ternary Blends for High-Efficiency, Post-Treatment-Free Organic Solar Cells. CHEMSUSCHEM 2021; 14:3502-3510. [PMID: 34096201 DOI: 10.1002/cssc.202101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of four non-fullerene acceptors (NFAs) with a "A-π-D-π-A" structure, in which the electron-donating core is extended, was achieved. The molecules differed by the nature of the solubilizing groups on the π-spacer and/or the presence of fluorine atoms on the peripheral electron-accepting units. The optoelectronic properties of the molecules were characterized in solution, in thin film, and in photovoltaic devices. The nature of the solubilizing groups had a minor influence on the optoelectronic properties but affected the organization in the solid state. On the other hand, the fluorine atoms influenced the optoelectronics properties and increased the photo-stability of the molecules in thin films. Compared to reference ITIC, the extended molecules showed a wider absorption across the visible range and higher lowest unoccupied molecular orbital energy levels. The photovoltaic performances of the four NFAs were assessed in binary blends using PM6 (PBDB-T-2F) as the donating polymer and in ternary blends with ITIC-4F. Solar cells (active area 0.27 cm2 ) showed power conversion efficiencies of up to 11.1 % when ternary blends were processed from non-halogenated solvents, without any thermal post-treatment or use of halogenated additives, making this process compatible with industrial requirements.
Collapse
Affiliation(s)
| | | | - Yann Kervella
- University Grenoble Alpes, CEA/CNRS/IRIG, Grenoble, France
| | - Cyril Aumaître
- University Grenoble Alpes, CEA/CNRS/IRIG, Grenoble, France
| | - Lydia Cabau
- University Grenoble Alpes, CEA/CNRS/IRIG, Grenoble, France
| | - Agnès Rivaton
- Univ. Clermont Auvergne, CNRS, SIGMA Clermont, Inst. de Chimie de Clermont-Ferrand, UMR 6296, 63000, Clermont-Ferrand, France
| | - Olivier Margeat
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288, Marseille, France
| | | | | | - Jörg Ackermann
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288, Marseille, France
| | | |
Collapse
|
29
|
Yang C, An Q, Bai H, Zhi H, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang J. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hai‐Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hong‐Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hwa Sook Ryu
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Jin‐Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
30
|
Yang C, An Q, Bai HR, Zhi HF, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang JL. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021; 60:19241-19252. [PMID: 34051037 DOI: 10.1002/anie.202104766] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Indexed: 01/08/2023]
Abstract
A dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) with different numbers of selenophene. From S-YSS-Cl to A-WSSe-Cl and to S-WSeSe-Cl, a gradually red-shifted absorption and a gradually larger electron mobility and crystallinity in neat thin film was observed. A-WSSe-Cl and S-WSeSe-Cl exhibit stronger and tighter intermolecular π-π stacking interactions, extra S⋅⋅⋅N non-covalent intermolecular interactions from central benzothiadiazole, better ordered 3D interpenetrating charge-transfer networks in comparison with thiophene-based S-YSS-Cl. The dissymmetric A-WSSe-Cl-based device has a PCE of 17.51 %, which is the highest value for selenophene-based NF-SMAs in binary polymer solar cells. The combination of dissymmetric core and precise replacement of selenophene on the central core is effective to improve Jsc and FF without sacrificing Voc .
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Qin S, Meng L, Li Y. Molecular Properties and Aggregation Behavior of Small-Molecule Acceptors Calculated by Molecular Simulation. ACS OMEGA 2021; 6:14467-14475. [PMID: 34124469 PMCID: PMC8190879 DOI: 10.1021/acsomega.1c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 05/03/2023]
Abstract
The power conversion efficiency of organic solar cells (OSCs) has increased rapidly to over 17% recently. The recent improvement in efficiency was mainly attributed to the development of small-molecule acceptors (SMAs) such as ITIC, Y6, and their derivatives. However, we still have little knowledge on how the molecular structures of the SMAs influence their photovoltaic properties. For the purpose of gaining more insight into the relationship between the molecular properties and photovoltaic performance of the SMAs, here, we carried out theoretical calculations on the most representative SMAs, such as ITIC, Y6, and their derivatives through molecular simulations, and tried to reveal their unique characteristic and aggregation behavior related to the general performance in OSCs, potentially helping to further improve the efficiency of OSCs.
Collapse
Affiliation(s)
- Shucheng Qin
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Lei Meng
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yongfang Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
- Laboratory
of Advanced Optoelectronic Materials, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
32
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
33
|
Wen Y, Liu Y, Yan B, Gaudin T, Ma J, Ma H. Simultaneous Optimization of Donor/Acceptor Pairs and Device Specifications for Nonfullerene Organic Solar Cells Using a QSPR Model with Morphological Descriptors. J Phys Chem Lett 2021; 12:4980-4986. [PMID: 34015223 DOI: 10.1021/acs.jpclett.1c01099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optimally efficient organic solar cells require not only a careful choice of new donor (D) and/or acceptor (A) molecules but also the fine-tuning of experimental fabrication conditions for organic solar cells (OSCs). Herein, a new framework for simultaneously optimizing D/A molecule pairs and device specifications of OSCs is proposed, through a quantitative structure-property relationship (QSPR) model built by machine learning. Combining the device bulk properties with structural and electronic properties, the built QSPR model achieved unprecedentedly high accuracy and consistency. Additionally, a large chemical space of 1 942 785 D/A pairs is explored to find potential synergistic ones. Favorable device bulk properties such as the root-mean-square of surfaces roughness for D/A blends and the D/A weight ratio are further screened by grid search methods. Overall, this study indicates that the simultaneous optimization of D/A molecule pairs and device specifications by theoretical calculations can accelerate the improvement of OSC efficiencies.
Collapse
Affiliation(s)
- Yaping Wen
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Yunhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Bohan Yan
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Théophile Gaudin
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Qiu R, Wu Z, Li S, Jiang H, Wang Q, Chen Y, Liu X, Zhang L, Chen J. Replacing alkyl side chain of non-fullerene acceptor with siloxane-terminated side chain enables lower surface energy towards optimizing bulk-heterojunction morphology and high photovoltaic performance. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Li G, Zhang X, Jones LO, Alzola JM, Mukherjee S, Feng LW, Zhu W, Stern CL, Huang W, Yu J, Sangwan VK, DeLongchamp DM, Kohlstedt KL, Wasielewski MR, Hersam MC, Schatz GC, Facchetti A, Marks TJ. Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. J Am Chem Soc 2021; 143:6123-6139. [PMID: 33848146 DOI: 10.1021/jacs.1c00211] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.
Collapse
Affiliation(s)
- Guoping Li
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaohua Zhang
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P.R. China
| | - Leighton O Jones
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joaquin M Alzola
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhrangsu Mukherjee
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Liang-Wen Feng
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Weigang Zhu
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences (TJ-MOS), Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Charlotte L Stern
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Huang
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P.R. China
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dean M DeLongchamp
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Halaby S, Martynowycz M, Zhu Z, Tretiak S, Zhugayevych A, Gonen T, Seifrid M. Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:966-977. [PMID: 36942096 PMCID: PMC10024952 DOI: 10.1021/acs.chemmater.0c04111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding the relationship between molecular structure and solid-state arrangement informs about the design of new organic semiconductor (OSC) materials with improved optoelectronic properties. However, determining their atomic structure remains challenging. Here, we report the lattice organization of two non-fullerene acceptors (NFAs) determined using microcrystal electron diffraction (MicroED) from crystals not traceable by X-ray crystallography. The MicroED structure of o-IDTBR was determined from a powder without crystallization, and a new polymorph of ITIC-Th is identified with the most distorted backbone of any NFA. Electronic structure calculations elucidate the relationships between molecular structures, lattice arrangements, and charge-transport properties for a number of NFA lattices. The high dimensionality of the connectivity of the 3D wire mesh topology is the best for robust charge transport within NFA crystals. However, some examples suffer from uneven electronic coupling. MicroED combined with advanced electronic structure modeling is a powerful new approach for structure determination, exploring polymorphism and guiding the design of new OSCs and NFAs.
Collapse
Affiliation(s)
- Steve Halaby
- Howard Hughes Medical Institute, David Geffen School of Medicine, Department of Biological Chemistry and Physiology, University of California, Los Angeles, California 90095, United States
| | - Michael Martynowycz
- Howard Hughes Medical Institute, David Geffen School of Medicine, Department of Biological Chemistry and Physiology, University of California, Los Angeles, California 90095, United States
| | - Ziyue Zhu
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | | | - Tamir Gonen
- Howard Hughes Medical Institute, David Geffen School of Medicine, Department of Biological Chemistry and Physiology, University of California, Los Angeles, California 90095, United States
| | - Martin Seifrid
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
Song X, Hou L, Guo R, Wei Q, Yang L, Jiang X, Tu S, Zhang A, Kan Z, Tang W, Xing G, Müller-Buschbaum P. Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2961-2970. [PMID: 33412838 DOI: 10.1021/acsami.0c19700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric fused-ring electron acceptors (a-FREAs) have proved to be a promising type of electron acceptor for high-performance organic solar cells (OSCs). However, the relationship among molecular structures of a-FREAs and their nanoscale morphology, charge-carrier dynamics, and device performance remains unclear. In this contribution, two FREAs differing in conjugated backbone geometry with an asymmetric conformation (IPT-2F) or symmetric one (INPIC-2F) are selected to systematically explore the superiorities of the asymmetric conformation. Despite the frailer extinction coefficient and weaker crystallinity, IPT-2F shows stronger dipole interactions in the asymmetrical backbone, which would induce a closer lamellar packing than that of the symmetrical counterpart. Using PBDB-T as the electron donor, the IPT-2F-based OSCs achieve the best power conversion efficiency of 14.0%, which is ca. 67% improvement compared to the INPIC-2F-based ones (8.37%), resulting from a simultaneously increased short-circuited current density (Jsc) and fill factor. Systematical investigations on optoelectronic and morphological properties show that the asymmetric conformation-structured IPT-2F exhibits better miscibility with the polymer donor to induce a favorable blend ordering with small domain sizes and suitable phase separation compared to the INPIC-2F symmetric molecule. This facilitates an efficient charge generation and transport, inhibits charge-carrier recombination, and promotes valid charge extraction in IPT-2F-based devices.
Collapse
Affiliation(s)
- Xin Song
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China
| | - Licheng Hou
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714 Chongqing, China
| | - Renjun Guo
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, 999078 Taipa, China
| | - Linqiang Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Xinyu Jiang
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suo Tu
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ao Zhang
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714 Chongqing, China
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, 999078 Taipa, China
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
38
|
Abstract
ConspectusEmerging solar cells that convert clean and renewable solar energy to electricity, such as organic solar cells (OSCs) and perovskite solar cells (PSCs), have attracted increasing attention owing to some merits such as facile fabrication, low cost, flexibility, and short energy payback time. The power conversion efficiencies (PCEs) of OSCs and PSCs have exceeded 18% and 25%, respectively.Fullerene derivatives have high electron affinity and mobility with an isotropic transport feature. Fullerene-based OSCs yielded superior PCEs to other acceptors and have dominated electron acceptor materials from 1995 to 2015. However, some drawbacks of fullerenes, such as weak visible absorption, limited tunability of electronic properties, laborious purification, and morphological instability, restrict further development of OSCs toward higher PCEs and practical applications. The theoretical PCE of fullerene-based OSCs is limited to ∼13% due to the relatively large energy losses. Many efforts have been dedicated to developing new acceptor systems beyond fullerenes, and some successful systems such as rylene diimides have achieved PCEs up to ca. 11%.In 2015, our group pioneered a new class of electron acceptors, fused-ring electron acceptor (FREA), as represented by the star molecule ITIC. The chemical features of FREAs include: (1) a modular structure, consisting of an electron-donating core, electron-withdrawing end groups, π-bridges, and side chains, which benefits molecular tailoring; (2) facile synthesis, purification, and scalability. The physical features of FREAs include: (1) a broad modulation range of absorption and energy levels; (2) strong absorption, especially in the 700-1000 nm region; (3) high electron mobility. The device features of FREAs include: (1) low voltage loss; (2) high efficiency; (3) good stability. The FREAs boosted PCEs of the OSCs up to 18% and initiated the transformation from the fullerene to nonfullerene era of this field. FREAs can also be used in PSCs as interfacial layers, electron transport layers, or active layers, improving both efficiency and stability of the devices. Beyond photovoltaic applications, FREAs can also be used in photodetectors, field-effect transistors, two-photon absorption, photothermal therapy, solar water splitting, etc.In this Account, we review the development of the FREAs and their applications in OSCs, PSCs, and other related fields. Molecular design, device engineering, photophysics, and applications of FREAs are discussed in detail. Future research directions toward performance optimization and commercialization of FREAs are also proposed.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Hou L, Lv J, Wobben F, Le Corre VM, Tang H, Singh R, Kim M, Wang F, Sun H, Chen W, Xiao Z, Kumar M, Xu T, Zhang W, McCulloch I, Duan T, Xie H, Koster LJA, Lu S, Kan Z. Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56231-56239. [PMID: 33270414 DOI: 10.1021/acsami.0c16411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs.
Collapse
Affiliation(s)
- Licheng Hou
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Lv
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Friso Wobben
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Vincent M Le Corre
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Hua Tang
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranbir Singh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Min Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896 Republic of Korea
| | - Fufang Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Manish Kumar
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tongle Xu
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Zhang
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Iain McCulloch
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K
| | - Tainan Duan
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Huling Xie
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747AG, The Netherlands
| | - Shirong Lu
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhipeng Kan
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
40
|
Chen H, Lai H, Chen Z, Zhu Y, Wang H, Han L, Zhang Y, He F. 17.1 %‐Efficient Eco‐Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Ziyi Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Huan Wang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yuanzhu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
41
|
Chen H, Lai H, Chen Z, Zhu Y, Wang H, Han L, Zhang Y, He F. 17.1 %‐Efficient Eco‐Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor. Angew Chem Int Ed Engl 2020; 60:3238-3246. [DOI: 10.1002/anie.202013053] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Ziyi Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Huan Wang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yuanzhu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
42
|
Chen Y, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ya‐Nan Chen
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
| | - Miao Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yunzhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jing Wang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jianming Yang
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics East China Normal University Shanghai 200241 China
| | - Yahui Liu
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qinye Bao
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics East China Normal University Shanghai 200241 China
| | - Zhishan Bo
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
43
|
Ye L, Weng K, Xu J, Du X, Chandrabose S, Chen K, Zhou J, Han G, Tan S, Xie Z, Yi Y, Li N, Liu F, Hodgkiss JM, Brabec CJ, Sun Y. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat Commun 2020; 11:6005. [PMID: 33243982 PMCID: PMC7693324 DOI: 10.1038/s41467-020-19853-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
In non-fullerene organic solar cells, the long-range structure ordering induced by end-group π-π stacking of fused-ring non-fullerene acceptors is considered as the critical factor in realizing efficient charge transport and high power conversion efficiency. Here, we demonstrate that side-chain engineering of non-fullerene acceptors could drive the fused-ring backbone assembly from a π-π stacking mode to an intermixed packing mode, and to a non-stacking mode to refine its solid-state properties. Different from the above-mentioned understanding, we find that close atom contacts in a non-stacking mode can form efficient charge transport pathway through close side atom interactions. The intermixed solid-state packing motif in active layers could enable organic solar cells with superior efficiency and reduced non-radiative recombination loss compared with devices based on molecules with the classic end-group π-π stacking mode. Our observations open a new avenue in material design that endows better photovoltaic performance.
Collapse
Affiliation(s)
- Linglong Ye
- School of Chemistry, Beihang University, 100191, Beijing, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Kangkang Weng
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jinqiu Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoyan Du
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Sreelakshmi Chandrabose
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Kai Chen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, 450002, Zhengzhou, China.
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, 100191, Beijing, China.
| |
Collapse
|
44
|
Cai G, Li Y, Zhou J, Xue P, Liu K, Wang J, Xie Z, Li G, Zhan X, Lu X. Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50660-50667. [PMID: 33112591 DOI: 10.1021/acsami.0c14612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ternary strategy has been widely used in high-efficiency organic solar cells (OSCs). Herein, we successfully incorporated a mid-band-gap star-shaped acceptor, FBTIC, as the third component into the PM6/Y6 binary blend film, which not only achieved a panchromatic absorption but also significantly improved the open-circuit voltage (VOC) of the devices due to the high-lying lowest unoccupied molecular orbital (LUMO) of the FBTIC. Morphology characterizations show that star-shaped FBTIC molecules are amorphously distributed in the ternary system, and the finely tuned ternary film morphology facilitates the exciton dissociation and charge collection in ternary devices. As a result, the best PM6/Y6/FBTIC-based ternary OSCs achieved a power conversion efficiency (PCE) of 16.7% at a weight ratio of 1.0:1.0:0.2.
Collapse
Affiliation(s)
- Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Yuhao Li
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Peiyao Xue
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Kuan Liu
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jiayu Wang
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Gang Li
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| |
Collapse
|
45
|
Li T, Wu Y, Zhou J, Li M, Wu J, Hu Q, Jia B, Pan X, Zhang M, Tang Z, Xie Z, Russell TP, Zhan X. Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. J Am Chem Soc 2020; 142:20124-20133. [DOI: 10.1021/jacs.0c09800] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tengfei Li
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Yao Wu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengyang Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qin Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Boyu Jia
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Xiran Pan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Hou R, Li M, Ma X, Huang H, Lu H, Jia Q, Liu Y, Xu X, Li HB, Bo Z. Noncovalently Fused-Ring Electron Acceptors with C2v Symmetry for Regulating the Morphology of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46220-46230. [PMID: 32938186 DOI: 10.1021/acsami.0c13993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Four noncovalently fused-ring electron acceptors p-DOC6-2F, o-DOC6-2F, o-DOC8-2F, and o-DOC2C6-2F have been designed and synthesized. p-DOC6-2F and o-DOC6-2F have the same molecular backbone but different molecular shapes and symmetries. p-DOC6-2F has an S-shaped molecular backbone and C2h symmetry, whereas o-DOC6-2F possesses a U-shaped molecular backbone and C2v symmetry. The molecular shape and symmetry can influence the dipole moment, solubility, optical absorption, energy level, molecular packing, and film morphology. Compared with the corresponding p-DOC6-2F, o-DOC6-2F exhibits better solubility, a wider band gap, and a larger dipole moment. When blended with the donor polymer PBDB-T, the C2v symmetric o-DOC6-2F can form an appropriate active layer morphology, whereas the C2h symmetric p-DOC6-2F forms oversized domains. Organic solar cells (OSCs) based on p-DOC6-2F, o-DOC6-2F, o-DOC8-2F, and o-DOC2C6-2F obtained power conversion efficiencies of 9.23, 11.87, 11.23, and 10.80%, respectively. The result reveals that the molecular symmetry can facilely regulate the performance of OSCs.
Collapse
Affiliation(s)
- Ran Hou
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Miao Li
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xueqing Ma
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hao Huang
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hao Lu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qingqing Jia
- School of Ocean, Shandong University, Weihai 264209, P. R. China
| | - Yahui Liu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xinjun Xu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hai-Bei Li
- School of Ocean, Shandong University, Weihai 264209, P. R. China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
47
|
Chen Y, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells. Angew Chem Int Ed Engl 2020; 59:22714-22720. [DOI: 10.1002/anie.202010856] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Ya‐Nan Chen
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
| | - Miao Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yunzhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jing Wang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jianming Yang
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics East China Normal University Shanghai 200241 China
| | - Yahui Liu
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qinye Bao
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics East China Normal University Shanghai 200241 China
| | - Zhishan Bo
- College of Textiles & Clothing Qingdao University Qingdao 266071 China
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
48
|
Lin F, Jiang K, Kaminsky W, Zhu Z, Jen AKY. A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. J Am Chem Soc 2020; 142:15246-15251. [DOI: 10.1021/jacs.0c07083] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Alex K.-Y. Jen
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
49
|
|