1
|
Mei H, Zhang Y, Zhang P, Ricciardulli AG, Samorì P, Yang S. Entropy Engineering of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409404. [PMID: 39443829 DOI: 10.1002/advs.202409404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Entropy, a measure of disorder or uncertainty in the thermodynamics system, has been widely used to confer desirable functions to alloys and ceramics. The incorporation of three or more principal elements into a single sublattice increases the entropy to medium and high levels, imparting these materials a mélange of advanced mechanical and catalytic properties. In particular, when scaling down the dimensionality of crystals from bulk to the 2D space, the interplay between entropy stabilization and quantum confinement offers enticing opportunities for exploring new fundamental science and applications, since the structural ordering, phase stability, and local electronic states of these distorted 2D materials get significantly reshaped. During the last few years, the large family of high-entropy 2D materials is rapidly expanding to host MXenes, hydrotalcites, chalcogenides, metal-organic frameworks (MOFs), and many other uncharted members. Here, the recent advances in this dynamic field are reviewed, elucidating the influence of entropy on the fundamental properties and underlying elementary mechanisms of 2D materials. In particular, their structure-property relationships resulting from theoretical predictions and experimental findings are discussed. Furthermore, an outlook on the key challenges and opportunities of such an emerging field of 2D materials is also provided.
Collapse
Affiliation(s)
- Hao Mei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Deng C, Liu R, Wu P, Wang T, Xi S, Tao D, He Q, Chao Y, Zhu W, Dai S. Thermally Stable High-Entropy Layered Double Hydroxides for Advanced Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406685. [PMID: 39385649 DOI: 10.1002/smll.202406685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Layered double hydroxides (LDHs), especially high-entropy LDHs (HE-LDHs), have gained increasing attention. However, HE-LDHs often possess poor thermal stability, restricting their applications in thermo-catalysis. Herein, a novel complexing nucleation method is proposed for engineering HE-LDHs with enhanced thermal stability. This approach precisely controls the nucleation of metal ions with different solubility products, achieving homogeneous nucleation and effectively mitigating phase segregation and transformation at elevated temperatures. The prepared HE-LDH sample demonstrated exceptional thermal stability at temperatures up to 300 °C, outperforming all previously reported LDHs. Importantly, these HE-LDHs preserve both Lewis and Brønsted acidic sites, enabling the 100% removal of aromatic sulfides and alkaline nitrogen compounds from fuel oils in thermo-catalytic oxidation reactions. Experimental and characterization findings reveal that the metal-hydroxide bonds in the prepared HE-LDHs are strengthened by associated hydroxyl groups, inducing negative thermal expansion and augmenting the presence of acidic sites, thereby ensuring structural stability and enhancing catalytic activity. This study not only proposes a strategy for engineering HE-LDHs with remarkable thermal stability but also highlights potential applications of LDHs in thermo-catalysis.
Collapse
Affiliation(s)
- Chang Deng
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - Ruoyu Liu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Peiwen Wu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shibo Xi
- Agency for Science, Technology, and Research (A*STAR), Pesek Road Jurong Island, Singapore, 627833, Singapore
| | - Duanjian Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - Yanhong Chao
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
3
|
Li D, Liu C, Tao S, Cai J, Zhong B, Li J, Deng W, Hou H, Zou G, Ji X. High-Entropy Electrode Materials: Synthesis, Properties and Outlook. NANO-MICRO LETTERS 2024; 17:22. [PMID: 39331215 PMCID: PMC11436529 DOI: 10.1007/s40820-024-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024]
Abstract
High-entropy materials represent a new category of high-performance materials, first proposed in 2004 and extensively investigated by researchers over the past two decades. The definition of high-entropy materials has continuously evolved. In the last ten years, the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage, electrocatalysis, and related domains, accompanied by a rise in techniques for fabricating high-entropy electrode materials. Recently, the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches. However, the current definition of high-entropy materials remains relatively vague, and the preparation method of high-entropy materials is based on the preparation method of single metal/low- or medium-entropy materials. It should be noted that not all methods applicable to single metal/low- or medium-entropy materials can be directly applied to high-entropy materials. In this review, the definition and development of high-entropy materials are briefly reviewed. Subsequently, the classification of high-entropy electrode materials is presented, followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods. Finally, an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided, along with a proposal for potential future development directions for high-entropy materials.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, People's Republic of China.
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jieming Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Biao Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
4
|
Chang L, Jing H, Liu C, Qiu C, Ling X. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406521. [PMID: 39248345 DOI: 10.1002/advs.202406521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Indexed: 09/10/2024]
Abstract
With their unique structural characteristics, customizable chemical composition, and adjustable functional characteristics, high-entropy materials (HEMs) have triggered a wide range of interdisciplinary research, especially in the biomedical field. In this paper, the basic concept, core properties, and preparation methods of HEMs are first summarized, and then the application and development of HEMs in the field of biomedical are briefly described. Subsequently, based on the diverse and comprehensive properties of HEMs and a few reported cases, the possible application scenarios of HEMs in biological fields such as biosensors, antibacterial materials, therapeutics, bioimaging, and tissue engineering are prospectively predicted and discussed. Finally, their potential advantages and major challenges is summarized, which may provide useful guidance and principles for researchers to develop and optimize novel HEMs.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Chuantian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Guo H, Fu X, Peng L, Wang C, Zhuang Y, Chong H, Chen Z, Gong W, Yan M, Wang Q, Cui W. Rare-Earth (R) In-Plane Ordering in Novel (Mo, R, Nb) 4AlC 3 Quinary o-MAX Nanolaminates and their 2D Derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404466. [PMID: 39072903 DOI: 10.1002/adma.202404466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Nanolamellar transition metal carbides are gaining increasing attentions because of the promising application in energy storage of their 2D derivatives. There are in-plane and out-of-plane atomic ordered occupations, which is thought to only be formed in separated systems due to totally different origins and crystallographic structure. In present work, starting from (Mo, Nb)4AlC3 o-MAX phase where out-of-plane ordered occupation is experimentally and theoretically proved for Mo/Nb atoms, rare-earth elements (R = Y, Gd-Tm, Lu) are introduced, and the novel Mo3.33- xR0.67NbxAlC3 (x = 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5) super-ordered (s-) MAX phase is synthesized, where R is ordered at the outer layer in the strict stoichiometry meanwhile Mo/Nb maintains the out-of-plane ordered occupation. By R introduction, s-MAX is easier to be delaminated to obtain the s-MXene with the topochemical ordered vacancies, leading into the enhanced supercapacitance of 114.9 F g-1 in Mo1.33Nb2C3 s-MXene compared with 95.1 F g-1 in Mo2Nb2C3 o-MXene. By Pt anchoring, very low overpotential of 22 mV at a current density of 10 mA cm-2 is achieved for HER applications. This study demonstrates a novel variety of s-MAX phase and seeks to inspire further exploration of the ordered MAX and MXene families.
Collapse
Affiliation(s)
- Hongyun Guo
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Xiaoxiao Fu
- International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Chaobo Wang
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yujuan Zhuang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - He Chong
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Zhaohui Chen
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Weijiang Gong
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Weibin Cui
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
6
|
Qiao X, Chen T, He F, Li H, Zeng Y, Wang R, Yang H, Yang Q, Wu Z, Guo X. Solvation Effect: The Cornerstone of High-Performance Battery Design for Commercialization-Driven Sodium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401215. [PMID: 38856003 DOI: 10.1002/smll.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Sodium batteries (SBs) emerge as a potential candidate for large-scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety. The solvent structure has significant impact on commercial applications. But so far, the solvation design of electrolyte and the practical application of sodium batteries have not been comprehensively summarized. This review first clarifies the process of Na+ solvation and the strategies for adjusting Na+ solvation. It is worth noting that the relationship between solvation theory and interface theory is pointed out. The cost, low temperature, fast charging, and safety issues of solvation are systematically summarized. The importance of the de-solvation step in low temperature and fast charging application is emphasized to help select better electrolytes for specific applications. Finally, new insights and potential solutions for electrolytes solvation related to SBs are proposed to stimulate revolutionary electrolyte chemistry for next generation SBs.
Collapse
Affiliation(s)
- Xianyan Qiao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ting Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Fa He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Zeng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruoyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
8
|
Su J, Wan Y, Feng L, Huang D, Kai Chu H, Zhang X, Geng X, Wang Y, Zhong R, Zou R. "One-Stone, Two-Birds": Zinc-Rich Metal-Organic Frameworks as Precursors for High-Entropy Zn-Air Battery Electrocatalysts with Hierarchical Pore Structures. Angew Chem Int Ed Engl 2024:e202413826. [PMID: 39198219 DOI: 10.1002/anie.202413826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
The active sites of inexpensive transition metal electrocatalysts are sparse and singular, thus high-entropy alloys composed of non-precious metals have attracted considerable attention due to their multi-component synergistic effects. However, the facile synthesis of high-entropy alloy composites remains a challenge. Herein, we report a "one-stone, two-birds" method utilizing zinc (Zn)-rich metal-organic frameworks as precursors, by virtue of the low boiling point of Zn (907 °C) and its high volatility in alloys, high-entropy alloy carbon nanocomposite with a layered pore structure was ultimately synthesized. The experimental results demonstrate that the volatilization of zinc can prevent metal agglomeration and contribute to the formation of uniformly dispersed high-entropy alloy nanoparticles at slower pyrolysis and cooling rates. Simultaneously, the volatilization of Zn plays a crucial role in creating the hierarchically porous structure. Compared to the zinc-free HEA/NC-1, the HEA/NC-5 derived from the precursor containing 0.8 Zn exhibit massive micropores and mesopores. The resulting nanocomposites represent a synergistic effect between highly dispersed metal catalytic centers and hierarchical adsorption sites, thus achieving excellent electrocatalytic oxygen reduction performance with low catalyst loading compared to commercial Pt/C. This convenient zinc-rich precursor method can be extended to the production of more high-entropy alloys and various application fields.
Collapse
Affiliation(s)
- Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Dingding Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Hsing Kai Chu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Xuan Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Xiaoye Geng
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| |
Collapse
|
9
|
Alam MS, Chowdhury MA, Khandaker T, Hossain MS, Islam MS, Islam MM, Hasan MK. Advancements in MAX phase materials: structure, properties, and novel applications. RSC Adv 2024; 14:26995-27041. [PMID: 39193282 PMCID: PMC11348849 DOI: 10.1039/d4ra03714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The MAX phase represents a diverse class of nanolaminate materials with intriguing properties that have received incredible global research attention because they bridge the divide separating metals and ceramics. Despite the numerous potential applications of MAX phases, their complex structure leads to a scarcity of readily accessible pure MAX phases. As a result, in-depth research on synthesis methods, characteristics, and structure is frequently needed for appropriate application. This review provides a comprehensive understanding of the recent advancements and growth in MAX phases, focusing on their complex crystal structures, unique mechanical, thermal, electrical, crack healing, corrosion-resistant properties, as well as their synthesis methods and applications. The structure of MAX phases including single metal MAX, i-MAX and o-MAX was discussed. Moreover, recent advancements in understanding MAX phase behaviour under extreme conditions and their potential novel applications across various fields, including high-temperature coatings, energy storage, and electrical and thermal conductors, biomedical, nanocomposites, etc. were discussed. Moreover, the synthesis techniques, ranging from bottom-up to top-down methods are scrutinized for their efficacy in tailoring MAX phase properties. Furthermore, the review explores the challenges and opportunities associated with optimizing MAX phase materials for specific applications, such as enhancing their oxidation resistance, tuning their mechanical properties, and exploring their functionality in emerging technologies. Overall, this review aims to provide researchers and engineers with a comprehensive understanding of MAX phase materials and inspire further exploration into their versatile applications in materials science and engineering.
Collapse
Affiliation(s)
- Md Shahinoor Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology Gazipur-1707 Dhaka Bangladesh
| | | | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Saiful Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | - Md Moynul Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology Qadirabad Cantonment Natore-6431 Bangladesh
| | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| |
Collapse
|
10
|
Michałowski PP. Unraveling the composition of each atomic layer in the MXene/MAX phase structure - identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes. NANOSCALE HORIZONS 2024; 9:1493-1497. [PMID: 39072410 DOI: 10.1039/d4nh00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.
Collapse
|
11
|
Tang S, Xie M, Yu S, Zhan X, Wei R, Wang M, Guan W, Zhang B, Wang Y, Zhou H, Zheng G, Liu Y, Warner JH, Yu G. General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate. Nat Commun 2024; 15:6932. [PMID: 39138150 PMCID: PMC11322612 DOI: 10.1038/s41467-024-51112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Given the growing emphasis on energy efficiency, environmental sustainability, and agricultural demand, there's a pressing need for decentralized and scalable ammonia production. Converting nitrate ions electrochemically, which are commonly found in industrial wastewater and polluted groundwater, into ammonia offers a viable approach for both wastewater treatment and ammonia production yet limited by low producibility and scalability. Here we report a versatile and scalable solution-phase synthesis of high-entropy single-atom nanocages (HESA NCs) in which Fe and other five metals-Co, Cu, Zn, Cd, and In-are isolated via cyano-bridges and coordinated with C and N, respectively. Incorporating and isolating the five metals into the matrix of Fe resulted in Fe-C5 active sites with a minimized symmetry of lattice as well as facilitated water dissociation and thus hydrogenation process. As a result, the Fe-HESA NCs exhibited a high selectivity toward NH3 from the electrocatalytic reduction of nitrate with a Faradaic efficiency of 93.4% while maintaining a high yield rate of 81.4 mg h-1 mg-1.
Collapse
Affiliation(s)
- Sishuang Tang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Saerom Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xun Zhan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ruilin Wei
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Maoyu Wang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuyang Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gengfeng Zheng
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuanyue Liu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jamie H Warner
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Ci N, Hu Y, Li Q, Cheng J, Zhang H, Li D, Li K, Reddy KM, Ci L, Xie G, Liu X, Qiu HJ. Cycling Reconstructed Hierarchical Nanoporous High-Entropy Oxides with Continuously Increasing Capacity for Li Storage. SMALL METHODS 2024; 8:e2301322. [PMID: 38135872 DOI: 10.1002/smtd.202301322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Indexed: 12/24/2023]
Abstract
High-entropy oxides (HEOs) have been showing great promise in a wide range of applications. There remains a lack of clarity regarding the influence of nanostructure and composition on their Li storage performance. Herein, a dealloying technique to synthesize hierarchical nanoporous HEOs with tunable compositions is employed. Building upon the extensively studied quinary AlFeNiCrMnOx, an additional element (Co, V, Ti, or Cu) is introduced to create senary HEOs, allowing for investigation of the impact of the added component on Li storage performance. With higher specific surface areas and oxygen vacancy concentrations, all their HEOs exhibit high Li storage performances. Remarkably, the senary HEO with the addition of V (AlNiFeCrMnVOx) achieves an impressive capacity of 730.2 mAh g-1 at 2.0 A g-1, which surpasses all reported performance of HEOs. This result demonstrates the synergistic interaction of the six elements in one HEO nanostructure. Additionally, the battery cycling-induced reconstruction and cation diffusion in the HEOs is uncovered, which results in an initial capacity decrease followed by a subsequent continuous capacity increase and enhanced Li ion diffusion. The results highlight the crucial roles played by both nanoporous structure design and composition optimization in enhancing Li storage of HEOs.
Collapse
Affiliation(s)
- Naixuan Ci
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yixuan Hu
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingqing Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jun Cheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hongqiang Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Deping Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kaikai Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kolan Madhav Reddy
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Muzzillo CP, Ciobanu CV, Moore DT. High-entropy alloy screening for halide perovskites. MATERIALS HORIZONS 2024; 11:3662-3694. [PMID: 38767287 DOI: 10.1039/d4mh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.
Collapse
Affiliation(s)
| | | | - David T Moore
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
14
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
15
|
Bolar S, Ito Y, Fujita T. Future prospects of high-entropy alloys as next-generation industrial electrode materials. Chem Sci 2024; 15:8664-8722. [PMID: 38873068 PMCID: PMC11168093 DOI: 10.1039/d3sc06784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
The rapid advancement of electrochemical processes in industrial applications has increased the demand for high-performance electrode materials. High-entropy alloys (HEAs), a class of multicomponent alloys with unique properties, have emerged as potential electrode materials owing to their enhanced catalytic activity, superior stability, and tunable electronic structures. This review explores contemporary developments in HEA-based electrode materials for industrial applications and identifies their advantages and challenges as compared to conventional commercial electrode materials in industrial aspects. The importance of tuning the composition, crystal structure, different phase formations, thermodynamic and kinetic parameters, and surface morphology of HEAs and their derivatives to achieve the predicted electrochemical performance is emphasized in this review. Synthetic procedures for producing potential HEA electrode materials are outlined, and theoretical discussions provide a roadmap for recognizing the ideal electrode materials for specific electrochemical processes in an industrial setting. A comprehensive discussion and analysis of various electrochemical processes (HER, OER, ORR, CO2RR, MOR, AOR, and NRR) and electrochemical applications (batteries, supercapacitors, etc.) is included to appraise the potential ability of HEAs as an electrode material in the near future. Overall, the design and development of HEAs offer a promising pathway for advancing industrial electrode materials with improved performance, selectivity, and stability, potentially paving the way for the next generation of electrochemical technology.
Collapse
Affiliation(s)
- Saikat Bolar
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba 305-8573 Japan
| | - Takeshi Fujita
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| |
Collapse
|
16
|
He CY, Li Y, Zhou ZH, Liu BH, Gao XH. High-Entropy Photothermal Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400920. [PMID: 38437805 DOI: 10.1002/adma.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Indexed: 03/06/2024]
Abstract
High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
Collapse
Affiliation(s)
- Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuo-Hao Zhou
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bao-Hua Liu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang-Hu Gao
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Zhang Y, Huang J, Qiu L, Jiao R, Zhang Y, Yang G, Zhang L, Tian Z, Debroye E, Liu T, Gohy JF, Hofkens J, Lai F. Hollow Stair-Stepping Spherical High-Entropy Prussian Blue Analogue for High-Rate Sodium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27684-27693. [PMID: 38753436 DOI: 10.1021/acsami.4c04785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Prussian blue analogues (PBAs) are considered to be one of the most suitable sodium storage materials, especially with the introduction of the high-entropy (HE) concept into their structure to further improve their various abilities. However, severe agglomeration of the HEPBA particles still limits the fast charging capabilities. Here, an HEPBA (Nax(FeMnCoNiCu)[Fe(CN)6]y□1-y·nH2O) with a hollow stair-stepping spherical structure has been prepared through the chemical etching process of the traditional cubic structure of HEPBA. Electrochemical characterization (sodium ion battery), kinetic analysis, and COMSOL Multiphysics simulations reveal that the nature of the high-entropy and the hollow stair-stepping spherical structure can greatly improve the diffusion behavior of Na+ ions. Moreover, the hollow structure effectively mitigates the volume change of HEPBA during SIBs operation, ultimately extending the lifespan. Consequently, the as-prepared HEPBA cathode exhibits excellent rate performance (126.5 and 76.4 mAh g-1 at 0.1 and 4.0 A g-1, respectively) and stable long-term capability (maintaining its 75.6% capacity after 1000 cycles) due to its unique structure. Furthermore, the waste of the etching process can easily be recycled to prepare more HEPBA product. This processing method holds great promise for designing nanostructures of advanced high-entropy Prussian blue analogues for sodium ion batteries.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiajia Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linyang Qiu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Runyu Jiao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanhua Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guozheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Leiqian Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jean-François Gohy
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
18
|
Wei C, Xi B, Wang P, Wang Z, An X, Li Y, Feng J, Xiong S. Rapid Growth of Bi 2Se 3 Nanodots on MXene Nanosheets at Room Temperature for Promoting Sulfur Redox Kinetics. Inorg Chem 2024; 63:8853-8862. [PMID: 38692832 DOI: 10.1021/acs.inorgchem.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Li-S batteries are hampered by problems with their cathodes and anodes simultaneously. The improvement of Li-S batteries needs to consider both the anode and cathode. Herein, a Bi2Se3@MXene composite is prepared for the first time by rapidly growing Bi2Se3 nanodots on two-dimensional (2D) MXene nanosheets at room temperature through simply adding high-reactive hydroxyethylthioselenide in Bi3+/MXene aqueous solution. Bi2Se3@MXene exhibits a 2D structure due to the template effect of 2D MXene. Bi2Se3@MXene can not only facilitate the conversion of lithium polysulfides (LiPSs) but also inhibit their shuttling in the S cathode due to its catalytic effect and adsorption force with LiPSs. Bi2Se3@MXene can also be used as an interfacial lithiophilic layer to inhibit Li dendrite growth in the Li metal anode. Theoretical calculations reveal that Bi2Se3 nanodots in Bi2Se3@MXene can effectively boost the adsorption ability with LiPSs, and the MXene in Bi2Se3@MXene can accelerate the electron transport. Under the bidirectional regulation of Bi2Se3@MXene in the Li metal anode and S cathode, the Li-S battery shows an enhanced electrochemical performance.
Collapse
Affiliation(s)
- Chuanliang Wei
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhengran Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yuan Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jinkui Feng
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
19
|
Shen N, Li T, Li B, Wang Y, Liu H, Guo C, Chen X, Li J. Dual-functional mediators of high-entropy Prussian blue analogues for lithiophilicity and sulfiphilicity in Li-S batteries. NANOSCALE 2024; 16:7634-7644. [PMID: 38526018 DOI: 10.1039/d4nr00571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered promising next-generation energy storage systems due to their high energy density (2600 W h kg-1) and cost-effectiveness. However, the shuttle effect of lithium polysulfides in sulfur cathodes and uncontrollable Li dendrite growth in Li metal anodes significantly impede the practical application of Li-S batteries. In this study, we address these challenges by employing a high-entropy Prussian blue analogue Mn0.4Co0.4Ni0.4Cu0.4Zn0.4[Fe(CN)6]2 (HE-PBA) composite containing multiple metal ions as a dual-functional mediator for Li-S batteries. Specifically, the HE-PBA composite provides abundant metal active sites that efficiently chemisorb lithium polysulfides (LiPSs) to facilitate fast redox conversion kinetics of LiPSs. In Li metal anodes, the exceptional lithiophilicity of the HE-PBA ensures a homogeneous Li ion flux, resulting in uniform Li deposition while mitigating the growth of Li dendrites. As a result, our work demonstrates outstanding long-term cycling performance with a decay rate of only 0.05% per cycle over 1000 cycles at 2.0 C. The HE-PBA@Cu/Li anode maintains a stable overpotential even after 600 h at 0.5 mA cm-2 under the total areal capacity of 1.0 mA h cm-2. This study showcases the application potential of the HE-PBA in Li-S batteries and encourages further exploration of prospective high-entropy materials used to engineer next-generation batteries.
Collapse
Affiliation(s)
- Nan Shen
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Tianqi Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Boya Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Yi Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - He Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Cong Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Xiaoyu Chen
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
- Nanjing Energy Digital Electric Co. Ltd, Nanjing 211106, Jiangsu, China
| | - Jingfa Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| |
Collapse
|
20
|
Teplonogova MA, Kozlova AA, Yapryntsev AD, Baranchikov AE, Ivanov VK. Synthesis and Thermal Decomposition of High-Entropy Layered Rare Earth Hydroxychlorides. Molecules 2024; 29:1634. [PMID: 38611913 PMCID: PMC11013826 DOI: 10.3390/molecules29071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy layered rare earth hydroxychlorides, namely, (Sm,Eu,Gd,Y,Er)2(OH)5Cl, (Eu,Gd,Tb,Y,Er)2(OH)5Cl, (Eu,Gd,Dy,Y,Er)2(OH)5Cl, and (Eu,Gd,Y,Er,Yb)2(OH)5Cl, using a homogeneous hydrolysis technique under hydrothermal conditions. Elemental mapping proved the even distribution of rare earth elements, while luminescence spectroscopy confirmed efficient energy transfer between europium and other rare earth cations, thus providing additional evidence of the homogeneous distribution of rare earth elements within the crystal lattice. The average rare earth cation radii correlated linearly with the unit cell parameters (0.868 < R2 < 0.982) of the high-entropy layered rare earth hydroxychlorides. The thermal stability of the high-entropy layered rare earth hydroxychlorides was similar to that of individual hydroxychlorides and their binary solid solutions.
Collapse
Affiliation(s)
- Maria A. Teplonogova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anfisa A. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey D. Yapryntsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
21
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Xu X, Zhang C, Yin J, Smajic J, Bahabri M, Lei Y, Hedhili MN, Hota MK, Shi L, Guo T, Zheng D, El-Demellawi JK, Lanza M, Costa PMFJ, Bakr OM, Mohammed OF, Zhang X, Alshareef HN. Anisotropic Superconducting Nb 2 CT x MXene Processed by Atomic Exchange at the Wafer Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305326. [PMID: 37907810 DOI: 10.1002/adma.202305326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Superconductivty has recently been induced in MXenes through surface modification. However, the previous reports have mostly been based on powders or cold-pressed pellets, with no known reports on the intrinsic superconsucting properties of MXenes at the nanoale. Here, it is developed a high-temperature atomic exchange process in NH3 atmosphere which induces superconductivity in either singleflakes or thin films of Nb2 CTx MXene. The exchange process between nitrogen atoms and fluorine, carbon, and oxygen atoms in the MXene lattice and related structural adjustments are studied using both experiments and density functional theory. Using either single-flake or thin-film devices, an anisotropic magnetic response of the 2D superconducting transformation has been successfully revealed. The anisotropic superconductivity is further demonstrated using superconducting thin films uniformly deposited over a 4 in. wafers, which opens up the possibility of scalable MXene-based superconducting devices.
Collapse
Affiliation(s)
- Xiangming Xu
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chenghui Zhang
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Jasmin Smajic
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohammed Bahabri
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mrinal K Hota
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lin Shi
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tianchao Guo
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jehad K El-Demellawi
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Upstream Research Center (KURC), EXPEC-ARC, Saudi Aramco, Thuwal, 23955, Saudi Arabia
| | - Mario Lanza
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro M F J Costa
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials (AMPM) Center and KAUST Catalysis Center, PSE Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
24
|
Yin P, Liang W, Han B, Yang Y, Sun D, Qu X, Hai Y, Luo D. Hydrogel and Nanomedicine-Based Multimodal Therapeutic Strategies for Spinal Cord Injury. SMALL METHODS 2024; 8:e2301173. [PMID: 37884459 DOI: 10.1002/smtd.202301173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Spinal cord injury (SCI) is a severe neurodegenerative disease caused by mechanical and biological factors, manifesting as a loss of motor and sensory functions. Inhibition of injury expansion and even reversal of injury in the acute damage stage of SCI are important strategies for treating this disease. Hydrogels and nanoparticle (NP)-based drugs are the most effective, widely studied, and clinically valuable therapeutic strategies in the field of repair and regeneration. Hydrogels are 3D flow structures that fill the pathological gaps in SCI and provide a microenvironment similar to that of the spinal cord extracellular matrix for nerve cell regeneration. NP-based drugs can easily penetrate the blood-spinal cord barrier, target SCI lesions, and are noninvasive. Hydrogels and NPs as drug carriers can be loaded with various drugs and biological therapeutic factors for slow release in SCI lesions. They help drugs function more efficiently by exerting anti-inflammatory, antioxidant, and nerve regeneration effects to promote the recovery of neurological function. In this review, the use of hydrogels and NPs as drug carriers and the role of both in the repair of SCI are discussed to provide a multimodal strategic reference for nerve repair and regeneration after SCI.
Collapse
Affiliation(s)
- Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Yihan Yang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Xianjun Qu
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
25
|
Zhou J, Dahlqvist M, Björk J, Rosen J. Atomic Scale Design of MXenes and Their Parent Materials─From Theoretical and Experimental Perspectives. Chem Rev 2023; 123:13291-13322. [PMID: 37976459 PMCID: PMC10722466 DOI: 10.1021/acs.chemrev.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
More than a decade after the discovery of MXene, there has been a remarkable increase in research on synthesis, characterization, and applications of this growing family of two-dimensional (2D) carbides and nitrides. Today, these materials include one, two, or more transition metals arranged in chemically ordered or disordered structures of three, five, seven, or nine atomic layers, with a surface chemistry characterized by surface terminations. By combining M, X, and various surface terminations, it appears that a virtually endless number of MXenes is possible. However, for the design and discovery of structures and compositions beyond current MXenes, one needs suitable (stable) precursors, an assessment of viable pathways for 3D to 2D conversion, and utilization or development of corresponding synthesis techniques. Here, we present a critical and forward-looking review of the field of atomic scale design and synthesis of MXenes and their parent materials. We discuss theoretical methods for predicting MXene precursors and for assessing whether they are chemically exfoliable. We also summarize current experimental methods for realizing the predicted materials, listing all verified MXenes to date, and outline research directions that will improve the fundamental understanding of MXene processing, enabling atomic scale design of future 2D materials, for emerging technologies.
Collapse
Affiliation(s)
- Jie Zhou
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Martin Dahlqvist
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Jonas Björk
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Johanna Rosen
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
26
|
Shen Y, Zou J, Zeng M, Fu L. Atomic Manufacturing in Electrode Materials for High-Performance Batteries. ACS NANO 2023; 17:22167-22182. [PMID: 37938148 DOI: 10.1021/acsnano.3c07906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The advancement of electrode materials plays a pivotal role in enhancing the performance of energy storage devices, thereby meeting the escalating need for energy storage and aligning with the imperative of sustainable development. Atomic manufacturing enables the precise manipulation of the crystal structure at the atomic level, thereby facilitating the development of electrode materials with customized physicochemical properties and enhancing their performance. In this Perspective, we elaborate on how atomic manufacturing enhances the important properties of electrode materials. Finally, we anticipate the prospect of materials and fabrication methods for atomic manufacturing in the future. This Perspective provides a comprehensive understanding for atomic manufacturing in electrode materials.
Collapse
Affiliation(s)
- Yuanhao Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Li K, Hao P, Zhang Q, Zhang J, Dmytro S, Zhou Y. First-principles calculation on the lithium storage properties of high-entropy MXene Ti 3C 2(N 0.25O 0.25F 0.25S 0.25) 2. Dalton Trans 2023. [PMID: 37997912 DOI: 10.1039/d3dt02869k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Experimental studies had shown that a variety of surface functional groups exist simultaneously on the surface of Ti3C2Tx MXenes. However, current theoretical calculations on MXenes, used as anode materials for lithium-ion batteries, consider only one surface functional group, which fails to take into account the actual situation. In this study, combining the characteristics of high-entropy materials and two-dimensional MXene material, a model of MXene with multiple surface functional groups was constructed, and its electrochemical performance as an anode material for lithium-ion batteries was further explored. The Ti3C2(N0.25O0.25F0.25S0.25)2 monolayer exhibited metallic properties. Meanwhile, Li atoms could be stably adsorbed on the surface and the diffusion energy barrier of Li on the surface was only 0.17 eV. First-principles calculation showed that Ti3C2(N0.25O0.25F0.25S0.25)2 monolayer had good rate performance and low open-circuit voltage (1 V), corresponding to a lithium storage capacity of 385.38 mA h g-1. The results of our work might inspire further studies on the Li storage performance of high-entropy MXenes experimentally and theoretically.
Collapse
Affiliation(s)
- Kechen Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Pengju Hao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Qian Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Jianbo Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Sydorov Dmytro
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Yang Zhou
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| |
Collapse
|
28
|
Meng X, Wang L, Wang X, Zhen M, Hu Z, Guo SQ, Shen B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. CHEMOSPHERE 2023; 338:139550. [PMID: 37467848 DOI: 10.1016/j.chemosphere.2023.139550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Energy crises and environmental degradation are serious in recent years. Inexhaustible solar energy can be used for photocatalytic hydrogen production or CO2 reduction to reduce CO2 emissions. At present, the development of efficient photocatalysts is imminent. MXene as new two-dimensional (2D) layered material, has been used in various fields in recent years. Based on its high conductivity, adjustable band gap structure and sizable specific surface area, the MXene is beneficial to hasten the separation and reduce the combination of photoelectron-hole pairs in photocatalysis. Nevertheless, the re-stacking of layers because of the strong van der Waals force and hydrogen bonding interactions seriously hinder the development of MXene material as photocatalysts. By contrast, the MXene-based heterostructures composed of MXene nanosheets and other materials not only effectively suppress the re-stacking of layers, but also show the superior synergistic effects in photocatalysis. Herein, the recent progress of the MXene-based heterostructures as photocatalysts in energy and environment fields is summarized in this review. Particularly, new synthetic strategies, morphologies, structures, and mechanisms of MXene-based heterostructures are highlighted in hydrogen production, CO2 reduction, and pollutant degradation. In addition, the structure-activity relationship between the synthesis strategy, components, morphology and structure of MXene-based heterostructures, and their photocatalytic properties are elaborated in detail. Finally, a summary and the perspectives on improving the application study of the heterostructures in photocatalysis are presented.
Collapse
Affiliation(s)
- Xinyan Meng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lufei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyu Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
29
|
Das P, Dong Y, Wu X, Zhu Y, Wu ZS. Perspective on high entropy MXenes for energy storage and catalysis. Sci Bull (Beijing) 2023; 68:1735-1739. [PMID: 37482447 DOI: 10.1016/j.scib.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Affiliation(s)
- Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfeng Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
30
|
Li Y, Lieu WY, Ghosh T, Fu L, Feng X, Wong AJY, Thakur A, Wyatt BC, Anasori B, Zhang Q, Yang HY, Seh ZW. Double-Transition-Metal MXene Films Promoting Deeply Rechargeable Magnesium Metal Batteries. SMALL METHODS 2023; 7:e2201598. [PMID: 36807580 DOI: 10.1002/smtd.202201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Magnesium metal batteries are promising candidates for next-generation high-energy-density and low-cost energy storage systems. Their application, however, is precluded by infinite relative volume changes and inevitable side reactions of Mg metal anodes. These issues become more pronounced at large areal capacities that are required for practical batteries. Herein, for the first time, double-transition-metal MXene films are developed to promote deeply rechargeable magnesium metal batteries using Mo2 Ti2 C3 as a representative example. The freestanding Mo2 Ti2 C3 films, which are prepared using a simple vacuum filtration method, possess good electronic conductivity, unique surface chemistry, and high mechanical modulus. These superior electro-chemo-mechanical merits of Mo2 Ti2 C3 films help to accelerate electrons/ions transfer, suppress electrolyte decomposition and dead Mg formation, as well as maintain electrode structural integrity during long-term and large-capacity operation. As a result, the as-developed Mo2 Ti2 C3 films exhibit reversible Mg plating/stripping with high Coulombic efficiency of 99.3% at a record-high capacity of 15 mAh cm-2 . This work not only sheds innovative insights into current collector design for deeply cyclable Mg metal anodes, but also paves the way for the application of double-transition-metal MXene materials in other alkali and alkaline earth metal batteries.
Collapse
Affiliation(s)
- Yuanjian Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Wei Ying Lieu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Tanmay Ghosh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Lin Fu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Xiang Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Andrew Jun Yao Wong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Anupma Thakur
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Brian C Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| |
Collapse
|
31
|
Guo R, Chen C, Bannenberg LJ, Wang H, Liu H, Yu M, Sofer Z, Lei Z, Wang X. Interfacial Designs of MXenes for Mild Aqueous Zinc-Ion Storage. SMALL METHODS 2023; 7:e2201683. [PMID: 36932899 DOI: 10.1002/smtd.202201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Limited Li resources, high cost, and safety risks of using organic electrolytes have stimulated a strong motivation to develop non-Li aqueous batteries. Aqueous Zn-ion storage (ZIS) devices offer low-cost and high-safety solutions. However, their practical applications are at the moment restricted by their short cycle life arising mainly from irreversible electrochemical side reactions and processes at the interfaces. This review sums up the capability of using 2D MXenes to increase the reversibility at the interface, assist the charge transfer process, and thereby improve the performance of ZIS. First, they discuss the ZIS mechanism and irreversibility of typical electrode materials in mild aqueous electrolytes. Then, applications of MXenes in different ZIS components are highlighted, including as electrodes for Zn2+ intercalation, protective layers of Zn anode, hosts for Zn deposition, substrates, and separators. Finally, perspectives are put forward on further optimizing MXenes to improve the ZIS performance.
Collapse
Affiliation(s)
- Rui Guo
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Chaofan Chen
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Lars J Bannenberg
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Hao Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haozhe Liu
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden Technische Universität Dresden Modulgebäude, 01217, Dresden, Germany
| | - Zdenek Sofer
- Institute of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 16628, Czech Republic
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| |
Collapse
|
32
|
Chen L, Li Y, Liang K, Chen K, Li M, Du S, Chai Z, Naguib M, Huang Q. Two-Dimensional MXenes Derived from Medium/High-Entropy MAX Phases M 2 GaC (M = Ti/V/Nb/Ta/Mo) and their Electrochemical Performance. SMALL METHODS 2023; 7:e2300054. [PMID: 37086114 DOI: 10.1002/smtd.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) transition metal carbides and/or nitrides, MXenes, are prepared by selective etching of the A-site atomically thin metal layers from their MAX phase precursors. High entropy MXenes, the most recent subfamily of MXenes, are in their infancy and have attracted great interest recently. They are currently synthesized mainly through wet chemical etching of Al-containing MAX phases, while various MAX phases with A-sites elements other than Al have not been explored. It is important to embody non-Al MAX phases as precursors for the high entropy MXenes synthesis to allow for new compositions. In this work, it is reported on the design and synthesis of Ga-containing medium/high entropy MAX phases and then their corresponding medium/high entropy MXenes. Gallium atomic layer etching is carried out using a Lewis acid molten salt (CuCl2). The as-prepared (Ti1/4 V1/4 Nb1/4 Ta1/4 )2 CTx exhibits a Li+ specific capacity of ≈400 mAh g-1 . For (Ti1/5 V1/5 Nb1/5 Ta1/5 Mo1/5 )2 CTx a specific capacity of 302 mAh g-1 is achieved after 300 cycles, and high cycling stability is observed at high current densities. This work is of great significance for expanding the family members of MXenes with tunable chemistries and structures.
Collapse
Affiliation(s)
- Lu Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Youbing Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Kun Liang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Ke Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| |
Collapse
|
33
|
Ali W, Li X, Yang Y, Li N, Huang B, Wu C, Ding S. In Situ Formed Ti/Nb Nanocatalysts within a Bimetal 3D MXene Nanostructure Realizing Long Cyclic Lifetime and Faster Kinetic Rates of MgH 2. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37467449 DOI: 10.1021/acsami.3c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Magnesium hydride (MGH) is a high-capacity and low-cost hydrogen storage material; however, slow kinetic rates, high dehydrogenation temperature, and short cycle life hindered its large-scale applications. We proposed a strategy of designing novel delaminated 3D bimetal MXene (d-TiNbCTx) nanostructure to solve these problems. The on-set dehydrogenation temperature of MGH@d-TiNbCTx composition was reduced to 150 °C, achieving 7.2 wt % of hydrogen releasing capacity within the range of 150-250 °C. This composition absorbed 7.2 wt % hydrogen within 5 min at 200 °C and 5.5 wt % at 30 °C within 2 h, while the desorption capacity (6.0 wt %) was measured at 275 °C within 7 min. After 150 cycles at 250 °C, the 6.5 wt % capacity was retained with negligible loss of hydrogen content. These results were attributed to the catalytic effect of in situ-formed TiH2/NbH2 nanocatalysts, which lead to dissociate the Mg-H bonds and promote of kinetic rates. This unique structure paves great opportunities for designing of highly efficient MGHs/MXene nanocomposites to improve the hydrogen storage performance of MGHs.
Collapse
Affiliation(s)
- Wajid Ali
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xinyang Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiao Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Na Li
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an 710049, China
| | - Bo Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Western China Science and Technology Inno-vation Harbour, Xixian-ward, Xi'an 712000, China
| | - Chengzhang Wu
- State Key Laboratory of Advanced Special Steel, Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
34
|
Oliveira FM, Azadmanjiri J, Wang X, Yu M, Sofer Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. SMALL METHODS 2023:e2300112. [PMID: 37129581 DOI: 10.1002/smtd.202300112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The development of new materials for electromagnetic interference (EMI) shielding is an important area of research, as it allows for the creation of more effective and high-efficient shielding solutions. In this sense, MXenes, a class of 2D transition metal carbides and nitrides have exhibited promising performances as EMI shielding materials. Electric conductivity, low density, and flexibility are some of the properties given by MXene materials, which make them very attractive in the field. Different processing techniques have been employed to produce MXene-based materials with EMI shielding properties. This review summarizes processes and the role of key parameters like the content of fillers and thickness in the desired EMI shielding performance. It also discusses the determination of power coefficients in defining the EMI shielding mechanism and the concept of green shielding materials, as well as their influence on the real application of a produced material. The review concludes with a summary of current challenges and prospects in the production of MXene materials as EMI shields.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Centre for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| |
Collapse
|
35
|
Guo Y, Liu C, Liao J, Liu Y, Qian H, Xu J, Wang H, Nie K, Wang J. Growth mechanism study and band structure modulation of a manganese doped two-dimensional BlueP-Au network. RSC Adv 2023; 13:12685-12694. [PMID: 37101530 PMCID: PMC10123488 DOI: 10.1039/d3ra00751k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Two-dimensional (2D) materials are a very promising material family. The two-dimensional inorganic metal network called BlueP-Au network is rapidly attracting the attention of researchers due to its customizable architecture, adjustable chemical functions and electronic properties. Herein, manganese (Mn) was successfully doped on a BlueP-Au network for the first time, then the doping mechanism and electronic structure evolution was studied by in situ X-ray photoelectron spectroscopy (XPS) based on synchrotron radiation, X-ray absorption spectroscopy (XAS), Scanning Tunneling Microscopy (STM), Density functional theory (DFT), Low-energy electron diffraction (LEED), Angle resolved photoemission spectroscopy (ARPES), etc. Mn atoms tend to be stably adsorbed on two sites of the BlueP-Au network. It was the first observation that atoms can absorb on the two sites stably simultaneously. It is different from the previous adsorption models of BlueP-Au networks. The band structure was also successfully modulated, and overall down about 0.25 eV relative to the Fermi edge. It provided a new strategy for customizing the functional structure of the BlueP-Au network, which has provided new insights into monatomic catalysis, energy storage and nano electronic devices.
Collapse
Affiliation(s)
- Yuxuan Guo
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Chen Liu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jiangwen Liao
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jinfeng Xu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| |
Collapse
|
36
|
Yang Z, Zhao T, Hao S, Wang R, Zhu C, Tang Y, Guo C, Liu J, Wen X, Wang F. Large-Scale Synthesis of Multifunctional Single-Phase Co 2 C Nanomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301073. [PMID: 37092564 DOI: 10.1002/advs.202301073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Achieving scalable synthesis of nanoscale transition-metal carbides (TMCs), regarded as substitutes for platinum-group noble metals, remains an ongoing challenge. Herein, a 100-g scale synthesis of single-phased cobalt carbide (Co2 C) through carburization of Co-based Prussian Blue Analog (Co-PBA) is reported in CO2 /H2 atmosphere under mild conditions (230 °C, ambient pressure). Textural property investigations indicate a successful preparation of orthorhombic-phased Co2 C nanomaterials with Pt-group-like electronic properties. As a demonstration, Co2 C achieves landmark photo-assisted thermal catalytic CO2 conversion rates with photo-switched product selectivity, which far exceeds the representative Pt-group-metal-based catalysts. This impressive result is attributed to the excellent activation of reactants, colorific light absorption, and photo-to-thermal conversion capacities. In addition to CO2 hydrogenation, the versatile Co2 C materials show huge prospects in antibacterial therapy, interfacial water evaporation, electrochemical hydrogen evolution reaction, and battery technologies. This study paves the way toward unlocking the potential of multi-functional Co2 C nanomaterials.
Collapse
Affiliation(s)
- Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Chunyan Zhu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co. Ltd., Huairou District, Beijing, 101400, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information S & T University, Beijing, 101400, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, P. R. China
| |
Collapse
|
37
|
He X, Qian Y, Wu C, Feng J, Sun X, Zheng Q, Li X, Shen J. Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211432. [PMID: 36941204 DOI: 10.1002/adma.202211432] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Bacterial infections, such as bacterial keratitis (BK) and subcutaneous abscess, pose significant challenges to global healthcare. Innovative and new antibacterial agents and antibacterial strategies are in demand to control infections in this era of high drug resistance. Nanotechnology is gradually emerging as an economically feasible and effective anti-infection treatment. High-entropy MXenes (HE MXenes) are used to confer desirable properties with exposed active sites to high-entropy atomic layers, whose potential application in the field of biomedicine remains to be explored. Herein, monolayer HE MXenes are fabricated by implementing transition metals with high entropy and low Gibbs free energy to fill the gap in the biocatalytic performance of non-high-entropy MXenes. HE MXenes are endowed with extremely strong oxidase mimic activity (Km = 0.227 mm) and photothermal conversion efficiency (65.8%) in the second near-infrared (NIR-II) biowindow as entropy increases. Subsequently, HE MXenes realize NIR-II-enhanced intrinsic oxidase mimic activity for killing methicillin-resistant Staphylococcus aureus and rapidly removing the biofilm. Furthermore, HE MXenes can effectively treat BK and subcutaneous abscess infection induced by methicillin-resistant Staphylococcus aureus as nanotherapeutic agents with minuscule side effects. Overall, monolayer HE MXenes demonstrate promising clinical application potential in the treatment of drug-resistant bacterial infections and promote the healing of infected tissues.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Chenglin Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayao Feng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qinxiang Zheng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
38
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
39
|
Zhao B, Yan Z, Du Y, Rao L, Chen G, Wu Y, Yang L, Zhang J, Wu L, Zhang DW, Che R. High-Entropy Enhanced Microwave Attenuation in Titanate Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210243. [PMID: 36606342 DOI: 10.1002/adma.202210243] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
High-entropy oxides (HEOs), which incorporate multiple-principal cations into single-phase crystals and interact with diverse metal ions, extend the border for available compositions and unprecedented properties. Herein, a high-entropy-stabilized (Ca0.2 Sr0.2 Ba0.2 La0.2 Pb0.2 )TiO3 perovskite is reported, and the effective absorption bandwidth (90% absorption) improves almost two times than that of BaTiO3 . The results demonstrate that the regulation of entropy configuration can yield significant grain boundaries, oxygen defects, and an ultradense distorted lattice. These characteristics give rise to strong interfacial and defect-induced polarizations, thus synergistically contributing to the dielectric attenuation performance. Moreover, the large strains derived from the strong lattice distortions in the high-entropy perovskite offer varied transport for electron carriers. The high-entropy-enhanced positive/negative charges accumulation around grain boundaries and strain-concentrated location, quantitatively validated by electron holography, results in unusual dielectric polarization loss. This study opens up an effective avenue for designing strong microwave absorption materials to satisfy the increasingly demanding requirements of advanced and integrated electronics. This work also offers a paradigm for improving other interesting properties for HEOs through entropy engineering.
Collapse
Affiliation(s)
- Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 2000433, P. R. China
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Zhikai Yan
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450046, P. R. China
| | - Yiqian Du
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Longjun Rao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yuyang Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, P. R. China
| | - David Wei Zhang
- School of Microelectronics, Fudan University, Shanghai, 2000433, P. R. China
| | - Renchao Che
- School of Microelectronics, Fudan University, Shanghai, 2000433, P. R. China
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
40
|
Gao Y, Qiu Z, Lu Y, Zhou H, Zhu R, Liu Z, Pang H. Rational Design and General Synthesis of High-Entropy Metallic Ammonium Phosphate Superstructures Assembled by Nanosheets. Inorg Chem 2023; 62:3669-3678. [PMID: 36789454 DOI: 10.1021/acs.inorgchem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Three-dimensional (3D) superstructure nanomaterials with special morphologies and novel properties have attracted considerable attention in the fields of optics, catalysis, and energy storage. The introduction of high entropy into ammonium phosphate (NPO·nH2O) has not yet attracted much attention in the field of energy storage materials. Herein, we systematically synthesize a series of 3D superstructures of NPOs·nH2O ranging from unitary, binary, ternary, and quaternary to high-entropy by a simple chemical precipitation method. These materials have similar morphology, crystallinity, and synthesis routes, which eliminates the performance difference caused by the interference of physical properties. Subsequently, cobalt-nickel ammonium phosphate (CoxNiy-NPO·nH2O) powders with different cobalt-nickel molar ratios were synthesized to predict the promoting effect of mixed transition metals in supercapacitors. It is found that the CoxNiy-NPO·nH2O 3D superstructures with a Co/Ni ratio of 1:1 show the best electrochemical performance for energy storage. The aqueous device shows a high energy density of 36.18 W h kg-1 at a power density of 0.71 kW kg-1, and when the power density is 0.65 kW kg-1, the energy density of the solid-state device is 13.83 W h kg-1. The work displays a facile method for the fabrication of 3D superstructures assembled by 2D nanosheets that can be applied in energy storage.
Collapse
Affiliation(s)
- Yidan Gao
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yao Lu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| |
Collapse
|
41
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.,Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Hassan Masood
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Rutvij Pankaj Kulkarni
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
42
|
Du M, Geng P, Pei C, Jiang X, Shan Y, Hu W, Ni L, Pang H. High‐Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium‐Sulfur Batteries. Angew Chem Int Ed Engl 2022; 61:e202209350. [DOI: 10.1002/anie.202209350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Du
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Pengbiao Geng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Chenxu Pei
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Yuying Shan
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu, 225009 P. R. China
| |
Collapse
|
43
|
Ying T, Yu T, Qi Y, Chen X, Hosono H. High Entropy van der Waals Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203219. [PMID: 36008123 PMCID: PMC9596826 DOI: 10.1002/advs.202203219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
By breaking the restrictions on traditional alloying strategy, the high entropy concept has promoted the exploration of the central area of phase space, thus broadening the horizon of alloy exploitation. This review highlights the marriage of the high entropy concept and van der Waals systems to form a new family of materials category, namely the high entropy van der Waals materials (HEX, HE = high entropy, X = anion clusters) and describes the current issues and next challenges. The design strategy for HEX has integrated the local feature (e.g., composition, spin, and valence states) of structural units in high entropy materials and the holistic degrees of freedom (e.g., stacking, twisting, and intercalating species) in van der Waals materials, and is successfully used for the discovery of high entropy dichalcogenides, phosphorus tri-chalcogenides, halogens, and MXene. The rich combination and random distribution of the multiple metallic constituents on the nearly regular 2D lattice give rise to a flexible platform to study the correlation features behind a range of selected physical properties, e.g., superconductivity, magnetism, and metal-insulator transition. The deliberate design of structural units and their stacking configuration can also create novel catalysts to enhance their performance in a bunch of chemical reactions.
Collapse
Affiliation(s)
- Tianping Ying
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Materials Research Center for Element StrategyTokyo Institute of TechnologyYokohama226‐8503Japan
| | - Tongxu Yu
- Gusu Laboratory of MaterialsJiangsu215123China
| | - Yanpeng Qi
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Hideo Hosono
- Materials Research Center for Element StrategyTokyo Institute of TechnologyYokohama226‐8503Japan
| |
Collapse
|
44
|
Amin I, Brekel HVD, Nemani K, Batyrev E, de Vooys A, van der Weijde H, Anasori B, Shiju NR. Ti 3C 2T x MXene Polymer Composites for Anticorrosion: An Overview and Perspective. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43749-43758. [PMID: 36121119 PMCID: PMC9523612 DOI: 10.1021/acsami.2c11953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 05/25/2023]
Abstract
As the most studied two-dimensional (2D) material from the MXene family, Ti3C2Tx has constantly gained interest from academia and industry. Ti3C2Tx MXene has the highest electrical conductivity (up to 24,000 S cm-1) and one of the highest stiffness values with a Young's modulus of ∼ 334 GPa among water-dispersible conductive 2D materials. The negative surface charge of MXene helps to disperse it well in aqueous and other polar solvents. This solubility across a wide range of solvents, excellent interface interaction, tunable surface functionality, and stability with other organic/polymeric materials combined with the layered structure of Ti3C2Tx MXene make it a promising material for anticorrosion coatings. While there are many reviews on Ti3C2Tx MXene polymer composites for catalysis, flexible electronics, and energy storage, to our knowledge, no review has been published yet on MXenes' anticorrosion applications. In this brief report, we summarize the current progress and the development of Ti3C2Tx polymer composites for anticorrosion. We also provide an outlook and discussion on possible ways to improve the exploitation of Ti3C2Tx polymer composites as anticorrosive materials. Finally, we provide a perspective beyond Ti3C2Tx MXene composition for the development of future anticorrosion coatings.
Collapse
Affiliation(s)
- Ihsan Amin
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hidde van den Brekel
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Kartik Nemani
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Erdni Batyrev
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Arnoud de Vooys
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Hans van der Weijde
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Babak Anasori
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - N. Raveendran Shiju
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Ye S, Chen X, Zhang R, Jiang Y, Huang F, Huang H, Yao Y, Jiao S, Chen X, Zhang Q, Yu Y. Revisiting the Role of Physical Confinement and Chemical Regulation of 3D Hosts for Dendrite-Free Li Metal Anode. NANO-MICRO LETTERS 2022; 14:187. [PMID: 36104463 PMCID: PMC9474970 DOI: 10.1007/s40820-022-00932-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 05/29/2023]
Abstract
Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity, but infinite volume change and dendritic growth during Li electrodeposition have prevented its practical applications. Both physical morphology confinement and chemical adsorption/diffusion regulation are two crucial approaches to designing lithiophilic materials to alleviate dendrite of Li metal anode. However, their roles in suppressing dendrite growth for long-life Li anode are not fully understood yet. Herein, three different Ni-based nanosheet arrays (NiO-NS, Ni3N-NS, and Ni5P4-NS) on carbon cloth as proof-of-concept lithiophilic frameworks are proposed for Li metal anodes. The two-dimensional nanoarray is more promising to facilitate uniform Li+ flow and electric field. Compared with the NiO-NS and the Ni5P4-NS, the Ni3N-NS on carbon cloth after reacting with molten Li (Li-Ni/Li3N-NS@CC) can afford the strongest adsorption to Li+ and the most rapid Li+ diffusion path. Therefore, the Li-Ni/Li3N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance (60 mA cm-2 and 60 mAh cm-2 for 1000 h). Furthermore, a remarkable full battery (LiFePO4||Li-Ni/Li3N-NS@CC) reaches 300 cycles at 2C. This research provides valuable insight into designing dendrite-free alkali metal batteries.
Collapse
Affiliation(s)
- Shufen Ye
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Xingjia Chen
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Rui Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yu Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, Anhui, People's Republic of China
| | - Fanyang Huang
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Huijuan Huang
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Yu Yao
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Shuhong Jiao
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yan Yu
- Hefei National Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- National Synchrotron Radiation Laboratory, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
46
|
Du M, Geng P, Pei C, Jiang X, Shan Y, Hu W, Ni L, Pang H. High‐Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium‐Sulfur Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Du
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Pengbiao Geng
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Chenxu Pei
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Xinyuan Jiang
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Yuying Shan
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Wenhui Hu
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Lubin Ni
- Yangzhou University College of Chemistry and Chemical Engineering CHINA
| | - Huan Pang
- Yangzhou University College of Chemistry and Chemical Engineering Siwangting road, NO.180 225002 Yangzhou CHINA
| |
Collapse
|
47
|
Bhargava Reddy MS, Kailasa S, Marupalli BCG, Sadasivuni KK, Aich S. A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sens 2022; 7:2132-2163. [PMID: 35972775 DOI: 10.1021/acssensors.2c01046] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gas sensors, capable of detecting and monitoring trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for numerous applications including diagnosing diseases through breath analysis, environmental and personal safety, food and agriculture, and other fields. The continuous emergence of new materials is one of the driving forces for the development of gas sensors. Recently, 2D materials have been gaining huge attention for gas sensing applications, owing to their superior electrical, optical, and mechanical characteristics. Especially for 2D MXenes, high specific area and their rich surface functionalities with tunable electronic structure make them compelling for sensing applications. This Review discusses the latest advancements in the 2D MXenes for gas sensing applications. It starts by briefly explaining the family of MXenes, their synthesis methods, and delamination procedures. Subsequently, it outlines the properties of MXenes. Then it describes the theoretical and experimental aspects of the MXenes-based gas sensors. Discussion is also extended to the relation between sensing performance and the structure, electronic properties, and surface chemistry. Moreover, it highlights the promising potential of these materials in the current gas sensing applications and finally it concludes with the limitations, challenges, and future prospects of 2D MXenes in gas sensing applications.
Collapse
Affiliation(s)
- M Sai Bhargava Reddy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saraswathi Kailasa
- Department of Physics, National Institute of Technology, Warangal, 506004, India
| | - Bharat C G Marupalli
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Shampa Aich
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
48
|
Li F, Sun SK, Chen Y, Naka T, Hashishin T, Maruyama J, Abe H. Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. NANOSCALE ADVANCES 2022; 4:2468-2478. [PMID: 36134132 PMCID: PMC9418488 DOI: 10.1039/d1na00871d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Low-dimensional high-entropy materials, such as nanoparticles and two-dimensional (2D) layers, have great potential for catalysis and energy applications. However, it is still challenging to synthesize 2D layered high-entropy materials through a bottom-up soft chemistry method, due to the difficulty of mixing and assembling multiple elements in 2D layers. Here, we report a simple polyol process for the synthesis of a series of 2D layered high-entropy transition metal (Co, Cr, Fe, Mn, Ni, and Zn) hydroxides (HEHs), involving the hydrolysis and inorganic polymerization of metal-containing species in ethylene glycol media. The as-synthesized HEHs demonstrate 2D layered structures with interlayer distances ranging from 0.860 to 0.987 nm and homogeneous elemental distribution of designed equimolar stoichiometry in the layers. These 2D HEHs exhibit a low overpotential of 275 mV at 10 mA cm-2 in a 0.1 M KOH electrolyte for the oxygen evolution reaction. Superparamagnetic spinel-type high-entropy nanoparticles can also be obtained by annealing these HEHs. Our polyol approach creates opportunities for synthesizing low-dimensional high-entropy materials with promising properties and applications.
Collapse
Affiliation(s)
- Fei Li
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| | - Shi-Kuan Sun
- School of Material Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University Hangzhou 310024 China
| | - Takashi Naka
- National Institute for Materials Science Ibaraki 3050047 Japan
| | - Takeshi Hashishin
- Faculty of Advanced Science and Technology, Kumamoto University Kumamoto 8608555 Japan
| | - Jun Maruyama
- Osaka Research Institute of Industrial Science and Technology Osaka 5368553 Japan
| | - Hiroya Abe
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| |
Collapse
|
49
|
Hao J, Zhuang Z, Cao K, Gao G, Wang C, Lai F, Lu S, Ma P, Dong W, Liu T, Du M, Zhu H. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun 2022; 13:2662. [PMID: 35562523 PMCID: PMC9106752 DOI: 10.1038/s41467-022-30379-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
High-entropy alloys have received considerable attention in the field of catalysis due to their exceptional properties. However, few studies hitherto focus on the origin of their outstanding performance and the accurate identification of active centers. Herein, we report a conceptual and experimental approach to overcome the limitations of single-element catalysts by designing a FeCoNiXRu (X: Cu, Cr, and Mn) High-entropy alloys system with various active sites that have different adsorption capacities for multiple intermediates. The electronegativity differences between mixed elements in HEA induce significant charge redistribution and create highly active Co and Ru sites with optimized energy barriers for simultaneously stabilizing OH* and H* intermediates, which greatly enhances the efficiency of water dissociation in alkaline conditions. This work provides an in-depth understanding of the interactions between specific active sites and intermediates, which opens up a fascinating direction for breaking scaling relation issues for multistep reactions.
Collapse
Affiliation(s)
- Jiace Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kecheng Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
50
|
Hao L, He H, Xu C, Zhang M, Feng H, Yang L, Jiang Q, Huang H. Ultrafine cobalt selenide nanowires tangled with MXene nanosheets as highly efficient electrocatalysts toward the hydrogen evolution reaction. Dalton Trans 2022; 51:7135-7141. [PMID: 35466966 DOI: 10.1039/d2dt00238h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen energy has attracted sustainable attention in the exploitation and application of advanced power-generator devices, and electrocatalysts for the hydrogen evolution reaction (HER) have been regarded as one of the core components in the current electrochemical hydrogen production systems. In this work, a facile and cost-effective bottom-up strategy is developed for the construction of 1D ultrafine cobalt selenide nanowires tangled with 2D Ti3C2Tx MXene nanosheets (CoSe NW/Ti3C2Tx) through an in situ stereo-assembly process. Such an architectural design endows the hybrid system not only with a large accessible surface for the rapid transportation of reactants, but also with numerous exposed CoSe edge sites, thereby generating substantial synergic coupling effects. The as-derived CoSe NW/Ti3C2Tx hybrid demonstrates competitive electrocatalytic properties toward the HER with a small onset potential of 84 mV, a low Tafel slope of 56 mV dec-1 and exceptional cycling performance, which are superior to those of bare CoSe and Ti3C2Tx materials. It is believed this promising nanoarchitecture may provide new possibilities for the design and construction of precious-metal-free electrocatalysts with high efficiency and great stability in the energy-conversion field.
Collapse
Affiliation(s)
- Linlin Hao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Chenyu Xu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Mingqiang Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Haoxuan Feng
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|