1
|
Wang Y, Yang Z, Jia B, Chen L, Yan C, Peng F, Mu T, Xue Z. Natural Deep Eutectic Solvent-Assisted Construction of Silk Nanofibrils/Boron Nitride Nanosheets Membranes with Enhanced Heat-Dissipating Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403724. [PMID: 39054638 PMCID: PMC11529046 DOI: 10.1002/advs.202403724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Natural polymer-derived nanofibrils have gained significant interest in diverse fields. However, production of bio-nanofibrils with the hierarchical structures such as fibrillar structures and crystalline features remains a great challenge. Herein, an all-natural strategy for simple, green, and scalable top-down exfoliation silk nanofibrils (SNFs) in novel renewable deep eutectic solvent (DES) composed by amino acids and D-sorbitol is innovatively developed. The DES-exfoliated SNFs with a controllable fibrillar structures and intact crystalline features, novelty preserving the hierarchical structure of natural silk fibers. Owing to the amphiphilic nature, the DES-exfoliated SNFs show excellent capacity of assisting the exfoliation of several 2D-layered materials, i.e., h-BN, MoS2, and WS2. More importantly, the SNFs-assisted dispersion of BNNSs with a concentration of 59.3% can be employed to construct SNFs/BNNSs nanocomposite membranes with excellent mechanical properties (tensile strength of 416.7 MPa, tensile modulus of 3.86 GPa and toughness of 1295.4 KJ·m-3) and thermal conductivity (in-plane thermal conductivity coefficient of 3.84 W·m-1·K-1), enabling it to possess superior cooling efficiency compared with the commercial silicone pad.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Zhaohui Yang
- School of Chemistry and Life ResourcesRenmin University of ChinaBeijing100872China
| | - Bingzheng Jia
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Lan Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Chuanyu Yan
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Tiancheng Mu
- School of Chemistry and Life ResourcesRenmin University of ChinaBeijing100872China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
2
|
Zeng C, Wang H, Bu F, Cui Q, Li J, Liang Z, Zhao L, Yi C. A regenerated cellulose fiber with high mechanical properties for temperature-adaptive thermal management. Int J Biol Macromol 2024; 274:133550. [PMID: 39030156 DOI: 10.1016/j.ijbiomac.2024.133550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The escalating global population has led to a surge in waste textiles, posing a significant challenge in landfill management worldwide. In this work, ionic liquid 1-butyl-3-methylimidazole acetate ([Bmim]OAc) and DMF (N, n-dimethylformamide) were used as solvents to dissolve waste denim fabric, then vanadium dioxide (VO2) nanoparticles were introduced into the spinning solution, and cellulose fibers were regenerated by dry-wet spinning process, to promote the recycling of waste cotton fabric. Finally, regenerated cellulose fibers with high added value were prepared by dry-wet spinning. Through this innovative strategy, on the one hand, because VO2 can form a large number of hydrogen bonds between the regenerated cellulose molecules, and realize the cross-networking structure of the molecular chains inside the fiber, the mechanical properties of the regenerated cellulose fibers are enhanced. On the other hand, due to the thermal phase transformation characteristics of VO2, it also endows the regenerated cellulose fiber unique intelligent temperature control function. Compared with the pristine regenerated fiber, the tensile stress of the regenerated fiber after adding VO2 nanoparticles (F-VO2) increased by 25.6 %, reaching 158.68 MPa. In addition, the F-VO2 fibric provides excellent intelligent temperature control, reducing temperatures by up to 6.7 °C.
Collapse
Affiliation(s)
- Cheng Zeng
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Hao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fan Bu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Qiangqiang Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Jing Li
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Zihui Liang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| | - Li Zhao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Changhai Yi
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
3
|
Yang XC, Wang XX, Wang CY, Zheng HL, Yin M, Chen KZ, Qiao SL. Silk-based intelligent fibers and textiles: structures, properties, and applications. Chem Commun (Camb) 2024; 60:7801-7823. [PMID: 38966911 DOI: 10.1039/d4cc02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Multifunctional fibers represent a cornerstone of human civilization, playing a pivotal role in numerous aspects of societal development. Natural biomaterials, in contrast to synthetic alternatives, offer environmental sustainability, biocompatibility, and biodegradability. Among these biomaterials, natural silk is favored in biomedical applications and smart fiber technology due to its accessibility, superior mechanical properties, diverse functional groups, controllable structure, and exceptional biocompatibility. This review delves into the intricate structure and properties of natural silk fibers and their extensive applications in biomedicine and smart fiber technology. It highlights the critical significance of silk fibers in the development of multifunctional materials, emphasizing their mechanical strength, biocompatibility, and biodegradability. A detailed analysis of the hierarchical structure of silk fibers elucidates how these structural features contribute to their unique properties. The review also encompasses the biomedical applications of silk fibers, including surgical sutures, tissue engineering, and drug delivery systems, along with recent advancements in smart fiber applications such as sensing, optical technologies, and energy storage. The enhancement of functional properties of silk fibers through chemical or physical modifications is discussed, suggesting broader high-end applications. Additionally, the review addresses current challenges and future directions in the application of silk fibers in biomedicine and smart fiber technologies, underscoring silk's potential in driving contemporary technological innovations. The versatility and sustainability of silk fibers position them as pivotal elements in contemporary materials science and technology, fostering the development of next-generation smart materials.
Collapse
Affiliation(s)
- Xiao-Chun Yang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Hong-Long Zheng
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| |
Collapse
|
4
|
Foli G, Capelli F, Grande M, Tagliabue S, Gherardi M, Minelli M. Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach. Polymers (Basel) 2024; 16:1851. [PMID: 39000706 PMCID: PMC11244328 DOI: 10.3390/polym16131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material's surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale.
Collapse
Affiliation(s)
- Giacomo Foli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| | - Filippo Capelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Mariachiara Grande
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | | | - Matteo Gherardi
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Matteo Minelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
5
|
Sun X, Mao Y, Yu Z, Yang P, Jiang F. A Biomimetic "Salting Out-Alignment-Locking" Tactic to Design Strong and Tough Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400084. [PMID: 38517475 DOI: 10.1002/adma.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recently, hydrogel-based soft materials have demonstrated huge potential in soft robotics, flexible electronics as well as artificial skins. Although various methods are developed to prepare tough and strong hydrogels, it is still challenging to simultaneously enhance the strength and toughness of hydrogels, especially for protein-based hydrogels. Herein, a biomimetic "salting out-alignment-locking" tactic (SALT) is introduced for enhancing mechanical properties through the synergy of alignment and the salting out effect. As a typical example, tensile strength and modulus of initially brittle gelatin hydrogels increase 940 folds to 10.12 ± 0.50 MPa and 2830 folds to 34.26 ± 3.94 MPa, respectively, and the toughness increases up to 1785 folds to 14.28 ± 3.13 MJ m-3. The obtained strength and toughness hold records for the previously reported gelatin-based hydrogel and are close to the tendons. It is further elucidated that the salting out effect engenders hydrophobic domains, while prestretching facilitates chain alignment, both synergistically contributing to the outstanding mechanical properties. It is noteworthy that the SALT demonstrates remarkable versatility across different salt types and polymer systems, thus opening up new avenues for engineering strong, tough, and stiff hydrogels.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, MD, 20742, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Huang Z, Zhang Y, Xing T, He A, Luo Y, Wang M, Qiao S, Tong A, Shi Z, Liao X, Pan H, Liang Z, Chen F, Xu W. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications. Int J Biol Macromol 2024; 270:132462. [PMID: 38772470 DOI: 10.1016/j.ijbiomac.2024.132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Rapid development of society and the improvement of people's living standards have stimulated people's keen interest in fashion clothing. This trend has led to the acceleration of new product innovation and the shortening of the lifespan for cotton fabrics, which has resulting in the accumulation of waste cotton textiles. Although cotton fibers can be degraded naturally, direct disposal not only causes a serious resource waste, but also brings serious environmental problems. Hence, it is significant to explore a cleaner and greener waste textile treatment method in the context of green and sustainable development. To realize the high-value utilization of cellulose II aerogel derived from waste cotton products, great efforts have been made and considerable progress has been achieved in the past few decades. However, few reviews systematically summarize the research progress and future challenges of preparing high-value-added regenerated cellulose aerogels via dissolving cotton and other cellulose wastes. Therefore, this article reviews the regenerated cellulose aerogels obtained through solvent methods, summarizes their structure, preparation strategies and application, aimed to promote the development of the waste textile industry and contributed to the realization of carbon neutrality.
Collapse
Affiliation(s)
- Zhiyu Huang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Tonghe Xing
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Annan He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaohong Liao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Heng Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zihui Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
7
|
Wu J, Cortes KAF, Li C, Wang Y, Guo C, Momenzadeh K, Yeritsyan D, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes. ACS Biomater Sci Eng 2024; 10:2607-2615. [PMID: 38478959 DOI: 10.1021/acsbiomaterials.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kaveh Momenzadeh
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Diana Yeritsyan
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Othman SH, Shapi'i RA, Ronzi NDA. Starch biopolymer films containing chitosan nanoparticles: A review. Carbohydr Polym 2024; 329:121735. [PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
Collapse
Affiliation(s)
- Siti Hajar Othman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ruzanna Ahmad Shapi'i
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Diana Arisya Ronzi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Huang Z, Tong A, Xing T, He A, Luo Y, Zhang Y, Wang M, Qiao S, Shi Z, Chen F, Xu W. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles. Int J Biol Macromol 2024; 264:130779. [PMID: 38471604 DOI: 10.1016/j.ijbiomac.2024.130779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Regenerated cellulose fibers has attracted increasing attention for high-grade textile raw materials and industrial textiles, but the low mechanical property caused by differences in regenerated raw materials and production levels limits its commercial application in the product diversity. Herein, we proposed a novel triple-crosslinking strategy by coupling with hydrogen bonds, chemical crosslinking, and internal mineralization from multiple pulsed vapor phase infiltration (MPI) to improve the mechanical performance of regenerated cellulose fibers. A binary solvent composed of ionic liquid (IL) and dimethyl sulfoxide (DMSO) is used to dissolve waste cotton textile and then wet spinning. Dual-crosslinking is firstly achieved by coupling glutaraldehyde (GA) and cellulose reaction. Subsequently, a metal oxide is intentionally infiltrated into inner cellulosic through MPI technology to form a third form of crosslinking, accompanied by the ultra-thin metal oxide nano-layer onto the surface of regenerated cellulose fibers. Results showed that the triple-crosslinking strategy has increased the tensile stress of the fiber by 43.57 % to 287.03 MPa. In all, triple-crosslinking strategy provides a theoretical basis and technical approach for the reinforcement of weak fibers in waste cotton recycling, which is expected to accelerate the development of the waste textile recycling industry and promote of the added-value of regenerated products.
Collapse
Affiliation(s)
- Zhiyu Huang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Tonghe Xing
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Annan He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
10
|
Ma X, Lin X, Chang C, Duan B. Chitinous Bioplastic Enabled by Noncovalent Assembly. ACS NANO 2024; 18:8906-8918. [PMID: 38483090 DOI: 10.1021/acsnano.3c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Natural polymeric-based bioplastics usually lack good mechanical or processing performance. It is still challenging to achieve simultaneous improvement for these two usual trade-off features. Here, we demonstrate a full noncovalent mediated self-assembly design for simultaneously improving the chitinous bioplastic processing and mechanical properties via plane hot-pressing. Tannic acid (TA) is chosen as the noncovalent mediator to (i) increase the noncovalent cross-link intensity for obtaining the tough noncovalent network and (ii) afford the dynamic noncovalent cross-links to enable the mobility of chitin molecular chains for benefiting chitinous bioplastic nanostructure rearrangement during the shaping procedure. The multiple noncovalent mediated network (chitin-TA and chitin-chitin cross-links) and the pressure-induced orientation nanofibers structure endow the chitinous bioplastics with robust mechanical properties. The relatively weak chitin-TA noncovalent interactions serve as water mediation switches to enhance the molecular mobility for endowing the chitin/TA bioplastic with hydroplastic processing properties, rendering them readily programmable into versatile 2D/3D shapes. Moreover, the fully natural resourced chitinous bioplastic exhibits superior weld, solvent resistance, and biodegradability, enabling the potential for diverse applications. The full physical cross-linking mechanism highlights an effective design concept for balancing the trade-off of the mechanical properties and processability for the polymeric materials.
Collapse
Affiliation(s)
- Xiao Ma
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
11
|
Weon SH, Na Y, Han J, Lee JW, Kim HJ, Park S, Lee SH. pH-Responsive Cellulose/Silk/Fe 3O 4 Hydrogel Microbeads Designed for Biomedical Applications. Gels 2024; 10:200. [PMID: 38534618 DOI: 10.3390/gels10030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, cellulose/Fe3O4 hydrogel microbeads were prepared through the sol-gel transition of a solvent-in-oil emulsion using various cellulose-dissolving solvents and soybean oil without surfactants. Particularly, 40% tetrabutylammonium hydroxide (TBAH) and 40% tetrabutylphosphonium hydroxide (TBPH) dissolved cellulose at room temperature and effectively dispersed Fe3O4, forming cellulose/Fe3O4 microbeads with an average diameter of ~15 µm. Additionally, these solvents co-dissolved cellulose and silk, allowing for the manufacture of cellulose/silk/Fe3O4 hydrogel microbeads with altered surface characteristics. Owing to the negatively charged surface characteristics, the adsorption capacity of the cellulose/silk/Fe3O4 microbeads for the cationic dye crystal violet was >10 times higher than that of the cellulose/Fe3O4 microbeads. When prepared with TBAH, the initial adsorption rate of bovine serum albumin (BSA) on the cellulose/silk/Fe3O4 microbeads was 18.1 times higher than that on the cellulose/Fe3O4 microbeads. When preparing TBPH, the equilibrium adsorption capacity of the cellulose/silk/Fe3O4 microbeads for BSA (1.6 g/g) was 8.5 times higher than that of the cellulose/Fe3O4 microbeads. The pH-dependent BSA release from the cellulose/silk/Fe3O4 microbeads prepared with TBPH revealed 6.1-fold slower initial desorption rates and 5.2-fold lower desorption amounts at pH 2.2 than those at pH 7.4. Cytotoxicity tests on the cellulose and cellulose/silk composites regenerated with TBAH and TBPH yielded nontoxic results. Therefore, cellulose/silk/Fe3O4 microbeads are considered suitable pH-responsive supports for orally administered protein pharmaceuticals.
Collapse
Affiliation(s)
- Seung Hyeon Weon
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuhyeon Na
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Woo Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Joo Kim
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Simon J, Schlapp-Hackl I, Sapkota J, Ristolainen M, Rosenau T, Potthast A. Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature. CHEMSUSCHEM 2024; 17:e202300791. [PMID: 37923704 DOI: 10.1002/cssc.202300791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.
Collapse
Affiliation(s)
- Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Inge Schlapp-Hackl
- Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Matti Ristolainen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
13
|
Du X, Chen Z, Zhao R, Hu B. Salt-Promoted Fibrillation of Legume Proteins Enhanced Interfacial Modulus for Stabilization of HIPEs Encapsulating Carotenoids with Improved Nutritional Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:690-703. [PMID: 38117687 DOI: 10.1021/acs.jafc.3c08434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The thermal acidic-treatment-induced fibrillation of legume proteins isolated from cowpea and mung bean was demonstrated to be promoted by salt. Worm-like thin prefibrilar intermediates were formed in low salt concentrations (0-75 mM), which twisted to be the thick and mature amyloid-like fibrils with multistrands as the salt content was elevated (150-300 mM). Absorption of the fibrils fabricated in high salt concentrations to the oil/water interface constructed the protein layer with a significantly higher interfacial modulus compared with the one formed by the fibrils fabricated in low salt concentrations. Consequently, they showed the superiority in stabilizing high internal phase emulsions (HIPEs) with oil volume fraction ratios higher than 74%. HIPEs stabilized by the high salt-concentration-induced legume protein fibrils had stronger capabilities not only in encapsulating liposoluble carotenoids but also in protecting their stability against heating, ultraviolet, and iron ion stimulus, compared with the one stabilized by the low-salt-concentration-induced legume protein fibrils. Bioaccessibilities of the carotenoids in simulating gastrointestinal (GI) digestion were significantly improved after encapsulation by the HIPEs, which were interestingly increased with the elevation of salt concentrations utilized for preparing the legume protein fibrils. Furthermore, the carotenoids-loading-HIPEs were injectable and showed in vivo nutritional functions of mitigating colitis.
Collapse
Affiliation(s)
- Xinyu Du
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Ran Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
14
|
Wang W, Ka SGS, Pan Y, Sheng Y, Huang YYS. Biointerface Fiber Technology from Electrospinning to Inflight Printing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38109220 DOI: 10.1021/acsami.3c10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Building two-dimensional (2D) and three-dimensional (3D) micro- and nanofibril structures with designable patterns and functionalities will offer exciting prospects for numerous applications spanning from permeable bioelectronics to tissue engineering scaffolds. This Spotlight on Applications highlights recent technological advances in fiber printing and patterning with functional materials for biointerfacing applications. We first introduce the current state of development of micro- and nanofibers with applications in biology and medical wearables. We then describe our contributions in developing a series of fiber printing techniques that enable the patterning of functional fiber architectures in three dimensions. These fiber printing techniques expand the material library and device designs, which underpin technological capabilities from enabling fundamental studies in cell migration to customizable and ecofriendly fabrication of sensors. Finally, we provide an outlook on the strategic pathways for developing the next-generation bioelectronics and "Fiber-of-Things" (FoT) using nano/micro-fibers as architectural building blocks.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Stanley Gong Sheng Ka
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yifei Pan
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yaqi Sheng
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| |
Collapse
|
15
|
He X, Wang Y, Yang P, Lin L, Liu S, Shao Z, Zhang K, Yao Y. High-Performance Graphene Biocomposite Enabled by Fe 3+ Coordination for Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54886-54897. [PMID: 37963338 DOI: 10.1021/acsami.3c10894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m-1 K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.
Collapse
Affiliation(s)
- Xuhua He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Peng Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lin Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shizhuo Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhipeng Shao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Su Z, Yu L, Cui L, Zhou G, Zhang X, Qiu X, Chen C, Wang X. Reconstruction of Cellulose Intermolecular Interactions from Hydrogen Bonds to Dynamic Covalent Networks Enables a Thermo-processable Cellulosic Plastic with Tunable Strength and Toughness. ACS NANO 2023; 17:21420-21431. [PMID: 37922190 DOI: 10.1021/acsnano.3c06175] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Its excellent renewability and biodegradability make cellulose an attractive resource to prepare fossil-based plastic alternatives. However, cellulose itself exhibits strong intermolecular hydrogen bond (H-bond) interactions, significantly restricting the mobility of cellulose chains, thus leading to poor thermo-processing performance. Here, we reconstructed the intermolecular interactions of cellulose chains via replacing the original H-bonds with dynamic covalent bonds. By this, cellulose can be easily thermo-processed into a cellulosic plastic under mild conditions (70 °C). Through adjusting the chemical structure of dynamic covalent networks, the cellulosic plastic shows tunable mechanical strength (3.0-33.5 MPa) and toughness (43-321 kJ m-2). The cellulosic plastic also exhibits excellent resistance to water, organic solvent, acid solution, alkali solution, and high temperature (>400 °C). Moreover, it owns good chemical and biological degradability and recyclability. This work provides an effective method to develop high-performance cellulosic plastics for fossil-based plastic substitution.
Collapse
Affiliation(s)
- Zhiping Su
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Lan Cui
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
17
|
Yıldız A, Birer M, Turgut Birer Y, Uyar R, Yurdakök-Dikmen B, Acartürk F. Silk fibroin nanoparticles and β-tricalcium phosphate loaded tissue engineered gelatin bone scaffolds: A Nature-based, low-cost solution. J Biomater Appl 2023; 38:646-661. [PMID: 37889125 DOI: 10.1177/08853282231207578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Tissue engineering has recently attracted attention as an alternative to traditional treatment methods for tissue and organ damage. Since bone is one of the most important vital parts of the body, the treatment of bone damage is important. Silk fibroin is a natural polymer with properties such as biocompatibility and biodegradability, which attracts attention with its controlled release, especially in drug delivery systems. In this study, gelatin-based scaffolds loaded with silk fibroin nanoparticles and β -tricalcium phosphate (β -TCP) were developed to be used as a potential drug delivery system in bone tissue engineering. The chosen nanoparticle formulation has a 294 nm average diameter with a 0.380 polidispersity index (PDI). In vitro characterization of scaffolds was performed by mechanical, morphological characterization, swelling capacity, Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FT-IR) measurements, and biocompatibility was evaluated by cell culture studies. Swelling index, tensile strength, elongation at break, and Young modulus of the β -TCP and silk nanoparticles loaded scaffold were found as 456%, 1.476 MPa, 6.75%, and 24 MPa, respectively. In vitro cell culture studies have shown that scaffolds prepared in the present study can accelerate osteoblast differentiation and increase the healing rate of bone tissues. In addition, they have the potential to be used as a drug delivery system in bone tissue engineering that needs to be evaluated with further studies.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Birer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yağmur Turgut Birer
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Recep Uyar
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Begüm Yurdakök-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Mu X, Amouzandeh R, Vogts H, Luallen E, Arzani M. A brief review on the mechanisms and approaches of silk spinning-inspired biofabrication. Front Bioeng Biotechnol 2023; 11:1252499. [PMID: 37744248 PMCID: PMC10512026 DOI: 10.3389/fbioe.2023.1252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Silk spinning, observed in spiders and insects, exhibits a remarkable biological source of inspiration for advanced polymer fabrications. Because of the systems design, silk spinning represents a holistic and circular approach to sustainable polymer fabrication, characterized by renewable resources, ambient and aqueous processing conditions, and fully recyclable "wastes." Also, silk spinning results in structures that are characterized by the combination of monolithic proteinaceous composition and mechanical strength, as well as demonstrate tunable degradation profiles and minimal immunogenicity, thus making it a viable alternative to most synthetic polymers for the development of advanced biomedical devices. However, the fundamental mechanisms of silk spinning remain incompletely understood, thus impeding the efforts to harness the advantageous properties of silk spinning. Here, we present a concise and timely review of several essential features of silk spinning, including the molecular designs of silk proteins and the solvent cues along the spinning apparatus. The solvent cues, including salt ions, pH, and water content, are suggested to direct the hierarchical assembly of silk proteins and thus play a central role in silk spinning. We also discuss several hypotheses on the roles of solvent cues to provide a relatively comprehensive analysis and to identify the current knowledge gap. We then review the state-of-the-art bioinspired fabrications with silk proteins, including fiber spinning and additive approaches/three-dimensional (3D) printing. An emphasis throughout the article is placed on the universal characteristics of silk spinning developed through millions of years of individual evolution pathways in spiders and silkworms. This review serves as a stepping stone for future research endeavors, facilitating the in vitro recapitulation of silk spinning and advancing the field of bioinspired polymer fabrication.
Collapse
Affiliation(s)
- Xuan Mu
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
19
|
Fan T, Qin J, Li J, Liu J, Wang Y, Liu Q, Fan T, Liu F. Fabrication and evaluation of 3D printed poly(l-lactide) copolymer scaffolds for bone tissue engineering. Int J Biol Macromol 2023:125525. [PMID: 37356690 DOI: 10.1016/j.ijbiomac.2023.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The application of poly(L-lactic acid) (PLLA) in tissue engineering is limited due to its brittleness and uncontrollable degradation rate. In this study, the flexible p-dioxanone (PDO) and highly reactive glycolide (GA) units were introduced into PLLA segments by chemical modification to prepare poly(l-lactide-ran-p-dioxanone-ran-glycolide) (PLPG) copolymers. The copolymers were then processed into the PLPG scaffold by a 3D printing technology. The physicochemical properties of the PLPG copolymers were studied by NMR, DSC, XRD, GPC, and SEM. Furthermore, the mechanical properties, degradation properties, and biocompatibility of the PLPG scaffolds were also studied. The results showed that introducing PDO and GA units disrupted the regularity of PLLA, decreasing the crystallinity of the PLPG copolymers. However, introducing PDO and GA units could effectively improve the mechanical and degradation properties of the PLLA scaffolds. In vitro cell culture experiments indicated that the PLPG scaffolds supported proliferation, growth, and differentiation of MC3T3-E1 cells. The PLPG scaffolds reported herein, with controllable degradation rates and mechanical performance, may find applications in bone tissue engineering.
Collapse
Affiliation(s)
- Tiantang Fan
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China.
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Jiafeng Li
- China Coal Research Institute, Beijing 100013, PR China
| | - Jifa Liu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Ying Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Qing Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523000, PR China.
| | - Fengzhen Liu
- Liaocheng People's Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, PR China.
| |
Collapse
|
20
|
Zhang X, Yang Z, Yang X, Zhang F, Pan Z. Sustainable Antibacterial Surgical Suture Based on Recycled Silk Resource by an Internal Combination of Inorganic Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318121 DOI: 10.1021/acsami.3c05054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current antibacterial treatment methods of silk sutures can only be finished by surface modification, leading to problems of short antibacterial effects, easy slow-release consumption, prominent toxicity, and susceptibility to drug resistance. Speculatively, surgical sutures combining antibacterial material internally will possess a more promising efficacy. Hence, we extracted recycled regenerated silk fibroin (RRSF) from waste silk resources to make RRSF solutions. Internally combining with inorganic titanium dioxide (TiO2) nanoparticles, we fabricated antibacterial RRSF-based surgical sutures. The morphologies, mechanical and antibacterial properties, biocompatibility tests, and in vivo experiments were carried out. The results showed that the surgical sutures with 1.25 wt % TiO2 acquired 2.40 N knot strength (143 μm diameter) and achieved a sustainable antibacterial effect of 93.58%. Surprisingly, the sutures significantly reduced inflammatory reactions and promoted wound healing. Surgical sutures in this paper realize high-value recovery of waste silk fibers and provide a novel approach to preparing multifunctional sutures.
Collapse
Affiliation(s)
- Xin Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zhenbei Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xin Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Feng Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Zhijuan Pan
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| |
Collapse
|
21
|
Fang W, Mu Z, He Y, Kong K, Jiang K, Tang R, Liu Z. Organic-inorganic covalent-ionic molecules for elastic ceramic plastic. Nature 2023:10.1038/s41586-023-06117-1. [PMID: 37286604 DOI: 10.1038/s41586-023-06117-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Weifeng Fang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zhao Mu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- State Key Laboratory of Military Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan He
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kai Jiang
- Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, East China Normal University, Shanghai, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, China.
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Dziedzic I, Voronkina A, Pajewska-Szmyt M, Kotula M, Kubiak A, Meissner H, Duminis T, Ehrlich H. The Loss of Structural Integrity of 3D Chitin Scaffolds from Aplysina aerophoba Marine Demosponge after Treatment with LiOH. Mar Drugs 2023; 21:334. [PMID: 37367659 DOI: 10.3390/md21060334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin.
Collapse
Affiliation(s)
- Izabela Dziedzic
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov Str. 56, 21018 Vinnytsia, Ukraine
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany
| | - Martyna Pajewska-Szmyt
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Tomas Duminis
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Hermann Ehrlich
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
23
|
Fliri L, Heise K, Koso T, Todorov AR, Del Cerro DR, Hietala S, Fiskari J, Kilpeläinen I, Hummel M, King AWT. Solution-state nuclear magnetic resonance spectroscopy of crystalline cellulosic materials using a direct dissolution ionic liquid electrolyte. Nat Protoc 2023:10.1038/s41596-023-00832-9. [PMID: 37237027 DOI: 10.1038/s41596-023-00832-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/17/2023] [Indexed: 05/28/2023]
Abstract
Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.
Collapse
Affiliation(s)
- Lukas Fliri
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Tetyana Koso
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Aleksandar R Todorov
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Daniel Rico Del Cerro
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Sami Hietala
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juha Fiskari
- Fibre Science and Communication Network (FSCN), Mid Sweden University, Sundsvall, Sweden
| | - Ilkka Kilpeläinen
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| | - Alistair W T King
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland.
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| |
Collapse
|
24
|
Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem 2023; 7:302-318. [PMID: 37165164 DOI: 10.1038/s41570-023-00486-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 05/12/2023]
Abstract
Silk fibroin has applications in different medical fields such as tissue engineering, regenerative medicine, drug delivery and medical devices. Advances in silk chemistry and biomaterial designs have yielded exciting tools for generating new silk-based materials and technologies. Selective chemistries can enhance or tune the features of silk, such as mechanics, biodegradability, processability and biological interactions, to address challenges in medically relevant materials (hydrogels, films, sponges and fibres). This Review details the design and utility of silk biomaterials for different applications, with particular focus on chemistry. This Review consists of three segments: silk protein fundamentals, silk chemistries and functionalization mechanisms. This is followed by a description of different crosslinking chemistries facilitating network formation, including the formation of composite biomaterials. Utility in the fields of tissue engineering, drug delivery, 3D printing, cell coatings, microfluidics and biosensors are highlighted. Looking to the future, we discuss silk biomaterial design strategies to continue to improve medical outcomes.
Collapse
Affiliation(s)
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
25
|
Zhou G, Zhang H, Su Z, Zhang X, Zhou H, Yu L, Chen C, Wang X. A Biodegradable, Waterproof, and Thermally Processable Cellulosic Bioplastic Enabled by Dynamic Covalent Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301398. [PMID: 37127887 DOI: 10.1002/adma.202301398] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The growing environmental concern over petrochemical-based plastics continuously promotes the exploration of green and sustainable substitute materials. Compared with petrochemical products, cellulose has overwhelming superiority in terms of availability, cost, and biodegradability; however, cellulose's dense hydrogen-bonding network and highly ordered crystalline structure make it hard to be thermoformed. A strategy to realize the partial disassociation of hydrogen bonds in cellulose and the reassembly of cellulose chains via constructing a dynamic covalent network, thereby endowing cellulose with thermal processability as indicated by the observation of a moderate glass transition temperature (Tg = 240 °C), is proposed. Moreover, the cellulosic bioplastic delivers a high tensile strength of 67 MPa, as well as excellent moisture and solvent resistance, good recyclability, and biodegradability in nature. With these advantageous features, the developed cellulosic bioplastic represents a promising alternative to traditional plastics.
Collapse
Affiliation(s)
- Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haishan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
26
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
27
|
Mallah D, Mirjalili BBF, Bamoniri A. Fe 3O 4@nano-almondshell/Si(CH 2) 3/2-(1-piperazinyl)ethylamine as an effective magnetite almond shell-based nanocatalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Sci Rep 2023; 13:6376. [PMID: 37076551 PMCID: PMC10115822 DOI: 10.1038/s41598-023-33286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
The preparation and design of nano-catalysts based on magnetic biopolymers as green and biocompatible nano-catalysts have made many advances. This paper deals with the preparation of magnetite biopolymer-based Brønsted base nano-catalyst from a nano-almond (Prunus dulcis) shell. This magnetite biopolymer-based nano-catalyst was obtained through a simple process based on the core-shelling of nano-almond shell and Fe3O4 NPs and then the immobilization of 3-chloropropyltrimethoxysilane as linker and 2-aminoethylpiperazine as a basic section. Structural and morphological analysis of this magnetite biopolymer-based nano-catalyst were done using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Vibrating sample magnetization, Energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, and Transmission electron microscopy techniques. The performance of the synthesized Fe3O4@nano-almondshell/Si(CH2)3/2-(1-piperazinyl)ethylamine as a novel magnetite biopolymer-based nano-catalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran was investigated and showed excellent efficiency.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
28
|
An R, Liu C, Wang J, Jia P. Wood-Derived Polymers from Olefin-Functionalized Lignin and Ethyl Cellulose via Thiol-Ene Click Chemistry. Polymers (Basel) 2023; 15:polym15081923. [PMID: 37112070 PMCID: PMC10140994 DOI: 10.3390/polym15081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lignin and cellulose derivatives have vast potential to be applied in polymer materials. The preparation of cellulose and lignin derivatives through esterification modification is an important method to endow cellulose and lignin with good reactivity, processability and functionality. In this study, ethyl cellulose and lignin are modified via esterification to prepare olefin-functionalized ethyl cellulose and lignin, which are further used to prepare cellulose and lignin cross-linker polymers via thiol-ene click chemistry. The results show that the olefin group concentration in olefin-functionalized ethyl cellulose and lignin reached 2.8096 mmol/g and 3.7000 mmol/g. The tensile stress at break of the cellulose cross-linked polymers reached 23.59 MPa. The gradual enhancement in mechanical properties is positively correlated with the olefin group concentration. The existence of ester groups in the cross-linked polymers and degradation products makes them more thermally stable. In addition, the microstructure and pyrolysis gas composition are also investigated in this paper. This research is of vast significance to the chemical modification and practical application of lignin and cellulose.
Collapse
Affiliation(s)
- Rongrong An
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chengguo Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
29
|
Hou W, Wang J, Lv JA. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211800. [PMID: 36812485 DOI: 10.1002/adma.202211800] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Leveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h-1 ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s-1 ), powerful actuation (actuation stress up to 5.3 MPa), high response frequency (50 Hz), and long cycle life (250 000 cycles without obvious fatigue). Inspired by liquid crystalline spinning of spiders that takes advantage of multiple drawdowns to thin and align their dragline silks, internal drawdown via tapered-wall-induced-shearing and external drawdown via mechanical stretching are employed to shape LCEs into long, thin, aligned microfibers with the desirable actuation performances, which few processing technologies can achieve. This bioinspired processing technology capable of scalable production of high-performing fibrous LCEs would benefit the development of smart fabrics, intelligent wearable devices, humanoid robotics, and other areas.
Collapse
Affiliation(s)
- Wenhao Hou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
30
|
Shang JP, Liang P, Peng Y, Xu DF, Li YB. One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution. Polymers (Basel) 2023; 15:polym15061475. [PMID: 36987256 PMCID: PMC10056472 DOI: 10.3390/polym15061475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Bleached bamboo pulp, as a kind of natural cellulose, has received significant attention in the field of biomass materials due to its advantages of environmental protection and the abundance of raw materials. Low-temperature alkali/urea aqueous system is a green dissolution technology for cellulose, which has promising application prospects in the field of regenerated cellulose materials. However, bleached bamboo pulp, with high viscosity average molecular weight (Mη) and high crystallinity, is difficult to dissolve in an alkaline urea solvent system, restraining its practical application in the textile field. Herein, based on commercial bleached bamboo pulp with high Mη, a series of dissolvable bamboo pulps with suitable Mη was prepared using a method of adjusting the ratio of sodium hydroxide and hydrogen peroxide in the pulping process. Due to the hydroxyl radicals being able to react with hydroxyls of cellulose, molecular chains are cut down. Moreover, several regenerated cellulose hydrogels and films were fabricated in an ethanol coagulation bath or a citric acid coagulation bath, and the relationship between the properties of the regenerated materials and the Mη of the bamboo cellulose was systematically studied. The results showed that hydrogel/film had good mechanical properties, as the Mη is 8.3 × 104 and the tensile strength of a regenerated film and the film have values up to 101 MPa and 3.19 MPa, respectively. In this contribution, a simple method of a one-step oxidation of hydroxyl radicals to prepare bamboo cellulose with diversified Mη is presented, providing an avenue for a preparation of dissolving pulp with different Mη in an alkali/urea dissolution system and expanding the practical applications of bamboo pulp in biomass-based materials, textiles, and biomedical materials.
Collapse
Affiliation(s)
| | | | - Yun Peng
- Correspondence: (Y.P.); (Y.-B.L.)
| | | | | |
Collapse
|
31
|
Li Q, Bai F, Sun J, Zhou X, Yuan W, Lin J, Zhang KQ, Li G, Liu Z. Bubble-blowing-inspired sub-micron thick freestanding silk films for programmable electronics. NANOSCALE 2023; 15:3796-3804. [PMID: 36648031 DOI: 10.1039/d2nr05490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thin film electronics that are capable of deforming and interfacing with nonplanar surfaces have attracted widespread interest in wearable motion detection or physiological signal recording due to their light weight, low stiffness, and high conformality. However, it is still a challenge to fabricate freestanding thin film substrates or matrices with only sub-micron thickness in a simple way, especially for those materials with metastable conformations, like regenerated silk protein. Herein, we developed a dip-coating method for the fabrication of sub-micron thick freestanding silk films inspired by blowing soap bubbles. Using a closed-loop frame to dip-coat in a concentrated silk fibroin aqueous solution, the substrate-free silk films with a thickness as low as hundreds of nanometres (∼150 nm) can be easily obtained after solvent evaporation. The silk films have extremely smooth surfaces (Rq < 3 nm) and can be tailored with different geometric shapes. The naturally dried silk films possess random coil dominated uncrystallized secondary structures, exhibiting high modulation ability and adaptability, which can be conformally attached on wrinkled skin or wrapped on human hair. Considering the methodological advantages and the unique properties of the obtained sub-micron thick silk films, several thin film based programmable electronics including transient/durable circuits, skin electrodes, transferred skin light-emitting devices and injectable electronics are successfully demonstrated after being deposited with gold or conducting polymer layers. This research provides a new avenue for preparing freestanding thin polymer films, showing great promise for developing thin film electronics in wearable and biomedical applications.
Collapse
Affiliation(s)
- Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Jing Sun
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Xiaomeng Zhou
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Wei Yuan
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jin Lin
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
32
|
Mao J, Cao H, Liu J, Zhou X, Fan Q, Wang J. Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
33
|
Cao S, Bo R, Zhang Y. Polymeric Scaffolds for Regeneration of Central/Peripheral Nerves and Soft Connective Tissues. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Shunze Cao
- Applied Mechanics Laboratory Department of Engineering Mechanics Laboratory for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Renheng Bo
- Applied Mechanics Laboratory Department of Engineering Mechanics Laboratory for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| | - Yihui Zhang
- Applied Mechanics Laboratory Department of Engineering Mechanics Laboratory for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
34
|
Yang Y, Zhang L, Zhang J, Ren Y, Huo H, Zhang X, Huang K, Zhang Z. Reengineering Waste Boxwood Powder into Light and High-Strength Biodegradable Composites to Replace Petroleum-Based Synthetic Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4505-4515. [PMID: 36629909 DOI: 10.1021/acsami.2c19844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation of biocomposites from renewable and sustainable forestry residues is an effective method to significantly reduce the environmental pollution caused by synthetic materials such as plastics and synthetic fibers. This study is aimed at developing a clean process for the large-scale production of high-performance green biocomposites without involving any chemical adhesive. Adhesive-free biocomposites with superior mechanical properties were prepared using HCl ball milling pretreatment and in situ synthesis. The nano-Fe3O4 was uniformly dispersed in the cellulose matrix, and when the matrix was subjected to external forces, the stress concentration effect around the particles absorbed energy, thus effectively improving the mechanical strength of the matrix. The flexural strength and tensile strength of BWP(Fe3O4) samples were increased by 159.04 and 175.34%, compared to that of regular wood powder control samples. The lignin melts under high temperature and pressure and then forms a carbonized layer on the surface of the biocomposites during the cooling process, which prevents the rapid penetration of water from the surface and also gives the biocomposites good thermal stability. The results of this research can avoid the harmful volatiles generated by chemical adhesive than that of the traditional fiberboard process and effectively replace petroleum-based synthetic materials prepared using the addition of various chemical additives, making it conform to the concept of environmental protection and sustainability.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
- Dongyang Furniture Institute, Dongyang 322100, China
| | - JiJuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - HongFei Huo
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| | - Kai Huang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
- Dongyang Furniture Institute, Dongyang 322100, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha 410004, Hunan, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, Hunan, China
| |
Collapse
|
35
|
Simon J, Fliri L, Sapkota J, Ristolainen M, Miller SA, Hummel M, Rosenau T, Potthast A. Reductive Amination of Dialdehyde Cellulose: Access to Renewable Thermoplastics. Biomacromolecules 2023; 24:166-177. [PMID: 36542819 PMCID: PMC9832504 DOI: 10.1021/acs.biomac.2c01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).
Collapse
Affiliation(s)
- Jonas Simon
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria
| | - Lukas Fliri
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Janak Sapkota
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Matti Ristolainen
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Stephen A. Miller
- The
George and Josephine Butler Laboratory for Polymer Research, Department
of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Thomas Rosenau
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| | - Antje Potthast
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| |
Collapse
|
36
|
Yang H, Wang P, Yang Q, Wang D, Wang Y, Kuai L, Wang Z. Superelastic and multifunctional fibroin aerogels from multiscale silk micro-nanofibrils exfoliated via deep eutectic solvent. Int J Biol Macromol 2023; 224:1412-1422. [PMID: 36550790 DOI: 10.1016/j.ijbiomac.2022.10.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Superelastic silk fibroin (SF)-based aerogels can be used as multifunctional substrates, exhibiting a promising prospect in air filtration, thermal insulation, and biomedical materials. However, fabrication of the superelastic pure SF aerogels without adding synthetic polymers remains challenging. Here, the SF micro-nano fibrils (SMNFs) that preserved mesostructures are extracted from SF fibers as building blocks of aerogels by a controllable deep eutectic solvent liquid exfoliation technique. SMNFs can assemble into multiscale fibril networks during the freeze-inducing process, resulting in all-natural SMNF aerogels (SMNFAs) with hierarchical cellular architectures after lyophilization. Benefiting from these structural features, the SMNFAs demonstrate desirable properties including ultra-low density (as low as 4.71 mg/cm3) and superelasticity (over 85 % stress retention after 100 compression cycles at 60 % strain). Furthermore, the potential applications of superelastic SMNFAs in air purification and thermal insulation are investigated to exhibit their functionality, mechanical elasticity, and structural stability. This work provides a reliable approach for the fabrication of highly elastic SF aerogels and endows application prospects in air purification and thermal insulation opportunities.
Collapse
Affiliation(s)
- Haiwei Yang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qiliang Yang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Dengfeng Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yong Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Kuai
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
37
|
Rumi SS, Liyanage S, Shamshina JL, Abidi N. Effect of Microwave Plasma Pre-Treatment on Cotton Cellulose Dissolution. Molecules 2022; 27:7007. [PMID: 36296604 PMCID: PMC9612156 DOI: 10.3390/molecules27207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
The utilization of cellulose to its full potential is constrained by its recalcitrance to dissolution resulting from the rigidity of polymeric chains, high crystallinity, high molecular weight, and extensive intra- and intermolecular hydrogen bonding network. Therefore, pretreatment of cellulose is usually considered as a step that can help facilitate its dissolution. We investigated the use of microwave oxygen plasma as a pre-treatment strategy to enhance the dissolution of cotton fibers in aqueous NaOH/Urea solution, which is considered to be a greener solvent system compared to others. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Powder X-ray Diffraction analyses revealed that plasma pretreatment of cotton cellulose leads to physicochemical changes of cotton fibers. Pretreatment of cotton cellulose with oxygen plasma for 20 and 40 min resulted in the reduction of the molecular weight of cellulose by 36% and 60% and crystallinity by 16% and 25%, respectively. This reduction in molecular weight and crystallinity led to a 34% and 68% increase in the dissolution of 1% (w/v) cotton cellulose in NaOH/Urea solvent system. Thus, treating cotton cellulose with microwave oxygen plasma alters its physicochemical properties and enhanced its dissolution.
Collapse
Affiliation(s)
| | | | | | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
38
|
Sun P, Mei S, Xu J, Zhang X. A Bio-Based Supramolecular Adhesive: Ultra-High Adhesion Strengths at both Ambient and Cryogenic Temperatures and Excellent Multi-Reusability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203182. [PMID: 35945172 PMCID: PMC9534982 DOI: 10.1002/advs.202203182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Indexed: 06/01/2023]
Abstract
Developing high-performance and reusable adhesives from renewable feedstocks is of significance to sustainable development, yet it still remains a formidable task. Herein, castor oil, melevodopa, and iron ions are used as building blocks to construct a novel bio-based supramolecular adhesive (BSA) with outstanding adhesion performances. It is prepared through partial coordination between melevodopa functionalized castor oil and Fe3+ ions. Noncovalent interactions between adherends and the catechol unit from melevodopa contribute to reinforcing adhesion, and the metal-ligand coordination between catechol and Fe3+ ions is utilized to strengthen cohesion. By combining strong adhesion and tough cohesion, the prepared BSA achieves an adhesion strength of 14.6 MPa at ambient temperature, a record-high value among reported bio-based adhesives as well as supramolecular adhesives to the best of knowledge. It also outperforms those adhesives at cryogenic temperature, realizing another record-high adhesion strength of 9.5 MPa at -196 °C. In addition, the BSA displays excellent multi-reusability with more than 87% of the original adhesion strength remaining even after reuse for ten times. It is highly anticipated that this line of research will provide a new insight into designing bio-based adhesives with outstanding adhesion performances and excellent multi-reusability.
Collapse
Affiliation(s)
- Peng Sun
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
39
|
Wu J, Shaidani S, Theodossiou SK, Hartzell EJ, Kaplan DL. Localized, on-demand, sustained drug delivery from biopolymer-based materials. Expert Opin Drug Deliv 2022; 19:1317-1335. [PMID: 35930000 PMCID: PMC9617770 DOI: 10.1080/17425247.2022.2110582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Local drug delivery facilitiates higher concentrations of drug molecules at or near the treatment site to enhance treatment efficiency and reduce drug toxicity and other systemic side effects. However, local drug delivery systems face challenges in terms of encapsulation, delivery, and controlled release of therapeutics. AREAS COVERED We provide an overview of naturally derived biopolymer-based drug delivery systems for localized, sustained, and on-demand treatment. We introduce the advantages and limitations of these systems for drug encapsulation, delivery, and local release, as well as recent applications. EXPERT OPINION Naturally derived biopolymers like cellulose, silk fibroin, chitosan, alginate, hyaluronic acid, and gelatin are good candidates for localized drug delivery because they are readily chemically modified, biocompatible, biodegradable (with the generation of metabolically compatible degradation products), and can be processed in aqueous and ambient environments to maintain the bioactivity of various therapeutics. The tradeoff between the effective treatment dosage and the response by local healthy tissue should be balanced during the design of these delivery systems. Future directions will be focused on strategies to design tunable and controlled biodegradation rates, as well as to explore commercial utility in substituting biopolymer-based systems for currently utilized synthetic polymers for implants for drug delivery.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sophia K. Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Emily J. Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| |
Collapse
|
40
|
Hanif Z, Tariq MZ, Khan ZA, La M, Choi D, Park SJ. Polypyrrole-coated nanocellulose for solar steam generation: A multi-surface photothermal ink with antibacterial and antifouling properties. Carbohydr Polym 2022; 292:119701. [PMID: 35725185 DOI: 10.1016/j.carbpol.2022.119701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Solar energy-based steam generation holds immense potential to tackle the problem of 1.1 billion people lacking access to freshwater and 2.7 billion experiencing freshwater scarcity at least one month a year. Efficient, portable, and universal photothermal materials are required for popularity of solar-driven evaporation systems. Herein, a facile one-pot process based on solution-processed vapor phase polymerization is adopted to fabricate polypyrrole-coated cellulose nanocrystals (CNC-PPy). The CNC-PPy dispersed in water is used as an ink (CNC-PPy ink) to create photothermal layers. The developed ink is readily laminated on diverse substrates utilizing a common paintbrush that firmly attached without any delamination after drying. The optimized cellulose membrane (6 coating cycles) presents an excellent evaporation rate of 1.96 Kg m-2 h-1 with corresponding light-to-vapor efficiency of 88.92 % at 1 sun. In addition, the CNC-PPy display excellent antibacterial and antifouling properties in powder and laminated forms against E. coli and S. aureus.
Collapse
Affiliation(s)
- Zahid Hanif
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea
| | - Muhammad Zakria Tariq
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, P.O. Box 50834, Gimhae, Gyeongnam, Republic of Korea
| | - Moonwoo La
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, P.O. Box 17104, Yongin, Gyeonggi, Republic of Korea.
| | - Sung Jea Park
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea.
| |
Collapse
|
41
|
Jerri HA, Torres-Díaz I, Zhang L, Impellizzeri N, Benczédi D, Bevan MA. Surface Morphology-Enhanced Delivery of Bioinspired Eco-Friendly Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41499-41507. [PMID: 36041180 DOI: 10.1021/acsami.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report the development of novel mineralized protein microcapsules to address critical challenges in the environmental impact and performance of consumer, pharmaceutical, agrochemical, cosmetic, and paint products. We designed environment-friendly capsules composed of proteins and biominerals as an alternative to solid microplastic particles or core-shell capsules made of nonbiodegradable synthetic polymeric resins. We synthesized mineralized capsule surface morphologies to mimic the features of natural pollens, which dramatically improved the deposition of high value-added fragrance chemicals on target substrates in realistic application conditions. A mechanistic model accurately captures the observed enhanced deposition behavior and shows how surface features generate an adhesive torque that resists shear detachment. Mineralized protein capsule performance is shown to depend both on material selection that determines van der Waals attraction and on capsule-substrate energy landscapes as parameterized by a geometric taxonomy for surface morphologies. These findings have broad implications for engineering multifunctional environmentally friendly delivery systems.
Collapse
Affiliation(s)
- Huda A Jerri
- R&D Division, Firmenich Inc., Plainsboro, New Jersey 08536, United States
| | - Isaac Torres-Díaz
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lechuan Zhang
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Daniel Benczédi
- Corporate Research Division, Firmenich SA., 1242 Satigny, Switzerland
| | - Michael A Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Lyu H, Li J, Yuan Z, Liu H, Sun Z, Jiang R, Yu X, Hu Y, Pei Y, Ding J, Shen Y, Guo C. Supertough and Highly Stretchable Silk Protein-based Films with Controlled Biodegradability. Acta Biomater 2022; 153:149-158. [PMID: 36100175 DOI: 10.1016/j.actbio.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022]
Abstract
Naturally derived protein-based biopolymers are considered potential biomaterials in biomedical applications and eco-friendly materials for replacing current petroleum-based polymers due to their good biocompatibility, low environmental impact, and tunable degradability. However, current strategies for fabricating protein-based materials with superior properties and tailored functionality in a scalable manner are still lacking. Here, we demonstrate an aqueous-based scalable approach for fabricating silk protein-based films through controlled molecular self-assembly (CMS) of silk proteins with plasticizers and salt ions. The films fabricated using this method can achieve a toughness of up to 64±5 MJ/m3 with a stretchability of up to 574±31%. We also demonstrate the tunable enzymatic degradability, low in vitro cytotoxicity, and good in vivo biocompatibility of the films. Furthermore, the films can be patterned with predesigned complex structures through laser cutting and functionalized with bioactive components. The functional silk protein-based films show great potential in various applications, including flexible electronics, bioelectronics, tissue engineering, and bioplastic packaging. STATEMENT OF SIGNIFICANCE: Inspired by the naturally optimized multi-scale self-assembly of silk proteins in natural silks, we develop an aqueous-based approach for scalable production of superior protein-based films through controlled molecular self-assembly (CMS) of silk proteins with glycerol and calcium ions. The prepared silk films present outstanding mechanical properties, controlled enzymatic biodegradability, low in vitro cytotoxicity, and good in vivo biocompatibility. Notably, the films fabricated using this method can achieve a high toughness of 64±5 MJ/m3 with a stretchability of 594±31%. The approach introduced in this work provides a facile route toward making silk-based materials with superior properties. It also paves new avenues for developing functional protein-based materials with precisely controlled structures and properties for various applications.
Collapse
Affiliation(s)
- Hao Lyu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Jinghang Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Zhechen Yuan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China, 315211; Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China, 315040
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Ziyang Sun
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Xin Yu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023
| | - Yi Hu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China, 315211; Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China, 315040
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China, 450001
| | - Jie Ding
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China, 310024
| | - Yi Shen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China, 315211; Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China, 315040.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China, 310023.
| |
Collapse
|
43
|
Lin L, Su Z, Zhang H, Zhou G, Zhou H, Ren J, Wang X, Liu C, Wang X. Thermo-processable chitosan-based plastic substitute with self-adaptiveness and closed-loop recyclability. Carbohydr Polym 2022; 291:119479. [DOI: 10.1016/j.carbpol.2022.119479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
44
|
He X, Li M, Liu Y, Nian Y, Hu B. Purification of Egg White Lysozyme Determines the Downstream Fibrillation of Protein and Co-assembly with Phytochemicals to Form Edible Hydrogels Regulating the Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9432-9441. [PMID: 35876899 DOI: 10.1021/acs.jafc.2c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the synthetic chemistry or synthetic biological systems have already shown the power of biomaterials engineering, natural bioresource matter is still a valuable library of raw ingredients for the production of biomaterials, in particular, the edible ones. However, the influence of upstream isolation and purification of the raw materials on their performance in the downstream processing procedures is still unexplored, which is essential for the engineering of biomaterials. Based on the comparison of conventional techniques, heating-induced precipitation combined with resin-blending ion exchange was developed as a simple and cheap method for the utilization of egg whites to produce the lysozyme that is found to be exclusively feasible for fibrillation. Even with similar purities, only the lysozyme prepared by this method could be utilized to form ordered linear aggregate fibrils. Fibrillation was recently pursued as a new approach to utilize bioresource mass for high-tech end-products. Phytochemicals, totally replacing salts, induced the lysozyme fibrils to form hydrogels spontaneously, which was further demonstrated in an in vivo study to prevent obesity induced by a high-fat diet (HFD) by reducing lipid absorption and lipogenesis, promoting energy expenditure, and inhibiting inflammation. The agri-food bioresource was successfully employed as a proof of concept in edible biomedical materials for the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Xiaoqian He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Min Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanhua Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
45
|
Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS NANO 2022; 16:10209-10218. [PMID: 35587205 DOI: 10.1021/acsnano.2c01616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Sheet rich silk nanofiber hydrogels are suitable scaffolds in tissue regeneration and carriers for various drugs. However, unsatisfactory mechanical performance limits its applications. Here, insight into the silk nanofibers stimulates the remodeling of previous solvent systems to actively regulate the assembly of silk nanofibers. Formic acid, a solvent of regenerated silk fibroin, is used to shield the charge repulsion of silk nanofibers to facilitate the nanofiber assembly under concentrated solutions. Formic acid was replaced with water to solidify the assembly, which induced the formation of a tough hydrogel. The hydrogels generated with this process possessed a modulus of 5.88 ± 0.82 MPa, ultimate stress of 1.55 ± 0.06 MPa, and toughness of 0.85 ± 0.03 MJ m-3, superior to those of previous silk hydrogels prepared through complex cross-linking processes. Benefiting from the dense gel network and high β-sheet content, these silk nanofiber hydrogels had good stability and antiswelling ability. The modulus could be modulated via changing the silk nanofiber concentration to provide differentiation signals to stem cells. Improved mechanical and bioactive properties with these hydrogels suggest utility in biomedical and engineering fields. More importantly, our present study reveals that the in-depth understanding of silk nanofibers could infuse power into traditional fabrication systems to achieve more high performance biomaterials, which is seldom considered in silk material studies.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
46
|
Yuan H, Yang S, Yan H, Guo J, Zhang W, Yu Q, Yin X, Tan Y. Liquefied Polysaccharides-Based Polymer with Tunable Condensed State Structure for Antimicrobial Shield by Multiple Processing Methods. SMALL METHODS 2022; 6:e2200129. [PMID: 35324092 DOI: 10.1002/smtd.202200129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The phase behavior of biomolecules containing persistent molecular entities is generally limited due to their characteristic size that exceeds the intermolecular force field. Consequently, favorable properties normally associated with the liquid phase of a substance, such as fluidity or processability, are not relevant for the processing of biomolecules, thus hindering the optimal processing of biomolecules. The implied problem that arises is how to convert folded biomolecules to display a richer phase behavior. To alleviate this dilemma, a generic approach to liquefied polysaccharides-based polymers is proposed, resulting in a polysaccharide fluid with a tunable condensed state structure (solid-gel-liquid). Polysaccharide biobased fluids materials transcend the limits of the physical state of the biobased material itself and can even create completely new properties (different processing methods as well as functions) in a variety of polymeric structures. Considering the solvent incompatible high and low-temperature applications, this method will have a great influence on the design of nanostructures of biomolecular derivatives and is expected to transform biomass materials such as polysaccharide biopolymers from traditional use to resource use, ultimately leading to the efficient use of biomass materials and their sustainability.
Collapse
Affiliation(s)
- Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shiwen Yang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Hao Yan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jiayi Guo
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wenchao Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, P. R. China
| | - Xianze Yin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
47
|
Hu M, Zhang J, Liu Y, Zheng X, Li X, Li X, Yang H. Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromol Rapid Commun 2022; 43:e2200047. [PMID: 35419904 DOI: 10.1002/marc.202200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 11/08/2022]
Abstract
Stable ambulatory electrophysiological sensing is widely utilized for smart e-healthcare monitoring, clinical diagnosis of cardiovascular diseases, treatment of neurological diseases, and intelligent human-machine interaction. As the favorable signal interaction platform of electrophysiological sensing, the conformal property of on-skin electrodes is an extremely crucial factor that can affect the stability of long-term ambulatory electrophysiological sensing. From the perspective of materials, to realize conformal contact between electrodes and skin for stable sensing, highly conformal polymers are strongly demanding and attracting ever-growing attention. In this review, we focused on the recent progress of highly conformal polymers for ambulatory electrophysiological sensing, including their synthetic methods, conformal property, and potential applications. Specifically, three main types of highly conformal polymers for stable long-term electrophysiological signals monitoring were proposed, including nature silk fibroin based conformal polymers, marine mussels bio-inspired conformal polymers, and other conformal polymers such as zwitterionic polymers and polyacrylamide. Furthermore, the future challenges and opportunities of preparing highly conformal polymers for on-skin electrodes were also highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingshuang Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xinran Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiangxiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Ximing Li
- Chest hospital, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
48
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|