1
|
Kuila S, Miranda-Salinas H, Eng J, Li C, Bryce MR, Penfold TJ, Monkman AP. Rigid and planar π-conjugated molecules leading to long-lived intramolecular charge-transfer states exhibiting thermally activated delayed fluorescence. Nat Commun 2024; 15:9611. [PMID: 39511188 DOI: 10.1038/s41467-024-53740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Intramolecular charge transfer (ICT) occurs when photoexcitation causes electron transfer from an electron donor to an electron acceptor within the same molecule and is usually stabilized by decoupling of the donor and acceptor through an orthogonal twist between them. Thermally activated delayed fluorescence (TADF) exploits such twisted ICT states to harvest triplet excitons in OLEDs. However, the highly twisted conformation of TADF molecules results in limited device lifetimes. Rigid molecules offer increased stability, yet their typical planarity and π-conjugated structures impedes ICT. Herein, we achieve dispersion-free triplet harvesting using fused indolocarbazole-phthalimide molecules that have remarkably stable co-planar ICT states, yielding blue/green-TADF with good photoluminescence quantum yield and small singlet-triplet energy gap < 50 meV. ICT formation is dictated by the bonding connectivity and excited-state conjugation breaking between the donor and acceptor fragments, that stabilises the planar ICT excited state, revealing a new criterion for designing efficient TADF materials.
Collapse
Affiliation(s)
- Suman Kuila
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado, 80309, US.
| | | | - Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Chunyong Li
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Martin R Bryce
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew P Monkman
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Huang T, Xu Y, Lu X, Qu Y, Wei J, Wang Y. Modulating Charge-Transfer Excited States of Multiple Resonance Emitters via Intramolecular Covalent Bond Locking. Angew Chem Int Ed Engl 2024; 63:e202411268. [PMID: 39030797 DOI: 10.1002/anie.202411268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Advanced multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters with high efficiency and color purity have emerged as a research focus in the development of ultra-high-definition displays. Herein, we disclose an approach to modulate the charge-transfer excited states of MR emitters via intramolecular covalent bond locking. This strategy can promote the evolution of strong intramolecular charge-transfer (ICT) states into weak ICT states, ultimately narrowing the full-width at half-maximum (FWHM) of emitters. To modulate the ICT intensity, two octagonal rings are introduced to yield molecule m-DCzDAz-BNCz. Compounds m-CzDAz-BNCz and m-DCzDAz-BNCz exhibit bright light-green and green fluorescence in toluene, with emission maxima of 504 and 513 nm, and FWHMs of 28 and 34 nm, respectively. Sensitized organic light-emitting diodes (OLEDs) employing emitters m-CzDAz-BNCz and m-DCzDAz-BNCz exhibit green emission with peaks of 508 and 520 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.12, 0.65) and (0.19, 0.69), and maximum external quantum efficiencies (EQEs) of 30.2 % and 32.6 %, respectively.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xueying Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yupei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jinbei Wei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao Nan Road, Foshan, 528200, Guangdong Province, P. R. China
| |
Collapse
|
3
|
Chen D, Wang H, Sun D, Wu S, Wang K, Zhang XH, Zysman-Colman E. The Combination of a Donor-Acceptor TADF and a MR-TADF Emitting Core Results in Outstanding Electroluminescence Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412761. [PMID: 39394825 DOI: 10.1002/adma.202412761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Here the utility and potential of an emitter design are demonstrated, consisting of a narrowband-emitting multiresonant thermally activated delayed fluorescent (MR-TADF) core that is decorated with a suitably higher energy donor-acceptor TADF moiety. Not only does this D-A TADF group offer additional channels for triplet exciton harvesting and confers faster reverse intersystem crossing (RISC) kinetics but it also acts as a steric shield, insulating the emissive MR-TADF core from aggregation-caused quenching. Two emitters, DtCzBN-CNBT1 and DtCzBN-CNBT2, demonstrate enhanced photophysical properties leading to outstanding performance of the organic light-emitting diodes (OLEDs). DtCzBN-CNBT2, containing a D-A TADF moiety, has a faster kRISC (1.1 × 105 s-1) and higher photoluminescence quantum yield (ΦPL: 97%) compared to DtCzBN-CNBT1 (0.2 × 105 s-1, ΦPL: 90%), which contains a D-A moiety that itself is not TADF. The sensitizer-free OLEDs with DtCzBN-CNBT2 achieve a record-high maximum external quantum efficiency (EQEmax) of 40.2% and showed milder efficiency roll-off (EQE1000 of 20.7%) compared to the DtCzBN-CNBT1-based devices (EQEmax of 37.1% and EQE1000 of 11.9%).
Collapse
Affiliation(s)
- Dongyang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 21523, P. R. China
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 21523, P. R. China
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 21523, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 21523, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 21523, P. R. China
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
4
|
Xu H, Yan H, Chen J, Zhang X, Zhang P, Li H, Meng H. Superior Hole Injection Material PEGDT/TPF/PVDF with p-Doping Capability for Highly Efficient Solution-Processed Organic Light-Emitting Diode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54574-54586. [PMID: 39327980 DOI: 10.1021/acsami.4c11124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The ability to charge injection is a key factor in determining the performance of the organic light-emitting diode (OLED) devices. Improving the work function of the anode surface via interface modification, thus lowering the hole injection barrier, stands as a crucial strategy for enhancing the performance of the OLED device. Herein, we propose an innovative p-doping hole injection material, namely, PEGDT/TPF/PVDF that exhibits excellent performance in OLED devices with the value of maximum current efficiency at 56.4 Cd A-1, maximum luminescence at 25,564 Cd m-2, and a high EQE of 19.8%. The results for PEGDT/TPF/PVDF showed good conductivity, excellent film-forming property, and high transmittance over 98% in the spectrum range of 500-700 nm. Changes in the hole-injection energy barriers observed from the surface of the anode suggest a modified anode with PEGDT/TPF/PVDF deepened the work function at a value of 0.2 eV, which dramatically improves the hole-injection properties. This work not only provides novel structural materials with exceptional hole-injection properties but also proposes a promising alternative to PEDOT/PSS.
Collapse
Affiliation(s)
- Hong Xu
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hao Yan
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Junmin Chen
- Tsinghua-Berkeley Shenzhen Institute Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
- Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
| | - Xiaopeng Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Pengli Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hongyang Li
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
5
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Jia B, Li X, Liu W, Yang Z, Wang Y, Wang Z, Yang L, Liu Y, Fu Y. Multi-stimuli-responsive cyanostilbene derivatives: Their fluorescent and mechanochromic properties, and potential application in water sensing and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124474. [PMID: 38763018 DOI: 10.1016/j.saa.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.
Collapse
Affiliation(s)
- Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Xiangying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Wenjun Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zhou Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yuanzhen Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zishi Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resource Utilization Technology, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
7
|
Song S, Feng S, Wang L, Jun J, Milián-Medina B, Wannemacher R, Lee J, Kwon MS, Gierschner J. Rational Design of Color-Pure Blue Organic Emitters by Poly-Heteroaromatic Omni-Delocalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404388. [PMID: 39011790 DOI: 10.1002/adma.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Current research on organic light emitters which utilize multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials is gaining significant interest because of the materials' ability to efficiently generate color-pure blue emission. However, the underlying reasons for high color purity remain unclear. It is shown here that these emitters share a common electronic basis, which is deduced from resonance structure considerations following Clar's rule, and which is termed as "poly-heteroaromatic omni-delocalization" (PHOD). The simple and clear design rules derived from the PHOD concept allow extending the known chemical space by new structural motifs. Based on PHOD, a set of novel high-efficiency color-pure emitters with brilliant deep-blue hue is specifically designed.
Collapse
Affiliation(s)
- Sunwu Song
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Siyang Feng
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jinwon Jun
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Reinhold Wannemacher
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Jaesang Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
8
|
Cai X, Pan Y, Li C, Li L, Pu Y, Wu Y, Wang Y. Nitrogen-Embedding Strategy for Short-Range Charge Transfer Excited States and Efficient Narrowband Deep-Blue Organic Light Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202408522. [PMID: 38828837 DOI: 10.1002/anie.202408522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The development of deep-blue organic light-emitting diodes (OLEDs) featuring high efficiency and narrowband emission is of great importance for ultrahigh-definition displays with wide color gamut. Herein, based on the nitrogen-embedding strategy for modifying the short range charge transfer excited state energies of multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters, we introduce one or two nitrogen atoms into the central benzene ring of a versatile boron-embedded 1,3-bis(carbazol-9-yl)benzene skeleton. This approach resulted in the stabilization of the highest occupied molecular orbital energy levels and the formation of intramolecular hydrogen bonds, and thus systematic hypsochromic shifts and narrowing spectra. In toluene solution, two heterocyclic-based MR-TADF molecules, Py-BN and Pm-BN, exhibit deep-blue emissions with high photoluminescence quantum yields of 93 % and 94 %, and narrow full width at half maximum of 14 and 13 nm, respectively. A deep-blue hyperfluorescent OLED based on Py-BN exhibited a maximum external quantum efficiency of 27.7 % and desired color purity with Commission Internationale de L'Eclairage (CIE) coordinates of (0.150, 0.052). These results demonstrate the significant potential for the development of deep blue narrowband MR-TADF emitters.
Collapse
Affiliation(s)
- Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Yue Pan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 130012, Changchun, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
- Chongqing Research Institute, Jilin University, 401120, Chongqing, P. R. China
| | - Linjie Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Youwei Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
- Jihua Hengye Electronic Materials CO. LTD., 528200, Foshan, Guangdong Province, P. R. China
| |
Collapse
|
9
|
Yu J, Tan H, Gao X, Wang B, Long Z, Liu J, Lin Z, Li X, Zhu Z, Jian J, Tong Q, Lee C. Stepwise Toward Pure Blue Organic Light-Emitting Diodes by Synergetically Locking and Shielding Carbonyl/Nitrogen-Based MR-TADF Emitters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401664. [PMID: 38704673 PMCID: PMC11267287 DOI: 10.1002/advs.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.
Collapse
Affiliation(s)
- Jie‐Rong Yu
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Hong‐Ji Tan
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of ChemistryCity University of Hong KongHong KongSAR000000P. R. China
| | - Xiu‐Qi Gao
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Bing Wang
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Zhi‐Qiang Long
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Jia‐Li Liu
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Zhi‐Zhong Lin
- Department of ChemistryCity University of Hong KongHong KongSAR000000P. R. China
| | - Xing‐Yi Li
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Ze‐Lin Zhu
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of ChemistryCity University of Hong KongHong KongSAR000000P. R. China
| | - Jing‐Xin Jian
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Qing‐Xiao Tong
- College of Chemistry and Chemical EngineeringKey Laboratory for Preparation and Application of Ordered Structural Material of Guangdong ProvinceShantou UniversityShantou515063P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of ChemistryCity University of Hong KongHong KongSAR000000P. R. China
| |
Collapse
|
10
|
Jin P, Wei X, Yin B, Xu L, Guo Y, Zhang C. Stepwise Charge/Energy Transfer in MR-TADF Molecule-Doped Exciplex for Ultralong Persistent Luminescence Activated with Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400158. [PMID: 38847332 DOI: 10.1002/adma.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Organic long-persistent luminescence (OLPL), which relies on energy storage for delayed light emission by the charge separation state, has attracted intense attention in various optical applications. However, charge separation (CS) is efficient only under ultraviolet excitation in most OLPL systems because it requires a driving force from the large energy difference between the local excited (LE) and charge transfer (CT) states. In this study, a multiresonance thermally activated delayed fluorescence (MR-TADF) molecule is incorporated into an exciplex system to achieve efficient OLPL in a composite material activated by visible light via a stepwise charge/energy transfer process. The enhanced absorption of the composite material facilitated a tenfold increase in the duration of the OLPL, which can last for several hours under visible light excitation. The excited state of the MR-TADF molecule tends to charge transfer to the acceptor, followed by energy transfer to the exciplex, which benefits from the small difference between the LE and CT states owing to the inherent CS characteristics of the opposing resonance effect. Afterglow displays of these composite materials are fabricated to demonstrate their considerable potential in encryption patterns and emergency lights, which take advantage of their excellent processability, visible light activation, and tunable luminescence properties.
Collapse
Affiliation(s)
- Pengfei Jin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Lixin Xu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Mamada M, Aoyama A, Uchida R, Ochi J, Oda S, Kondo Y, Kondo M, Hatakeyama T. Efficient Deep-Blue Multiple-Resonance Emitters Based on Azepine-Decorated ν-DABNA for CIE y below 0.06. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402905. [PMID: 38695744 DOI: 10.1002/adma.202402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Ultrapure deep-blue emitters are in high demand for organic light-emitting diodes (OLEDs). Although color coordinates serve as straightforward parameters for assessing color purity, precise control over the maximum wavelength and full-width at half-maximum is necessary to optimize OLED performance, including luminance efficiency and luminous efficacy. Multiple-resonance (MR) emitters are promising candidates for achieving ideal luminescence properties; consequently, a wide variety of MR frameworks have been developed. However, most of these emitters experience a wavelength displacement from the ideal color, which limits their practical applicability. Therefore, a molecular design that is compatible with MR emitters for modulating their energy levels and color output is particularly valuable. Here, it is demonstrated that the azepine donor unit induces an appropriate blue-shift in the emission maximum while maintaining efficient MR characteristics, including high photoluminescence quantum yield, narrow emission, and a fast reverse intersystem crossing rate. OLEDs using newly developed MR emitters based on the ν-DABNA framework simultaneously exhibit a high quantum efficiency of ≈30%, luminous efficacy of ≈20 lm W-1, exceptional color purity with Commission Internationale de l'Éclairage coordinates as low as (0.14, 0.06), and notably high operational stability. These results demonstrate unprecedentedly high levels compared with those observed in previously reported deep-blue emitters.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akio Aoyama
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryota Uchida
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Yasuhiro Kondo
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Masakazu Kondo
- JNC Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Li R, Ying A, Tan Y, Ai Y, Gong S. Efficient Blue Photo- and Electroluminescence from CF 3-Decorated Cu(I) Complexes. Chemistry 2024; 30:e202400817. [PMID: 38654445 DOI: 10.1002/chem.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Luminescent organometallic complexes of earth-abundant copper(I) have long been studied in organic light-emitting diodes (OLED). Particularly, Cu(I)-based carbene-metal-amide (CMA) complexes have recently emerged as promising organometallic emitters. However, blue-emitting Cu(I) CMA complexes have been rarely reported. Here we constructed two blue-emitting Cu(I) CMA emitters, MAC*-Cu-CF3Cz and MAC*-Cu-2CF3Cz, by introducing one or two CF3 substitutes into carbazole ligands. Both complexes exhibited high thermal stability and blue emission colors. Moreover, two complexes exhibited different emission origins rooting from different donor ligands: a distinct thermally activated delayed fluorescence (TADF) from ligand-to-ligand charge transfer excited states for MAC*-Cu-CF3Cz or a dominant phosphorescence nature from local triplet excited state of the carbazole ligand for MAC*-Cu-2CF3Cz. Inspiringly, MAC*-Cu-CF3Cz had high photoluminescence quantum yields of up to 94 % and short emission lifetimes of down to 1.2 μs in doped films, accompanied by relatively high radiative rates in the 105 s-1 order. The resultant vacuum-deposited OLEDs based on MAC*-Cu-CF3Cz delivered pure-blue electroluminescence at 462 nm together with a high external quantum efficiency of 13.0 %.
Collapse
Affiliation(s)
- Ruoyan Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Ao Ying
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Yao Tan
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Yuhan Ai
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M, Lv X, Yin X, Zou Y, Miao J, Cao X, Yang C. B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence. Natl Sci Rev 2024; 11:nwae115. [PMID: 38707202 PMCID: PMC11067958 DOI: 10.1093/nsr/nwae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Weerasinghe RW, Madayanad Suresh S, Hall D, Matulaitis T, Slawin AMZ, Warriner S, Lee YT, Chan CY, Tsuchiya Y, Zysman-Colman E, Adachi C. A Boron, Nitrogen, and Oxygen Doped π-Extended Helical Pure Blue Multiresonant Thermally Activated Delayed Fluorescent Emitter for Organic Light Emitting Diodes That Shows Fast k RISC Without the Use of Heavy Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402289. [PMID: 38581139 DOI: 10.1002/adma.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry-targeted color standard, Rec. BT.2020-2, for blue color without using optical filters, aiming for high-efficiency organic light-emitting diodes (OLEDs). However, their long triplet lifetimes, largely affected by their slow reverse intersystem crossing rates, adversely affect device stability. In this study, a helical MR-TADF emitter (f-DOABNA) is designed and synthesized. Owing to its π-delocalized structure, f-DOABNA possesses a small singlet-triplet gap, ΔEST, and displays simultaneously an exceptionally faster reverse intersystem crossing rate constant, kRISC, of up to 2 × 106 s-1 and a very high photoluminescence quantum yield, ΦPL, of over 90% in both solution and doped films. The OLED with f-DOABNA as the emitter achieved a narrow deep-blue emission at 445 nm (full width at half-maximum of 24 nm) associated with Commission Internationale de l'Éclairage (CIE) coordinates of (0.150, 0.041), and showed a high maximum external quantum efficiency, EQEmax, of ≈20%.
Collapse
Affiliation(s)
- Rangani Wathsala Weerasinghe
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Subeesh Madayanad Suresh
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Alexandra M Z Slawin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Stuart Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chin-Yiu Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 000-000, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 000-000, China
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Ochi J, Yamasaki Y, Tanaka K, Kondo Y, Isayama K, Oda S, Kondo M, Hatakeyama T. Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter. Nat Commun 2024; 15:2361. [PMID: 38565868 PMCID: PMC10987657 DOI: 10.1038/s41467-024-46619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
An ultrapure deep-blue multi-resonance-induced thermally activated delayed fluorescence material (DOB2-DABNA-A) is designed and synthesized. Benefiting from a fully resonating extended helical π-conjugated system, this compound has a small ΔEST value of 3.6 meV and sufficient spin-orbit coupling to exhibit a high-rate constant for reverse intersystem crossing (kRISC = 1.1 × 106 s-1). Furthermore, an organic light-emitting diode employing DOB2-DABNA-A as an emitter is fabricated; it exhibits ultrapure deep-blue emission at 452 nm with a small full width at half maximum of 24 nm, corresponding to Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.049). The high kRISC value reduces the efficiency roll-off, resulting in a high external quantum efficiency (EQE) of 21.6% at 1000 cd m-2.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Yamasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kojiro Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuhiro Kondo
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Kohei Isayama
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Masakazu Kondo
- JNC Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
16
|
Bergmann K, Hudson ZM. Excited-state dynamics of C 3-symmetric heptazine-based thermally activated delayed-fluorescence emitters. Faraday Discuss 2024; 250:181-191. [PMID: 37975289 DOI: 10.1039/d3fd00121k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Heptazine-based materials have recently emerged as a promising motif for thermally activated delayed fluorescence, as their near-zero or negative singlet-triplet energy gaps enable extremely fast reverse intersystem crossing (rISC) rates. Another method for achieving a high rate of rISC is through the use of highly symmetric emitters, which benefit from energy-level degeneracies and a high density of states. Here, we investigate the effect of combining these two design strategies on the excited-state dynamics of C3-symmetric emitters containing heptazine cores. We find that in two of the four emitters studied, the S1 state has a high degree of locally excited (LE) character with density on the heptazine moiety, preventing excited-state localization and a loss of symmetry in the energy-minimized S1 geometry. Surprisingly, these symmetric molecules still suffer from a loss of density of triplet states below the S1 state. Overall, we find that maintaining C3 symmetry will not necessarily maintain density of states, but that heptazine-based materials with LE S1 states still benefit from maximized rISC rates via increased spin-orbit coupling with low-lying charge-transfer triplet states and exhibit advantageous photophysical properties, such as near-unity photoluminescence quantum yields and high colour purity.
Collapse
Affiliation(s)
- Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1.
| |
Collapse
|
17
|
Guo S, Jin X, Zhang D, Zhou H, Yu C, Huang J, Zhang Z, Su J. Exploring Efficient Dual-Phase Emissive Fluorophores with High Mobility by Integrating a Rigid Donor and Flexible Acceptor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10407-10416. [PMID: 38365193 DOI: 10.1021/acsami.3c18176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Developing luminogens with a high emission efficiency in both single-molecule and aggregate states, as well as high mobility, shows promise for advancing the iteration and update of organic optoelectronic materials. However, achieving a delicate balance between the plane configuration of luminophores and the strong exciton interactions of aggregates is a formidable task from the molecular design perspective. This dilemma was overcome by integrating a rigid donor and flexible acceptor to establish donor-acceptor (D-A) type emitters. The π-conjugate-extended donor ensures the substantial planarity of these molecules, allowing strong emission in solution with photoluminescence quantum yield values of 86% and 75%. Furthermore, the restricted molecular motion of the aggregation-induced emission moiety and the formation of J-aggregates reduce the quenching effect, leading to a high emissive efficiency of 85% and 91% in the aggregate state. The mildly distorted D-A geometry builds moderate electrostatic interaction, resulting in high mobility with μM,h of 7.12 × 10-5 and 3.27 × 10-4 cm2/V s. Additionally, an improved synthesized procedure for terminal E-configured acrylonitrile with metal-free and concise reaction conditions is presented. The successful application of the synthesized compounds in organic light-emitting diode devices demonstrates the practicability of the molecular design strategy with connecting a rigid donor and flexible acceptor.
Collapse
Affiliation(s)
- Shiyan Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Daheng Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Haitao Zhou
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Chao Yu
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Jinhai Huang
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
18
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
19
|
He X, Lou J, Li B, Dong X, Zhong F, Liu W, Feng X, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. Rational Medium-Range Charge Transfer Strategy Toward Highly Efficient Violet-Blue Organic Light-Emitting Diodes with Narrowed Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310417. [PMID: 37971674 DOI: 10.1002/adma.202310417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The spectral narrowing engineering of pure-organic emitters attracts great research interests in realizing high color purity. Here, the adjusted medium-range charge transfer (MCT) strategy of TIC-BO with rigid planar structure by fusing two typical UV-emitting multiple resonance (MR) fragments via the ingenious double-halide cyclized coupling reaction is reported. The resulting TIC-BO with MCT nature shows efficient violet-blue emission in dilute toluene and evaporated host-guest films, and desirably narrowed spectra are achieved by the suppression of structural relaxation and the shortened charge transfer states. The single-doped device with TIC-BO as emitter shows narrowed violet-blue electroluminescence peaked at 428 nm with full-width at half-maximum of 43 nm (0.28 eV), and the Commission Internationale de l'Éclairage coordinates of (0.160, 0.050). A maximum external quantum efficiency (EQEmax ) of 20.50% is achieved, which is among the best results of the corresponding violet-blue emitting region. Further introduction of a stronger electron-donating carbazole group makes TIC-BNO exhibit red-shifted sky-blue emission with MR-dominant properties, and good device performance is received with EQEmax of 34.58%. The outstanding performances of TIC-BO successfully demonstrate the significance and prospect of the proposed molecular design strategy.
Collapse
Affiliation(s)
- Xin He
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Jingli Lou
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Baoxi Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Xiaobin Dong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Feiyang Zhong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dezhi Yang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Dongge Ma
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zujin Zhao
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
20
|
Ma P, Chen Y, Man Y, Qi Q, Guo Y, Wang H, Li Z, Chang P, Qu C, Han C, Xu H. High-Efficiency Ultraviolet Electroluminescence from Multi-Resonance Phosphine Oxide Polycyclic Aromatics. Angew Chem Int Ed Engl 2023:e202316479. [PMID: 38055193 DOI: 10.1002/anie.202316479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Efficient ultraviolet (UV) electroluminescent materials remain a great challenge, since short peak wavelength <400 nm and narrow full width at half maximum (FWHM) <50 nm are simultaneously required. In this sense, multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters featuring narrow-band emissions hold the promise for UV applications. Herein, a novel MR-TADF skeleton featuring carbazole-phosphine oxide (P=O) fused aromatics is developed to construct the first two UV MR emitters named CzP2PO and tBCzP2PO. In addition to synergistic resonance effects of P=O and N atom, sp3 -hybrid P atom renders the curved polycyclic planes of CzP2PO and tBCzP2PO, giving rise to their narrowband UV emissions with peak wavelengths <390 nm and FWHM<35 nm. Besides configuration quasi-planarization for radiation enhancement and quenching suppression, P=O moiety further enhances singlet-triplet coupling to facilitate reverse intersystem crossing, resulting in the state-of-the-art photoluminescence quantum yield of 62 % in tBCzP2PO doped films. As consequence, tBCzP2PO endowed its UV organic light-emitting diodes with the peak at 382 nm and FWHM of 32 nm, and especially the record-high external quantum efficiency (EQE) of 15.1 % among all kinds of UV devices. Our results demonstrate great potential of P=O based MR emitters in practical applications including optoelectronics, biology and medicine science.
Collapse
Affiliation(s)
- Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yingying Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Quan Qi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yuanting Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chao Qu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
21
|
Fan X, Hao X, Huang F, Yu J, Wang K, Zhang X. RGB Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes toward Realizing the BT.2020 Standard. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303504. [PMID: 37587784 PMCID: PMC10558656 DOI: 10.1002/advs.202303504] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Indexed: 08/18/2023]
Abstract
With the surging demand for ultra-high-resolution displays, the International Telecommunication Union (ITU) announce the next-generation color gamut standard, named ITU-R Recommendation BT.2020, which not only sets a seductive but challenging milestone for display technologies but also urges researchers to recognize the importance of color coordinates. Organic light-emitting diodes (OLEDs) are an important display technology in current daily life, but they face challenges in approaching the BT.2020 standard. Thermally activated delayed fluorescence (TADF) emitters have bright prospects in OLEDs because they possess 100% theoretical exciton utilization. Thus, the development of TADF emitters emitting primary red (R), green (R), and blue (B) emission is of great significance. Here, a comprehensive overview of the latest advancements in TADF emitters that exhibit Commission Internationale de l'Éclairage (CIE) coordinates surpassing the National Television System Committee (NTSC) and approaching BT.2020 standards is presented. Rational strategies for molecular designs, as well as the resulting photophysical properties and OLED performances, are discussed to elucidate the underlying mechanisms for shifting the CIE coordinates of both donor-acceptor and multiple resonance (MR) typed TADF emitters toward the BT.2020 standard. Finally, the challenges in realization of the wide-color-gamut BT.2020 standard and the prospects for this research area are provided.
Collapse
Affiliation(s)
- Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaoyao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| |
Collapse
|