1
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024; 416:7249-7266. [PMID: 39048740 PMCID: PMC11584473 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
2
|
Li H, Li J, Zhang Z, Yang Q, Du H, Dong Q, Guo Z, Yao J, Li S, Li D, Pang N, Li C, Zhang W, Zhou L. Digital Quantitative Detection for Heterogeneous Protein and mRNA Expression Patterns in Circulating Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410120. [PMID: 39556692 DOI: 10.1002/advs.202410120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) exhibit significant phenotypic heterogeneity and diverse gene expression profiles due to epithelial-mesenchymal transition (EMT). However, current detection methods lack the capacity for simultaneous quantification of multidimensional biomarkers, impeding a comprehensive understanding of tumor biology and dynamic changes. Here, the CTC Digital Simultaneous Cross-dimensional Output and Unified Tracking (d-SCOUT) technology is introduced, which enables simultaneous quantification and detailed interpretation of HCC transcriptional and phenotypic biomarkers. Based on self-developed multi-real-time digital PCR (MRT-dPCR) and algorithms, d-SCOUT allows for the unified quantification of Asialoglycoprotein Receptor (ASGPR), Glypican-3 (GPC-3), and Epithelial Cell Adhesion Molecule (EpCAM) proteins, as well as Programmed Death Ligand 1 (PD-L1), GPC-3, and EpCAM mRNA in HCC CTCs, with good sensitivity (LOD of 3.2 CTCs per mL of blood) and reproducibility (mean %CV = 1.80-6.05%). In a study of 99 clinical samples, molecular signatures derived from HCC CTCs demonstrated strong diagnostic potential (AUC = 0.950, sensitivity = 90.6%, specificity = 87.5%). Importantly, by integrating machine learning, d-SCOUT allows clustering of CTC characteristics at the mRNA and protein levels, mapping normalized heterogeneous 2D molecular profiles to assess HCC metastatic risk. Dynamic digital tracking of eight HCC patients undergoing different treatments visually illustrated the therapeutic effects, validating this technology's capability to quantify the treatment efficacy. CTC d-SCOUT enhances understanding of tumor biology and HCC management.
Collapse
Affiliation(s)
- Hao Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jinze Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Zhiqi Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Qi Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Hong Du
- The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Zhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Yao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Shuli Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Dongshu Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Nannan Pang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Chuanyu Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Lianqun Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| |
Collapse
|
3
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, Saffarfar H, Ali-Khiavi P. Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med 2024; 25:7. [PMID: 39546080 PMCID: PMC11567993 DOI: 10.1007/s10238-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Metastatic disease and cancer recurrence are the primary causes of cancer-related deaths. Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are the driving forces behind the spread of cancer cells. The emergence and development of liquid biopsy using rare CTCs as a minimally invasive strategy for early-stage tumor detection and improved tumor management is a promising advancement in recent years. However, before blood sample analysis and clinical translation, precise isolation of CTCs from patients' blood based on their biophysical properties, followed by molecular identification of CTCs using single-cell multi-omics technologies is necessary to understand tumor heterogeneity and provide effective diagnosis and monitoring of cancer progression. Additionally, understanding the origin, morphological variation, and interaction between CTCs and the primary and metastatic tumor niche, as well as and regulatory immune cells, will offer new insights into the development of CTC-based advanced tumor targeting in the future clinical trials.
Collapse
Affiliation(s)
| | - SeyedAbbas Pakmehr
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ahvaz Jundishapur University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Anis Elhami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Samawa, Al-Muthanna, 66002, Iraq
| | | | | | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Payam Ali-Khiavi
- Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Labib M, Wang Z, Kim Y, Lin S, Abdrabou A, Yousefi H, Lo PY, Angers S, Sargent EH, Kelley SO. Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting. Nat Biomed Eng 2024; 8:263-277. [PMID: 38012306 DOI: 10.1038/s41551-023-01135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The identification of genetic regulators of cell secretions is challenging because it requires the sorting of a large number of cells according to their secretion patterns. Here we report the development and applicability of a high-throughput microfluidic method for the analysis of the secretion levels of large populations of immune cells. The method is linked with a kinome-wide loss-of-function CRISPR screen, immunomagnetically sorting the cells according to their secretion levels, and the sequencing of their genomes to identify key genetic modifiers of cell secretion. We used the method, which we validated against flow cytometry for cytokines secreted from primary mouse CD4+ (cluster of differentiation 4-positive) T cells, to discover a subgroup of highly co-expressed kinase-coding genes that regulate interferon-gamma secretion by these cells. We validated the function of the kinases identified using RNA interference, CRISPR knockouts and kinase inhibitors and confirmed the druggability of selected kinases via the administration of a kinase inhibitor in an animal model of colitis. The technique may facilitate the discovery of regulatory mechanisms for immune-cell activation and of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Labib
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Yunhye Kim
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Abdrabou
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Hanie Yousefi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Pei-Ying Lo
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Edward H Sargent
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
8
|
Macaraniag C, Zhou J, Li J, Putzbach W, Hay N, Papautsky I. Microfluidic isolation of breast cancer circulating tumor cells from microvolumes of mouse blood. Electrophoresis 2023; 44:1859-1867. [PMID: 37528726 DOI: 10.1002/elps.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Liquid biopsy has shown significant research and clinical implications in cancer. Particularly, the isolation of circulating tumor cells (CTCs) in preclinical studies can provide crucial information about disease progression and therefore may guide treatment decisions. Microfluidic isolation systems have played a considerable role in CTC isolation for cancer studies, disease diagnosis, and prognosis. CTCs are often studied using preclinical animal models such as xenografts or syngeneic models. However, most isolation systems are tested on human cell lines and human blood, whereas less validation studies are done on preclinical samples such as CTCs from mouse models. Here, we demonstrate and evaluate a complete workflow of a sized-based inertial microfluidic device to isolate CTCs from blood using exclusively mouse blood and mouse cancer cell lines. We then incorporate the cytospin, a commonly used method for enumeration of small number of cells in a glass slide to quantify the total cell yield of our workflow.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - William Putzbach
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Nissim Hay
- University of Illinois Cancer Center, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
9
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
11
|
Xiao X, Miao X, Duan S, Liu S, Cao Q, Wu R, Tao C, Zhao J, Qu Q, Markiewicz A, Peng R, Chen Y, Żaczek A, Liu J. Single-Cell Enzymatic Screening for Epithelial Mesenchymal Transition with an Ultrasensitive Superwetting Droplet-Array Microchip. SMALL METHODS 2023:e2300096. [PMID: 37086121 DOI: 10.1002/smtd.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
The phenotypic changes of circulating tumor cells (CTCs) during the epithelial-mesenchymal transition (EMT) have been a hot topic in tumor biology and cancer therapeutic development. Here, an integrated platform of single-cell fluorescent enzymatic assays with superwetting droplet-array microchips (SDAM) for ultrasensitive functional screening of epithelial-mesenchymal sub-phenotypes of CTCs is reported. The SDAM can generate high-density, volume well-defined droplet (0.66 nL per droplet) arrays isolating single tumor cells via a discontinuous dewetting effect. It enables sensitive detection of MMP9 enzyme activities secreted by single tumor cells, correlating to their epithelial-mesenchymal sub-phenotypes. In the pilot clinical double-blind tests, the authors have demonstrated that SDAM assays allow for rapid identification and functional screening of CTCs with different epithelial-mesenchymal properties. The consistency with the clinical outcomes validates the usefulness of single-cell secreted MMP9 as a biomarker for selective CTC screening and tumor metastasis monitoring. Convenient addressing and recovery of individual CTCs from SDAM have been demonstrated for gene mutation sequencing, immunostaining, and transcriptome analysis, revealing new understandings of the signaling pathways between MMP9 secretion and the EMT regulation of CTCs. The SDAM approach combined with sequencing technologies promises to explore the dynamic EMT plasticity of tumors at the single-cell level.
Collapse
Affiliation(s)
- Xiang Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xinxing Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Shanzhou Duan
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qinghua Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chengcheng Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qing Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yongbing Chen
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Anna Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
13
|
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer 2023; 23:95-111. [PMID: 36494603 PMCID: PMC9734934 DOI: 10.1038/s41568-022-00536-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, exceptional technological advances have enabled the identification and interrogation of rare circulating tumour cells (CTCs) from blood samples of patients, leading to new fields of research and fostering the promise for paradigm-changing, liquid biopsy-based clinical applications. Analysis of CTCs has revealed distinct biological phenotypes, including the presence of CTC clusters and the interaction between CTCs and immune or stromal cells, impacting metastasis formation and providing new insights into cancer vulnerabilities. Here we review the progress made in understanding biological features of CTCs and provide insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Gynecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Wang X, Gao T, Zhu J, Long S, Zhao S, Yuan L, Wang Z. Fabrication of Channeled and Three-Dimensional Electrodes for the Integrated Capture and Detection of Invasive Circulating Tumor Cells during Hematogenous Metastasis. Anal Chem 2023; 95:2496-2503. [PMID: 36639744 DOI: 10.1021/acs.analchem.2c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hematogenous metastasis is the main route of cancer spreading, causing majority death of cancer patients. During this process, platelets in the blood are found increasingly essential to promote hematogenous metastasis by forming platelet-interacted circulating tumor cells (CTCs). Hence, we aim to fabricate an integrated method for the availability of capture and detection of such invasive CTCs. Specifically, a new form of channeled and conductive three-dimensional (3D) electrode is constructed by modifying a conductive layer and capture antibody on the templated and channeled poly(dimethylsiloxane) scaffold. The modified antibody enables the capture of the platelet-interacted CTC hybrid, while the conductive layer significantly facilitates electron transfer from electro-active signal molecules that are targeting platelets. Therefore, sensitive electrochemical detection of platelet-interacted CTCs has been realized. Efficient capture and sensitive detection have been demonstrated by this work. Additionally, dynamic analysis of patients' CTCs has also been conducted to provide accurate information about disease assessment and efficacy evaluation. The cut-off line was set as 5.15 nA based on the sample signals from healthy volunteers. Thus, stage III cancer patients with high risk of hematogenous metastasis have been identified. Together, this work shows the development of a new strategy for simultaneous capture and detection of the invasive CTC subtype form patient blood, which favors precise monitoring of hematogenous metastasis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shipeng Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Songyan Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| |
Collapse
|
15
|
Wei M, Chen A, Zhang J, Ren Y. Novel Oxygen-Dependent Degradable Immunotoxin Regulated by the Ubiquitin-Proteasome System Reduces Nonspecific Cytotoxicity. Mol Pharm 2023; 20:90-100. [PMID: 36305716 DOI: 10.1021/acs.molpharmaceut.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The use of bacterial toxins as antitumor agents has received considerable attention. Immunotoxins based on antigen recognition of single-chain antibodies have been widely explored for cancer therapy. Despite their impressive killing effect on tumor cells, immunotoxins still display unspecific toxicity with undesired side effects. High levels of hypoxia-inducible factor 1α (HIF-1α) are well-known indicators of hypoxia in cancer cells. In this study, different linkers were employed to fuse the immunotoxin DAB389-4D5 scFv (DS) with the oxygen-dependent degradation domain (ODDD) of HIF-1α, a domain selectively facilitating the accumulation of HIF-1α under hypoxia, to construct the oxygen-dependent degradable immunotoxin DS-ODDD (DSO). The engineered fusion protein DSO-2 containing a linker (G4S)3 possesses the best killing effect on cancer cells under hypoxia and displayed considerably reduced nonspecific toxicity to normal cells under normoxic conditions. Flow cytometry, immunofluorescence, and immunoblot analyses demonstrated that DSO-2 was degraded via the ubiquitin-proteasome pathway regulated by the oxygen-sensitive mechanism. Western blot analysis indicated that the degradation of DSO-2 significantly decreased the activation of apoptosis-related molecules in normal cells. The engineered immunotoxin with oxygen-sensing properties developed herein is a potential therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
16
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
17
|
Schwab FD, Scheidmann MC, Ozimski LL, Kling A, Armbrecht L, Ryser T, Krol I, Strittmatter K, Nguyen-Sträuli BD, Jacob F, Fedier A, Heinzelmann-Schwarz V, Wicki A, Dittrich PS, Aceto N. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. MICROSYSTEMS & NANOENGINEERING 2022; 8:130. [PMID: 36561926 PMCID: PMC9763115 DOI: 10.1038/s41378-022-00467-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities.
Collapse
Affiliation(s)
- Fabienne D. Schwab
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
| | - Manuel C. Scheidmann
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Lauren L. Ozimski
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - André Kling
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Till Ryser
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Ilona Krol
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Karin Strittmatter
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Gynaecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Wicki
- University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Nicola Aceto
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
18
|
Recent advances in integrated microfluidics for liquid biopsies and future directions. Biosens Bioelectron 2022; 217:114715. [PMID: 36174359 DOI: 10.1016/j.bios.2022.114715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Liquid biopsies have piqued the interest of researchers as a new tumor diagnosis technique due to their unique benefits of non-invasiveness, sensitivity, and convenience. Recent advances in microfluidic technology have integrated separation, purification, and detection, allowing for high-throughput, high-sensitivity, and high-controllability detection of specific biomarkers in liquid biopsies. With the increasing demand for tumor detection and individualized treatment, new challenges are emerging for the ever-improving microfluidic technology. The state-of-the-art microfluidic design and fabrications have been reviewed in this manuscript, and how this technology can be applied to liquid biopsies from the point of view of the detection process. The primary discussion objectives are circulating tumor cells (CTCs), exosomes, and circulating nucleic acid (ctDNA). Furthermore, the challenges and future direction of microfluidic technology in detecting liquid biomarkers have been discussed.
Collapse
|
19
|
Macaraniag C, Luan Q, Zhou J, Papautsky I. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters. APL Bioeng 2022; 6:031501. [PMID: 35856010 PMCID: PMC9288269 DOI: 10.1063/5.0093806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cell (CTC) clusters that are shed from the primary tumor into the bloodstream are associated with a poor prognosis, elevated metastatic potential, higher proliferation rate, and distinct molecular features compared to single CTCs. Studying CTC clusters may give us information on the differences in the genetic profiles, somatic mutations, and epigenetic changes in circulating cells compared to the primary tumor and metastatic sites. Microfluidic systems offer the means of studying CTC clusters through the ability to efficiently isolate these rare cells from the whole blood of patients in a liquid biopsy. Microfluidics can also be used to develop in vitro models of CTC clusters and make possible their characterization and analysis. Ultimately, microfluidic systems can offer the means to gather insight on the complexities of the metastatic process, the biology of cancer, and the potential for developing novel or personalized therapies. In this review, we aim to discuss the advantages and challenges of the existing microfluidic systems for working with CTC clusters. We hope that an improved understanding of the role microfluidics can play in isolation, formation, and characterization of CTC clusters, which can lead to increased sophistication of microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
20
|
Seth A, Mittal E, Luan J, Kolla S, Mazer MB, Joshi H, Gupta R, Rathi P, Wang Z, Morrissey JJ, Ernst JD, Portal-Celhay C, Morley SC, Philips JA, Singamaneni S. High-resolution imaging of protein secretion at the single-cell level using plasmon-enhanced FluoroDOT assay. CELL REPORTS METHODS 2022; 2:100267. [PMID: 36046626 PMCID: PMC9421537 DOI: 10.1016/j.crmeth.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/28/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.
Collapse
Affiliation(s)
- Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Auragent Bioscience, LLC, St. Louis, MO 63108, USA
| | - Ekansh Mittal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samhitha Kolla
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Monty B. Mazer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Cynthia Portal-Celhay
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon Celeste Morley
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Rahmanian M, Sartipzadeh Hematabad O, Askari E, Shokati F, Bakhshi A, Moghadam S, Olfatbakhsh A, Al Sadat Hashemi E, Khorsand Ahmadi M, Morteza Naghib S, Sinha N, Tel J, Eslami Amirabadi H, den Toonder JMJ, Majidzadeh-A K. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J Adv Res 2022; 47:105-121. [PMID: 35964874 PMCID: PMC10173300 DOI: 10.1016/j.jare.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. OBJECTIVES This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. METHODS We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device's performance was validated on 12 patients with breast cancer (BC) in different states. RESULTS The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. CONCLUSION The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Omid Sartipzadeh Hematabad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Atin Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Moghadam
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Asiie Olfatbakhsh
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esmat Al Sadat Hashemi
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Khorsand Ahmadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; AZAR Innovations, Utrecht, the Netherlands
| | - Jaap M J den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
Rackus DG, Jusková P, Yokoyama F, Dittrich PS. Parallel study of transient dosing of antibiotics in a microfluidic device. BIOMICROFLUIDICS 2022; 16:044105. [PMID: 35935120 PMCID: PMC9348895 DOI: 10.1063/5.0091704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microfluidic tools are well suited for studying bacteria as they enable the analysis of small colonies or single cells. However, current techniques for studying bacterial response to antibiotics are largely limited to static dosing. Here, we describe a microfluidic device and a method for entrapping and cultivating bacteria in hydrogel plugs. Ring-shaped isolation valves are used to define the shape of the plugs and also to control exposure of the plugs to the surrounding medium. We demonstrate bacterial cultivation, determination of the minimum inhibitory concentration of an antibiotic, and transient dosing of an antibiotic at sub-1-h doses. The transient dosing experiments reveal that at dose durations on the order of minutes, ampicillin's bactericidal effect has both a time and concentration dependency.
Collapse
|
23
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Rupp B, Ball H, Wuchu F, Nagrath D, Nagrath S. Circulating tumor cells in precision medicine: challenges and opportunities. Trends Pharmacol Sci 2022; 43:378-391. [DOI: 10.1016/j.tips.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
|
25
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
26
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
27
|
Identifying extracellular vesicle populations from single cells. Proc Natl Acad Sci U S A 2021; 118:2106630118. [PMID: 34518226 PMCID: PMC8463870 DOI: 10.1073/pnas.2106630118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are constantly secreted from both eukaryotic and prokaryotic cells. EVs, including those referred to as exosomes, may have an impact on cell signaling and an incidence in diseased cells. In this manuscript, a platform to capture, quantify, and phenotypically classify the EVs secreted from single cells is introduced. Microfluidic chambers of about 300 pL are employed to trap and isolate individual cells. The EVs secreted within these chambers are then captured by surface-immobilized monoclonal antibodies (mAbs), irrespective of their intracellular origin. Immunostaining against both plasma membrane and cytosolic proteins was combined with highly sensitive, multicolor total internal reflection fluorescence microscopy to characterize the immobilized vesicles. The data analysis of high-resolution images allowed the assignment of each detected EV to one of 15 unique populations and demonstrated the presence of highly heterogeneous phenotypes even at the single-cell level. The analysis also revealed that each mAb isolates phenotypically different EVs and that more vesicles were effectively immobilized when CD63 was targeted instead of CD81. Finally, we demonstrate how a heterogeneous suppression in the secreted vesicles is obtained when the enzyme neutral sphingomyelinase is inhibited.
Collapse
|
28
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
29
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
30
|
Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021; 13:1385. [PMID: 33803846 PMCID: PMC8003176 DOI: 10.3390/cancers13061385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has been considered one of the best biomarkers in liquid biopsy for early diagnosis and prognosis monitoring in cancer. A major challenge of using CTCs is detecting extremely low-concentrated targets in the presence of high noise factors such as serum and hematopoietic cells. This review provides a selective overview of the recent progress in the design of microfluidic devices with optical sensing tools and their application in the detection and analysis of CTCs and their small malignant subset, circulating cancer stem cells (CCSCs). Moreover, discussion of novel strategies to analyze the differentiation of circulating cancer stem cells will contribute to an understanding of metastatic cancer, which can help clinicians to make a better assessment. We believe that the topic discussed in this review can provide brief guideline for the development of microfluidic-based optical biosensors in cancer prognosis monitoring and clinical applications.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
- Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| |
Collapse
|
31
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
32
|
Jiang K, Jokhun DS, Lim CT. Microfluidic detection of human diseases: From liquid biopsy to COVID-19 diagnosis. J Biomech 2021; 117:110235. [PMID: 33486262 PMCID: PMC7832952 DOI: 10.1016/j.jbiomech.2021.110235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Microfluidic devices can be thought of as comprising interconnected miniaturized compartments performing multiple experimental tasks individually or in parallel in an integrated fashion. Due to its small size, portability, and low cost, attempts have been made to incorporate detection assays into microfluidic platforms for diseases such as cancer and infection. Some of these technologies have served as point-of-care and sample-to-answer devices. The methods for detecting biomarkers in different diseases usually share similar principles and can conveniently be adapted to cope with arising health challenges. The COVID-19 pandemic is one such challenge that is testing the performance of both our conventional and newly-developed disease diagnostic technologies. In this mini-review, we will first look at the progress made in the past few years in applying microfluidics for liquid biopsy and infectious disease detection. Following that, we will use the current pandemic as an example to discuss how such technological advancements can help in the current health challenge and better prepare us for future ones.
Collapse
Affiliation(s)
- Kuan Jiang
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
33
|
Napiorkowska M, Pestalozzi L, Panke S, Held M, Schmitt S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005523. [PMID: 33325637 DOI: 10.1002/smll.202005523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest. Bead-retained products are then fluorescently labeled and strains with superior production titers are isolated using flow cytometry. The broad applicability of the platform is demonstrated by successfully culturing several industrially relevant bacterial and yeast strains and detecting peptides or proteins of interest that are secreted or released from the cell via autolysis. Lastly, the platform is applied to optimize cutinase secretion in Komagataella phaffii (Pichia pastoris) and a strain with 5.7-fold improvement is isolated. The platform permits the analysis of >106 genotypes per day and is readily applicable to any protein that can be equipped with a His6 -tag. It is envisioned that the platform will be useful for large screening campaigns that aim to identify improved hosts for large-scale production of biotechnologically relevant proteins, thereby accelerating the costly and time-consuming process of strain engineering.
Collapse
Affiliation(s)
- Marta Napiorkowska
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Luzius Pestalozzi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
34
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|