1
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
3
|
Tuyen NTK, Kim DM, Lee JW, Jung J. Innovative Hybrid Nanocomposites in 3D Printing for Functional Applications: A Review. Molecules 2024; 29:5159. [PMID: 39519800 PMCID: PMC11547392 DOI: 10.3390/molecules29215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
3D printing has garnered significant attention across academia and industry due to its capability to design and fabricate complex architectures. Applications such as those requiring intricate geometries or custom designs, including footwear, healthcare, energy storage, and electronics applications, greatly benefit from exploiting 3D printing processes. Despite the recent advancement of structural 3D printing, its use in functional devices remains limited, requiring the need for the development of functional materials suitable for 3D printing in device fabrication. In this review, we briefly introduce various 3D printing techniques, including material extrusion and vat polymerization, and highlight the recent advances in 3D printing for energy and biomedical devices. A summary of future perspectives in this area is also presented. By highlighting recent developments and addressing key challenges, this review aims to inspire future directions in the development of functional devices.
Collapse
Affiliation(s)
- Nguyen Thi Kim Tuyen
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Dong Min Kim
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jung-Woo Lee
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jaehan Jung
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Hosseini M, Etghani SA, Nobakht N, Sanjari Shahrezaei MA, Aboutalebi SH. Integrated One-Step Fabrication of Protonic Sensing Devices for Respiratory Monitoring. ACS Sens 2024; 9:5454-5467. [PMID: 39413435 DOI: 10.1021/acssensors.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The development of direct fabrication routes with seamless integration of both the macro/micropatterning process and nanostructure synthesis is crucial for the commercial realization of cost-effective nanoscale sensor devices. This, if realized, can liberate us from the conventional limitations inherent in nanoscale device manufacturing. Specifically, such fabrication routes can, in principle, address the challenges such as the complexity, multistep nature, and substantial costs associated with existing technologies, which are not suitable for widespread market adoption in everyday-use devices. Herein, we propose a novel yet facile one-step fabrication approach that simultaneously accomplishes both patterning and nanostructure synthesis by employing low-power, cost-effective laser technology with a minimal environmental footprint. Versatile in nature, this approach can enable the incorporation of diverse functionalities spanning a broad spectrum of technologies, encompassing fields such as sensors, catalysts, photonics, energy storage, and biomedical monitoring devices. As a proof of concept, using our approach, we fabricated an ultra responsive, high-speed protonic sensing device for real-time respiratory monitoring. The enhanced temporal characteristics of our as-fabricated device, particularly in the relative humidity levels of interest in breath monitoring (typically over 55%), exhibited a superior response/recovery time in rapid humidity fluctuations. We envisage that the advantages brought by the presented fabrication approach can pave the way to establish a new method for inexpensive large-scale functional-material-based device fabrication.
Collapse
Affiliation(s)
- Mohammad Hosseini
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| | - Seyyed Ahmad Etghani
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran
| | - Narges Nobakht
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| | | | - Seyed Hamed Aboutalebi
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| |
Collapse
|
5
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
6
|
Wu D, Wu S, Narongdej P, Duan S, Chen C, Yan Y, Liu Z, Hong W, Frenkel I, He X. Fast and Facile Liquid Metal Printing via Projection Lithography for Highly Stretchable Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307632. [PMID: 38126914 DOI: 10.1002/adma.202307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Poom Narongdej
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chi Chen
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zixiao Liu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Wen Hong
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Oh B, Baek S, Nam KS, Sung C, Yang C, Lim YS, Ju MS, Kim S, Kim TS, Park SM, Park S, Park S. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Nat Commun 2024; 15:5839. [PMID: 38992011 PMCID: PMC11239939 DOI: 10.1038/s41467-024-50264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).
Collapse
Affiliation(s)
- Byungkook Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seunghyeok Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Changhoon Sung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Min Sang Ju
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Soomin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Romero C, Liu Z, Wei Z, Fei L. A review of hierarchical porous carbon derived from various 3D printing techniques. NANOSCALE 2024; 16:12274-12286. [PMID: 38847575 DOI: 10.1039/d4nr00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hierarchical porous carbon is an area of advanced materials that plays a pivotal role in meeting the increasing demands across various industry sectors including catalysis, adsorption, and energy storage and conversion. Additive manufacturing is a promising technique to synthesize architectured porous carbon with exceptional design flexibility, guided by computer-aided precision. This review paper aims to provide an overview of porous carbon derived from various additive manufacturing techniques, including material extrusion, vat polymerization, and powder bed fusion. The respective advantages and limitations of these techniques will be examined. Some exemplary work on various applications will be showcased. Furthermore, perspectives on future research directions, opportunities, and challenges of additive manufacturing for porous carbon will also be offered.
Collapse
Affiliation(s)
- Cameron Romero
- Department of Chemical Engineering, University of Louisiana at Lafayette, USA.
| | - Zhi Liu
- Department of Chemical Engineering, University of Louisiana at Lafayette, USA.
| | - Zhen Wei
- Department of Chemical Engineering, University of Louisiana at Lafayette, USA.
| | - Ling Fei
- Department of Chemical Engineering, University of Louisiana at Lafayette, USA.
| |
Collapse
|
10
|
Man Z, Dong C, Bian J, Lu Z, Lu YQ, Zhang W. Optically Readable, Physically Unclonable Subwavelength Pixel via Multicolor Quantum Dot Printing for Anticounterfeiting. NANO LETTERS 2024; 24:7019-7024. [PMID: 38808680 DOI: 10.1021/acs.nanolett.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.
Collapse
Affiliation(s)
- Zaiqin Man
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
11
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
12
|
Toinet S, Benwadih M, Szambolics H, Revenant C, Alincant D, Bordet M, Capsal JF, Della-Schiava N, Le MQ, Cottinet PJ. Design Optimization of Printed Multi-Layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2135. [PMID: 38730941 PMCID: PMC11085776 DOI: 10.3390/ma17092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with numerous bifurcations and angulations. To reach a target artery, surgeons frequently opt for several tools (guidewires with different size integrated into angulated catheters) that might provoke arterial complications such as perforation or dissection. Steerable guidewires would, therefore, be of high interest to reduce surgical morbidity and mortality for patients as well as to simplify procedure for surgeons, thereby saving time and health costs. Regarding these reasons, our research involves the development of a smart steerable guidewire using electroactive polymer (EAP) capable of bending when subjected to an input voltage. The actuation performance of the developed device is assessed through the curvature behavior (i.e., the displacement and the angle of the bending) of a cantilever beam structure, consisting of single- or multi-stack EAP printed on a substrate. Compared to the single-stack architecture, the multi-stack gives rise to a significant increase in curvature, even when subjected to a moderate control voltage. As suggested by the design framework, the intrinsic physical properties (dielectric, electrical, and mechanical) of the EAP layer, together with the nature and thickness of all materials (EAP and substrate), do have strong effect on the bending response of the device. The analyses propose a comprehensive guideline to optimize the actuator performance based on an adequate selection of the relevant materials and geometric parameters. An analytical model together with a finite element model (FEM) are investigated to validate the experimental tests. Finally, the design guideline leads to an innovative structure (composed of a 10-stack active layer screen-printed on a thin substrate) capable of generating a large range of bending angle (up to 190°) under an acceptable input level of 550 V, which perfectly matches the standard of medical tools used for cardiovascular surgery.
Collapse
Affiliation(s)
- Simon Toinet
- University Grenoble Alpes, CEA, LITEN DTNM, 38000 Grenoble, France; (S.T.); (M.B.); (H.S.); (C.R.); (D.A.)
| | - Mohammed Benwadih
- University Grenoble Alpes, CEA, LITEN DTNM, 38000 Grenoble, France; (S.T.); (M.B.); (H.S.); (C.R.); (D.A.)
| | - Helga Szambolics
- University Grenoble Alpes, CEA, LITEN DTNM, 38000 Grenoble, France; (S.T.); (M.B.); (H.S.); (C.R.); (D.A.)
| | - Christine Revenant
- University Grenoble Alpes, CEA, LITEN DTNM, 38000 Grenoble, France; (S.T.); (M.B.); (H.S.); (C.R.); (D.A.)
| | - David Alincant
- University Grenoble Alpes, CEA, LITEN DTNM, 38000 Grenoble, France; (S.T.); (M.B.); (H.S.); (C.R.); (D.A.)
| | - Marine Bordet
- Department of Vascular and Endovascular Surgery, Hospices Civils de Lyon, 69500 Bron, France; (M.B.); (N.D.-S.)
| | | | - Nellie Della-Schiava
- Department of Vascular and Endovascular Surgery, Hospices Civils de Lyon, 69500 Bron, France; (M.B.); (N.D.-S.)
| | - Minh-Quyen Le
- LGEF Laboratory, INSA Lyon, UR682, 69621 Villeurbanne, France;
| | | |
Collapse
|
13
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
14
|
Kwon DA, Lee S, Kim CY, Kang I, Park S, Jeong JW. Body-temperature softening electronic ink for additive manufacturing of transformative bioelectronics via direct writing. SCIENCE ADVANCES 2024; 10:eadn1186. [PMID: 38416839 PMCID: PMC10901467 DOI: 10.1126/sciadv.adn1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Mechanically transformative electronic systems (TESs) built using gallium have emerged as an innovative class of electronics due to their ability to switch between rigid and flexible states, thus expanding the versatility of electronics. However, the challenges posed by gallium's high surface tension and low viscosity have substantially hindered manufacturability, limiting high-resolution patterning of TESs. To address this challenge, we introduce a stiffness-tunable gallium-copper composite ink capable of direct ink write printing of intricate TES circuits, offering high-resolution (~50 micrometers) patterning, high conductivity, and bidirectional soft-rigid convertibility. These features enable transformative bioelectronics with design complexity akin to traditional printed circuit boards. These TESs maintain rigidity at room temperature for easy handling but soften and conform to curvilinear tissue surfaces at body temperature, adapting to dynamic tissue deformations. The proposed ink with direct ink write printing makes TES manufacturing simple and versatile, opening possibilities in wearables, implantables, consumer electronics, and robotics.
Collapse
Affiliation(s)
- Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Inho Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Yang X, Al-Handawi MB, Li L, Naumov P, Zhang H. Hybrid and composite materials of organic crystals. Chem Sci 2024; 15:2684-2696. [PMID: 38404393 PMCID: PMC10884791 DOI: 10.1039/d3sc06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Organic molecular crystals have historically been viewed as delicate and fragile materials. However, recent studies have revealed that many organic crystals, especially those with high aspect ratios, can display significant flexibility, elasticity, and shape adaptability. The discovery of mechanical compliance in organic crystals has recently enabled their integration with responsive polymers and other components to create novel hybrid and composite materials. These hybrids exhibit unique structure-property relationships and synergistic effects that not only combine, but occasionally also enhance the advantages of the constituent crystals and polymers. Such organic crystal composites rapidly emerge as a promising new class of materials for diverse applications in optics, electronics, sensing, soft robotics, and beyond. While specific, mostly practical challenges remain regarding scalability and manufacturability, being endowed with both structurally ordered and disordered components, the crystal-polymer composite materials set a hitherto unexplored yet very promising platform for the next-generation adaptive devices. This Perspective provides an in-depth analysis of the state-of-the-art in design strategies, dynamic properties and applications of hybrid and composite materials centered on organic crystals. It addresses the current challenges and provides a future outlook on this emerging class of multifunctional, stimuli-responsive, and mechanically robust class of materials.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Molecular Design Institute, Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
16
|
Seo H, Hong YM, Chung WG, Park W, Lee J, Kim HK, Byeon SH, Kim DW, Park JU. Real-time in vivo monitoring of intraocular pressure distribution in the anterior chamber and vitreous chamber for diagnosis of glaucoma. SCIENCE ADVANCES 2024; 10:eadk7805. [PMID: 38324695 PMCID: PMC10851251 DOI: 10.1126/sciadv.adk7805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Glaucoma causes irreversible vision loss due to optic nerve damage and retinal cell degeneration. Since high intraocular pressure (IOP) is a major risk factor for glaucoma development, accurate IOP measurement is crucial, especially intravitreal IOP affecting the optical nerve and cells. However, conventional methods have limits in selectively and directly detecting local retina pressure. Here, we present continuous measurements of local IOP values in the anterior chamber and vitreous chamber of living animals using minimally invasive probes with pressure-sensitive transistors. After inducing glaucoma in animal models, we compared the local IOP distribution between normal and glaucomatous eyes. We also compared IOP values detected in the cornea using tonometry measurements. Our findings revealed that glaucoma induced higher IOP in the vitreous chamber than in the anterior chamber, indicating that measuring IOP in the vitreous chamber is key to the glaucoma model. This progress offers future directions for diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Wonjung Park
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dai Woo Kim
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University College of Engineering, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Valayil Varghese T, Eixenberger J, Rajabi-Kouchi F, Lazouskaya M, Francis C, Burgoyne H, Wada K, Subbaraman H, Estrada D. Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics. ACS MATERIALS AU 2024; 4:65-73. [PMID: 38221917 PMCID: PMC10786129 DOI: 10.1021/acsmaterialsau.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 01/16/2024]
Abstract
Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10-6 Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 μm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10-8 Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.
Collapse
Affiliation(s)
- Tony Valayil Varghese
- Department
of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Josh Eixenberger
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Physics, Boise State University, Boise, Idaho 83725, United States
- Center
for Atomically Thin Multifunctional Coatings, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Boise State
University, Boise, Idaho 83725, United States
| | - Fereshteh Rajabi-Kouchi
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Maryna Lazouskaya
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Idaho
National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Cadré Francis
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Hailey Burgoyne
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Katelyn Wada
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Harish Subbaraman
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis ,Oregon 97331, United States
- Inflex
Laboratories LLC, Boise, Idaho 83706, United States
| | - David Estrada
- Micron
School of Material Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Atomically Thin Multifunctional Coatings, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Boise State
University, Boise, Idaho 83725, United States
- School of
Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Inflex
Laboratories LLC, Boise, Idaho 83706, United States
| |
Collapse
|
18
|
Chen G, Zhao F, Zeng Y, Su Z, Xu L, Shao C, Wu C, He G, Chen Q, Zhao Y, Sun D, Hai Z. Conformal Fabrication of Thick Film Platinum Strain Gauge Via Error Regulation Strategies for In Situ High-Temperature Strain Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:966-974. [PMID: 38109359 DOI: 10.1021/acsami.3c10866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Monitoring high-temperature strain on curved components in harsh environments is a challenge for a wide range of applications, including in aircraft engines, gas turbines, and hypersonic vehicles. Although there are significant improvements in the preparation of high-temperature piezoresistive film on planar surfaces using 3D printing methods, there are still difficulties with poor surface compatibility and high-temperature strain testing on curved surfaces. Herein, a conformal direct ink writing (CDIW) system coupled with an error feedback regulation strategy was used to fabricate high-precision, thick films on curved surfaces. This strategy enabled the maximum amount of error in the distance between the needle and the substrate on a curved surface to be regulated from 155 to 4 μm. A conformal Pt thick-film strain gauge (CPTFSG) with a room-temperature strain coefficient of 1.7 was created on a curved metallic substrate for the first time. The resistance drift rate at 800 °C for 1 h was 1.1%, which demonstrated the excellent stability and oxidation resistance of the CPTFSG. High-temperature dynamic strain tests up to 769 °C revealed that the sensor had excellent high-temperature strain test performance. Furthermore, the CPTFSG was conformally deposited on an aero-engine turbine blade to perform in situ tensile and compressive strain testing at room temperature. High-temperature strain tests were conducted at 100 and 200 °C for 600 and 580 με, respectively, demonstrating a high steady-state response consistent with the commercial high-temperature strain transducer. In addition, steady-state strain tests at high temperatures up to 496 °C were tested. The CDIW error modulation strategy provides a highly promising approach for the high-precision fabrication of Pt thick films on complex surfaces and driving in situ sensing of high-temperature parameters on curved components toward practical applications.
Collapse
Affiliation(s)
- Guochun Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Fuxin Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Yingjun Zeng
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Zhixuan Su
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lida Xu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Chenhe Shao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Chao Wu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Gonghan He
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Qinnan Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Zhenyin Hai
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
19
|
Tay RY, Song Y, Yao DR, Gao W. Direct-Ink-Writing 3D-Printed Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 71:135-151. [PMID: 38222250 PMCID: PMC10786343 DOI: 10.1016/j.mattod.2023.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The development of wearable and implantable bioelectronics has garnered significant momentum in recent years, driven by the ever-increasing demand for personalized health monitoring, remote patient management, and real-time physiological data collection. The elevated sophistication and advancement of these devices have thus led to the use of many new and unconventional materials which cannot be fulfilled through traditional manufacturing techniques. Three-dimension (3D) printing, also known as additive manufacturing, is an emerging technology that opens new opportunities to fabricate next-generation bioelectronic devices. Some significant advantages include its capacity for material versatility and design freedom, rapid prototyping, and manufacturing efficiency with enhanced capabilities. This review provides an overview of the recent advances in 3D printing of bioelectronics, particularly direct ink writing (DIW), encompassing the methodologies, materials, and applications that have emerged in this rapidly evolving field. This review showcases the broad range of bioelectronic devices fabricated through 3D printing including wearable biophysical sensors, biochemical sensors, electrophysiological sensors, energy devices, multimodal systems, implantable devices, and soft robots. This review will also discuss the advantages, existing challenges, and outlook of applying DIW 3D printing for the development of bioelectronic devices toward healthcare applications.
Collapse
Affiliation(s)
- Roland Yingjie Tay
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dickson R. Yao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
20
|
Jiao R, Wang R, Wang Y, Cheung YK, Chen X, Wang X, Deng Y, Yu H. Vertical serpentine interconnect-enabled stretchable and curved electronics. MICROSYSTEMS & NANOENGINEERING 2023; 9:149. [PMID: 38025886 PMCID: PMC10679150 DOI: 10.1038/s41378-023-00625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Stretchable and curved electronic devices are a promising technology trend due to their remarkable advantages. Many approaches have been developed to manufacture stretchable and curved electronics. Here, to allow such electronics to better serve practical applications, ranging from wearable devices to soft robotics, we propose a novel vertical serpentine conductor (VSC) with superior electrical stability to interconnect functional devices through a silicon-based microfabrication process. Conformal vacuum transfer printing (CVTP) technology was developed to transfer the networked platform onto complex curved surfaces to demonstrate feasibility. The mechanical and electrical performance were investigated numerically and experimentally. The VSC interconnected network provides a new approach for stretchable and curved electronics with high stretchability and reliability.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Ruoqin Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Yixin Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Yik Kin Cheung
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Xingru Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Xiaoyi Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Yang Deng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong 518045 China
| |
Collapse
|
21
|
Zhou H, Sun Y, Yang H, Tang Y, Lu Y, Zhou Z, Cao S, Zhang S, Chen S, Zhang Y, Pang H. Co 3 O 4 Quantum Dots Intercalation Liquid-Crystal Ordered-Layered-Structure Optimizing the Performance of 3D-Printing Micro-Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303636. [PMID: 37752758 PMCID: PMC10667828 DOI: 10.1002/advs.202303636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/07/2023] [Indexed: 09/28/2023]
Abstract
The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near-surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid-crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co3 O4 -quantum dots (Co3 O4 QDs). The Co3 O4 QDs are distributed in the pores of the electrode surface, and the insertion of Co3 O4 QDs can effectively compensate for the limitations of surface or near-surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D-printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm-2 ) and energy density (34.44 µWh cm-2 at a power density of 0.108 mW cm-2 ). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high-energy storage systems such as MSCs.
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yiyao Lu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Songqing Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE)School of Chemistry and Materials ScienceNanjing University of Information Science and TechnologyNanjing210044P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
22
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
23
|
Banko T, Grünwald S, Kronberger R, Seitz H. A Printing Strategy for Embedding Conductor Paths into FFF Printed Parts. Polymers (Basel) 2023; 15:3498. [PMID: 37688124 PMCID: PMC10489953 DOI: 10.3390/polym15173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
A novel approach to manufacture components with integrated conductor paths involves embedding and sintering an isotropic conductive adhesive (ICA) during fused filament fabrication (FFF). However, the molten plastic is deposited directly onto the adhesive path which causes an inhomogeneous displacement of the uncured ICA. This paper presents a 3D printing strategy to achieve a homogeneous cross-section of the conductor path. The approach involves embedding the ICA into a printed groove and sealing it with a wide extruded plastic strand. Three parameter studies are conducted to obtain a consistent cavity for uniform formation of the ICA path. Specimens made of polylactic acid (PLA) with embedded ICA paths are printed and evaluated. The optimal parameters include a groove printed with a layer height of 0.1 mm, depth of 0.4 mm, and sealed with a PLA strand of 700 µm diameter. This resulted in a conductor path with a homogeneous cross-section, measuring 660 µm ± 22 µm in width (relative standard deviation: 3.3%) and a cross-sectional area of 0.108 mm2 ± 0.008 mm2 (relative standard deviation 7.2%). This is the first study to demonstrate the successful implementation of a printing strategy for embedding conductive traces with a homogeneous cross-sectional area in FFF 3D printing.
Collapse
Affiliation(s)
- Timo Banko
- Faculty of Process Engineering, Energy and Mechanical Systems, TH Köln—University of Applied Sciences, 50679 Cologne, Germany
| | - Stefan Grünwald
- Faculty of Process Engineering, Energy and Mechanical Systems, TH Köln—University of Applied Sciences, 50679 Cologne, Germany
| | - Rainer Kronberger
- Faculty of Information, Media and Electrical Engineering, TH Köln—University of Applied Sciences, 50679 Cologne, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
24
|
Xiao B, Zheng X, Zhao Y, Huang B, He P, Peng B, Chen G. Controlling Shear Rate for Designable Thermal Conductivity in Direct Ink Printing of Polydimethylsiloxane/Boron Nitride Composites. Polymers (Basel) 2023; 15:3489. [PMID: 37631546 PMCID: PMC10459169 DOI: 10.3390/polym15163489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient heat dissipation is vital for advancing device integration and high-frequency performance. Three-dimensional printing, famous for its convenience and structural controllability, facilitates complex parts with high thermal conductivity. Despite this, few studies have considered the influence of shear rate on the thermal conductivity of printed parts. Herein, polydimethylsiloxane/boron nitride (PDMS/BN) composites were prepared and printed by direct ink writing (DIW). In order to ensure the smooth extrusion of the printing process and the structural stability of the part, a system with 40 wt% BN was selected according to the rheological properties. In addition, the effect of printing speed on the morphology of BN particles during 3D printing was studied by XRD, SEM observation, as well as ANSYS Polyflow simulation. The results demonstrated that increasing the printing speed from 10 mm/s to 120 mm/s altered the orientation angle of BN particles from 78.3° to 35.7°, promoting their alignment along the printing direction due to the high shear rate experienced. The resulting printed parts accordingly exhibited an impressive thermal conductivity of 0.849 W∙m-1∙K-1, higher than the 0.454 W∙m-1∙K-1 of the control sample. This study provides valuable insights and an important reference for future developments in the fabrication of thermal management devices with customizable thermal conductivity.
Collapse
Affiliation(s)
- Bing Xiao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Xinmei Zheng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Yang Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Bingxue Huang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Pan He
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu 611731, China;
| | - Biyou Peng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
25
|
Öztürk-Öncel MÖ, Leal-Martínez BH, Monteiro RF, Gomes ME, Domingues RMA. A dive into the bath: embedded 3D bioprinting of freeform in vitro models. Biomater Sci 2023; 11:5462-5473. [PMID: 37489648 PMCID: PMC10408712 DOI: 10.1039/d3bm00626c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Designing functional, vascularized, human scale in vitro models with biomimetic architectures and multiple cell types is a highly promising strategy for both a better understanding of natural tissue/organ development stages to inspire regenerative medicine, and to test novel therapeutics on personalized microphysiological systems. Extrusion-based 3D bioprinting is an effective biofabrication technology to engineer living constructs with predefined geometries and cell patterns. However, bioprinting high-resolution multilayered structures with mechanically weak hydrogel bioinks is challenging. The advent of embedded 3D bioprinting systems in recent years offered new avenues to explore this technology for in vitro modeling. By providing a stable, cell-friendly and perfusable environment to hold the bioink during and after printing, it allows to recapitulate native tissues' architecture and function in a well-controlled manner. Besides enabling freeform bioprinting of constructs with complex spatial organization, support baths can further provide functional housing systems for their long-term in vitro maintenance and screening. This minireview summarizes the recent advances in this field and discuss the enormous potential of embedded 3D bioprinting technologies as alternatives for the automated fabrication of more biomimetic in vitro models.
Collapse
Affiliation(s)
- M Özgen Öztürk-Öncel
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Baltazar Hiram Leal-Martínez
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rosa F Monteiro
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Hengsteler J, Kanes KA, Khasanova L, Momotenko D. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:71-91. [PMID: 37068744 DOI: 10.1146/annurev-anchem-091522-122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.
Collapse
Affiliation(s)
- Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Karuna Aurel Kanes
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Liaisan Khasanova
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Dmitry Momotenko
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| |
Collapse
|
27
|
Liu H, Zhang Z, Wu C, Su K, Kan X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. MICROMACHINES 2023; 14:1216. [PMID: 37374801 DOI: 10.3390/mi14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Haishuo Liu
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Zipeng Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Kang Su
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
28
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
29
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
30
|
Mau R, Seitz H. Influence of the Volatility of Solvent on the Reproducibility of Droplet Formation in Pharmaceutical Inkjet Printing. Pharmaceutics 2023; 15:pharmaceutics15020367. [PMID: 36839689 PMCID: PMC9965695 DOI: 10.3390/pharmaceutics15020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Drop-on-demand (DOD) inkjet printing enables exact dispensing and positioning of single droplets in the picoliter range. In this study, we investigate the long-term reproducibility of droplet formation of piezoelectric inkjet printed drug solutions using solvents with different volatilities. We found inkjet printability of EtOH/ASA drug solutions is limited, as there is a rapid forming of drug deposits on the nozzle of the printhead because of fast solvent evaporation. Droplet formation of c = 100 g/L EtOH/ASA solution was affected after only a few seconds by little drug deposits, whereas for c = 10 g/L EtOH/ASA solution, a negative affection was observed only after t = 15 min, while prominent drug deposits form at the printhead tip. Due to the creeping effect, the crystallizing structures of ASA spread around the nozzle but do not clog it necessarily. When there is a negative affection, the droplet trajectory is affected the most, while the droplet volume and droplet velocity are influenced less. In contrast, no formation of drug deposits could be observed for highly concentrated, low volatile DMSO-based drug solution of c = 100 g/L even after a dispensing time of t = 30 min. Therefore, low volatile solvents are preferable to highly volatile solvents to ensure a reproducible droplet formation in long-term inkjet printing of highly concentrated drug solutions. Highly volatile solvents require relatively low drug concentrations and frequent printhead cleaning. The findings of this study are especially relevant when high droplet positioning precision is desired, e.g., drug loading of microreservoirs or drug-coating of microneedle devices.
Collapse
Affiliation(s)
- Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-381-498-9103
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
31
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
32
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
33
|
Kim M, Hwang JC, Min S, Park YG, Kim S, Kim E, Seo H, Chung WG, Lee J, Cho SW, Park JU. Multimodal Characterization of Cardiac Organoids Using Integrations of Pressure-Sensitive Transistor Arrays with Three-Dimensional Liquid Metal Electrodes. NANO LETTERS 2022; 22:7892-7901. [PMID: 36135332 PMCID: PMC9562461 DOI: 10.1021/acs.nanolett.2c02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Herein, we present an unconventional method for multimodal characterization of three-dimensional cardiac organoids. This method can monitor and control the mechanophysiological parameters of organoids within a single device. In this method, local pressure distributions of human-induced pluripotent stem-cell-derived cardiac organoids are visualized spatiotemporally by an active-matrix array of pressure-sensitive transistors. This array is integrated with three-dimensional electrodes formed by the high-resolution printing of liquid metal. These liquid-metal electrodes are inserted inside an organoid to form the intraorganoid interface for simultaneous electrophysiological recording and stimulation. The low mechanical modulus and low impedance of the liquid-metal electrodes are compatible with organoids' soft biological tissue, which enables stable electric pacing at low thresholds. In contrast to conventional electrophysiological methods, this measurement of a cardiac organoid's beating pressures enabled simultaneous treatment of electrical therapeutics using a single device without any interference between the pressure signals and electrical pulses from pacing electrodes, even in wet organoid conditions.
Collapse
Affiliation(s)
- Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Chul Hwang
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjin Min
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Geun Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Suran Kim
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- KIURI
Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Xia P, Wei D. Review of Flexible Wearable Sensor Devices for Biomedical Application. MICROMACHINES 2022; 13:1395. [PMID: 36144018 PMCID: PMC9505309 DOI: 10.3390/mi13091395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
With the development of cross-fertilisation in various disciplines, flexible wearable sensing technologies have emerged, bringing together many disciplines, such as biomedicine, materials science, control science, and communication technology. Over the past few years, the development of multiple types of flexible wearable devices that are widely used for the detection of human physiological signals has proven that flexible wearable devices have strong biocompatibility and a great potential for further development. These include electronic skin patches, soft robots, bio-batteries, and personalised medical devices. In this review, we present an updated overview of emerging flexible wearable sensor devices for biomedical applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we describe the selection and fabrication of flexible materials and their excellent electrochemical properties. We evaluate the mechanisms by which these sensor devices work, and then we categorise and compare the unique advantages of a variety of sensor devices from the perspective of in vitro and in vivo sensing, as well as some exciting applications in the human body. Finally, we summarise the opportunities and challenges in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Lanxiao Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinfeng Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Xia
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Donglai Wei
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
35
|
Young Ryu S, Kwak C, Kim J, Kim S, Cho H, Lee J. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers. J Colloid Interface Sci 2022; 628:758-767. [PMID: 36029590 DOI: 10.1016/j.jcis.2022.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Conductive metal inks with 3D-printable rheological properties have gained considerable attention, owing to their potential for manufacturing 3D electronics. Typically, such inks are formulated with high volume fractions of metal particles to achieve both rheological and electrical percolation. However, this leads to a high product cost and weight, making this approach potentially undesirable for practical application. In this study, naturally occurring ingredients, i.e., bee pollen microparticles (BPMPs) and citric acids (CAs), are used to produce a jammed hexane-in-aqueous suspension-type emulsion with controllable viscoelasticity as a template for conductive metal particles. Correspondingly, it is possible to develop 3D-printable, lightweight, and conductive inks. The BPMPs and CAs, as rheology modifiers, facilitate the 3D printability of the ink. After drying, the ink forms 3D networks without macroscopic discontinuities. Hexanes co-dispersed with BPMPs and CAs in the aqueous continuous phase improve the ink rheological processability and create internal macropores within the 3D-printed structure upon evaporation under ambient conditions, decreasing the product density. A conductive copper ink based on the emulsion template shows excellent 3D printability and electrical percolation at low metal loadings (<10 vol%); moreover, the printed ink with the optimized formulation has a remarkably low density (<2 g ∙ cm-3).
Collapse
Affiliation(s)
- Seoung Young Ryu
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Chaesu Kwak
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Suyeon Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hanbin Cho
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
36
|
Habib A, Jovanovich N, Muthiah N, Alattar A, Alan N, Agarwal N, Ozpinar A, Hamilton DK. 3D printing applications in spine surgery: an evidence-based assessment toward personalized patient care. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1682-1690. [PMID: 35590016 DOI: 10.1007/s00586-022-07250-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Spine surgery entails a wide spectrum of complicated pathologies. Over the years, numerous assistive tools have been introduced to the modern neurosurgeon's armamentarium including neuronavigation and visualization technologies. In this review, we aimed to summarize the available data on 3D printing applications in spine surgery as well as an assessment of the future implications of 3D printing. METHODS We performed a comprehensive review of the literature on 3D printing applications in spine surgery. RESULTS Over the past decade, 3D printing and additive manufacturing applications, which allow for increased precision and customizability, have gained significant traction, particularly spine surgery. 3D printing applications in spine surgery were initially limited to preoperative visualization, as 3D printing had been primarily used to produce preoperative models of patient-specific deformities or spinal tumors. More recently, 3D printing has been used intraoperatively in the form of 3D customizable implants and personalized screw guides. CONCLUSIONS Despite promising preliminary results, the applications of 3D printing are so recent that the available data regarding these new technologies in spine surgery remains scarce, especially data related to long-term outcomes.
Collapse
Affiliation(s)
- Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA.,Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nallammai Muthiah
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA
| | - Ali Alattar
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA
| | - Nima Alan
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA
| | - Nitin Agarwal
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA.
| | - David Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, USA
| |
Collapse
|